Willmore two-spheres in S^{n+2} via Loop group theory

Peng Wang (with Josef Dorfmeister)

Tongji University The 10th Pacific Rim Geometric Conference 2011 Osaka-Fukuoka

→ 3 → 4 3

Background

• $x: M \to S^{n+2}$ Willmore surface: critical surface of the Willmore functional

$$W(M) = \int_M (H^2 - K + 1) dM$$

- Bryant, R. (1984), $x: M \to S^3$ Willmore,
 - 1. harmonicity of conformal Gauss map

$$Gr: M \to Gr_{3,1}(\mathbb{R}^5_1) = S_1^4,$$

- 2. Duality theorems.
- 3. Willmore $S^2 \Longrightarrow$ conformal to minimal surface in \mathbb{R}^3 .

(4 同) (4 日) (4 日)

Background

• $x: M \to S^{n+2}$ Willmore surface: critical surface of the Willmore functional

$$W(M) = \int_M (H^2 - K + 1) dM$$

- Bryant, R. (1984), $x: M \to S^3$ Willmore,
 - 1. harmonicity of conformal Gauss map

$$Gr: M \to Gr_{3,1}(\mathbb{R}^5_1) = S_1^4,$$

- 2. Duality theorems.
- 3. Willmore $S^2 \Longrightarrow$ conformal to minimal surface in \mathbb{R}^3 .

直 ト イヨ ト イヨ ト

• harmonicity of conformal Gauss map

$$Gr: M \to Gr_{3,1}(\mathbb{R}^{n+4}_1)$$

- S-Willmore surface: Willmore surface with a dual surface,
- Classification of S-Willmore S^2 in S^{n+2} .
- All Willmore S^2 in S^4 are S-Willmore.

直 ト イヨ ト イヨ ト

• harmonicity of conformal Gauss map

$$Gr: M \to Gr_{3,1}(\mathbb{R}^{n+4}_1)$$

- S-Willmore surface: Willmore surface with a dual surface,
- Classification of S-Willmore S^2 in S^{n+2} .
- All Willmore S^2 in S^4 are S-Willmore.

伺 ト イ ヨ ト イ ヨ ト

• harmonicity of conformal Gauss map

$$Gr: M \to Gr_{3,1}(\mathbb{R}^{n+4}_1)$$

- S-Willmore surface: Willmore surface with a dual surface,
- Classification of S-Willmore S^2 in S^{n+2} .
- All Willmore S^2 in S^4 are S-Willmore.

伺 ト イ ヨ ト イ ヨ ト

• harmonicity of conformal Gauss map

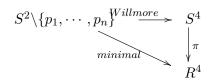
$$Gr: M \to Gr_{3,1}(\mathbb{R}^{n+4}_1)$$

- S-Willmore surface: Willmore surface with a dual surface,
- Classification of S-Willmore S^2 in S^{n+2} .
- All Willmore S^2 in S^4 are S-Willmore.

.

Ejiri (1988), Musso(1990), Montiel (2000): Classification of Willmore S^2 in S^4

۲

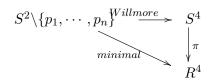


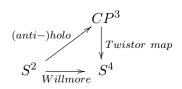
御 と くき と くき と しきし

Ejiri (1988), Musso(1990), Montiel (2000): Classification of Willmore S^2 in S^4

۲

۲





- Are there Willmore two spheres in S^5 or S^6 which are non-S-Willmore ?
- Classification of all Willmore S^2 in S^{n+2} .
- How to do with Willmore surfaces by use of the theory on harmonic maps into symmetric spaces?

同下 イヨト イヨ

- Are there Willmore two spheres in S^5 or S^6 which are non-S-Willmore ?
- Classification of all Willmore S^2 in S^{n+2} .
- How to do with Willmore surfaces by use of the theory on harmonic maps into symmetric spaces?

□ ▶ < □ ▶ < □</p>

- Are there Willmore two spheres in S^5 or S^6 which are non-S-Willmore ?
- Classification of all Willmore S^2 in S^{n+2} .
- How to do with Willmore surfaces by use of the theory on harmonic maps into symmetric spaces?

伺下 イヨト イヨト

- Uhlenbeck, K. (1989): All harmonic S^2 in U(n). finite uniton.
- Dorfmeister, J., Pedit, F., Wu, H.Y.(1998): DPW methods for harmonic map f : M² → G/K, G, K compact. Normalized potential η = λ⁻¹η₋₁.
- Burstall, F, Guest, M. (1997): All harmonic S² in (compact semisimple Lie group) G. (⇒) η₋₁ locates in some nilpotent Lie sub-algebra.

