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Plan of the talk

Mean curvature flow of graphs of maps between Riemannian
manifolds.

Estimates of non-linear parabolic system of differential
equations.

Global existence and application to isotopy problems in
geometry and topology.

Joint works with I. Medos, K. Smoczyk, and M.-P. Tsui.
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=

‘Minimal surface equation ‘

Y ={(xy,f(x,y))

(x,y) € Q} and A(X) = [ /1+|VF]2.

Euler-Lagrange equation is div(\/%) = 0.
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The M.S.E. is one of the most studied nonlinear elliptic PDE's.

Bernstein's conjecture for entire solutions.(J. Simons, E.
Bombieri-E. De Giorgi-M. Miranda, etc.)

Dirichlet problem is uniquely solvable as long as £2 is mean
convex.(H.Jenkins-J.Serrin, etc.)

Any Lipschitz solution is smooth and analytic. (J.Moser, C. B.
Morrey, etc.)
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The corresponding parabolic equation is called the mean curvature
flow.

of VF
_— 2 1 —_— p—
B \/1+ |Vf|2div( T f]2)7 f="f(xy,t)

This is the negative gradient flow of the area functional.

The normal velocity vector of graph of f(x,y,t) in R3 is the mean
curvature vector.

Note that the equation is of non-divergence form.
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Consider )_((u7 v) = (X1(u, v), Xa(u, v), X3(u, v)) € R3.

X(u,v)=2

H=0, X

Parametric Form

The minimal surface equation is equivalent to
A=Ay X = (AsX1, AxXo, Ay X3) = (0,0,0)

where X is the image surface of X.
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H = As X is the mean curvature vector of ¥_.

The equation H = 0 is invariant under reparametrization and is a
degenerate elliptic system for (X1, X2, X3).

RN

The corresponding parabolic equation for X (u, v, t) is
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oX

— Ay X
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— — .
H = As X is the mean curvature vector of ¥_.

The equation H = 0 is invariant under reparametrization and is a
degenerate elliptic system for (X1, X2, X3).

RN
The corresponding parabolic equation for X (u, v, t) is

X

.
2 _ AsX.
ot *

“Heat equation” for submanifolds.
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Results in mean curvature flows:
General theory: K. Brakke, B. White etc.

Hypersurfaces: G. Huisken (1984), Chen-Giga-Goto, Evans-Spruck,
Ecker-Huisken, R. Hamilton, B. White, T. llmanen, B. Andrews,
X.-J. Wang, Huisken-Sinestrari, T. Colding-W. Minicozzi etc.

Recent results in higher-dimensional parametric case, by
Andrews-Baker and Liu-Xu-Ye-Zhao for submanifolds with pinched
second fundamental forms.
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The subject of study in this talk is a non-parametric (or graphical)
submanifold of “higher codimension” , such as a 2-surface in a
4-dimensional space.

/\QZ: graph of (f, g)

Q

RZ

RZ

‘ 2-dimensional surface in R* ‘

AE) = [ \L+ IV £ VR + (g — e’

Euler-Lagrange equation is a non-linear elliptic system for f and g.
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In general, consider f:QCR" > R™and ¥ is the graph of fin
RO+,

" /\{Ez(xll"v X”lfll"‘lfm)

]

Rﬂ

n-dimensional X in R"*™M

Denote

m
8fa ;
Z and gJ = (gu)

= / \/detgj;.
Q
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The minimal surface system is

Z”: i 82fa
& oxiox

ij=1
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The mean curvature flow is
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The minimal surface system is

n . 92
) — =
Zg 8xf8xf_0’a_1’ , m.

ij=1

The mean curvature flow is

n

oft S~ i F
ot 2 lg oxiox” T

ij=

We can also consider the more general situation when
f: My — M, is a differentiable map between Riemannian
manifolds, and X is the graph of f in My x M5.
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irregularity of solutions to the minimal surface system”.

a1



Lawson-Osserman (1977): “Non-existence, non-uniqueness and
irregularity of solutions to the minimal surface system”.

m = 1: The M.S.E. is a scalar equation. The normal bundle of an
orientable hypersurface is trivial.

