CR Li-Yau Gradient Estimate and Perelman Entropy Formulae

Shu-Cheng Chang

National Taiwan University

The 10th Pacific Rim Geometry Conference Osaka-Fukuoka, Part I, Dec. 1-5, 2011

- Motivations
- Pseudohermitian 3-Manifold
- The CR Li-Yau Gradient Estimate
- The CR Li-Yau-Hamilton and Li-Yau-Perelman Harnack Estimate
- Perelman Entropy Formulas and Li-Yau-Perelman Reduce Distance
- The Proofs

Problem

geometrization problem of contact 3-manifolds via CR curvature flows

- The Cartan Flow : Spherical CR structure
- The torsion flow : the CR analogue of the Ricci flow

The torsion flow

$$\begin{cases} \partial_t J_{(t)} = 2A_{J,\theta} \\ \partial_t \theta_{(t)} = -2W\theta_{(t)} \end{cases}$$

Here $J = i\theta^1 \otimes Z_1 - i\theta^{\overline{1}} \otimes Z_{\overline{1}}$ and $A_{J,\theta} = A_{11}\theta^1 \otimes Z_{\overline{1}} + A_{\overline{11}}\theta^{\overline{1}} \otimes Z_1$.

・ロン ・聞と ・ヨン ・ヨン … ヨ

• In particular, we start from the initial data with vanishing torsion :

$$\begin{cases} \partial_t J_{(t)} = 0\\ \partial_t \theta_{(t)} = -2W\theta_{(t)} \end{cases}$$

• The CR Yamabe Flow (Chang-Chiu-Wu, 2010, Chang-Kuo, 2011)

$$\partial_t \theta_{(t)} = -2W \theta_{(t)}.$$

Poincare Conjecture and Thurston Geometrization Conjecture via Ricci Flow

- Sphere and Torus decomposition
- Singularity formation
 - Li-Yau gradient estimate for heat equation (1986)
 - Hamilton-lvy curvature pinching estimate (1982, 1995)
 - Hamilton Harnack inequality (1982, 1988, 1993, etc)
 - Perelman entropy formulae and reduce distance (2002, 2003)
- Geometric surgery by Hamilton and Perelman

Geometrization problem of contact 3-manifolds

- Contact Decomposition theorem and Classification
- CR Geometric and Analytic aspects :
 - Existence of a " best possible geometric CR structure" on closed contact 3-manifolds- spherical CR structure with vanishing torsion.
 2
 - R_{ij} : Ricci curvature tensor $\leftrightarrow A_{11}$: pseudohermitian torsion

Problem

Sub-Laplacian Δ_b is degenerated along the missing dirction T by comparing the Riemannian Laplacian Δ .

Problem

We proposed to deform any fixed CR structure under the torsion on a contact three dimensional space which shall break up due to the contact topological decomposition.

Problem

The asymptoic state of the torsion flow is expected to be broken up into pieces which satisfy the spherical CR structure with vanishing torsion.

Problem

The deformation will encounter singularities. The major question is to find a way to describe all possible singularities.

- ∢ /⊐ >

- Let (M, J, θ) be the pseudohermitian 3-manifold.
 - (*M*, θ) is a contact 3-manifold with $\theta \wedge d\theta \neq 0$. $\xi = \ker \theta$ is called the contact structure on *M*.
 - ② A *CR*-structure compatible with ξ is a smooth endomorphism *J* : $\xi \rightarrow \xi$ such that *J*² = −*identity*.
 - Some of the composed of the direct sum of T_{1,0} and T_{0,1} which are eigenspaces of J with respect to i and −i, respectively.

★@> ★ ≥> ★ ≥> = ≥

- Given a pseudohermitian structure (J, θ) :
 - The Levi form $\langle , \rangle_{L_{\theta}}$ is the Hermitian form on $T_{1,0}$ defined by $\langle Z, W \rangle_{L_{\theta}} = -i \langle d\theta, Z \wedge \overline{W} \rangle$.
 - **②** The characteristic vector field of θ is the unique vector field T such that $\theta(T) = 1$ and $\mathcal{L}_T \theta = 0$ or $d\theta(T, \cdot) = 0$.
 - So Then $\{T, Z_1, Z_{\bar{1}}\}$ is the frame field for *TM* and $\{\theta, \theta^1, \theta^{\bar{1}}\}$ is the coframe.

