Mean curvature flows and isotopy problems

Mu-Tao Wang

Columbia University

10th Pacific Rim Geometry Conference Osaka City University, Osaka

December 5, 2011

Plan of the talk

三 ゆのく

Plan of the talk

- Mean curvature flow of graphs of maps between Riemannian manifolds.

Plan of the talk

- Mean curvature flow of graphs of maps between Riemannian manifolds.
- Estimates of non-linear parabolic system of differential equations.

Plan of the talk

- Mean curvature flow of graphs of maps between Riemannian manifolds.
- Estimates of non-linear parabolic system of differential equations.
- Global existence and application to isotopy problems in geometry and topology.

Plan of the talk

- Mean curvature flow of graphs of maps between Riemannian manifolds.
- Estimates of non-linear parabolic system of differential equations.
- Global existence and application to isotopy problems in geometry and topology.
- Joint works with I. Medos, K. Smoczyk, and M.-P. Tsui.

Minimal surface equation

Minimal surface equation

$$
\Sigma=\{(x, y, f(x, y)) \mid(x, y) \in \Omega\} \text { and } A(\Sigma)=\int_{\Omega} \sqrt{1+|\nabla f|^{2}} .
$$

Minimal surface equation
$\Sigma=\{(x, y, f(x, y)) \mid(x, y) \in \Omega\}$ and $A(\Sigma)=\int_{\Omega} \sqrt{1+|\nabla f|^{2}}$.
Euler-Lagrange equation is $\operatorname{div}\left(\frac{\nabla f}{\sqrt{1+|\nabla f|^{2} \mid}}\right)=0$.

The M.S.E. is one of the most studied nonlinear elliptic PDE's.

The M.S.E. is one of the most studied nonlinear elliptic PDE's.
Bernstein's conjecture for entire solutions.(J. Simons, E. Bombieri-E. De Giorgi-M. Miranda, etc.)

The M.S.E. is one of the most studied nonlinear elliptic PDE's.
Bernstein's conjecture for entire solutions.(J. Simons, E. Bombieri-E. De Giorgi-M. Miranda, etc.)

Dirichlet problem is uniquely solvable as long as Ω is mean convex.(H.Jenkins-J.Serrin, etc.)

The M.S.E. is one of the most studied nonlinear elliptic PDE's.
Bernstein's conjecture for entire solutions.(J. Simons, E. Bombieri-E. De Giorgi-M. Miranda, etc.)

Dirichlet problem is uniquely solvable as long as Ω is mean convex.(H.Jenkins-J.Serrin, etc.)

Any Lipschitz solution is smooth and analytic. (J.Moser, C. B. Morrey, etc.)

The corresponding parabolic equation is called the mean curvature flow.

The corresponding parabolic equation is called the mean curvature flow.

$$
\frac{\partial f}{\partial t}=\sqrt{1+|\nabla f|^{2}} \operatorname{div}\left(\frac{\nabla f}{\sqrt{1+|\nabla f|^{2}}}\right), f=f(x, y, t)
$$

The corresponding parabolic equation is called the mean curvature flow.

$$
\frac{\partial f}{\partial t}=\sqrt{1+|\nabla f|^{2}} \operatorname{div}\left(\frac{\nabla f}{\sqrt{1+|\nabla f|^{2}}}\right), f=f(x, y, t)
$$

This is the negative gradient flow of the area functional.

The corresponding parabolic equation is called the mean curvature flow.

$$
\frac{\partial f}{\partial t}=\sqrt{1+|\nabla f|^{2}} \operatorname{div}\left(\frac{\nabla f}{\sqrt{1+|\nabla f|^{2}}}\right), f=f(x, y, t)
$$

This is the negative gradient flow of the area functional.
The normal velocity vector of graph of $f(x, y, t)$ in \mathbb{R}^{3} is the mean curvature vector.

The corresponding parabolic equation is called the mean curvature flow.

$$
\frac{\partial f}{\partial t}=\sqrt{1+|\nabla f|^{2}} \operatorname{div}\left(\frac{\nabla f}{\sqrt{1+|\nabla f|^{2}}}\right), f=f(x, y, t)
$$

This is the negative gradient flow of the area functional.
The normal velocity vector of graph of $f(x, y, t)$ in \mathbb{R}^{3} is the mean curvature vector.

Note that the equation is of non-divergence form.

Consider $\vec{X}(u, v)=\left(X_{1}(u, v), X_{2}(u, v), X_{3}(u, v)\right) \in \mathbb{R}^{3}$.

Consider $\vec{X}(u, v)=\left(X_{1}(u, v), X_{2}(u, v), X_{3}(u, v)\right) \in \mathbb{R}^{3}$.

Parametric Form

Consider $\vec{X}(u, v)=\left(X_{1}(u, v), X_{2}(u, v), X_{3}(u, v)\right) \in \mathbb{R}^{3}$.

Parametric Form

The minimal surface equation is equivalent to

$$
\vec{H}=\Delta_{\Sigma} \vec{X}=\left(\Delta_{\Sigma} X_{1}, \Delta_{\Sigma} X_{2}, \Delta_{\Sigma} X_{3}\right)=(0,0,0)
$$

where Σ is the image surface of \vec{X}.

$\vec{H}=\Delta_{\Sigma} \vec{X}$ is the mean curvature vector of Σ.

$\vec{H}=\Delta_{\Sigma} \vec{X}$ is the mean curvature vector of Σ.
The equation $\vec{H}=0$ is invariant under reparametrization and is a degenerate elliptic system for $\left(X_{1}, X_{2}, X_{3}\right)$.
$\vec{H}=\Delta_{\Sigma} \vec{X}$ is the mean curvature vector of Σ.
The equation $\vec{H}=0$ is invariant under reparametrization and is a degenerate elliptic system for (X_{1}, X_{2}, X_{3}).

