
Mean curvature flows and isotopy problems

Mu-Tao Wang

Columbia University

10th Pacific Rim Geometry Conference
Osaka City University, Osaka

December 5, 2011



Plan of the talk

I Mean curvature flow of graphs of maps between Riemannian
manifolds.

I Estimates of non-linear parabolic system of differential
equations.

I Global existence and application to isotopy problems in
geometry and topology.

I Joint works with I. Medos, K. Smoczyk, and M.-P. Tsui.
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Σ = {(x , y , f (x , y)) | (x , y) ∈ Ω} and A(Σ) =
∫

Ω

√
1 + |∇f |2.

Euler-Lagrange equation is div( ∇f√
1+|∇f |2|

) = 0.
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The M.S.E. is one of the most studied nonlinear elliptic PDE’s.

Bernstein’s conjecture for entire solutions.(J. Simons, E.
Bombieri-E. De Giorgi-M. Miranda, etc.)

Dirichlet problem is uniquely solvable as long as Ω is mean
convex.(H.Jenkins-J.Serrin, etc.)

Any Lipschitz solution is smooth and analytic. (J.Moser, C. B.
Morrey, etc.)
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The corresponding parabolic equation is called the mean curvature
flow.

∂f

∂t
=

√
1 + |∇f |2div(

∇f√
1 + |∇f |2

), f = f (x , y , t)

This is the negative gradient flow of the area functional.

The normal velocity vector of graph of f (x , y , t) in R3 is the mean
curvature vector.

Note that the equation is of non-divergence form.
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Consider
−→
X (u, v) = (X1(u, v),X2(u, v),X3(u, v)) ∈ R3.

The minimal surface equation is equivalent to

~H = ∆Σ
−→
X = (∆ΣX1,∆ΣX2,∆ΣX3) = (0, 0, 0)

where Σ is the image surface of
−→
X .
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−→
H = ∆Σ

−→
X is the mean curvature vector of Σ.

The equation ~H = 0 is invariant under reparametrization and is a
degenerate elliptic system for (X1,X2,X3).

The corresponding parabolic equation for
−→
X (u, v , t) is

∂
−→
X

∂t
= ∆Σ

−→
X .

“Heat equation” for submanifolds.
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Results in mean curvature flows:

General theory: K. Brakke, B. White etc.

Hypersurfaces: G. Huisken (1984), Chen-Giga-Goto, Evans-Spruck,
Ecker-Huisken, R. Hamilton, B. White, T. Ilmanen, B. Andrews,
X.-J. Wang, Huisken-Sinestrari, T. Colding-W. Minicozzi etc.

Recent results in higher-dimensional parametric case, by
Andrews-Baker and Liu-Xu-Ye-Zhao for submanifolds with pinched
second fundamental forms.
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The subject of study in this talk is a non-parametric (or graphical)
submanifold of “higher codimension” , such as a 2-surface in a
4-dimensional space.

A(Σ) =

∫
Ω

√
1 + |∇f |2 + |∇g |2 + (fxgy − fygx)2

Euler-Lagrange equation is a non-linear elliptic system for f and g .
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In general, consider ~f : Ω ⊂ Rn → Rm and Σ is the graph of ~f in
Rn+m.

Denote

gij = δij +
m∑
α=1

∂f α

∂x i

∂f α

∂x j
and g ij = (gij)

−1.

A(Σ) =

∫
Ω

√
det gij .
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The minimal surface system is

n∑
i ,j=1

g ij ∂
2f α

∂x i∂x j
= 0, α = 1, · · · ,m.

The mean curvature flow is

∂f α

∂t
=

n∑
i ,j=1

g ij ∂
2f α

∂x i∂x j
, α = 1, · · · ,m.

We can also consider the more general situation when
f : M1 → M2 is a differentiable map between Riemannian
manifolds, and Σ is the graph of f in M1 ×M2.
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Lawson-Osserman (1977): “Non-existence, non-uniqueness and
irregularity of solutions to the minimal surface system”.

m = 1: The M.S.E. is a scalar equation. The normal bundle of an
orientable hypersurface is trivial.

m > 1: The M.S.S. is a system of equations and the components
f 1, · · · , f m interact with each other. The geometry of the normal
bundle is more complicated.