□ ▶ < □ ▶ < □</p>

- Uhlenbeck, K. (1989): All harmonic S^2 in U(n). finite uniton.
- Dorfmeister, J., Pedit, F., Wu, H.Y.(1998): DPW methods for harmonic map f : M² → G/K, G, K compact. Normalized potential η = λ⁻¹η₋₁.
- Burstall, F, Guest, M. (1997): All harmonic S² in (compact semisimple Lie group) G. (⇒) η₋₁ locates in some nilpotent Lie sub-algebra.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Uhlenbeck, K. (1989): All harmonic S^2 in U(n). finite uniton.
- Dorfmeister, J., Pedit, F., Wu, H.Y.(1998): DPW methods for harmonic map f : M² → G/K, G, K compact. Normalized potential η = λ⁻¹η₋₁.
- Burstall, F, Guest, M. (1997): All harmonic S² in (compact semisimple Lie group) G. (⇒) η₋₁ locates in some nilpotent Lie sub-algebra.

伺 ト イ ヨ ト イ ヨ ト

- Study Willmore surface by considering the conformal harmonic Gauss map via loop group methods.
- Harmonic map from S² into compact Lie group is of finite uniton. For the non-compact case, this property holds too.
- One can describe the conformal harmonic maps of finite uniton explicitly, and as an application, giving all Willmore two-spheres (may have branch points).

- Study Willmore surface by considering the conformal harmonic Gauss map via loop group methods.
- Harmonic map from S² into compact Lie group is of finite uniton. For the non-compact case, this property holds too.
- One can describe the conformal harmonic maps of finite uniton explicitly, and as an application, giving all Willmore two-spheres (may have branch points).

- Study Willmore surface by considering the conformal harmonic Gauss map via loop group methods.
- Harmonic map from S² into compact Lie group is of finite uniton. For the non-compact case, this property holds too.
- One can describe the conformal harmonic maps of finite uniton explicitly, and as an application, giving all Willmore two-spheres (may have branch points).

直 マイド・・ 日

Basic methods of our work

- Moving frame of Willmore surface in Sⁿ⁺² by Burstall-Pedit-Pinkall.
- DPW methods for harmonic maps in symmetric space, i.e., using Lie-algebra-valued meromorphic 1-form (Normalized potential) to describe harmonic maps.
- Burstall-Guest theory on harmonic map from S² into compact Lie group (in term of DPW, the normalized potential is in some nilpotent Lie sub-algebra).

→ < Ξ → </p>

Basic methods of our work

- Moving frame of Willmore surface in S^{n+2} by Burstall-Pedit-Pinkall.
- DPW methods for harmonic maps in symmetric space, i.e., using Lie-algebra-valued meromorphic 1-form (Normalized potential) to describe harmonic maps.
- Burstall-Guest theory on harmonic map from S² into compact Lie group (in term of DPW, the normalized potential is in some nilpotent Lie sub-algebra).

Basic methods of our work

- Moving frame of Willmore surface in S^{n+2} by Burstall-Pedit-Pinkall.
- DPW methods for harmonic maps in symmetric space, i.e., using Lie-algebra-valued meromorphic 1-form (Normalized potential) to describe harmonic maps.
- Burstall-Guest theory on harmonic map from S² into compact Lie group (in term of DPW, the normalized potential is in some nilpotent Lie sub-algebra).

• • • • • • •

- Harmonic maps into compact symmetric space v.s. non compact symmetric spaces.
- From Willmore surface to the conformal Gauss map, and how to go back.
- The finite uniton case:

classification of nilpotent normalized potential, and going back to the corresponding Willmore surfaces.

/□ ▶ < 글 ▶ < 글

- Harmonic maps into compact symmetric space v.s. non compact symmetric spaces.
- From Willmore surface to the conformal Gauss map, and how to go back.
- The finite uniton case:

classification of nilpotent normalized potential, and going back to the corresponding Willmore surfaces.

/□ ▶ < 글 ▶ < 글

- Harmonic maps into compact symmetric space v.s. non compact symmetric spaces.
- From Willmore surface to the conformal Gauss map, and how to go back.
- The finite uniton case:

classification of nilpotent normalized potential, and going back to the corresponding Willmore surfaces.

伺下 イヨト イヨト

Strategy of DPW

• $G \ K$ compact. $f : M^2 \to G/K$ harmonic $\dashrightarrow F(z, \overline{z}, \lambda) : M^2 \to \Lambda G_{\sigma}, \ \lambda \in S^1. \dashrightarrow$ $F(z, \overline{z}, \lambda) = F_{-}(z, \overline{z}, \lambda)F_{+}(z, \overline{z}, \lambda)$ (Birkhoff decomposition)

 $F_{-}dF_{-} = \eta = \lambda^{-1}\eta_{-1}dz.$ (meromorphic) Normalized potential

- $\eta = \lambda^{-1}\eta_{-1}dz$. $\rightarrow F_{-}dF_{-} = \eta$ $\rightarrow F_{-} = F(z, \bar{z}, \lambda)F_{+}(z, \bar{z}, \lambda)$ Iwasawa decomposition $\rightarrow F(z, \bar{z}, \lambda) : M^{2} \rightarrow \Lambda G_{\sigma} \rightarrow f : M^{2} \rightarrow G/K$ harmonic.
- Burstall-Guest: f finite uniton $\iff \eta_{-1}$ locates in some nilpotent Lie subalgebra.