- 木田 ト 木田 ト 一日

 The pseudohermitian connection of (J, θ) is the connection ∇^{ψ.h.} on TM⊗C (and extended to tensors) given by

$$abla^{\psi.h.}Z_1=\omega_1{}^1\otimes Z_1$$
 , $abla^{\psi.h.}Z_{ar{1}}=\omega_{ar{1}}{}^{ar{1}}\otimes Z_{ar{1}}$, $abla^{\psi.h.}T=0$

with

$$egin{aligned} d heta^1 &= heta^1 \wedge \omega_1{}^1 + A^1{}_{ar1} heta \wedge heta^{ar1} \ \omega_1{}^1 + \omega_{ar1}{}^{ar1} &= 0. \end{aligned}$$

• Differentiating ω_1^1 gives

$$d\omega_1{}^1 = W heta^1 \wedge heta^{ar{1}} \pmod{ heta}$$

where W is the Tanaka-Webster curvature.

• We can define the covariant differentiations with respect to the pseudohermitian connection.

$$f_{,1} = Z_1 f$$
; $f_{1\bar{1}} = Z_{\bar{1}} Z_1 f - \omega_1^{-1} (Z_{\bar{1}}) Z_1 f$

② We define the subgradient operator ∇_b and the sublaplacian operator Δ_b

$$abla_{b}f = f_{,\bar{1}}Z_{1} + f_{,1}Z_{\bar{1}},$$

and

П

$$\Delta_b f = f_{,1\bar{1}} + f_{,\bar{1}1}.$$

- 4 週 ト - 4 三 ト - 4 三 ト

Example

D is the strictly pseudoconvex domain

$$D \subset \mathbf{C}^2$$
 and $M = \partial D$

with

$$D = \{r < 0\}$$
 and $M = \{r = 0\}.$

Choose

$$\xi = TM \cap J_{\mathbf{C}^2}TM$$
 and $heta = -i\partial r|_M$

with

$$J=J_{\mathbf{C}^2}|_{\xi}.$$

イロト イヨト イヨト イヨト

(Li-Yau, 1986) The Li-Yau Harnack estimate

$$\frac{\partial(\ln u)}{\partial t} - |\nabla \ln u|^2 + \frac{m}{2t} \ge 0$$

for the positive solution u(x, t) of the time-independent heat equation

$$\frac{\partial u\left(x,t\right)}{\partial t}=\Delta u\left(x,t\right)$$

in a complete Riemannian m-manifold with nonnegative Ricci curvature.

(Hamilton, 1993) Hamilton Harnack estimate (trace version)

$$\frac{\partial R}{\partial t} + \frac{R}{t} + 2\nabla R \cdot V + 2Ric(V, V) \ge 0$$

for the Ricci flow

$$\frac{\partial g_{ij}}{\partial t} = -2R_{ij}$$

on Riemannian manifolds with positive curvature operator.

Consider the heat equation

$$(L-\frac{\partial}{\partial t})u(x,t)=0$$

in a closed m-manifold with a positive measure and an operator with respect to the sum of squares of vector fields

$$L=\sum_{i=1}^{l}X_{i}^{2},\quad l\leq m,$$

where $X_1, X_2, ..., X_l$ are smooth vector fields which satisfy Hörmander's condition : the vector fields together with their commutators up to finite order span the tangent space at every point of M.

(本部) (本語) (本語) (二語)