Shall discuss estimates and global existence theorems for
higher-codimensional mean curvature flows with appropriate initial
data.
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Method of proofs

C 1 estimate.
m = 1: J1 = 1√

1+|∇f |2
satisfies

d

dt
J1 = ∆ΣJ1 + R1(∇f ,∇2f )

R1 > 0 is quadratic in ∇2f .

m = 2, n = 2, J2 = 1√
1+|∇f |2+|∇g |2+(fxgy−fygx )2

satisfies

d

dt
J2 = ∆ΣJ2 + R2(∇f ,∇g ,∇2f ,∇2g)

R2 is quadratic in ∇2f and ∇2g and is positive if |fxgy − fygx | ≤ 1.
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Compute the evolution equation for fxgy − fygx , the Jacobian of
the map (f , g)!

fxgy − fygx = 1 is “preserved” along the mean curvature flow (area
preserving).

|fxgy − fygx | < 1 is “preserved” along the mean curvature flow
(area decreasing).

i.e. if the condition holds initially, it remains true later as along as
the flow exists smoothly.

Combining with the evolution equation of J2, this gives C 1

estimates, and shows that the graphical condition is preserved.
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Such a condition corresponds to the Gauss map of the submanifold
lies in a totally geodesic or geodesically convex subset of the
Grassmannian.

Underlying fact: the Gauss map of the mean curvature flow is a
(nonlinear) harmonic map heat flow.
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Higher derivatives estimates?

Lawson-Osserman constructed minimal cones in higher
codimension. Thus a Lipschitz solution may not be smooth.

We use “blow-up analysis” for geometric evolution equations such
as the Ricci flow.

Huisken-White’s monotonicity formula characterizes blow-up
profile.

The singularity profile are soliton (self-similar) solutions of the
equation.

In the case of mean curvature flows, solition (self-similar) solutions
are moved by homothety or translations of the ambient space.

Exclusion of self-similar “area-preserving” or “area-decreasing”
singularity profiles and ε regularity theorems give the desired C 2

estimates.
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Two major difficulties remain:

1. Boundary value problem. Needs barriers more adapted to the
geometry.

2. Effective estimates in time as t →∞.

Statements of current theorems are cleanest when M1 and M2 are
closed Riemannian manifolds with suitable curvature conditions.
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Statement of results with applications in isotopy problems

I (M1, g1) and (M2, g2) are Riemann surfaces with metrics of
same constant curvature c ( c = −1, 0 or 1).

I f : M1 → M2 and Σ is the graph of f in M1 ×M2.

I A oriented area-preserving map is a symplectomorphism, i.e.
f ∗ω2 = ω1 where ω1 and ω2 are the area forms of g1 and g2,
respectively.

I The area A of the graph is a symmetric function on the
symplectomorphism group, i.e. A(f ) = A(f −1) and the mean
curvature flow gives a deformation retract.
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I (W, 2001, 2004) The mean curvature flow Σt exists for all t
and converges smoothly to a minimal submanifold as t →∞.
Σt is the graph of a symplectic isotopy ft from f0 to a
canonical minimal map f∞.

I c > 0, SO(3) is a deformation retract of Sympl(S2) (Smale).

I c ≤ 0, Map(M) is a deformation retract of Sympl(M).

I Independently, Smoczyk proved the c ≤ 0 case with a
pointwise curvature estimates (under an angle condition)
which has been used in recent work of Chau-Chen-He-Yuan
for LMCF of entire graphs.

I For area-decreasing maps, the flow exists for all time and
converges to the graph of a constant map.
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I Area-decreasing in higher dimensions.

I A map f : M1 → M2 between Riemannian manifolds is
area-decreasing if |Λ2df | < 1 for
Λ2df : Λ2TpM1 → Λ2Tf (p)M2.

I Equivalently,

|∂f α

∂x i

∂f β

∂x j
− ∂f α

∂x i

∂f β

∂x j
| < 1

for α 6= β, i 6= j .

I This is the same as H2(f (D)) ≤ H2(D) for any D ⊂ M1 of
finite two-dimensional Hausdorff measure.

I Area decreasing condition is preserved along the mean
curvature flow for f : Sn → Sm between spheres of constant
curvature 1.

78



I Area-decreasing in higher dimensions.

I A map f : M1 → M2 between Riemannian manifolds is
area-decreasing if |Λ2df | < 1 for
Λ2df : Λ2TpM1 → Λ2Tf (p)M2.