42



Lawson-Osserman (1977): “Non-existence, non-uniqueness and
irregularity of solutions to the minimal surface system”.

m = 1: The M.S.E. is a scalar equation. The normal bundle of an
orientable hypersurface is trivial.

m > 1: The M.S.S. is a system of equations and the components

fl,... f™ interact with each other. The geometry of the normal
bundle is more complicated.
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Lawson-Osserman (1977): “Non-existence, non-uniqueness and
irregularity of solutions to the minimal surface system”.

m = 1: The M.S.E. is a scalar equation. The normal bundle of an
orientable hypersurface is trivial.

m > 1: The M.S.S. is a system of equations and the components
fl,... f™ interact with each other. The geometry of the normal
bundle is more complicated.

Shall discuss estimates and global existence theorems for
higher-codimensional mean curvature flows with appropriate initial
data.
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C! estimate.
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m=1. J = 7\/@ satisfies
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R; > 0 is quadratic in V?f.
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Method of proofs

C! estimate.
_1. _ 1 . g
m=1. J = 7\/@ satisfies
d
— i = As i + Ri(VF,V3f)

dt
R; > 0 is quadratic in V?f.

1

satisfies
VIHI VR4 Ve P+ (fgy —frgx)?

m=2n=2, =

d
EJQ = As b + Ry(VF, Vg, V3f,V3g)

R, is quadratic in V2f and V2g and is positive if |f.g, — f,g| < 1.
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Compute the evolution equation for f,g, — f,gx, the Jacobian of
the map (f, g)!

f.gy — f,8x = 1 is "preserved” along the mean curvature flow (area
preserving).

|f.gy — f,8x| < 1is “preserved” along the mean curvature flow
(area decreasing).

i.e. if the condition holds initially, it remains true later as along as
the flow exists smoothly.

Combining with the evolution equation of J, this gives Ct
estimates, and shows that the graphical condition is preserved.
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y=Gauss map
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¥(p)

y=Gauss map

i T

%

|Gauss map of mean curvature flows

Such a condition corresponds to the Gauss map of the submanifold
lies in a totally geodesic or geodesically convex subset of the
Grassmannian.
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¥(p)

T 2

y=Gauss map

it T

x

Gauss map of mean curvature flows ‘

Such a condition corresponds to the Gauss map of the submanifold
lies in a totally geodesic or geodesically convex subset of the
Grassmannian.

Underlying fact: the Gauss map of the mean curvature flow is a
(nonlinear) harmonic map heat flow.
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Higher derivatives estimates?

Lawson-Osserman constructed minimal cones in higher
codimension. Thus a Lipschitz solution may not be smooth.

We use “blow-up analysis” for geometric evolution equations such
as the Ricci flow.

Huisken-White's monotonicity formula characterizes blow-up
profile.

The singularity profile are soliton (self-similar) solutions of the
equation.

In the case of mean curvature flows, solition (self-similar) solutions
are moved by homothety or translations of the ambient space.

Exclusion of self-similar “area-preserving” or “area-decreasing”
singularity profiles and € regularity theorems give the desired .C2
estimates.
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Two major difficulties remain:

1. Boundary value problem. Needs barriers more adapted to the
geometry.

2. Effective estimates in time as t — oo.

Statements of current theorems are cleanest when My and M> are
closed Riemannian manifolds with suitable curvature conditions.
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Statement of results with applications in isotopy problems

» (My,g1) and (My, g») are Riemann surfaces with metrics of
same constant curvature ¢ ( ¢ = —1,0 or 1).

> f: My — M, and X is the graph of f in My x Ms.

» A oriented area-preserving map is a symplectomorphism, i.e.
f*ws; = w1 where w1 and wy are the area forms of g1 and go,
respectively.