(Cao-Yau, 1994) Suppose that $[X_i, [X_j, X_k]]$ can be expressed as linear combinations of $X_{-1}, X_2, ..., X_l$ and their brackets $[X_1, X_2], ..., [X_{l-1}, X_l]$. Then, for the positive solution u(x, t) of heat flow on $M \times [0, \infty)$, there exist constants C', C'', C''' and $\frac{1}{2} < \lambda < \frac{2}{3}$, such that for any $\delta > 1$, $f(x, t) = \ln u(x, t)$ satisfies the following gradient estimate

$$\sum_{i} |X_{i}f|^{2} - \delta f_{t} + \sum_{\alpha} (1 + |Y_{\alpha}f|^{2})^{\lambda} \leq \frac{C'}{t} + C'' + C''' t^{\frac{\lambda}{\lambda - 1}}$$

with $\{Y_{\alpha}\} = \{[X_i, X_j]\}.$

- 木田 ト 木田 ト 一日

CR Li-Yau gradient estimate

By choosing a frame $\{\mathbf{T}, Z_1, Z_{\bar{1}}\}$ of $TM \otimes \mathbf{C}$ with respect to the Levi form and $\{X_1, X_2\}$ such that

$$J(Z_1) = iZ_1$$
 and $J(Z_{\overline{1}}) = -iZ_{\overline{1}}$

and

$$Z_1 = \frac{1}{2}(X_1 - iX_2)$$
 and $Z_{\overline{1}} = \frac{1}{2}(X_1 + iX_2)$,

it follows that

$$[X_1, X_2] = -2\mathbf{T}$$
 and $\Delta_b = \frac{1}{2}(X_1^2 + X_2^2) = \frac{1}{2}L.$

Note that

$$W(Z, Z) = Wx^1x^{\overline{1}}$$
 and $Tor(Z, Z) = 2Re(iA_{\overline{1}\overline{1}}x^{\overline{1}}x^{\overline{1}})$

for all $Z = x^1 Z_1 \in T_{1,0}$.

Definition

(Graham-Lee, 1988) Let (M^{2n+1}, J, θ) be a complete pseudohermitian manifold. Define

$$P\varphi = \sum_{\alpha=1}^{n} (\varphi_{\overline{\alpha}}{}^{\overline{\alpha}}{}_{\beta} + inA_{\beta\alpha}\varphi^{\alpha})\theta^{\beta} = (P_{\beta}\varphi)\theta^{\beta}, \quad \beta = 1, 2, \cdots, n$$

which is an operator that characterizes CR-pluriharmonic functions. Here

$$P_{\beta}\varphi = \sum_{\alpha=1}^{n} (\varphi_{\overline{\alpha}}^{\overline{\alpha}}{}_{\beta} + inA_{\beta\alpha}\varphi^{\alpha})$$

・ 何 ト ・ ヨ ト ・ ヨ ト

(Chang-Tie-Wu, 2009) Let (M, J, θ) be a closed pseudohermitian 3-manifold with nonnegative Tanaka-Webster curvature and vanishing torsion. If u(x, t) is the positive solution of CR heat flow on $M \times [0, \infty)$ such that u is the CR-pluriharmonic function

$$Pu = 0$$

at t=0. Then $|
abla_b f|^2 + 3f_t \leq rac{9}{t}$

on $M \times [0, \infty)$.

(Chang-Kuo-Lai, 2011) Let (M, J, θ) be a closed pseudohermitian (2n+1)-manifold. Suppose that

$$2Ric(X, X) - (n-2)Tor(X, X) \ge 0$$

for all $X \in T_{1,0} \oplus T_{0,1}$. If u(x, t) is the positive solution of

$$\left(\Delta_{b}-\frac{\partial}{\partial t}\right)u\left(x,t\right)=0$$

with $[\Delta_b, \mathbf{T}] u = 0$ on $M \times [0, \infty)$. Then $f(x, t) = \ln u(x, t)$ satisfies the following subgradient estimate

$$\left[\left| \nabla_b f \right|^2 - (1 + \frac{3}{n}) f_t + \frac{n}{3} t (f_0)^2 \right] < \frac{(\frac{9}{n} + 6 + n)}{t}$$

CR Li-Yau gradient estimate

 subgradient estimate of the logarithm of the positive solution to heat flow :

Theorem

Let (M, J, θ) be a closed pseudohermitian 3-manifold with nonnegative Tanaka-Webster curvature and vanishing torsion. If u(x, t) is the positive solution of CR heat flow on $M \times [0, \infty)$ such that u is the CR-pluriharmonic function

$$Pu = 0$$

at t = 0. Then there exists a constant C_1 such that u satisfies the subgradient estimate

$$\frac{\left|\nabla_{b} u\right|^{2}}{u^{2}} \leq \frac{C_{1}}{t}$$

on $M \times (0, \infty)$.