イロト 不得 トイヨト イヨト 二日

Strategy of DPW

• $G \ K$ compact. $f : M^2 \to G/K$ harmonic $\dashrightarrow F(z, \overline{z}, \lambda) : M^2 \to \Lambda G_{\sigma}, \ \lambda \in S^1. \dashrightarrow$ $F(z, \overline{z}, \lambda) = F_{-}(z, \overline{z}, \lambda)F_{+}(z, \overline{z}, \lambda)$ (Birkhoff decomposition)

 $F_{-}dF_{-} = \eta = \lambda^{-1}\eta_{-1}dz.$ (meromorphic) Normalized potential

- $\eta = \lambda^{-1}\eta_{-1}dz$. $\rightarrow F_{-}dF_{-} = \eta$ $\rightarrow F_{-} = F(z, \bar{z}, \lambda)F_{+}(z, \bar{z}, \lambda)$ Iwasawa decomposition $\rightarrow F(z, \bar{z}, \lambda): M^{2} \rightarrow \Lambda G_{\sigma} \rightarrow f: M^{2} \rightarrow G/K$ harmonic.
- Burstall-Guest: f finite uniton ↔ η₋₁ locates in some nilpotent Lie subalgebra.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Strategy of DPW

• $G \ K$ compact. $f : M^2 \to G/K$ harmonic $\dashrightarrow F(z, \overline{z}, \lambda) : M^2 \to \Lambda G_{\sigma}, \ \lambda \in S^1. \dashrightarrow$ $F(z, \overline{z}, \lambda) = F_{-}(z, \overline{z}, \lambda)F_{+}(z, \overline{z}, \lambda)$ (Birkhoff decomposition)

 $F_{-}dF_{-} = \eta = \lambda^{-1}\eta_{-1}dz.$ (meromorphic) Normalized potential

- $\eta = \lambda^{-1}\eta_{-1}dz$. \dashrightarrow $F_{-}dF_{-} = \eta$ \dashrightarrow $F_{-} = F(z, \overline{z}, \lambda)F_{+}(z, \overline{z}, \lambda)$ Iwasawa decomposition \dashrightarrow $F(z, \overline{z}, \lambda) : M^{2} \rightarrow \Lambda G_{\sigma} \dashrightarrow f : M^{2} \rightarrow G/K$ harmonic.
- Burstall-Guest: f finite uniton ⇐⇒ η₋₁ locates in some nilpotent Lie subalgebra.

- (同) (回) (回) - 回

- $f: M^2 \to G/K$, f harmonic, $\to (Iwasawa)$ $f_U: M^2 \to U/(U \cap K^{\mathbb{C}})$

f has the same normalized potential as f_U .

Especially, f is of finite uniton if and only if f_U is of finite uniton.

・ 同 ト ・ ヨ ト ・ ヨ ト

•
$$f: M^2 \to G/K$$
, f harmonic, $- \to (Iwasawa)$
 $f_U: M^2 \to U/(U \cap K^{\mathbb{C}})$

f has the same normalized potential as f_U .

Especially, f is of finite uniton if and only if f_U is of finite uniton.

伺 ト イ ヨ ト イ ヨ ト

• Let \mathcal{C}^{n+3} be the light cone of Lorentz-Minkowski space \mathbb{R}^{n+4}_1 , then $S^{n+2} = Q^{n+2} = \{ [x] \in \mathbb{R}P^{n+3} \mid x \in C^{n+3} \setminus \{0\} \}.$

• The conformal group of S^{n+2} : = SO(1, n+3).

• $y: M \to S^{n+2}$ immersion, the conformal Gauss map

 $Gr: M \to Gr_{3,1}(\mathbb{R}^{n+4}_1) = SO(1, n+3)/SO(1, 3) \times SO(n).$

Gr corresponds to the mean curvature sphere congruence. *y* is a conformal enveloping surface of *Gr*.

• y Willmore \iff Gr harmonic

向下 イヨト イヨト 三日

- Let \mathcal{C}^{n+3} be the light cone of Lorentz-Minkowski space \mathbb{R}^{n+4}_1 , then $S^{n+2} = Q^{n+2} = \{ [x] \in \mathbb{R}P^{n+3} \mid x \in C^{n+3} \setminus \{0\} \}.$
- The conformal group of S^{n+2} : = SO(1, n+3).
- $y: M \to S^{n+2}$ immersion, the conformal Gauss map

 $Gr: M \to Gr_{3,1}(\mathbb{R}^{n+4}_1) = SO(1, n+3)/SO(1, 3) \times SO(n).$

Gr corresponds to the mean curvature sphere congruence. y is a conformal enveloping surface of Gr.