» The area A of the graph is a symmetric function on the
symplectomorphism group, i.e. A(f) = A(f~!) and the mean
curvature flow gives a deformation retract.
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» (W, 2001, 2004) The mean curvature flow ¥; exists for all t
and converges smoothly to a minimal submanifold as t — oc.
> ; is the graph of a symplectic isotopy f; from fy to a
canonical minimal map f.
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(W, 2001, 2004) The mean curvature flow ¥; exists for all t

and converges smoothly to a minimal submanifold as t — oc.

> ; is the graph of a symplectic isotopy f; from fy to a
canonical minimal map f.

c >0, SO(3) is a deformation retract of Sympl(S2) (Smale).

» ¢ <0, Map(M) is a deformation retract of Sympl(M).
» Independently, Smoczyk proved the ¢ < 0 case with a

pointwise curvature estimates (under an angle condition)
which has been used in recent work of Chau-Chen-He-Yuan
for LMCF of entire graphs.

For area-decreasing maps, the flow exists for all time and
converges to the graph of a constant map.
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» Area-decreasing in higher dimensions.

A map f : My — M, between Riemannian manifolds is
area-decreasing if |A2df| < 1 for
/\2df . /\2 Tle — /\2 Tf(p)M2.
Equivalently,
of* ofB  of> ofP
‘ax" Oxi  Ox OxI
fora # B, i # .
This is the same as H?(f(D)) < H?(D) for any D C My of
finite two-dimensional Hausdorff measure.

Area decreasing condition is preserved along the mean
curvature flow for f : S — S™ between spheres of constant
curvature 1.
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\f ;(D)
H(f(D))<H?*(D)
Sm

Sn

\ Area decreasing map

(Tsui-W, 2004) For n,m > 2. If f : S" — S™ is an area-deceasing
Lipschitz map, the mean curvature flow of the graph of f exists for
all time, remains a graph, and converges smoothly to a constant
map as t — 0.
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” f(D)

L

H(f(D))<H?(D)

sn >

\ Area decreasing map |

(Tsui-W, 2004) For n,m > 2. If f : S" — S™ is an area-deceasing
Lipschitz map, the mean curvature flow of the graph of f exists for

all time, remains a graph, and converges smoothly to a constant

map as t — oo.

We express the area-decreasing condition as two-positivity of a
Lorentzian metric of signature (n, m) and compute the evolution
equation of the Lorentzian metric. 86
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» Corollary: every area-decreasing map f : S” — 5™ is
homotopically trivial.
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Corollary: every area-decreasing map f : $7 — 5™ is
homotopically trivial.

M. Gromov (1996): for each m and n, there exists a number
e(n, m) > 0, so that any map from S” to S with

|N2df| < €(n, m) is null-homotopic. €(n, m) << 1.

In general, may consider the k-Jocobian

A<df : N€TMy — AKTMy, whose supreme norm |AXdf| is
called the k-dilation. (k =1 is the Lipschitz norm).

L. Guth constructed homotopically non-trivial maps from 5"
to S™ with arbitrarily small 3-dilation.
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» A pinching theorem for symplectomorphisms of complex
projective spaces.

93



» A pinching theorem for symplectomorphisms of complex
projective spaces.

» (Smoczyk 1996, Oh) Lagrangian condition is preserved for
MCF in Kahler-Einstein manifolds.

94



» A pinching theorem for symplectomorphisms of complex
projective spaces.

» (Smoczyk 1996, Oh) Lagrangian condition is preserved for
MCF in Kahler-Einstein manifolds.

» Thus f; : My — M, being a symplectomorphism is preserved
along the mean curvature flow if both My and M, are Kahler
manifolds equipped with Kahler-Einstein metric of the same
Ricci curvature.

95



» A pinching theorem for symplectomorphisms of complex
projective spaces.

» (Smoczyk 1996, Oh) Lagrangian condition is preserved for
MCF in Kahler-Einstein manifolds.

» Thus f; : My — M, being a symplectomorphism is preserved
along the mean curvature flow if both My and M, are Kahler
manifolds equipped with Kahler-Einstein metric of the same
Ricci curvature.