イロト 不得下 イヨト イヨト

We consider the heat equation

$$\frac{\partial u(x,t)}{\partial t} = Lu(x,t)$$

in a closed pseudohermitian (2n+1)-manifold $(M, J, \theta, d\mu)$ with

$$Lu(x,t) := \Delta_b u(x,t) - \nabla_b \phi(x) \cdot \nabla_b u(x,t).$$

Here $d\mu = e^{-\phi(x)}\theta \wedge (d\theta)^n$.

個人 くほん くほん しき

Bakry-Emery pseudohermitian Ricci curvature

The ∞-dimensional Bakry-Emery pseudohermitian Ricci curvature

$$Ric(L)(W, W) := R_{\alpha\overline{\beta}}W_{\overline{\alpha}}W_{\beta} + Re[\phi_{\alpha\overline{\beta}}W_{\overline{\alpha}}W_{\beta}]$$

The *m*-dimensional Bakry-Emery pseudohermitian Ricci curvature

$$\begin{aligned} & \operatorname{Ric}_{m,n}(L) := \operatorname{Ric}(L) - \frac{\nabla_b \phi \otimes \nabla_b \phi}{2(m-2n)}, \quad m > 2n \\ & \operatorname{Tor}(L)(W,W) := 2\operatorname{Re}[\sum_{\alpha,\beta=1}^n (i(n-2)A_{\bar{\alpha}\bar{\beta}} - \phi_{\bar{\alpha}\bar{\beta}})W_{\alpha}W_{\beta}]. \end{aligned}$$

★週 ▶ ★ 臣 ▶ ★ 臣 ▶ ─ 臣

Let (M, J, θ) be a closed pseudohermitian (2n+1)-manifold. Suppose that

$$2Ric_{m,n}(L)(X, X) - Tor(L)(X, X) \ge 0$$

for all $X \in T_{1,0} \oplus T_{0,1}$. If u(x, t) is the positive solution of $\left(L - \frac{\partial}{\partial t}\right) u(x, t) = 0$ with

$$[L, \mathbf{T}] u = 0$$

on $M \times [0, \infty)$. Then $f(x, t) = \ln u(x, t)$ satisfies the following Li-Yau type subgradient estimate

$$\left[\left|\nabla_b f\right|^2 - \left(1 + \frac{3}{n}\right)f_t + \frac{n}{3}t(f_0)^2\right] < \frac{m}{2nt}\left[\frac{9}{n} + 6 + n\right].$$

CR Harnack inequality

Theorem

Let (M, J, θ) be a closed pseudohermitian (2n+1)-manifold. Suppose that

$$2Ric_{m,n}(L)(X, X) - Tor(L)(X, X) \ge 0$$

for all $X \in T_{1,0} \oplus T_{0,1}$. If u(x, t) is the positive solution of $\left(L - \frac{\partial}{\partial t}\right) u(x, t) = 0$ with

$$[L, \mathbf{T}] u = 0$$

on $M \times [0, \infty)$. Then for any x_1 , x_2 in M and $0 < t_1 < t_2 < \infty$, we have the Harnack inequality

$$\frac{u(x_2, t_2)}{u(x_1, t_1)} \ge \left(\frac{t_2}{t_1}\right)^{-\left[\frac{m(\frac{9}{2}+6+n)}{2n(1+\frac{3}{n})}\right]} \exp\{-\frac{(1+\frac{3}{n})}{4}\left[\frac{d_{cc}(x_1, x_2)^2}{(t_2-t_1)}\right]\}.$$