• y Willmore \iff Gr harmonic

・ 「 ・ ・ 」 ・ ・ ヨ ・ ・ ヨ ・

- Let \mathcal{C}^{n+3} be the light cone of Lorentz-Minkowski space \mathbb{R}^{n+4}_1 , then $S^{n+2} = Q^{n+2} = \{ [x] \in \mathbb{R}P^{n+3} \mid x \in C^{n+3} \setminus \{0\} \}.$
- The conformal group of S^{n+2} : = SO(1, n+3).
- $y: M \to S^{n+2}$ immersion, the conformal Gauss map

$$Gr: M \to Gr_{3,1}(\mathbb{R}^{n+4}_1) = SO(1, n+3)/SO(1, 3) \times SO(n).$$

Gr corresponds to the mean curvature sphere congruence. y is a conformal enveloping surface of Gr.

• y Willmore \iff Gr harmonic

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● の Q (や

- Let \mathcal{C}^{n+3} be the light cone of Lorentz-Minkowski space \mathbb{R}^{n+4}_1 , then $S^{n+2} = Q^{n+2} = \{ [x] \in \mathbb{R}P^{n+3} \mid x \in C^{n+3} \setminus \{0\} \}.$
- The conformal group of S^{n+2} : = SO(1, n+3).
- $y: M \to S^{n+2}$ immersion, the conformal Gauss map

$$Gr: M \to Gr_{3,1}(\mathbb{R}^{n+4}_1) = SO(1, n+3)/SO(1, 3) \times SO(n).$$

Gr corresponds to the mean curvature sphere congruence. y is a conformal enveloping surface of Gr.

•
$$y$$
 Willmore \iff Gr harmonic

From Willmore surfaces to harmonic maps

•
$$y: M \to S^{n+2}$$
 Willmore \Longrightarrow ,
 $Gr: M \to SO(1, n+3)/SO(1, 3) \times SO(n)$ harmonic, the
Maurer-Cartan form is of the form

$$\alpha' = \begin{pmatrix} A_1 & B_1 \\ -B_1^t I_{1,3} & A_2 \end{pmatrix} dz,$$

with

$$B_1^t I_{1,3} B_1 = 0. \implies Rank(B_1) \le 2).$$

• y **S-Willmore** $\iff B_1$ is of rank one.

3

From Willmore surfaces to harmonic maps

•
$$y: M \to S^{n+2}$$
 Willmore \Longrightarrow ,
 $Gr: M \to SO(1, n+3)/SO(1, 3) \times SO(n)$ harmonic, the
Maurer-Cartan form is of the form

$$\alpha' = \begin{pmatrix} A_1 & B_1 \\ -B_1^t I_{1,3} & A_2 \end{pmatrix} dz,$$

with

$$B_1^t I_{1,3} B_1 = 0. \implies Rank(B_1) \le 2).$$

• y **S-Willmore** $\iff B_1$ is of rank one.

同 ト イ ヨ ト イ ヨ ト

э

Let $f: M \to SO(1, n+3)/SO(1, 3) \times SO(n)$ be a harmonic map with its Maurer-Cartan form of f satisfying $B_1^t I_{1,3} B_1 = 0$.

 f envelops a pair of dual Willmore surfaces (hence S-Willmore)

 $\iff Rank(B_1) = 1.$ (One of them may degenerate to a point).

f envelops a unique surface *y* ⇐⇒ *Rank*(*B*₁) = 2.(*y* may degenerate to a point).

Let $f: M \to SO(1, n+3)/SO(1, 3) \times SO(n)$ be a harmonic map with its Maurer-Cartan form of f satisfying $B_1^t I_{1,3} B_1 = 0$.

• *f* envelops a pair of dual Willmore surfaces (hence S-Willmore)

 $\iff Rank(B_1) = 1.$ (One of them may degenerate to a point).

f envelops a unique surface y ⇐⇒ Rank(B₁) = 2.(y may degenerate to a point).

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

 Let f: M → SO(1, n + 3)/SO(1, 3) × SO(n) be a harmonic map with B₁^tI_{1,3}B₁ = 0. Then there exists an enveloping surface of f degenerating to a point, if and only if the normalized potential is of the form

$$\eta = \lambda^{-1} \begin{pmatrix} 0 & \hat{B}_1 \\ -\hat{B}_1^t I_{1,3} & 0 \end{pmatrix} dz, \hat{B}_1 = (v_1, \cdots, v_n),$$

with

$$v_j \hookrightarrow \mathsf{Span}_{\mathbb{C}} \left\{ (1, 1, 0, 0)^t, (0, 0, 1, i)^t \right\}, j = 1, \cdots, n.$$

通 と イ ヨ と イ ヨ と

Examples of Willmore surfaces of finite uniton in S^n

- Minimal surfaces in \mathbb{R}^n .
- Surfaces in S⁴ coming from (anti-)holomorphic curves of the twistor bundle ℂP³.

| 4 同 1 4 三 1 4 三 1

Examples of Willmore surfaces of finite uniton in S^n

- Minimal surfaces in \mathbb{R}^n .
- Surfaces in S⁴ coming from (anti-)holomorphic curves of the twistor bundle ℂP³.

