
Division Theorems for Exact
Sequences

Qingchun Ji
Fudan University

The 10th Pacific Rim Geometry Conference

December 4, 2011, Osaka

author Division Theorems for Exact Sequences



Skoda’s Division Theorem

author Division Theorems for Exact Sequences



Skoda’s division theorem is an analogue of Hilbert’s Nullstellensatz,
but the remarkable feature of effectiveness makes it very powerful.

This theorem has many important applications in complex
differential geometry and algebraic geometry, including deformation
invariance of plurigenera and effective versions of the
Nullstellensatz.

The statement of Skoda’s theorem is the following:
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Let Ω be a pseudoconvex domain in Cn, ψ ∈ PSH(Ω) ,
g1, · · · , gr ∈ O(Ω), then for every f ∈ O(Ω) with∫

Ω
|f |2|g|−2(q+qε+1)e−ψdV < +∞,

there exist holomorphic functions h1, · · · , hr ∈ O(Ω) such that

f =
∑

gihi on Ω

and∫
Ω
|h|2|g|−2q(1+ε)e−ψdV ≤ 1 + ε

ε

∫
Ω
|f |2|g|−2(q+qε+1)e−ψdV

where|g|2 =
∑

i |gi|
2 , |h|2 =

∑
i |hi|

2 , q = min{n, r − 1} and
ε > 0 is a constant.
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This theorem was generalized by Skoda and Demailly to (generic)
surjective homomorphisms between holomorphic vector bundles by
solving ∂-equations.

We will talk about how to establish division theorem for general
holomorphic homomorphisms.

We establish division theorems for the homomorphisms in an exact
sequence of holomorphic vector bundles (among which the last one
is surjective).

We consider a complex of holomorphic vector bundles over M ,

E
Φ→ E

′ Ψ→ E
′′

(∗)

i.e. Φ ∈ Γ(M,Hom(E,E
′
)),Ψ ∈ Γ(M,Hom(E

′
, E

′′
)) such that

Ψ ◦ Φ = 0. E,E
′
, E

′′
are assumed to be endowed with Hermitian

structures.
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We define for any x ∈M

E(x) = min{((Ψ∗Ψ + ΦΦ∗)ξ, ξ)|ξ ∈ E′
x, |ξ| = 1}

where Φ∗,Ψ∗ are the adjoint of Φ and Ψ respectively w.r.t. the
given Hermitian structures.

It is easy to see that the above complex is exact at x ∈M if and
only if E(x) > 0.

When the complex (*) is exact, Φ∗(Ψ∗Ψ + ΦΦ∗)−1|KerΨ is a
smooth lifting of Φ, So it is possible to establish division theorems
by solving a coupled system consisting of

∂g = ∂[Φ∗(Ψ∗Ψ + ΦΦ∗)−1f ] and Φg = 0

where f ∈ Γ(E
′
) satisfying Ψf = 0.
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If g is a solution of this system, then

h
def
= Φ∗(Ψ∗Ψ + ΦΦ∗)−1f − g ∈ Γ(E) and Φh = f.

In the special case where Φ is surjective and E
′
is equipped with

the quotient Hermitian structure then Ψ = 0, ΦΦ∗ = IdE′ , and
the above system reduces to

∂g = ∂(Φ∗f)

on the subbundle KerΦ.

The difficulty of this method for our case is that KerΦ is no longer
a subbundle of E, so it amounts to solving ∂-equations for
solutions valued in a subsheaf, it seems that it is not easy to give
sufficient conditions for the solvability of this system.
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Main Results
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Theorem 1. Let (M,ω) be a Kähler manifold and let E,E
′
, E

′′

be Hermitian holomorphic vector bundles over M , L a Hermitian
line bundle over M. All the Hermitian structures may have
singularities in a subvariety Z $ M and Φ−1(0) ⊆ Z. Suppose
that (*) is generically exact over M, M \ Z is weakly
pseudoconvex and that the following conditions hold on M \ Z:

1. E ≥m 0,m ≥ min{n− k + 1, r}, 1 ≤ k ≤ n;
2. the curvature of Hom(E,E

′
) satisfies

(FHom(E,E
′
)

XX
Φ,Φ) ≤ 0 for every X ∈ T 1,0M ;

3. the curvature of L satisfies
√
−1(ςc(L)− ∂∂ς − τ−1∂ς ∧ ∂ς) ≥

√
−1q(ς + δ)∂∂ϕ.