The corresponding parabolic equation for $\vec{X}(u, v, t)$ is

$$
\frac{\partial \vec{x}}{\partial t}=\Delta_{\Sigma} \vec{x} .
$$

$\vec{H}=\Delta_{\Sigma} \vec{X}$ is the mean curvature vector of Σ.
The equation $\vec{H}=0$ is invariant under reparametrization and is a degenerate elliptic system for (X_{1}, X_{2}, X_{3}).

The corresponding parabolic equation for $\vec{X}(u, v, t)$ is

$$
\frac{\partial \vec{x}}{\partial t}=\Delta_{\Sigma} \vec{x} .
$$

"Heat equation" for submanifolds.

Results in mean curvature flows:

Results in mean curvature flows:

General theory: K. Brakke, B. White etc.

Results in mean curvature flows:
General theory: K. Brakke, B. White etc.
Hypersurfaces: G. Huisken (1984), Chen-Giga-Goto, Evans-Spruck, Ecker-Huisken, R. Hamilton, B. White, T. Ilmanen, B. Andrews, X.-J. Wang, Huisken-Sinestrari, T. Colding-W. Minicozzi etc.

Results in mean curvature flows:
General theory: K. Brakke, B. White etc.
Hypersurfaces: G. Huisken (1984), Chen-Giga-Goto, Evans-Spruck, Ecker-Huisken, R. Hamilton, B. White, T. Ilmanen, B. Andrews, X.-J. Wang, Huisken-Sinestrari, T. Colding-W. Minicozzi etc.

Recent results in higher-dimensional parametric case, by Andrews-Baker and Liu-Xu-Ye-Zhao for submanifolds with pinched second fundamental forms.

The subject of study in this talk is a non-parametric (or graphical) submanifold of "higher codimension", such as a 2-surface in a 4-dimensional space.

The subject of study in this talk is a non-parametric (or graphical) submanifold of "higher codimension", such as a 2-surface in a 4-dimensional space.

2-dimensional surface in R^{4}

$$
A(\Sigma)=\int_{\Omega} \sqrt{1+|\nabla f|^{2}+|\nabla g|^{2}+\left(f_{x} g_{y}-f_{y} g_{x}\right)^{2}}
$$

The subject of study in this talk is a non-parametric (or graphical) submanifold of "higher codimension", such as a 2-surface in a 4-dimensional space.

2-dimensional surface in R^{4}

$$
A(\Sigma)=\int_{\Omega} \sqrt{1+|\nabla f|^{2}+|\nabla g|^{2}+\left(f_{x} g_{y}-f_{y} g_{x}\right)^{2}}
$$

Euler-Lagrange equation is a non-linear elliptic system for f and g.

In general, consider $\vec{f}: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and Σ is the graph of \vec{f} in \mathbb{R}^{n+m}.

n-dimensional \sum in $\mathrm{R}^{\mathrm{n}+\mathrm{m}}$

In general, consider $\vec{f}: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and Σ is the graph of \vec{f} in \mathbb{R}^{n+m}.

n-dimensional Σ in $\mathrm{R}^{\mathrm{n}+\mathrm{m}}$

Denote

$$
g_{i j}=\delta_{i j}+\sum_{\alpha=1}^{m} \frac{\partial f^{\alpha}}{\partial x^{i}} \frac{\partial f^{\alpha}}{\partial x^{j}} \text { and } g^{i j}=\left(g_{i j}\right)^{-1} .
$$

In general, consider $\vec{f}: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and Σ is the graph of \vec{f} in \mathbb{R}^{n+m}.

n-dimensional Σ in $\mathrm{R}^{\mathrm{ntm}}$

Denote

$$
\begin{gathered}
g_{i j}=\delta_{i j}+\sum_{\alpha=1}^{m} \frac{\partial f^{\alpha}}{\partial x^{i}} \frac{\partial f^{\alpha}}{\partial x^{j}} \text { and } g^{i j}=\left(g_{i j}\right)^{-1} . \\
A(\Sigma)=\int_{\Omega} \sqrt{\operatorname{det} g_{i j}} .
\end{gathered}
$$

The minimal surface system is

$$
\sum_{i, j=1}^{n} g^{i j} \frac{\partial^{2} f^{\alpha}}{\partial x^{i} \partial x^{j}}=0, \alpha=1, \cdots, m
$$

The minimal surface system is

$$
\sum_{i, j=1}^{n} g^{i j} \frac{\partial^{2} f^{\alpha}}{\partial x^{i} \partial x^{j}}=0, \alpha=1, \cdots, m
$$

The mean curvature flow is

$$
\frac{\partial f^{\alpha}}{\partial t}=\sum_{i, j=1}^{n} g^{i j} \frac{\partial^{2} f^{\alpha}}{\partial x^{i} \partial x^{j}}, \quad \alpha=1, \cdots, m
$$

The minimal surface system is

$$
\sum_{i, j=1}^{n} g^{i j} \frac{\partial^{2} f^{\alpha}}{\partial x^{i} \partial x^{j}}=0, \alpha=1, \cdots, m
$$

The mean curvature flow is

$$
\frac{\partial f^{\alpha}}{\partial t}=\sum_{i, j=1}^{n} g^{i j} \frac{\partial^{2} f^{\alpha}}{\partial x^{i} \partial x^{j}}, \alpha=1, \cdots, m
$$

We can also consider the more general situation when f: $M_{1} \rightarrow M_{2}$ is a differentiable map between Riemannian manifolds, and Σ is the graph of \mathbf{f} in $M_{1} \times M_{2}$.

Lawson-Osserman (1977): "Non-existence, non-uniqueness and irregularity of solutions to the minimal surface system".

Lawson-Osserman (1977): "Non-existence, non-uniqueness and irregularity of solutions to the minimal surface system".
$m=1$: The M.S.E. is a scalar equation. The normal bundle of an orientable hypersurface is trivial.