直 ト イヨ ト イヨ ト

For a harmonic map $f: M \to SO(1,7)/SO(1,3) \times SO(4)$ of finite uniton, with $B_1^t I_{1,3} B_1 = 0$. Suppose that the normalized potential

$$\eta = \lambda^{-1} \begin{pmatrix} 0 & \hat{B}_1 \\ -\hat{B}_1^t I_{1,3} & 0 \end{pmatrix} dz, \hat{B}_1 = (v_1, \cdots, v_4).$$

Then up to a conjugation of $SO(1,3) \times SO(4)$, \hat{B}_1 must be one of the three cases:

• (1). $v_j \hookrightarrow \text{Span}_{\mathbb{C}} \{ (1, 1, 0, 0)^t, (0, 0, 1, i)^t \}, j = 1, \cdots, 4.$

• (2).
$$v_2 = iv_1$$
, $v_3 = iv_4$.

• (3). $v_2 = iv_1, v_3, v_4 \hookrightarrow \operatorname{Span}_{\mathbb{C}} \{ (1, 1, 0, 0)^t, (0, 0, 1, i)^t \}.$

For a harmonic map $f: M \to SO(1,7)/SO(1,3) \times SO(4)$ of finite uniton, with $B_1^t I_{1,3} B_1 = 0$. Suppose that the normalized potential

$$\eta = \lambda^{-1} \begin{pmatrix} 0 & \hat{B}_1 \\ -\hat{B}_1^t I_{1,3} & 0 \end{pmatrix} dz, \hat{B}_1 = (v_1, \cdots, v_4).$$

Then up to a conjugation of $SO(1,3) \times SO(4)$, \hat{B}_1 must be one of the three cases:

• (1). $v_j \hookrightarrow \text{Span}_{\mathbb{C}} \{ (1, 1, 0, 0)^t, (0, 0, 1, i)^t \}, j = 1, \cdots, 4.$

• (2).
$$v_2 = iv_1$$
, $v_3 = iv_4$.

• (3). $v_2 = iv_1, v_3, v_4 \hookrightarrow \operatorname{Span}_{\mathbb{C}} \{ (1, 1, 0, 0)^t, (0, 0, 1, i)^t \}.$

For a harmonic map $f: M \to SO(1,7)/SO(1,3) \times SO(4)$ of finite uniton, with $B_1^t I_{1,3} B_1 = 0$. Suppose that the normalized potential

$$\eta = \lambda^{-1} \begin{pmatrix} 0 & \hat{B}_1 \\ -\hat{B}_1^t I_{1,3} & 0 \end{pmatrix} dz, \hat{B}_1 = (v_1, \cdots, v_4).$$

Then up to a conjugation of $SO(1,3) \times SO(4)$, \hat{B}_1 must be one of the three cases:

• (1). $v_j \hookrightarrow \text{Span}_{\mathbb{C}} \left\{ (1, 1, 0, 0)^t, (0, 0, 1, i)^t \right\}, j = 1, \cdots, 4.$

• (2).
$$v_2 = iv_1$$
, $v_3 = iv_4$.

• (3). $v_2 = iv_1, v_3, v_4 \hookrightarrow \operatorname{Span}_{\mathbb{C}} \{(1, 1, 0, 0)^t, (0, 0, 1, i)^t\}.$

• • = • • = •

• Case (1).

 $Rank(\hat{B}_1) = 1 \Leftrightarrow y$ conformal to minimal surface in \mathbb{R}^6 , $Rank(\hat{B}_1) = 2 \Leftrightarrow y$ degenarates to a point.

• Case (2) \Rightarrow y totally isotropic. For Case (2)\Case (1).

 $Rank(\hat{B}_1) = 1 \Leftrightarrow y$ S-Willmore, $Rank(\hat{B}_1) = 2 \Leftrightarrow y$ not S-Willmore

- Case (3)\Case (2) and Case (1): $\Rightarrow Rank(\hat{B}_1) = 2$ *u* having non isotropic Hopf differential, not S-Willmor
- Case (1) and Case (2) are all the cases such that f is S¹-invariant.

• Case (1).

 $Rank(\hat{B}_1) = 1 \Leftrightarrow y$ conformal to minimal surface in \mathbb{R}^6 , $Rank(\hat{B}_1) = 2 \Leftrightarrow y$ degenarates to a point.

• Case (2) \Rightarrow y totally isotropic. For Case (2)\Case (1).