Note that

and

$$[L, \mathbf{T}] u = 2 \operatorname{Im} Qu - 4 \operatorname{Re}(\phi_{\alpha} u_{\beta} A_{\bar{\alpha}\bar{\beta}}) + \langle \nabla_{b} \phi_{0}, \nabla_{b} u \rangle$$

$$[\Delta_b, \mathbf{T}] u = 2 \operatorname{Im} Q u.$$

Here Q is the purely holomorphic second-order operator defined by

$$Qu = 2i(A_{\overline{\alpha}\overline{\beta}}u_{\alpha})_{\beta}.$$

3

イロト イヨト イヨト イヨト

CR Li-Yau-Hamilton Inequality

Theorem

(Chang-Kuo, 2011) Let $(M, J, \mathring{\theta})$ be a closed spherical pseudohermitian 3-manifold with positive Tanaka-Webster curvature and vanishing torsion. Then

$$4\frac{|\nabla_b W|^2}{W^2} - \frac{W_t}{W} - \frac{1}{t} \le 0$$

under the CR Yamabe flow

$$rac{\partial}{\partial t} heta\left(t
ight)=-2W\left(t
ight) heta\left(t
ight),\quad heta\left(0
ight)=\mathring{ heta}.$$

Furthermore, we get a subgradient estimate of logarithm of the positive Tanaka-Webster curvature

$$\frac{|\nabla_b W|^2}{W^2} \le \frac{1}{4t}$$

for all $t \in (0, T)$.

Shu-Cheng Chang (National Taiwan Universit<mark>CR Li-Yau Gradient Estimate and Perelman E</mark>

(Chang-Kuo, 2011) Let $(M, J, \mathring{\theta})$ be a closed spherical pseudohermitian 3-manifold with positive Tanaka-Webster curvature and vanishing torsion. Then

$$4\frac{|\nabla_b u|^2}{u^2} - \frac{u_t}{u} - \frac{1}{t} \le 0$$

under the time-dependent CR heat equations with potentials evolving by the CR Yamabe flow

$$\begin{cases} \frac{\partial}{\partial t}\theta(t) = -2W(t)\theta(t),\\ \frac{\partial u}{\partial t} = 4\Delta_{b}u + 2Wu, \quad u_{0}(x,0) = 0. \end{cases}$$

Its monotonicity property of the Perelman entropy functional together with Li-Yau-Perelman reduced distance imply the no local collapsing theorem under the Ricci flow.

G. Perelman proved that the \mathcal{F} -functional

$$\mathcal{F}(g_{ij}, arphi) = \int_{\mathcal{M}} (R + |
abla arphi|^2) e^{-arphi} d\mu$$

is nondecreasing under the following coupled Ricci flow

$$\left\{ egin{array}{l} rac{\partial g_{ij}}{\partial t} = -2 {\cal R}_{ij}, \ rac{\partial arphi}{\partial t} = - riangle arphi + \left|
abla arphi
ight|^2 - {\cal R}, \end{array}
ight.$$

in a closed Riemannian m-manifold (M, g_{ij}) .

G. Perelman showed that the \mathcal{W} -functional

$$\mathcal{W}(g_{ij},\varphi,\tau) = \int_{\mathcal{M}} [\tau(R+|\nabla\varphi|^2)+\varphi-m](4\pi\tau)^{-\frac{m}{2}}e^{-\varphi}d\mu, \ \tau>0$$

is nondecreasing as well under the following coupled Ricci flow

$$\begin{cases} \frac{\partial g_{ij}}{\partial t} = -2R_{ij},\\ \frac{\partial \varphi}{\partial t} = -\bigtriangleup \varphi + |\nabla \varphi|^2 - R + \frac{m}{2\tau},\\ \frac{d\tau}{dt} = -1. \end{cases}$$

• The Ricci flow

$$\frac{\partial g_{ij}}{\partial t} = -2R_{ij}$$

coupled with the conjugate heat equation

$$\frac{\partial u}{\partial t} = -\triangle u + Ru.$$

1 For
$$u = e^{-\varphi}$$
.
2 For $u = (4\pi\tau)^{-\frac{m}{2}}e^{-\varphi}$, $\tau = T - t$.

르

イロト イポト イヨト イヨト

Let $(M, J, \mathring{\theta})$ be a closed spherical pseudohermitian 3-manifold with nonnegative Tanaka-Webster curvature and vanishing torsion. Under

$$\begin{cases} \frac{\partial}{\partial t}\theta(t) = -2W(t)\theta(t),\\ \frac{\partial u}{\partial t} = -4\Delta_{b}u + 4Wu, \quad u_{0}(x,0) = 0, \end{cases}$$

we have

$$\Delta_b f - rac{3}{4} |
abla_b f|^2 + rac{1}{2} W - rac{1}{ au} \leq 0$$

on $M \times [0, T)$ with $u = e^{-f}$ and $\tau = T - t$.