Lawson-Osserman (1977): "Non-existence, non-uniqueness and irregularity of solutions to the minimal surface system".
$m=1$: The M.S.E. is a scalar equation. The normal bundle of an orientable hypersurface is trivial.
$m>1$: The M.S.S. is a system of equations and the components f^{1}, \cdots, f^{m} interact with each other. The geometry of the normal bundle is more complicated.

Lawson-Osserman (1977): "Non-existence, non-uniqueness and irregularity of solutions to the minimal surface system".
$m=1$: The M.S.E. is a scalar equation. The normal bundle of an orientable hypersurface is trivial.
$m>1$: The M.S.S. is a system of equations and the components f^{1}, \cdots, f^{m} interact with each other. The geometry of the normal bundle is more complicated.

Shall discuss estimates and global existence theorems for higher-codimensional mean curvature flows with appropriate initial data.

Method of proofs

Method of proofs

C^{1} estimate.

Method of proofs

C^{1} estimate.
$m=1: J_{1}=\frac{1}{\sqrt{1+|\nabla f|^{2}}}$ satisfies

$$
\frac{d}{d t} J_{1}=\Delta_{\Sigma} J_{1}+R_{1}\left(\nabla f, \nabla^{2} f\right)
$$

$R_{1}>0$ is quadratic in $\nabla^{2} f$.

Method of proofs

C^{1} estimate.
$m=1: J_{1}=\frac{1}{\sqrt{1+|\nabla f|^{2}}}$ satisfies

$$
\frac{d}{d t} J_{1}=\Delta_{\Sigma} J_{1}+R_{1}\left(\nabla f, \nabla^{2} f\right)
$$

$R_{1}>0$ is quadratic in $\nabla^{2} f$.
$m=2, n=2, J_{2}=\frac{1}{\sqrt{1+|\nabla f|^{2}+|\nabla g|^{2}+\left(f_{x} g_{y}-f_{y} g_{x}\right)^{2}}}$ satisfies

$$
\frac{d}{d t} J_{2}=\Delta_{\Sigma} J_{2}+R_{2}\left(\nabla f, \nabla g, \nabla^{2} f, \nabla^{2} g\right)
$$

R_{2} is quadratic in $\nabla^{2} f$ and $\nabla^{2} g$ and is positive if $\left|f_{x} g_{y}-f_{y} g_{x}\right| \leq 1$.

Compute the evolution equation for $f_{x} g_{y}-f_{y} g_{x}$, the Jacobian of the map (f, g) !

Compute the evolution equation for $f_{x} g_{y}-f_{y} g_{x}$, the Jacobian of the map (f, g) !
$f_{x} g_{y}-f_{y} g_{x}=1$ is "preserved" along the mean curvature flow (area preserving).

Compute the evolution equation for $f_{x} g_{y}-f_{y} g_{x}$, the Jacobian of the map (f, g) !
$f_{x} g_{y}-f_{y} g_{x}=1$ is "preserved" along the mean curvature flow (area preserving).
$\left|f_{x} g_{y}-f_{y} g_{x}\right|<1$ is "preserved" along the mean curvature flow (area decreasing).

Compute the evolution equation for $f_{x} g_{y}-f_{y} g_{x}$, the Jacobian of the map (f, g) !
$f_{x} g_{y}-f_{y} g_{x}=1$ is "preserved" along the mean curvature flow (area preserving).
$\left|f_{x} g_{y}-f_{y} g_{x}\right|<1$ is "preserved" along the mean curvature flow (area decreasing).
i.e. if the condition holds initially, it remains true later as along as the flow exists smoothly.

Compute the evolution equation for $f_{x} g_{y}-f_{y} g_{x}$, the Jacobian of the map (f, g) !
$f_{x} g_{y}-f_{y} g_{x}=1$ is "preserved" along the mean curvature flow (area preserving).
$\left|f_{x} g_{y}-f_{y} g_{x}\right|<1$ is "preserved" along the mean curvature flow (area decreasing).
i.e. if the condition holds initially, it remains true later as along as the flow exists smoothly.

Combining with the evolution equation of J_{2}, this gives C^{1} estimates, and shows that the graphical condition is preserved.

Such a condition corresponds to the Gauss map of the submanifold lies in a totally geodesic or geodesically convex subset of the Grassmannian.

Such a condition corresponds to the Gauss map of the submanifold lies in a totally geodesic or geodesically convex subset of the Grassmannian.

Underlying fact: the Gauss map of the mean curvature flow is a (nonlinear) harmonic map heat flow.

Higher derivatives estimates?
Lawson-Osserman constructed minimal cones in higher codimension. Thus a Lipschitz solution may not be smooth.

Higher derivatives estimates?
Lawson-Osserman constructed minimal cones in higher codimension. Thus a Lipschitz solution may not be smooth.

We use "blow-up analysis" for geometric evolution equations such as the Ricci flow.

Higher derivatives estimates?
Lawson-Osserman constructed minimal cones in higher codimension. Thus a Lipschitz solution may not be smooth.

We use "blow-up analysis" for geometric evolution equations such as the Ricci flow.

Huisken-White's monotonicity formula characterizes blow-up profile.

Higher derivatives estimates?
Lawson-Osserman constructed minimal cones in higher codimension. Thus a Lipschitz solution may not be smooth.

We use "blow-up analysis" for geometric evolution equations such as the Ricci flow.

Huisken-White's monotonicity formula characterizes blow-up profile.

The singularity profile are soliton (self-similar) solutions of the equation.

Higher derivatives estimates?
Lawson-Osserman constructed minimal cones in higher codimension. Thus a Lipschitz solution may not be smooth.

We use "blow-up analysis" for geometric evolution equations such as the Ricci flow.

Huisken-White's monotonicity formula characterizes blow-up profile.

The singularity profile are soliton (self-similar) solutions of the equation.

In the case of mean curvature flows, solition (self-similar) solutions are moved by homothety or translations of the ambient space.

Higher derivatives estimates?
Lawson-Osserman constructed minimal cones in higher codimension. Thus a Lipschitz solution may not be smooth.