Then for every ∂-closed (n, k − 1)-form f which is valued in
L⊗ E

′
with Ψf = 0 and ‖f‖ ς+δ

(ς+δ)ςE−|Φ|2ς2
< +∞, there exists a

∂-closed (n, k − 1)-form h valued in L⊗ E such that Φh = f and

‖h‖ 1
ς+τ

≤ ‖f‖ ς+δ

(ς+δ)ςE−|Φ|2ς2
.
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In the above statement,
q = max

M\Z
rankBΦ, ϕ = log ‖Φ‖,0 < ς, τ ∈ C∞(M) and δ is a

measurable function on M satisfying E(ς + δ) ≥ ||Φ||2ς.
BΦ is the second fundamental form of the holomorphic line bundle
SpanC{Φ} in Hom(E,E

′
).
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A Hermitian holomorphic vector bundle (E, h) is said to be
m-tensor semi-positive(semi-negative) if the curvature F (of Chern
connection ) satisfies

√
−1F (η, η) ≥ 0(≤ 0) for every

η = ηαi
∂
∂zα

⊗ ei ∈ T 1,0M ⊗ E with rank(ηαi) ≤ m where
z1, · · · , zn are holomorphic coordinates of M , {e1, · · · , er} is a
holomorphic frame of E and m is a positive integer. In this case,
we write E ≥m 0(E ≤m 0).

Let E be a holomorphic vector bundle over M, Z $ M be a
subvariety, and h be a Hermitian structure on E|M\Z . If for each
z ∈ Z, there exist a neighborhood U of z, a smooth frame
{e1, · · · , er} over U and some constant κ > 0 such that the matrix[
hij(w)− κδij

]
is semi-positive for every w ∈ U \ Z where

hij := h(ei, ej) and δij is the Kronecker delta, then we call h a
singular Hermitian structure on E which has singularities in Z.
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The curvature of the Chern connection of a Hermitian holomorphic
vector bundle is said to be semi-negative in the sense of
Griffiths(Nakano) if and only if it is 1-tensor(min{n, r}-tensor)
semi-negative.

Hence a sufficient condition for (FHom(E,E
′
)

XX
Φ,Φ) ≤ 0 is given

by(since we always assume E ≥m 0 for some positive integer m):
E

′
is semi-negative in the sense of Griffiths.
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Theorem 1 applied to

ς = 1, τ = constant > 0, and δ = |Φ|2E−1,

we obtain the following corollary
Corollary1. If the condition 3 in theorem 2 is replaced by

√
−1c(L) ≥

√
−1q(|Φ|2E−1 + 1)∂∂ϕ,

then for every ∂-closed (n, k− 1)-form f which is valued in L⊗E
′

with

Ψf = 0 and ‖f‖E+|Φ|2
E2

< +∞

there is a ∂-closed (n, k − 1)-form h valued in L⊗ E such that
Φh = f and the following estimate holds

‖h‖ ≤ ‖f‖E+|Φ|2
E2

.
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Let M be a complex manifold and E be a holomorphic vector
bundle of rank r over M. The Koszul complex associated to a
section s ∈ Γ(E∗) is defined as follows

0 → detE dr→ ∧r−1E
dr−1→ · · · d1→ OM → 0

where the boundary operators are given by the interior product

dp = sy, 1 ≤ p ≤ r.

It gives a complex since we have dp−1 ◦ dp = 0 for 1 ≤ p ≤ r.

We will apply theorem 1 to

Φ = sy ∈ Γ(M,Hom(∧pE,∧p−1E).
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We can show by direct computation that

(FHom(∧pE,∧p−1E)

XX
Φ,Φ) =

(
r

p− 1

)
(FE

∗

XX
s, s)

where X ∈ T 1,0
x M,x ∈M, which implies that the condition 2 in

theorem 1 holds as soon as E is assumed to be semi-positive in the
sense of Griffiths.

In the case of Koszul complex, we have the following division
theorem:
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Theorem 2. Let (M,ω) be a Käler manifold and let E be a
Hermitian holomorphic vector bundle over M , L a line bundle over
M, s ∈ Γ(E∗). All the Hermitian structures may have singularities
in a subvariety Z $ M . Assume that s−1(0) ⊆ Z, and that M \ Z
is weakly pseudoconvex and that the following conditions hold on
M \ Z:

1. E ≥m 0,m ≥ min{n− k + 1, r − p+ 1};
2. the curvature of L satisfies

√
−1(ςc(L)− ∂∂ς − τ−1∂ς ∧ ∂ς) ≥

√
−1q(ς + δ)∂∂ϕ.