> Take My = Mp = CP", g1 = g» = g Fubini-Study metric.
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» (Medos-W, 2011 JDG) There exists A > 1 depending only on
n (explicitly computable), such that any symplectomorphism
f . CP" — CP" with

1
—g < ffg <A
Ag_ ESAYS

is symplectically isotopic to a biholomorphic isometry of CP"
through the mean curvature flow.
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» (Medos-W, 2011 JDG) There exists A > 1 depending only on
n (explicitly computable), such that any symplectomorphism
f . CP" — CP" with

1
—g < ffg <A
Ag_ ESAYS

is symplectically isotopic to a biholomorphic isometry of CP"
through the mean curvature flow.
» (M. Gromov) : when n = 2, the statement holds without any

pinching condition by the method of pseudoholomorphic
curves. For n > 3, this seems to be the first known result.
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» Unlike previous theorems, Grassmannian geometry does not
help here, as the subset that corresponds to biholomorphic
isometries does not have any convex neighborhood in the
Grassmannian. The integrability condition (Gauss-Codazzi
equations) is used in an essential way.
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product space. € is parallel with respect to the product
metric.

Consider the function
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*Q > 0 < X graphical.
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» Sketch of Proof

> Let Q be the volume form of the first copy of CP" in the
product space. € is parallel with respect to the product
metric.

Consider the function

*Q = xyxQ|y = Jacobian of 71|y

» x(2 > 0 < ¥ graphical.
» Along the MCF, %2 evolves by

;*Q:A*Q—F*Q(Q—i—A)
where @ involves the 2nd fundamental form of ~ and A

involves the ambient curvature of CP".

107



108



» We need a “symplectic’ frame in order to simplify @ and A .
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» We need a “symplectic’ frame in order to simplify @ and A .

> At any g € T with p=mi(q), dfp : TyMy — Trp)Mais a
linear symplectomorphism.

» We can find orthonormal basis ay - - - ap, for T,M; and
31, -+ app for Tf(p) M> such that :

» (1) a; 3; both unitary. axx = J1axk—1 and 3ok = hdrk_1,
k=1---n.

» (2) The bases diagonalize df, i.e.
df(a;) = )\,‘5,', and df(Jla;) = )\;+1J2§;

for i odd.
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» We need a “symplectic’ frame in order to simplify @ and A .

> At any g € T with p=mi(q), dfp : TyMy — Trp)Mais a
linear symplectomorphism.

» We can find orthonormal basis ay - - - ap, for T,M; and
31, -+ app for Tf(p) M> such that :

» (1) a; 3; both unitary. axx = J1axk—1 and 3ok = hdrk_1,
k=1---n.

» (2) The bases diagonalize df, i.e.
df(a;) = )\,‘5,', and df(Jla;) = )\;+1J2§;

for i odd.
> (3) /\,‘)\,'_;,_1 =1 and A; > 0 for i odd.
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(a;)), i=1---2n form an orthonormal
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> e = \/ﬁ(a; + df(a;)), i=1---2n form an orthonormal
basis for T4.

> Je; form an orthonormal basis for Ng> where J is the induced
almost complex structure on the product space.
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> e = \/117)\’2(3,- + df(a;)), i=1---2n form an orthonormal

basis for T4.

> Je; form an orthonormal basis for Ng> where J is the induced
almost complex structure on the product space.

» These frames are adopted to express geometric quantities.
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e = \/117)\’2(3,- + df(a;)), i =1---2n form an orthonormal
basis for T4.

Je; form an orthonormal basis for NgX where J is the induced
almost complex structure on the product space.

These frames are adopted to express geometric quantities.
The second fundamental form hj = (Ve €, Jex) is a fully
symmetric 3-tensor.
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e = \/117)\’2(3,- + df(a;)), i =1---2n form an orthonormal
basis for T4.

Je; form an orthonormal basis for NgX where J is the induced
almost complex structure on the product space.

These frames are adopted to express geometric quantities.
The second fundamental form hj = (Ve €, Jex) is a fully
symmetric 3-tensor.