We use "blow-up analysis" for geometric evolution equations such as the Ricci flow.

Huisken-White's monotonicity formula characterizes blow-up profile.

The singularity profile are soliton (self-similar) solutions of the equation.

In the case of mean curvature flows, solition (self-similar) solutions are moved by homothety or translations of the ambient space.

Exclusion of self-similar "area-preserving" or "area-decreasing" singularity profiles and ϵ regularity theorems give the desired C^{2} estimates.

Two major difficulties remain:

Two major difficulties remain:

1. Boundary value problem. Needs barriers more adapted to the geometry.

Two major difficulties remain:

1. Boundary value problem. Needs barriers more adapted to the geometry.
2. Effective estimates in time as $t \rightarrow \infty$.

Two major difficulties remain:

1. Boundary value problem. Needs barriers more adapted to the geometry.
2. Effective estimates in time as $t \rightarrow \infty$.

Statements of current theorems are cleanest when M_{1} and M_{2} are closed Riemannian manifolds with suitable curvature conditions.

Statement of results with applications in isotopy problems

Statement of results with applications in isotopy problems

- $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ are Riemann surfaces with metrics of same constant curvature $c(c=-1,0$ or 1$)$.

Statement of results with applications in isotopy problems

- $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ are Riemann surfaces with metrics of same constant curvature $c(c=-1,0$ or 1$)$.
- $f: M_{1} \rightarrow M_{2}$ and Σ is the graph of f in $M_{1} \times M_{2}$.

Statement of results with applications in isotopy problems

- $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ are Riemann surfaces with metrics of same constant curvature $c(c=-1,0$ or 1$)$.
- $f: M_{1} \rightarrow M_{2}$ and Σ is the graph of f in $M_{1} \times M_{2}$.
- A oriented area-preserving map is a symplectomorphism, i.e. $f^{*} \omega_{2}=\omega_{1}$ where ω_{1} and ω_{2} are the area forms of g_{1} and g_{2}, respectively.

Statement of results with applications in isotopy problems

- $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ are Riemann surfaces with metrics of same constant curvature $c(c=-1,0$ or 1$)$.
- $f: M_{1} \rightarrow M_{2}$ and Σ is the graph of f in $M_{1} \times M_{2}$.
- A oriented area-preserving map is a symplectomorphism, i.e. $f^{*} \omega_{2}=\omega_{1}$ where ω_{1} and ω_{2} are the area forms of g_{1} and g_{2}, respectively.
- The area A of the graph is a symmetric function on the symplectomorphism group, i.e. $A(f)=A\left(f^{-1}\right)$ and the mean curvature flow gives a deformation retract.
- (W, 2001, 2004) The mean curvature flow Σ_{t} exists for all t and converges smoothly to a minimal submanifold as $t \rightarrow \infty$. Σ_{t} is the graph of a symplectic isotopy f_{t} from f_{0} to a canonical minimal map f_{∞}.
- (W, 2001, 2004) The mean curvature flow Σ_{t} exists for all t and converges smoothly to a minimal submanifold as $t \rightarrow \infty$. Σ_{t} is the graph of a symplectic isotopy f_{t} from f_{0} to a canonical minimal map f_{∞}.
- $c>0, S O(3)$ is a deformation retract of $\operatorname{Sympl}\left(S^{2}\right)$ (Smale).
- (W, 2001, 2004) The mean curvature flow Σ_{t} exists for all t and converges smoothly to a minimal submanifold as $t \rightarrow \infty$. Σ_{t} is the graph of a symplectic isotopy f_{t} from f_{0} to a canonical minimal map f_{∞}.
- $c>0, S O(3)$ is a deformation retract of $\operatorname{Sympl}\left(S^{2}\right)$ (Smale).
- $c \leq 0, \operatorname{Map}(M)$ is a deformation retract of $\operatorname{Sympl}(M)$.
- (W, 2001, 2004) The mean curvature flow Σ_{t} exists for all t and converges smoothly to a minimal submanifold as $t \rightarrow \infty$. Σ_{t} is the graph of a symplectic isotopy f_{t} from f_{0} to a canonical minimal map f_{∞}.
- $c>0, S O(3)$ is a deformation retract of $\operatorname{Sympl}\left(S^{2}\right)$ (Smale).
- $c \leq 0, \operatorname{Map}(M)$ is a deformation retract of $\operatorname{Sympl}(M)$.
- Independently, Smoczyk proved the $c \leq 0$ case with a pointwise curvature estimates (under an angle condition) which has been used in recent work of Chau-Chen-He-Yuan for LMCF of entire graphs.
- (W, 2001, 2004) The mean curvature flow Σ_{t} exists for all t and converges smoothly to a minimal submanifold as $t \rightarrow \infty$. Σ_{t} is the graph of a symplectic isotopy f_{t} from f_{0} to a canonical minimal map f_{∞}.
- $c>0, S O(3)$ is a deformation retract of $\operatorname{Sympl}\left(S^{2}\right)$ (Smale).
- $c \leq 0, \operatorname{Map}(M)$ is a deformation retract of $\operatorname{Sympl}(M)$.
- Independently, Smoczyk proved the $c \leq 0$ case with a pointwise curvature estimates (under an angle condition) which has been used in recent work of Chau-Chen-He-Yuan for LMCF of entire graphs.
- For area-decreasing maps, the flow exists for all time and converges to the graph of a constant map.
- Area-decreasing in higher dimensions.
- Area-decreasing in higher dimensions.
- A map $f: M_{1} \rightarrow M_{2}$ between Riemannian manifolds is area-decreasing if $\left|\Lambda^{2} d f\right|<1$ for $\Lambda^{2} d f: \Lambda^{2} T_{p} M_{1} \rightarrow \Lambda^{2} T_{f(p)} M_{2}$.
- Area-decreasing in higher dimensions.
- A map $f: M_{1} \rightarrow M_{2}$ between Riemannian manifolds is area-decreasing if $\left|\Lambda^{2} d f\right|<1$ for $\Lambda^{2} d f: \Lambda^{2} T_{p} M_{1} \rightarrow \Lambda^{2} T_{f(p)} M_{2}$.
- Equivalently,

$$
\left|\frac{\partial f^{\alpha}}{\partial x^{i}} \frac{\partial f^{\beta}}{\partial x^{j}}-\frac{\partial f^{\alpha}}{\partial x^{i}} \frac{\partial f^{\beta}}{\partial x^{j}}\right|<1
$$

for $\alpha \neq \beta, i \neq j$.

