
Willmore two-spheres in Sn+2

via Loop group theory

Peng Wang (with Josef Dorfmeister)

Tongji University

The 10th Pacific Rim Geometric Conference 2011 Osaka-Fukuoka

Peng Wang (with Josef Dorfmeister) Willmore two-spheres in Sn+2 via Loop group theory



Background

x : M → Sn+2 Willmore surface: critical surface of the

Willmore functional

W (M) =

∫
M

(H2 −K + 1)dM

Bryant, R. (1984), x : M → S3 Willmore,

1. harmonicity of conformal Gauss map

Gr : M → Gr3,1(R5
1) = S4

1 ,

2. Duality theorems.

3. Willmore S2 =⇒ conformal to minimal surface in R3.
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Ejiri (1988) x : M → Sn+2 Willmore:

harmonicity of conformal Gauss map

Gr : M → Gr3,1(Rn+4
1 )

S-Willmore surface: Willmore surface with a dual surface,

Classification of S-Willmore S2 in Sn+2.

All Willmore S2 in S4 are S-Willmore.
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Ejiri (1988), Musso(1990), Montiel (2000): Classification of

Willmore S2 in S4

S2\{p1, · · · , pn}Willmore //

minimal
''

S4

π
��
R4

CP 3

Twistor map
��

S2
Willmore

//

(anti−)holo
;;

S4
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Questions:

Are there Willmore two spheres in S5 or S6 which are

non-S-Willmore ?

Classification of all Willmore S2 in Sn+2.

How to do with Willmore surfaces by use of the theory on

harmonic maps into symmetric spaces?
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Loop group methods

Uhlenbeck, K. (1989): All harmonic S2 in U(n). finite uniton.

Dorfmeister, J., Pedit, F., Wu, H.Y.(1998): DPW methods for

harmonic map f : M2 → G/K, G, K compact. Normalized

potential η = λ−1η−1.

Burstall, F, Guest, M. (1997): All harmonic S2 in (compact

semisimple Lie group) G. (⇒) η−1 locates in some nilpotent

Lie sub-algebra.
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Our main strategy

Study Willmore surface by considering the conformal harmonic

Gauss map via loop group methods.

Harmonic map from S2 into compact Lie group is of finite

uniton. For the non-compact case, this property holds too.

One can describe the conformal harmonic maps of finite

uniton explicitly, and as an application, giving all Willmore

two-spheres (may have branch points).
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Basic methods of our work

Moving frame of Willmore surface in Sn+2 by

Burstall-Pedit-Pinkall.

DPW methods for harmonic maps in symmetric space, i.e.,

using Lie-algebra-valued meromorphic 1-form (Normalized

potential) to describe harmonic maps.

Burstall-Guest theory on harmonic map from S2 into compact

Lie group (in term of DPW, the normalized potential is in

some nilpotent Lie sub-algebra).
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Main results

Harmonic maps into compact symmetric space v.s. non

compact symmetric spaces.

From Willmore surface to the conformal Gauss map, and how

to go back.

The finite uniton case:

classification of nilpotent normalized potential, and going

back to the corresponding Willmore surfaces.
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Strategy of DPW

G K compact. f : M2 → G/K harmonic

99K F (z, z̄, λ) : M2 → ΛGσ, λ ∈ S1. 99K

F (z, z̄, λ) = F−(z, z̄, λ)F+(z, z̄, λ) (Birkhoff decomposition)

F−dF− = η = λ−1η−1dz.(meromorphic) Normalized potential

η = λ−1η−1dz. 99K F−dF− = η

99K F− = F (z, z̄, λ)F+(z, z̄, λ) Iwasawa decomposition

99K F (z, z̄, λ) : M2 → ΛGσ 99K f : M2 → G/K harmonic.

Burstall-Guest: f finite uniton ⇐⇒ η−1 locates in some

nilpotent Lie subalgebra.
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Non-compact case vs compact case

G non-compact Lie group, G/K inner symmetric. 99K

U ⊂ GC, U compact, and UC = GC, (U ∩KC)C = KC.

f : M2 → G/K, f harmonic, 99K (Iwasawa)

fU : M2 → U/(U ∩KC)

f has the same normalized potential as fU .

Especially, f is of finite uniton if and only if fU is of finite

uniton.
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Willmore surfaces in Sn+2

Let Cn+3 be the light cone of Lorentz-Minkowski space Rn+4
1 ,

then Sn+2 = Qn+2 = { [x] ∈ RPn+3 | x ∈ Cn+3 \ {0}}.

The conformal group of Sn+2: = SO(1, n+ 3).

y : M → Sn+2 immersion, the conformal Gauss map

Gr : M → Gr3,1(Rn+4
1 ) = SO(1, n+ 3)/SO(1, 3)× SO(n).