I Equivalently,

|∂f α

∂x i

∂f β

∂x j
− ∂f α

∂x i

∂f β

∂x j
| < 1

for α 6= β, i 6= j .

I This is the same as H2(f (D)) ≤ H2(D) for any D ⊂ M1 of
finite two-dimensional Hausdorff measure.

I Area decreasing condition is preserved along the mean
curvature flow for f : Sn → Sm between spheres of constant
curvature 1.

79



I Area-decreasing in higher dimensions.

I A map f : M1 → M2 between Riemannian manifolds is
area-decreasing if |Λ2df | < 1 for
Λ2df : Λ2TpM1 → Λ2Tf (p)M2.

I Equivalently,

|∂f α

∂x i

∂f β

∂x j
− ∂f α

∂x i

∂f β

∂x j
| < 1

for α 6= β, i 6= j .

I This is the same as H2(f (D)) ≤ H2(D) for any D ⊂ M1 of
finite two-dimensional Hausdorff measure.

I Area decreasing condition is preserved along the mean
curvature flow for f : Sn → Sm between spheres of constant
curvature 1.

80



I Area-decreasing in higher dimensions.

I A map f : M1 → M2 between Riemannian manifolds is
area-decreasing if |Λ2df | < 1 for
Λ2df : Λ2TpM1 → Λ2Tf (p)M2.

I Equivalently,

|∂f α

∂x i

∂f β

∂x j
− ∂f α

∂x i

∂f β

∂x j
| < 1

for α 6= β, i 6= j .

I This is the same as H2(f (D)) ≤ H2(D) for any D ⊂ M1 of
finite two-dimensional Hausdorff measure.

I Area decreasing condition is preserved along the mean
curvature flow for f : Sn → Sm between spheres of constant
curvature 1.

81



I Area-decreasing in higher dimensions.

I A map f : M1 → M2 between Riemannian manifolds is
area-decreasing if |Λ2df | < 1 for
Λ2df : Λ2TpM1 → Λ2Tf (p)M2.

I Equivalently,

|∂f α

∂x i

∂f β

∂x j
− ∂f α

∂x i

∂f β

∂x j
| < 1

for α 6= β, i 6= j .

I This is the same as H2(f (D)) ≤ H2(D) for any D ⊂ M1 of
finite two-dimensional Hausdorff measure.

I Area decreasing condition is preserved along the mean
curvature flow for f : Sn → Sm between spheres of constant
curvature 1.

82



I Area-decreasing in higher dimensions.

I A map f : M1 → M2 between Riemannian manifolds is
area-decreasing if |Λ2df | < 1 for
Λ2df : Λ2TpM1 → Λ2Tf (p)M2.

I Equivalently,

|∂f α

∂x i

∂f β

∂x j
− ∂f α

∂x i

∂f β

∂x j
| < 1

for α 6= β, i 6= j .

I This is the same as H2(f (D)) ≤ H2(D) for any D ⊂ M1 of
finite two-dimensional Hausdorff measure.

I Area decreasing condition is preserved along the mean
curvature flow for f : Sn → Sm between spheres of constant
curvature 1.

83



(Tsui-W, 2004) For n,m ≥ 2. If f : Sn → Sm is an area-deceasing
Lipschitz map, the mean curvature flow of the graph of f exists for
all time, remains a graph, and converges smoothly to a constant
map as t →∞.
We express the area-decreasing condition as two-positivity of a
Lorentzian metric of signature (n,m) and compute the evolution
equation of the Lorentzian metric.
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I Corollary: every area-decreasing map f : Sn → Sm is
homotopically trivial.

I M. Gromov (1996): for each m and n, there exists a number
ε(n,m) > 0, so that any map from Sn to Sm with
|Λ2df | < ε(n,m) is null-homotopic. ε(n,m) << 1.

I In general, may consider the k-Jocobian
Λkdf : ΛkTM1 → ΛkTM2, whose supreme norm |Λkdf | is
called the k-dilation. (k = 1 is the Lipschitz norm).

I L. Guth constructed homotopically non-trivial maps from Sn

to Sm with arbitrarily small 3-dilation.
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I A pinching theorem for symplectomorphisms of complex
projective spaces.

I (Smoczyk 1996, Oh) Lagrangian condition is preserved for
MCF in Kähler-Einstein manifolds.

I Thus ft : M1 → M2 being a symplectomorphism is preserved
along the mean curvature flow if both M1 and M2 are Kähler
manifolds equipped with Kähler-Einstein metric of the same
Ricci curvature.