- Area-decreasing in higher dimensions.
- A map $f: M_{1} \rightarrow M_{2}$ between Riemannian manifolds is area-decreasing if $\left|\Lambda^{2} d f\right|<1$ for $\Lambda^{2} d f: \Lambda^{2} T_{p} M_{1} \rightarrow \Lambda^{2} T_{f(p)} M_{2}$.
- Equivalently,

$$
\left|\frac{\partial f^{\alpha}}{\partial x^{i}} \frac{\partial f^{\beta}}{\partial x^{j}}-\frac{\partial f^{\alpha}}{\partial x^{i}} \frac{\partial f^{\beta}}{\partial x^{j}}\right|<1
$$

for $\alpha \neq \beta, i \neq j$.

- This is the same as $H^{2}(f(D)) \leq H^{2}(D)$ for any $D \subset M_{1}$ of finite two-dimensional Hausdorff measure.
- Area-decreasing in higher dimensions.
- A map $f: M_{1} \rightarrow M_{2}$ between Riemannian manifolds is area-decreasing if $\left|\Lambda^{2} d f\right|<1$ for $\Lambda^{2} d f: \Lambda^{2} T_{p} M_{1} \rightarrow \Lambda^{2} T_{f(p)} M_{2}$.
- Equivalently,

$$
\left|\frac{\partial f^{\alpha}}{\partial x^{i}} \frac{\partial f^{\beta}}{\partial x^{j}}-\frac{\partial f^{\alpha}}{\partial x^{i}} \frac{\partial f^{\beta}}{\partial x^{j}}\right|<1
$$

for $\alpha \neq \beta, i \neq j$.

- This is the same as $H^{2}(f(D)) \leq H^{2}(D)$ for any $D \subset M_{1}$ of finite two-dimensional Hausdorff measure.
- Area decreasing condition is preserved along the mean curvature flow for $f: S^{n} \rightarrow S^{m}$ between spheres of constant curvature 1.

Area decreasing map

Area decreasing map

(Tsui-W, 2004) For $n, m \geq 2$. If $f: S^{n} \rightarrow S^{m}$ is an area-deceasing Lipschitz map, the mean curvature flow of the graph of f exists for all time, remains a graph, and converges smoothly to a constant map as $t \rightarrow \infty$.

Area decreasing map

(Tsui-W, 2004) For $n, m \geq 2$. If $f: S^{n} \rightarrow S^{m}$ is an area-deceasing Lipschitz map, the mean curvature flow of the graph of f exists for all time, remains a graph, and converges smoothly to a constant map as $t \rightarrow \infty$.
We express the area-decreasing condition as two-positivity of a Lorentzian metric of signature (n, m) and compute the evolution equation of the Lorentzian metric.

- Corollary: every area-decreasing map $f: S^{n} \rightarrow S^{m}$ is homotopically trivial.
- Corollary: every area-decreasing map $f: S^{n} \rightarrow S^{m}$ is homotopically trivial.
- M. Gromov (1996): for each m and n, there exists a number $\epsilon(n, m)>0$, so that any map from S^{n} to S^{m} with $\left|\Lambda^{2} d f\right|<\epsilon(n, m)$ is null-homotopic. $\epsilon(n, m) \ll 1$.
- Corollary: every area-decreasing map $f: S^{n} \rightarrow S^{m}$ is homotopically trivial.
- M. Gromov (1996): for each m and n, there exists a number $\epsilon(n, m)>0$, so that any map from S^{n} to S^{m} with $\left|\Lambda^{2} d f\right|<\epsilon(n, m)$ is null-homotopic. $\epsilon(n, m) \ll 1$.
- In general, may consider the k-Jocobian
$\Lambda^{k} d f: \Lambda^{k} T M_{1} \rightarrow \Lambda^{k} T M_{2}$, whose supreme norm $\left|\Lambda^{k} d f\right|$ is called the k-dilation. ($k=1$ is the Lipschitz norm).
- Corollary: every area-decreasing map $f: S^{n} \rightarrow S^{m}$ is homotopically trivial.
- M. Gromov (1996): for each m and n, there exists a number $\epsilon(n, m)>0$, so that any map from S^{n} to S^{m} with $\left|\Lambda^{2} d f\right|<\epsilon(n, m)$ is null-homotopic. $\epsilon(n, m) \ll 1$.
- In general, may consider the k-Jocobian $\Lambda^{k} d f: \Lambda^{k} T M_{1} \rightarrow \Lambda^{k} T M_{2}$, whose supreme norm $\left|\Lambda^{k} d f\right|$ is called the k-dilation. ($k=1$ is the Lipschitz norm).
- L. Guth constructed homotopically non-trivial maps from S^{n} to S^{m} with arbitrarily small 3-dilation.
- A pinching theorem for symplectomorphisms of complex projective spaces.
- A pinching theorem for symplectomorphisms of complex projective spaces.
- (Smoczyk 1996, Oh) Lagrangian condition is preserved for MCF in Kähler-Einstein manifolds.
- A pinching theorem for symplectomorphisms of complex projective spaces.
- (Smoczyk 1996, Oh) Lagrangian condition is preserved for MCF in Kähler-Einstein manifolds.
- Thus $f_{t}: M_{1} \rightarrow M_{2}$ being a symplectomorphism is preserved along the mean curvature flow if both M_{1} and M_{2} are Kähler manifolds equipped with Kähler-Einstein metric of the same Ricci curvature.
- A pinching theorem for symplectomorphisms of complex projective spaces.
- (Smoczyk 1996, Oh) Lagrangian condition is preserved for MCF in Kähler-Einstein manifolds.
- Thus $f_{t}: M_{1} \rightarrow M_{2}$ being a symplectomorphism is preserved along the mean curvature flow if both M_{1} and M_{2} are Kähler manifolds equipped with Kähler-Einstein metric of the same Ricci curvature.
- Take $M_{1}=M_{2}=\mathbb{C P}^{n}, g_{1}=g_{2}=g$ Fubini-Study metric.
- (Medos-W, 2011 JDG) There exists $\Lambda>1$ depending only on n (explicitly computable), such that any symplectomorphism $f: \mathbb{C P}^{n} \rightarrow \mathbb{C P}^{n}$ with