 $Rank(\hat{B}_1) = 1 \Leftrightarrow y$ S-Willmore, $Rank(\hat{B}_1) = 2 \Leftrightarrow y$ not S-Willmore.

- Case (3)\Case (2) and Case (1): $\Rightarrow Rank(\hat{B}_1) = 2$ y having non isotropic Hopf differential, not S-Willmore.
- Case (1) and Case (2) are all the cases such that f is S¹-invariant.

• Case (1).

 $Rank(\hat{B}_1) = 1 \Leftrightarrow y$ conformal to minimal surface in \mathbb{R}^6 , $Rank(\hat{B}_1) = 2 \Leftrightarrow y$ degenarates to a point.

• Case (2) \Rightarrow y totally isotropic. For Case (2)\Case (1).

 $Rank(\hat{B}_1) = 1 \Leftrightarrow y$ S-Willmore, $Rank(\hat{B}_1) = 2 \Leftrightarrow y$ not S-Willmore.

- Case (3)\Case (2) and Case (1): $\Rightarrow Rank(\hat{B}_1) = 2$ y having non isotropic Hopf differential, not S-Willmore.
- Case (1) and Case (2) are all the cases such that f is S¹-invariant.

• Case (1).

 $Rank(\hat{B}_1) = 1 \Leftrightarrow y$ conformal to minimal surface in \mathbb{R}^6 , $Rank(\hat{B}_1) = 2 \Leftrightarrow y$ degenarates to a point.

• Case (2) \Rightarrow y totally isotropic. For Case (2)\Case (1).

 $Rank(\hat{B}_1) = 1 \Leftrightarrow y$ S-Willmore, $Rank(\hat{B}_1) = 2 \Leftrightarrow y$ not S-Willmore.

- Case (3)\Case (2) and Case (1): $\Rightarrow Rank(\hat{B}_1) = 2$ y having non isotropic Hopf differential, not S-Willmore.
- Case (1) and Case (2) are all the cases such that f is S^1 -invariant.

Examples of Case (2)

• The normalized potential

$$\eta = \lambda^{-1} \begin{pmatrix} 0 & \hat{B}_1 \\ -\hat{B}_1^t I_{1,3} & 0 \end{pmatrix} dz,$$

with

$$\hat{B}_1 = \frac{1}{2} \begin{pmatrix} 2iz & -2z & -i & 1\\ -2iz & 2z & -i & 1\\ -2 & -2i & -z & -iz\\ 2i & -2 & -iz & z \end{pmatrix}$$

.

▲御▶ ▲理▶ ▲理≯

$$Y = \begin{pmatrix} \left(1 + r^2 + \frac{5r^4}{4} + \frac{4r^6}{9} + \frac{r^8}{36}\right) \\ \left(1 - r^2 - \frac{3r^4}{4} + \frac{4r^6}{9} - \frac{r^8}{36}\right) \\ -i\left(z - \bar{z}\right)(1 + \frac{r^6}{9})\right) \\ \left(z + \bar{z}\right)(1 + \frac{r^6}{9})\right) \\ -i\left((\lambda^{-1}z^2 - \lambda\bar{z}^2)(1 - \frac{r^4}{12})\right) \\ \left((\lambda^{-1}z^2 + \lambda\bar{z}^2)(1 - \frac{r^4}{12})\right) \\ -i\frac{r^2}{2}(\lambda^{-1}z - \lambda\bar{z})(1 + \frac{4r^2}{3}) \\ \frac{r^2}{2}(\lambda^{-1}z + \lambda\bar{z})(1 + \frac{4r^2}{3}) \end{pmatrix}, \quad r = |z|.$$

• $y = [Y] : S^2 \to S^6$ is a totally isotropic immersed Willmore sphere which is not S-Willmore .

$$Y = \begin{pmatrix} \left(1 + r^2 + \frac{5r^4}{4} + \frac{4r^6}{9} + \frac{r^8}{36}\right) \\ \left(1 - r^2 - \frac{3r^4}{4} + \frac{4r^6}{9} - \frac{r^8}{36}\right) \\ -i\left(z - \bar{z}\right)(1 + \frac{r^6}{9})\right) \\ \left(z + \bar{z}\right)(1 + \frac{r^6}{9}) \\ -i\left((\lambda^{-1}z^2 - \lambda\bar{z}^2)(1 - \frac{r^4}{12})\right) \\ \left((\lambda^{-1}z^2 + \lambda\bar{z}^2)(1 - \frac{r^4}{12})\right) \\ -i\frac{r^2}{2}(\lambda^{-1}z - \lambda\bar{z})(1 + \frac{4r^2}{3}) \\ \frac{r^2}{2}(\lambda^{-1}z + \lambda\bar{z})(1 + \frac{4r^2}{3}) \end{pmatrix}, \quad r = |z|.$$

• $y = [Y] : S^2 \to S^6$ is a totally isotropic immersed Willmore sphere which is not S-Willmore .