Then for any ∂-closed (n, k − 1)-form f which is valued in
L⊗∧p−1E, if dp−1f = 0 and ‖f‖ ς+δ

ςδ|s|2
< +∞ there is at least one

∂-closed (n, k − 1)-form h valued in L⊗ ∧pE such that dph = f
and the following estimate holds

‖h‖ 1
ς+τ

≤ ‖f‖ ς+δ

ςδ|s|2
.
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In the above statement,1 ≤ p ≤ r, ϕ = log |s| , 1 ≤ k ≤ n, 1 ≤ p ≤
n, q = min{n, r − 1}, n = dimCM, r = rankCE,
0 < ς, τ ∈ C∞(M) and δ ≥ 0 is a measurable function on M.

Similar to corollary 1, we have the following result
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Corollary 2. Let (M,ω) be a Kähler manifold and let E be a
Hermitian holomorphic vector bundle over M , L a line bundle over
M, s ∈ Γ(E∗). All the Hermitian structures may have singularities
in a subvariety Z $ M . Assume that s−1(0) ⊆ Z, and that M \ Z
is weakly pseudoconvex and the following conditions hold on
M \ Z:

1. E ≥m 0,m ≥ min{n− k + 1, r − p+ 1};
2. the curvature of L satisfies

√
−1c(L) ≥

√
−1q(1 + ε)∂∂ϕ.

Then for any ∂-closed (n, k − 1)-form f valued in L⊗ ∧p−1E, if
dp−1f = 0 and ‖f‖|s|−2 < +∞ there is at least one ∂-closed
(n, k − 1)-form h valued in L⊗ ∧pE such that dph = f and the
following estimate holds

‖h‖2 ≤ 1 + ε

ε
‖f‖2

|s|−2 ,

where 1 ≤ p ≤ r, 1 ≤ k ≤ n, ϕ = log |s|2 , q = min{n, r − 1}, n =
dimCM, r = rankCE and ε is a positive constant.
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Now we discuss the special case of Koszul complex over a domain
Ω ⊆ Cn.
Let g1 · · · , gr ∈ O(Ω), the Koszul complex associated to
g = (g1 · · · , gr) is given by

0 → ∧rO⊕r dr→ ∧r−1O⊕r dr−1→ · · · d2→ ∧O⊕r d1→ O → 0

where the boundary operators are defined by dp = gy, 1 ≤ p ≤ r.
It is easy to see that for every
h = (hi1···ip)

r
i1···ip=1 ∈ Γ(Ω,∧pO⊕r)(i.e. hi1···ip ∈ O(Ω) and hi1···ip

is skew symmetric in i1, · · · , ip),we have

dph = (fi1···ip−1)
r
i1···ip−1=1∈ Γ(Ω,∧p−1O⊕r) with

fi1···ip−1 =
∑

1≤ν≤r
gνhνi1···ip−1 .
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By introducing the singular Hermitian structure

1
(
∑

i |gi|
2)q(1+ε)eψ

on the trivial line bundle, we get the following division theorem:

Corollary3. Let Ω ⊆ Cn be a pseudoconvex
domain,g1 · · · , gr ∈ O(Ω), ψ ∈ PSH(Ω) and ε > 0 a constant,
then for every global section (fi1···i`−1

)ri1···i`−1=1 ∈ Γ(Ω,∧`−1O⊕r
Ω )

(1 ≤ ` ≤ r ) satisfying
∑

1≤ν≤r
gνfνi1···i`−2

= 0 and

∫
Ω
|f |2|g|−2(q+qε+1)e−ψdV < +∞
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there exists at least one (hi1···i`)
r
i1···i`=1 ∈ Γ(Ω,∧`O⊕r

Ω ) such that

fi1···i`−1
=

∑
1≤ν≤r

gνhνi1···i`−1
,

and ∫
Ω |h|

2|g|−2q(1+ε)e−ψdV ≤ 1+ε
ε

∫
Ω |f |

2|g|−2(q+qε+1)e−ψdV,

where |g|2 =
∑

i |gi|
2 , |h|2 =

∑
i1<···<i`

|hi1···i` |
2 ,

|f |2 =
∑

i1<···<i`−1

∣∣fi1···i`−1

∣∣2 , q = min{n, r − 1}.