$$
\frac{1}{\Lambda} g \leq f^{*} g \leq \Lambda g
$$

is symplectically isotopic to a biholomorphic isometry of $\mathbb{C P}$ n through the mean curvature flow.

- (Medos-W, 2011 JDG) There exists $\Lambda>1$ depending only on n (explicitly computable), such that any symplectomorphism $f: \mathbb{C P}^{n} \rightarrow \mathbb{C P}^{n}$ with

$$
\frac{1}{\Lambda} g \leq f^{*} g \leq \Lambda g
$$

is symplectically isotopic to a biholomorphic isometry of $\mathbb{C P}$ through the mean curvature flow.

- (M. Gromov) : when $n=2$, the statement holds without any pinching condition by the method of pseudoholomorphic curves. For $n \geq 3$, this seems to be the first known result.
- Unlike previous theorems, Grassmannian geometry does not help here, as the subset that corresponds to biholomorphic isometries does not have any convex neighborhood in the Grassmannian. The integrability condition (Gauss-Codazzi equations) is used in an essential way.
- Sketch of Proof
- Sketch of Proof
- Let Ω be the volume form of the first copy of $\mathbb{C} \mathbb{P}^{n}$ in the product space. Ω is parallel with respect to the product metric.
- Sketch of Proof
- Let Ω be the volume form of the first copy of $\mathbb{C P}^{n}$ in the product space. Ω is parallel with respect to the product metric.
- Consider the function

$$
* \Omega=\left.*_{\Sigma} \Omega\right|_{\Sigma}=\text { Jacobian of }\left.\pi_{1}\right|_{\Sigma}
$$

- Sketch of Proof
- Let Ω be the volume form of the first copy of $\mathbb{C P}^{n}$ in the product space. Ω is parallel with respect to the product metric.
- Consider the function

$$
* \Omega=\left.*_{\Sigma} \Omega\right|_{\Sigma}=\text { Jacobian of }\left.\pi_{1}\right|_{\Sigma}
$$

- $* \Omega>0 \Leftrightarrow \Sigma$ graphical.
- Sketch of Proof
- Let Ω be the volume form of the first copy of $\mathbb{C P}^{n}$ in the product space. Ω is parallel with respect to the product metric.
- Consider the function

$$
* \Omega=\left.*_{\Sigma} \Omega\right|_{\Sigma}=\text { Jacobian of }\left.\pi_{1}\right|_{\Sigma}
$$

- $* \Omega>0 \Leftrightarrow \Sigma$ graphical.
- Along the MCF, $* \Omega$ evolves by

$$
\frac{\partial}{\partial t} * \Omega=\Delta * \Omega+* \Omega(Q+A)
$$

where Q involves the 2 nd fundamental form of Σ and A involves the ambient curvature of $\mathbb{C} \mathbb{P}^{n}$.

- We need a "symplectic" frame in order to simplify Q and A.
- We need a "symplectic" frame in order to simplify Q and A.
- At any $q \in \Sigma$ with $p=\pi_{1}(q), d f_{p}: T_{p} M_{1} \rightarrow T_{f(p)} M_{2}$ is a linear symplectomorphism.
- We need a "symplectic" frame in order to simplify Q and A.
- At any $q \in \Sigma$ with $p=\pi_{1}(q), d f_{p}: T_{p} M_{1} \rightarrow T_{f(p)} M_{2}$ is a linear symplectomorphism.
- We can find orthonormal basis $a_{1} \cdots a_{2 n}$ for $T_{p} M_{1}$ and $\tilde{a}_{1}, \cdots \tilde{a}_{2 n}$ for $T_{f(p)} M_{2}$ such that :
- We need a "symplectic" frame in order to simplify Q and A.
- At any $q \in \Sigma$ with $p=\pi_{1}(q), d f_{p}: T_{p} M_{1} \rightarrow T_{f(p)} M_{2}$ is a linear symplectomorphism.
- We can find orthonormal basis $a_{1} \cdots a_{2 n}$ for $T_{p} M_{1}$ and $\tilde{a}_{1}, \cdots \tilde{a}_{2 n}$ for $T_{f(p)} M_{2}$ such that:
- (1) $a_{i} \tilde{a}_{i}$ both unitary. $a_{2 k}=J_{1} a_{2 k-1}$ and $\tilde{a}_{2 k}=J_{2} \tilde{a}_{2 k-1}$, $k=1 \cdots n$.
- We need a "symplectic" frame in order to simplify Q and A.
- At any $q \in \Sigma$ with $p=\pi_{1}(q), d f_{p}: T_{p} M_{1} \rightarrow T_{f(p)} M_{2}$ is a linear symplectomorphism.
- We can find orthonormal basis $a_{1} \cdots a_{2 n}$ for $T_{p} M_{1}$ and $\tilde{a}_{1}, \cdots \tilde{a}_{2 n}$ for $T_{f(p)} M_{2}$ such that:
- (1) $a_{i} \tilde{a}_{i}$ both unitary. $a_{2 k}=J_{1} a_{2 k-1}$ and $\tilde{a}_{2 k}=J_{2} \tilde{a}_{2 k-1}$, $k=1 \cdots n$.
- (2) The bases diagonalize $d f$, i.e.

$$
d f\left(a_{i}\right)=\lambda_{i} \tilde{a}_{i}, \text { and } d f\left(J_{1} a_{i}\right)=\lambda_{i+1} J_{2} \tilde{a}_{i}
$$

for i odd.