(4月) (日) (日) 日

• Case (3) can not happen.

• Case (1) \implies minimal surfaces in R^4 .

 For case (2), rank(B₁) = 1. The corresponding Willmore surfaces are always S-Willmore having isotropic Hopf differential. ⇒ holomorphic or anti-holomorphic curves in CP³.

- Case (3) can not happen.
- Case (1) \implies minimal surfaces in R^4 .
- For case (2), $rank(B_1) = 1$. The corresponding Willmore surfaces are always S-Willmore having isotropic Hopf differential. \Rightarrow holomorphic or anti-holomorphic curves in CP^3 .

/⊒ ▶ < ∃ ▶ <

- Case (3) can not happen.
- Case (1) \implies minimal surfaces in R^4 .
- For case (2), $rank(B_1) = 1$. The corresponding Willmore surfaces are always S-Willmore having isotropic Hopf differential. \Rightarrow holomorphic or anti-holomorphic curves in CP^3 .

伺 ト イ ヨ ト イ ヨ ト

The S^{2m+2} case for Willmore surfaces of finite uniton

• Suppose that $\hat{B}_1 = (v_1, \cdots, v_{2m})$. Then up to a conjugation of $SO(1,3) \times SO(2m)$, \hat{B}_1 must be one of the (m+1) cases: (1).

$$v_j \hookrightarrow \operatorname{Span}_{\mathbb{C}} \left\{ (1, 1, 0, 0)^t, (0, 0, 1, i)^t \right\}, j = 1, \cdots, 2m.$$

$$v_2 = iv_1, v_j \hookrightarrow \operatorname{Span}_{\mathbb{C}} \left\{ (1, 1, 0, 0)^t, (0, 0, 1, i)^t \right\}, j = 3, \cdots, 2m.$$

:

(m+1).

$$v_2 = iv_1, v_4 = iv_3, \cdots, v_{2m} = iv_{2m-1}.$$

- Bryant, R. *A duality theorem for Willmore surfaces,* J. Diff.Geom. 20(1984), 23-53.
- Burstall, F.E., Guest, M.A., Harmonic two-spheres in compact symmetric spaces, revisited, Math. Ann. 309 (1997), 541-572.
- Burstall, F., Pedit, F., Pinkall, U. Schwarzian derivatives and flows of surfaces, Contemporary Mathematics 308, 39-61, Providence, RI: Amer. Math. Soc., 2002

Dorfmeister, J., Pedit, F., Wu, H., *Weierstrass type representation of harmonic maps into symmetric spaces* Comm. Anal. Geom. 6 (1998). 633-668.

Ejiri, N. Willmore surfaces with a duality in Sⁿ(1), Proc.
 London Math.Soc. (3), 57(2)(1988), 383-416.

- Bryant, R. *A duality theorem for Willmore surfaces*, J. Diff.Geom. 20(1984), 23-53.
- Burstall, F.E., Guest, M.A., Harmonic two-spheres in compact symmetric spaces, revisited, Math. Ann. 309 (1997), 541-572.
- Burstall, F., Pedit, F., Pinkall, U. Schwarzian derivatives and flows of surfaces, Contemporary Mathematics 308, 39-61, Providence, RI: Amer. Math. Soc., 2002

Dorfmeister, J., Pedit, F., Wu, H., *Weierstrass type* representation of harmonic maps into symmetric spaces Comm. Anal. Geom. 6 (1998), 633-668.

Ejiri, N. Willmore surfaces with a duality in Sⁿ(1), Proc.
 London Math.Soc. (3), 57(2)(1988), 383-416.

- Bryant, R. *A duality theorem for Willmore surfaces*, J. Diff.Geom. 20(1984), 23-53.
- Burstall, F.E., Guest, M.A., Harmonic two-spheres in compact symmetric spaces, revisited, Math. Ann. 309 (1997), 541-572.
- Burstall, F., Pedit, F., Pinkall, U. Schwarzian derivatives and flows of surfaces, Contemporary Mathematics 308, 39-61, Providence, RI: Amer. Math. Soc., 2002
- Dorfmeister, J., Pedit, F., Wu, H., Weierstrass type representation of harmonic maps into symmetric spaces Comm. Anal. Geom. 6 (1998), 633-668.
- Ejiri, N. Willmore surfaces with a duality in Sⁿ(1), Proc.
 London Math.Soc. (3), 57(2)(1988), 383-416.