Particularly, if |g| 6= 0 holds on Ω then the Koszul complex induces
an exact sequence on global sections.

The special case of p = 1 recovers Skoda’s division theorem.
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Let Ω be a domain in Cn, and Φ be a q × p matrix of holomorphic
functions on Ω, p ≥ q. We denote by δi1···iq the q × q minors of Φ,
i.e.

δi1···iq = det

 Φ1i1 · · · Φ1iq
...

. . .
...

Φqi1 · · · Φqiq

 ,

where 1 ≤ i1 < i2 < · · · < iq ≤ p. There are
(
p
q

)
distinct minors of

order q.
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In complex Euclidean spaces, we also have the following division
theorem.

Corollary 4.Let ψ ∈ PSH(Ω), f ∈ Oq(Ω), if Ω ⊆ Cn is
pseudoconvex and there exists a constant α > 1 such that

∫
Ω

|f |2

(
∑

i1<···<iq
|δi1···iq |2)β

e−ψdV < +∞,

where β = min{n,
(
p
q

)
− 1} · α+ 1. Then there is at least one

h ∈ Op(Ω) which solves the equations Φh = f.
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The Case ε = 0
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The technique of Skoda triple which was introduced by Varolin.

Definition A Skoda triple (ϕ, F, q) consists of a positive integer q
and C2 functions ϕ : (1,∞) → R, F : (1,∞) → R such that

x+ F (x) > 0, [x+ F (x)]ϕ
′
(x) + F

′
(x) + 1 > 0

and
[x+ F (x)]ϕ

′′
(x) + F

′′
(x) < 0

hold for every x > 1.

It is easy to see that (ε log x, 0, q) is a Skoda triple where ε is a
positive constant and q is a positive integer.

The notion of Skoda triple is quite useful to produce examples of
division theorems.
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Theorem 3 Let Ω ⊆ Cn be a pseudoconvex domain,
gi ∈ O(Ω)(1 ≤ i ≤ p), ψ ∈ PSH(Ω). We assume that

‖g‖ < 1 holds on Ω.

For every f ∈
∧`−1O(Ω)⊕p, if

gyf = 0

and ∫
Ω
‖f‖2 b

a(b− 1)
‖g‖−2(q`+1)eϕ◦ξ−ψdV <∞,

then there exists an u ∈
∧`O(Ω)⊕p such that ιgu = f and∫

Ω
‖u‖2 1

(a+ λ)
‖g‖−2q`eϕ◦ξ−ψ ≤

∫
Ω
‖f‖2 b

a(b− 1)
‖g‖−2(q`+1)eϕ◦ξ−ψ.
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In the above statement,

p ∈ N, 1 ≤ ` ≤ p, ξ = 1− log ‖g‖2,

a = ξ + F ◦ ξ,

b =
aϕ

′ ◦ ξ + F
′ ◦ ξ + 1

qa`
+ 1, λ = Λ ◦ ξ,

Λ(x) =
−(1 + F

′
(x))2

F ′′(x) + (x+ F (x))ϕ′′(x)
,

(ϕ, F, q) is a Skoda triple and

q =

{
min{p− 1, n}, ` = 1;
min{p− `+ 1, n}, ` ≥ 2.
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For the Skoda triple (ε log x, 0, q), we have
Corollary 5 Let Ω ⊆ Cn be a pseudoconvex domain,
gi ∈ O(Ω)(1 ≤ i ≤ p), ψ ∈ PSH(Ω). We assume that

‖g‖ < 1 holds on Ω.

For every f ∈
∧`−1O(Ω)⊕p, if ιgf = 0 and∫

Ω
‖f‖2 (1− log ‖g‖2)ε

‖g‖2(q`+1)
e−ψdV <∞,

then there exists some u ∈
∧`O(Ω)⊕p such that ιgu = f and∫

Ω
‖u‖2 (1− log ‖g‖2)ε−1

‖g‖2q`
e−ψ ≤ q`+ ε+ 1

ε

∫
Ω
‖f‖2 (1− log ‖g‖2)ε

‖g‖2(q`+1)
e−ψ

where p ∈ N, 1 ≤ ` ≤ p, ε > o is a constant and q is the constant
in the previous theorem.
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In the case ` = 1, we see that under the assumption that ‖g‖ < 1
on Ω, the integrability condition in corollary 5 is weaker than that
in Skoda’s division theorem.