- We need a "symplectic" frame in order to simplify Q and A.
- At any $q \in \Sigma$ with $p=\pi_{1}(q), d f_{p}: T_{p} M_{1} \rightarrow T_{f(p)} M_{2}$ is a linear symplectomorphism.
- We can find orthonormal basis $a_{1} \cdots a_{2 n}$ for $T_{p} M_{1}$ and $\tilde{a}_{1}, \cdots \tilde{a}_{2 n}$ for $T_{f(p)} M_{2}$ such that:
- (1) $a_{i} \tilde{a}_{i}$ both unitary. $a_{2 k}=J_{1} a_{2 k-1}$ and $\tilde{a}_{2 k}=J_{2} \tilde{a}_{2 k-1}$, $k=1 \cdots n$.
- (2) The bases diagonalize $d f$, i.e.

$$
d f\left(a_{i}\right)=\lambda_{i} \tilde{a}_{i}, \text { and } d f\left(J_{1} a_{i}\right)=\lambda_{i+1} J_{2} \tilde{a}_{i}
$$

for i odd.
-(3) $\lambda_{i} \lambda_{i+1}=1$ and $\lambda_{i}>0$ for i odd.

- $e_{i}=\frac{1}{\sqrt{1+\lambda_{i}^{2}}}\left(a_{i}+d f\left(a_{i}\right)\right), i=1 \cdots 2 n$ form an orthonormal basis for $T_{q} \Sigma$.
- $e_{i}=\frac{1}{\sqrt{1+\lambda_{i}^{2}}}\left(a_{i}+d f\left(a_{i}\right)\right), i=1 \cdots 2 n$ form an orthonormal basis for $T_{q} \Sigma$.
- $\mathfrak{J} e_{i}$ form an orthonormal basis for $N_{q} \Sigma$ where \mathfrak{J} is the induced almost complex structure on the product space.
- $e_{i}=\frac{1}{\sqrt{1+\lambda_{i}^{2}}}\left(a_{i}+d f\left(a_{i}\right)\right), i=1 \cdots 2 n$ form an orthonormal basis for $T_{q} \Sigma$.
- $\mathfrak{J} e_{i}$ form an orthonormal basis for $N_{q} \Sigma$ where \mathfrak{J} is the induced almost complex structure on the product space.
- These frames are adopted to express geometric quantities.
- $e_{i}=\frac{1}{\sqrt{1+\lambda_{i}^{2}}}\left(a_{i}+d f\left(a_{i}\right)\right), i=1 \cdots 2 n$ form an orthonormal basis for $T_{q} \Sigma$.
- $\mathfrak{J} e_{i}$ form an orthonormal basis for $N_{q} \Sigma$ where \mathfrak{J} is the induced almost complex structure on the product space.
- These frames are adopted to express geometric quantities.
- The second fundamental form $h_{i j k}=\left\langle\nabla_{e_{i}} e_{j}, \mathfrak{J} e_{k}\right\rangle$ is a fully symmetric 3-tensor.
- $e_{i}=\frac{1}{\sqrt{1+\lambda_{i}^{2}}}\left(a_{i}+d f\left(a_{i}\right)\right), i=1 \cdots 2 n$ form an orthonormal basis for $T_{q} \Sigma$.
- $\mathfrak{J} e_{i}$ form an orthonormal basis for $N_{q} \Sigma$ where \mathfrak{J} is the induced almost complex structure on the product space.
- These frames are adopted to express geometric quantities.
- The second fundamental form $h_{i j k}=\left\langle\nabla_{e_{i}} e_{j}, \mathfrak{J} e_{k}\right\rangle$ is a fully symmetric 3-tensor.
- For $\mathbb{C P}^{n}$,

$$
\frac{\partial}{\partial t} * \Omega=\Delta * \Omega+* \Omega\left[Q\left(\lambda_{i}, h_{i j k}\right)+\sum_{i \text { odd }} \frac{\left(1-\lambda_{i}^{2}\right)^{2}}{\left(1+\lambda_{i}^{2}\right)^{2}}\right] .
$$

- $e_{i}=\frac{1}{\sqrt{1+\lambda_{i}^{2}}}\left(a_{i}+d f\left(a_{i}\right)\right), i=1 \cdots 2 n$ form an orthonormal basis for $T_{q} \Sigma$.
- $\mathfrak{J} e_{i}$ form an orthonormal basis for $N_{q} \Sigma$ where \mathfrak{J} is the induced almost complex structure on the product space.
- These frames are adopted to express geometric quantities.
- The second fundamental form $h_{i j k}=\left\langle\nabla_{e_{i}} e_{j}, \mathfrak{J} e_{k}\right\rangle$ is a fully symmetric 3-tensor.
- For $\mathbb{C P}^{n}$,

$$
\frac{\partial}{\partial t} * \Omega=\Delta * \Omega+* \Omega\left[Q\left(\lambda_{i}, h_{i j k}\right)+\sum_{i \text { odd }} \frac{\left(1-\lambda_{i}^{2}\right)^{2}}{\left(1+\lambda_{i}^{2}\right)^{2}}\right] .
$$