For CP",
9 (1-X2)
a*Q:A*QJr*Q Q(N, hij) + Zm

i odd
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v

1 .
e = m(a; + df(a;)), i =1---2n form an orthonormal
basis for T4.
Je; form an orthonormal basis for NgX where J is the induced

almost complex structure on the product space.

These frames are adopted to express geometric quantities.
The second fundamental form hj = (Ve €, Jex) is a fully
symmetric 3-tensor.

For CP",
0 (1 —)2)?
—+xQ=A%xQ+*Q iy his — L=
52 * * Q4+ Q| Q( Jk)+i%(1+)\%)2

Q is a quadratic form in h;j. with coefficients depending on A;.
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1 .
e = m(a; + df(a;)), i =1---2n form an orthonormal
basis for T4.

Je; form an orthonormal basis for NgX where J is the induced
almost complex structure on the product space.

These frames are adopted to express geometric quantities.

The second fundamental form hj = (Ve €, Jex) is a fully
symmetric 3-tensor.

For CP",
9 (1-X2)
a*Q:A*QJF*Q Q(N, hij) + Zm

i odd

> @ is a quadratic form in h;jj with coefficients depending on A;.
» Decompose hjj € @3 T4X into irreducible representations of
symmetric groups and estimate the eigenvalue of the
restriction of @ on each sub-space.
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1 .
e = m(a; + df(a;)), i =1---2n form an orthonormal
basis for T4.

Je; form an orthonormal basis for NgX where J is the induced
almost complex structure on the product space.

These frames are adopted to express geometric quantities.
The second fundamental form hj = (Ve €, Jex) is a fully
symmetric 3-tensor.

For CP",
9 (1-X2)
a*Q:A*QJF*Q Q(N, hij) + Zm

i odd

> @ is a quadratic form in h;jj with coefficients depending on A;.

» Decompose hjj € @3 T4X into irreducible representations of
symmetric groups and estimate the eigenvalue of the
restriction of @ on each sub-space.

We prove Q(1,---,1, hjx) > (3 — \/5) > h?jk.

123



124



» By continuity, there exists a A such that % < A < Aforall i
implies Q(Aj, hjx) > 0" hzy for § > 0.
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» By continuity, there exists a A such that % < A < Aforall i
implies Q(Aj, hjx) > 0" hzy for § > 0.

» Any positive lower bound of %€ implies pinching for each A;
and vice versa.
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» By continuity, there exists a A such that % < A < Aforall i
implies Q(Aj, hjx) > 0" hzy for § > 0.

» Any positive lower bound of %€ implies pinching for each A;
and vice versa.
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» By continuity, there exists a A such that % < A < Aforall i
implies Q(Aj, hjx) > 0" hzy for § > 0.

» Any positive lower bound of %€ implies pinching for each A;
and vice versa.

» Comparison with ODE gives A; approaches 1 as t — oc.
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By continuity, there exists a A such that % < A < Aforall i
implies Q(Aj, hjx) > 0" hzy for § > 0.

Any positive lower bound of *£2 implies pinching for each \;
and vice versa.

» Comparison with ODE gives A; approaches 1 as t — oc.

» The limit f, satisfies A; = 1 for all i and

dfoo(11X) = Jodfso(X) and £y is holomorphic.
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» Work in progress (with Smoczyk and Tsui).
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» Work in progress (with Smoczyk and Tsui).

» Smoczyk-W. defined a generalized Lagrangian mean curvature
flow when the ambient space is a cotangent bundle.
Short-time existence and preservation of “exactness’ and
“zero Maslov class” have been established.

132



» Work in progress (with Smoczyk and Tsui).

» Smoczyk-W. defined a generalized Lagrangian mean curvature
flow when the ambient space is a cotangent bundle.
Short-time existence and preservation of “exactness’ and
“zero Maslov class” have been established.

» Long time existence that converges to the zero section with
applications to the nearby Lagrangian conjecture.
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Thank you!