We know by definition that (0,−1
2e

−ε(x−1), q) is another example
of Skoda triples where ε is a positive constant and q is the
constant as above. Our previous theorem applied to the Skoda
triple (0,−1

2e
ε(x−1), q) gives the following result.
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Corollary 6 Let Ω ⊆ Cn be a pseudoconvex domain,
gi ∈ O(Ω)(1 ≤ i ≤ p), ψ ∈ PSH(Ω). We assume that

‖g‖ < 1 holds on Ω.

For every f ∈
∧`−1O(Ω)⊕p, if gyf = 0 and∫

Ω
‖f‖2‖g‖−2(q`+1)e−ψdV <∞,

then there exists some u ∈
∧`O(Ω)⊕p such that ιgu = f and∫

Ω
‖u‖2‖g‖2(−q`+ε)e−ψ ≤ Cε

∫
Ω
‖f‖2‖g‖−2(q`+1)e−ψ

where p ∈ N, 1 ≤ ` ≤ p, ε and Cε are both positive constants(Cε is
determined by ε) and q is the constant as above.
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Basic Estimates
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The Basic Estimate 1 Let (M,ω) be a Kähler manifold, and let
E be a Hermitian holomorphic vector bundle over M , L a
Hermitian holomorphic line bundle over M . The Hermitian
structures of these bundles may have singularity along Φ−1(0) and
Ω b M \Φ−1(0) is a pseudoconvex domain with smooth boundary.
Assume that the following conditions hold on Ω :

1. E ≥m 0,m ≥ min{n− k + 1, r}, 1 ≤ k ≤ n;
2. the curvature of Hom(E,E

′
) satisfies

(FHom(E,E
′
)

XX
Φ,Φ) ≤ 0 for every X ∈ T 1,0M ;

3. the curvature of L satisfies
√
−1(ςc(L)− ∂∂ς − τ−1∂ς ∧ ∂ς) ≥

√
−1q(ς + δ)∂∂ϕ.

Then the following estimate∥∥∥|Φ|−2Φ∗u+ ∂
∗
v
∥∥∥2

Ω,ς+τ
+

∥∥∂v∥∥2

Ω,ς
≥ ‖u‖2

Ω,
ς(λδ+λς−ς)

(ς+δ)|Φ|2

holds for every ∂-closed u ∈ An,k−1(Ω, L⊗ E) satisfying
|Φ∗u|2 ≥ λ|Φ|2|u|2 a.e.(w.r.t.dVω) on Ω
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and every v ∈ An,k(Ω, L⊗ E) ∩Dom(∂∗), where c(L) denotes the
Chern form, q = max

Ω
rankBΦ, ϕ = log |Φ|2, 0 < ς ∈ C∞(Ω) and

λ, δ, τ are measurable functions on Ω satisfying λ, τ > 0, ς + δ ≥ 0.
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The Basic Estimate 2 Let Ω be a bounded pseudoconvex
domain with smooth boundary and gi ∈ O(Ω)∩C∞(Ω̄)(1 ≤ i ≤ p)
without common zeros on Ω̄.Let ϕ1, ϕ2 ∈ C2(Ω̄), 0 < a ∈ C2(Ω̄)
and 1 < b, 0 < λ be measurable functions on Ω. Assume that

ϕ2 = ϕ1 + log‖g‖2,

a∂α∂β̄ϕ1 − ∂α∂β̄a− λ−1∂αa∂β̄a ≥ q`ab∂α∂β̄ log ‖g‖2.
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Then for any h ∈
∧`−1O(Ω)⊕p satisfying∑

1≤ν≤r
gνhνi1···ip−1 = 0

and any v ∈ Dom∂̄∗ϕ1
⊆

∧`L2
0,1(Ω, ϕ1)⊕p satisfying ∂̄v = 0, we

have

‖
√
a+ λ

ḡ

||g||2
∧ h+

√
a+ λ∂̄∗ϕ1

v‖2
ϕ1
≥

∫
Ω

(b− 1)a
b

‖h‖2e−ϕ2dV.
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Thank You!
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