- Q is a quadratic form in $h_{i j k}$ with coefficients depending on λ_{i}.
- $e_{i}=\frac{1}{\sqrt{1+\lambda_{i}^{2}}}\left(a_{i}+d f\left(a_{i}\right)\right), i=1 \cdots 2 n$ form an orthonormal basis for $T_{q} \Sigma$.
- $\mathfrak{J} e_{i}$ form an orthonormal basis for $N_{q} \Sigma$ where \mathfrak{J} is the induced almost complex structure on the product space.
- These frames are adopted to express geometric quantities.
- The second fundamental form $h_{i j k}=\left\langle\nabla_{e_{i}} e_{j}, \mathfrak{J} e_{k}\right\rangle$ is a fully symmetric 3-tensor.
- For $\mathbb{C P}^{n}$,

$$
\frac{\partial}{\partial t} * \Omega=\Delta * \Omega+* \Omega\left[Q\left(\lambda_{i}, h_{i j k}\right)+\sum_{i \text { odd }} \frac{\left(1-\lambda_{i}^{2}\right)^{2}}{\left(1+\lambda_{i}^{2}\right)^{2}}\right] .
$$

- Q is a quadratic form in $h_{i j k}$ with coefficients depending on λ_{i}.
- Decompose $h_{i j k} \in \bigodot^{3} T_{q} \Sigma$ into irreducible representations of symmetric groups and estimate the eigenvalue of the restriction of Q on each sub-space.
- $e_{i}=\frac{1}{\sqrt{1+\lambda_{i}^{2}}}\left(a_{i}+d f\left(a_{i}\right)\right), i=1 \cdots 2 n$ form an orthonormal basis for $T_{q} \Sigma$.
- $\mathfrak{J} e_{i}$ form an orthonormal basis for $N_{q} \Sigma$ where \mathfrak{J} is the induced almost complex structure on the product space.
- These frames are adopted to express geometric quantities.
- The second fundamental form $h_{i j k}=\left\langle\nabla_{e_{i}} e_{j}, \mathfrak{J} e_{k}\right\rangle$ is a fully symmetric 3-tensor.
- For $\mathbb{C P}^{n}$,

$$
\frac{\partial}{\partial t} * \Omega=\Delta * \Omega+* \Omega\left[Q\left(\lambda_{i}, h_{i j k}\right)+\sum_{i \text { odd }} \frac{\left(1-\lambda_{i}^{2}\right)^{2}}{\left(1+\lambda_{i}^{2}\right)^{2}}\right] .
$$

- Q is a quadratic form in $h_{i j k}$ with coefficients depending on λ_{i}.
- Decompose $h_{i j k} \in \bigodot^{3} T_{q} \Sigma$ into irreducible representations of symmetric groups and estimate the eigenvalue of the restriction of Q on each sub-space.
- We prove $Q\left(1, \cdots, 1, h_{i j k}\right) \geq(3-\sqrt{5}) \sum h_{i j k}^{2}$.
- By continuity, there exists a Λ such that $\frac{1}{\Lambda}<\lambda_{i}<\Lambda$ for all i implies $Q\left(\lambda_{i}, h_{i j k}\right) \geq \delta \sum h_{i j k}^{2}$ for $\delta>0$.
- By continuity, there exists a Λ such that $\frac{1}{\Lambda}<\lambda_{i}<\Lambda$ for all i implies $Q\left(\lambda_{i}, h_{i j k}\right) \geq \delta \sum h_{i j k}^{2}$ for $\delta>0$.
- Any positive lower bound of $* \Omega$ implies pinching for each λ_{i} and vice versa.
- By continuity, there exists a Λ such that $\frac{1}{\Lambda}<\lambda_{i}<\Lambda$ for all i implies $Q\left(\lambda_{i}, h_{i j k}\right) \geq \delta \sum h_{i j k}^{2}$ for $\delta>0$.
- Any positive lower bound of $* \Omega$ implies pinching for each λ_{i} and vice versa.

$$
* \Omega=\prod_{i \text { odd }}\left(\frac{1}{\lambda_{i}+\lambda_{i}^{-1}}\right) \leq 2^{-n}
$$

- By continuity, there exists a Λ such that $\frac{1}{\Lambda}<\lambda_{i}<\Lambda$ for all i implies $Q\left(\lambda_{i}, h_{i j k}\right) \geq \delta \sum h_{i j k}^{2}$ for $\delta>0$.
- Any positive lower bound of $* \Omega$ implies pinching for each λ_{i} and vice versa.

$$
* \Omega=\prod_{i \text { odd }}\left(\frac{1}{\lambda_{i}+\lambda_{i}^{-1}}\right) \leq 2^{-n}
$$

- Comparison with ODE gives λ_{i} approaches 1 as $t \rightarrow \infty$.
- By continuity, there exists a Λ such that $\frac{1}{\Lambda}<\lambda_{i}<\Lambda$ for all i implies $Q\left(\lambda_{i}, h_{i j k}\right) \geq \delta \sum h_{i j k}^{2}$ for $\delta>0$.
- Any positive lower bound of $* \Omega$ implies pinching for each λ_{i} and vice versa.

$$
* \Omega=\prod_{i \text { odd }}\left(\frac{1}{\lambda_{i}+\lambda_{i}^{-1}}\right) \leq 2^{-n}
$$

- Comparison with ODE gives λ_{i} approaches 1 as $t \rightarrow \infty$.
- The limit f_{∞} satisfies $\lambda_{i}=1$ for all i and $d f_{\infty}\left(J_{1} X\right)=J_{2} d f_{\infty}(X)$ and f_{∞} is holomorphic.
- Work in progress (with Smoczyk and Tsui).
- Work in progress (with Smoczyk and Tsui).
- Smoczyk-W. defined a generalized Lagrangian mean curvature flow when the ambient space is a cotangent bundle. Short-time existence and preservation of "exactness" and "zero Maslov class" have been established.
- Work in progress (with Smoczyk and Tsui).
- Smoczyk-W. defined a generalized Lagrangian mean curvature flow when the ambient space is a cotangent bundle. Short-time existence and preservation of "exactness" and "zero Maslov class" have been established.
- Long time existence that converges to the zero section with applications to the nearby Lagrangian conjecture.

Thank you!