- Bryant, R. *A duality theorem for Willmore surfaces*, J. Diff.Geom. 20(1984), 23-53.
- Burstall, F.E., Guest, M.A., Harmonic two-spheres in compact symmetric spaces, revisited, Math. Ann. 309 (1997), 541-572.
- Burstall, F., Pedit, F., Pinkall, U. Schwarzian derivatives and flows of surfaces, Contemporary Mathematics 308, 39-61, Providence, RI: Amer. Math. Soc., 2002
- Dorfmeister, J., Pedit, F., Wu, H., Weierstrass type representation of harmonic maps into symmetric spaces, Comm. Anal. Geom. 6 (1998), 633-668.
- Ejiri, N. Willmore surfaces with a duality in Sⁿ(1), Proc.
 London Math.Soc. (3), 57(2)(1988), 383-416.

- Bryant, R. *A duality theorem for Willmore surfaces*, J. Diff.Geom. 20(1984), 23-53.
- Burstall, F.E., Guest, M.A., Harmonic two-spheres in compact symmetric spaces, revisited, Math. Ann. 309 (1997), 541-572.
- Burstall, F., Pedit, F., Pinkall, U. Schwarzian derivatives and flows of surfaces, Contemporary Mathematics 308, 39-61, Providence, RI: Amer. Math. Soc., 2002
- Dorfmeister, J., Pedit, F., Wu, H., Weierstrass type representation of harmonic maps into symmetric spaces, Comm. Anal. Geom. 6 (1998), 633-668.
- Ejiri, N. Willmore surfaces with a duality in Sⁿ(1), Proc.
 London Math.Soc. (3), 57(2)(1988), 383-416.

Hélein Willmore immersions and loop groups, J. Differ. Geom., 50, 1998, 331-385.

- Montiel, S. *Willmore two spheres in the four-sphere,* Trans. Amer.Math. Soc. 2000, 352(10), 4469-4486.
- Musso, E. *Willmore surfaces in the four-sphere*, Ann. Global Anal. Geom. Vol 8, No.1(1990), 21-41.
- Uhlenbeck, K. Harmonic maps into Lie groups (classical solutions of the chiral model), J. Diff. Geom. 30 (1989), 1-50.
- Wu, H.Y. A simple way for determining the normalized potentials for harmonic maps, Ann. Global Anal. Geom. 17 (1999), 189-199.

- Hélein Willmore immersions and loop groups, J. Differ. Geom., 50, 1998, 331-385.
- Montiel, S. *Willmore two spheres in the four-sphere*, Trans. Amer.Math. Soc. 2000, 352(10), 4469-4486.
- Musso, E. *Willmore surfaces in the four-sphere*, Ann. Global Anal. Geom. Vol 8, No.1(1990), 21-41.
- Uhlenbeck, K. Harmonic maps into Lie groups (classical solutions of the chiral model), J. Diff. Geom. 30 (1989), 1-50.
- Wu, H.Y. A simple way for determining the normalized potentials for harmonic maps, Ann. Global Anal. Geom. 1 (1999), 189-199.

- Hélein Willmore immersions and loop groups, J. Differ. Geom., 50, 1998, 331-385.
- Montiel, S. *Willmore two spheres in the four-sphere*, Trans. Amer.Math. Soc. 2000, 352(10), 4469-4486.
- Musso, E. *Willmore surfaces in the four-sphere*, Ann. Global Anal. Geom. Vol 8, No.1(1990), 21-41.
- Uhlenbeck, K. Harmonic maps into Lie groups (classical solutions of the chiral model), J. Diff. Geom. 30 (1989), 1-50.
- Wu, H.Y. A simple way for determining the normalized potentials for harmonic maps, Ann. Global Anal. Geom. 1 (1999), 189-199.

- A 🖻 🕨 - A

- Hélein Willmore immersions and loop groups, J. Differ. Geom., 50, 1998, 331-385.
- Montiel, S. *Willmore two spheres in the four-sphere*, Trans. Amer.Math. Soc. 2000, 352(10), 4469-4486.
- Musso, E. *Willmore surfaces in the four-sphere*, Ann. Global Anal. Geom. Vol 8, No.1(1990), 21-41.
- Uhlenbeck, K. Harmonic maps into Lie groups (classical solutions of the chiral model), J. Diff. Geom. 30 (1989), 1-50.
- Wu, H.Y. A simple way for determining the normalized potentials for harmonic maps, Ann. Global Anal. Geom. 17 (1999), 189-199.

• = • •

- Hélein Willmore immersions and loop groups, J. Differ. Geom., 50, 1998, 331-385.
- Montiel, S. *Willmore two spheres in the four-sphere*, Trans. Amer.Math. Soc. 2000, 352(10), 4469-4486.
- Musso, E. *Willmore surfaces in the four-sphere*, Ann. Global Anal. Geom. Vol 8, No.1(1990), 21-41.
- Uhlenbeck, K. Harmonic maps into Lie groups (classical solutions of the chiral model), J. Diff. Geom. 30 (1989), 1-50.
- Wu, H.Y. A simple way for determining the normalized potentials for harmonic maps, Ann. Global Anal. Geom. 17 (1999), 189-199.

Thank you!

э