I Take M1 = M2 = CPn, g1 = g2 = g Fubini-Study metric.
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I (Medos-W, 2011 JDG) There exists Λ > 1 depending only on
n (explicitly computable), such that any symplectomorphism
f : CPn → CPn with

1

Λ
g ≤ f ∗g ≤ Λg

is symplectically isotopic to a biholomorphic isometry of CPn

through the mean curvature flow.

I (M. Gromov) : when n = 2, the statement holds without any
pinching condition by the method of pseudoholomorphic
curves. For n ≥ 3, this seems to be the first known result.
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I Unlike previous theorems, Grassmannian geometry does not
help here, as the subset that corresponds to biholomorphic
isometries does not have any convex neighborhood in the
Grassmannian. The integrability condition (Gauss-Codazzi
equations) is used in an essential way.
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I Sketch of Proof

I Let Ω be the volume form of the first copy of CPn in the
product space. Ω is parallel with respect to the product
metric.

I Consider the function

∗Ω = ∗ΣΩ|Σ = Jacobian of π1|Σ

I ∗Ω > 0 ⇔ Σ graphical.

I Along the MCF, ∗Ω evolves by

∂

∂t
∗ Ω = ∆ ∗ Ω + ∗Ω(Q + A)

where Q involves the 2nd fundamental form of Σ and A
involves the ambient curvature of CPn.
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I We need a “symplectic” frame in order to simplify Q and A .

I At any q ∈ Σ with p = π1(q), dfp : TpM1 → Tf (p)M2 is a
linear symplectomorphism.

I We can find orthonormal basis a1 · · · a2n for TpM1 and
ã1, · · · ã2n for Tf (p)M2 such that :

I (1) ai ãi both unitary. a2k = J1a2k−1 and ã2k = J2ã2k−1,
k = 1 · · · n.

I (2) The bases diagonalize df , i.e.

df (ai ) = λi ãi , and df (J1ai ) = λi+1J2ãi

for i odd.

I (3) λiλi+1 = 1 and λi > 0 for i odd.
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df (ai ) = λi ãi , and df (J1ai ) = λi+1J2ãi
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I We can find orthonormal basis a1 · · · a2n for TpM1 and
ã1, · · · ã2n for Tf (p)M2 such that :

I (1) ai ãi both unitary. a2k = J1a2k−1 and ã2k = J2ã2k−1,
k = 1 · · · n.

I (2) The bases diagonalize df , i.e.
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I ei = 1√
1+λ2

i

(ai + df (ai )), i = 1 · · · 2n form an orthonormal

basis for TqΣ.

I Jei form an orthonormal basis for NqΣ where J is the induced
almost complex structure on the product space.

I These frames are adopted to express geometric quantities.

I The second fundamental form hijk = 〈∇ei ej , Jek〉 is a fully
symmetric 3-tensor.

I For CPn,

∂

∂t
∗ Ω = ∆ ∗ Ω + ∗Ω

[
Q(λi , hijk) +

∑
i odd

(1− λ2
i )2

(1 + λ2
i )2

]
.

I Q is a quadratic form in hijk with coefficients depending on λi .

I Decompose hijk ∈
⊙3 TqΣ into irreducible representations of

symmetric groups and estimate the eigenvalue of the
restriction of Q on each sub-space.

I We prove Q(1, · · · , 1, hijk) ≥ (3−
√

5)
∑

h2
ijk .
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I By continuity, there exists a Λ such that 1
Λ < λi < Λ for all i

implies Q(λi , hijk) ≥ δ
∑

h2
ijk for δ > 0.

I Any positive lower bound of ∗Ω implies pinching for each λi

and vice versa.

I

∗Ω =
∏

i odd

(
1

λi + λ−1
i

) ≤ 2−n.

I Comparison with ODE gives λi approaches 1 as t →∞.

I The limit f∞ satisfies λi = 1 for all i and
df∞(J1X ) = J2df∞(X ) and f∞ is holomorphic.
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I Work in progress (with Smoczyk and Tsui).

I Smoczyk-W. defined a generalized Lagrangian mean curvature
flow when the ambient space is a cotangent bundle.
Short-time existence and preservation of “exactness” and
“zero Maslov class” have been established.

I Long time existence that converges to the zero section with
applications to the nearby Lagrangian conjecture.
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Thank you!
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