Gr corresponds to the mean curvature sphere congruence. y

is a conformal enveloping surface of Gr.

y Willmore ⇐⇒ Gr harmonic
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From Willmore surfaces to harmonic maps

y : M → Sn+2 Willmore =⇒,

Gr : M → SO(1, n+ 3)/SO(1, 3)× SO(n) harmonic, the

Maurer-Cartan form is of the form

α′ =

(
A1 B1

−Bt
1I1,3 A2

)
dz,

with

Bt
1I1,3B1 = 0.(=⇒ Rank(B1) 6 2).

y S-Willmore ⇐⇒ B1 is of rank one.
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From harmonic maps going back to Willmore surfaces

Let f : M → SO(1, n+ 3)/SO(1, 3)× SO(n) be a harmonic map

with its Maurer-Cartan form of f satisfying Bt
1I1,3B1 = 0.

f envelops a pair of dual Willmore surfaces (hence

S-Willmore)

⇐⇒ Rank(B1) = 1. (One of them may degenerate to a

point).

f envelops a unique surface y ⇐⇒ Rank(B1) = 2.( y may

degenerate to a point).
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Harmonic maps enveloping a point

Let f : M → SO(1, n+ 3)/SO(1, 3)× SO(n) be a harmonic

map with Bt
1I1,3B1 = 0. Then there exists an enveloping

surface of f degenerating to a point, if and only if the

normalized potential is of the form

η = λ−1

(
0 B̂1

−B̂t
1I1,3 0

)
dz, B̂1 = (v1, · · · , vn) ,

with

vj ↪→ SpanC
{

(1, 1, 0, 0)t, (0, 0, 1, i)t
}
, j = 1, · · · , n.
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Examples of Willmore surfaces of finite uniton in Sn

Minimal surfaces in Rn.

Surfaces in S4 coming from (anti-)holomorphic curves of the

twistor bundle CP 3.
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Willmore surfaces of finite uniton in S6

For a harmonic map f : M → SO(1, 7)/SO(1, 3)× SO(4) of finite

uniton, with Bt
1I1,3B1 = 0. Suppose that the normalized potential

η = λ−1

(
0 B̂1

−B̂t
1I1,3 0

)
dz, B̂1 = (v1, · · · , v4) .

Then up to a conjugation of SO(1, 3)× SO(4), B̂1 must be one of

the three cases:

(1). vj ↪→ SpanC
{

(1, 1, 0, 0)t, (0, 0, 1, i)t
}
, j = 1, · · · , 4.

(2). v2 = iv1, v3 = iv4.

(3). v2 = iv1, v3, v4 ↪→ SpanC
{

(1, 1, 0, 0)t, (0, 0, 1, i)t
}

.
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Going back to Willmore surfaces of finite uniton in S6

Case (1).

Rank(B̂1) = 1⇔ y conformal to minimal surface in R6,

Rank(B̂1) = 2⇔ y degenarates to a point.

Case (2) ⇒ y totally isotropic. For Case (2)\Case (1).

Rank(B̂1) = 1⇔ y S-Willmore,

Rank(B̂1) = 2⇔ y not S-Willmore.

Case (3)\Case (2) and Case (1): ⇒ Rank(B̂1) = 2

y having non isotropic Hopf differential, not S-Willmore.

Case (1) and Case (2) are all the cases such that f is

S1-invariant.
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Examples of Case (2)

The normalized potential

η = λ−1

(
0 B̂1

−B̂t
1I1,3 0

)
dz,

with

B̂1 =
1

2


2iz −2z −i 1

−2iz 2z −i 1

−2 −2i −z −iz
2i −2 −iz z

 .
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Y =



(
1 + r2 + 5r4

4 + 4r6

9 + r8

36

)(
1− r2 − 3r4

4 + 4r6
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The S4 case

Case (3) can not happen.

Case (1) =⇒ minimal surfaces in R4.

For case (2), rank(B1) = 1. The corresponding Willmore

surfaces are always S-Willmore having isotropic Hopf

differential. ⇒ holomorphic or anti-holomorphic curves in

CP 3 .
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The S2m+2 case for Willmore surfaces of finite uniton

Suppose that B̂1 = (v1, · · · , v2m) . Then up to a conjugation

of SO(1, 3)× SO(2m), B̂1 must be one of the (m+ 1) cases:

(1).

vj ↪→ SpanC
{

(1, 1, 0, 0)t, (0, 0, 1, i)t
}
, j = 1, · · · , 2m.

(2).

v2 = iv1, vj ↪→ SpanC
{

(1, 1, 0, 0)t, (0, 0, 1, i)t
}
, j = 3, · · · , 2m.

...

(m+1).

v2 = iv1, v4 = iv3, · · · , v2m = iv2m−1.
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Thank you!
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