We define the CR Perelman \mathcal{F} -functional by

$$\begin{aligned} \mathcal{F}(\theta(t), f(t)) &= 4 \int_{M} [(\Delta_{b}f - \frac{3}{4} |\nabla_{b}f|^{2} + \frac{1}{2}W)] e^{-f} d\mu \\ &= \int_{M} (2W + |\nabla_{b}f|^{2}) e^{-f} d\mu. \end{aligned}$$

with the constraint

$$\int_M e^{-f} d\mu = 1.$$

イロト 不得下 イヨト イヨト

We derive the following monotonicity property of CR $\mathcal F\text{-}\mathsf{functional}.$

Theorem

Let $(M, J, \hat{\theta})$ be a closed spherical pseudohermitian 3-manifold with nonnegative Tanaka-Webster curvature and vanishing torsion. Then

$$\frac{d}{dt}\mathcal{F}(\theta(t),f(t)) = 8 \int_{M} \left| \left(\nabla^{H} \right)^{2} f + \frac{W}{2} L_{\theta} \right|^{2} u d\mu + 2 \int_{M} W |\nabla_{b} f|^{2} u d\mu$$

$$\geq 0$$

under

$$\begin{cases} \frac{\partial}{\partial t}\theta(t) = -2W(t)\theta(t),\\ \frac{\partial u}{\partial t} = -4\Delta_{b}u + 4Wu, \quad u_{0}(x,0) = 0. \end{cases}$$

Let $(M, J, \mathring{\theta})$ be a closed spherical pseudohermitian 3-manifold with nonnegative Tanaka-Webster curvature and vanishing torsion. Under

$$\begin{cases} \frac{\partial}{\partial t}\theta(t) = -2W(t)\theta(t),\\ \frac{\partial u}{\partial t} = -4\Delta_{b}u + 4Wu, \quad u_{0}(x,0) = 0, \end{cases}$$

we have

on

$$\Delta_b f - \frac{3}{4} |\nabla_b f|^2 + \frac{1}{2}W + \frac{f}{8\tau} - \frac{1}{2\tau} \le 0$$

$$M \times [0, T) \text{ with } u = (4\pi\tau)^{-2}e^{-f} \text{ and } \tau = T - t.$$

Define the CR Perelman $\mathcal W\text{-}\mathsf{functional}$ by

$$\mathcal{W}(\theta(t), f(t), \tau) = 4 \int_{M} \tau [\Delta_{b}f - \frac{3}{4} |\nabla_{b}f|^{2} + \frac{1}{2}W + \frac{f}{8\tau} - \frac{1}{2\tau}] \frac{e^{-f}}{(4\pi\tau)^{2}} d\mu$$

=
$$\int_{M} [\tau (2W + |\nabla_{b}f|^{2}) + \frac{f}{2} - 2] (4\pi\tau)^{-2} e^{-f} d\mu,$$

with the constraint

$$\int_M (4\pi\tau)^{-2} e^{-f} d\mu = 1.$$

3

イロト イポト イヨト イヨト

Let $(M, J, \mathring{\theta})$ be a closed spherical pseudohermitian 3-manifold with nonnegative Tanaka-Webster curvature and vanishing torsion. Then

$$\begin{aligned} &\frac{d}{dt}\mathcal{W}(\theta(t), f(t), \tau(t)) \\ &= 8\tau \int_{M} \left| \left(\nabla^{H} \right)^{2} f + \frac{W}{2} L_{\theta} - \frac{1}{4\tau} L_{\theta} \right|^{2} u d\mu \\ &+ \tau \int_{M} [2W \left| \nabla_{b} f \right|^{2} + \frac{\left| \nabla_{b} f \right|^{2}}{\tau}] u d\mu \\ &\geq 0 \end{aligned}$$

uner

$$\begin{cases} \frac{\partial}{\partial t}\theta\left(t\right) = -2W\left(t\right)\theta\left(t\right), \\ \frac{\partial u}{\partial t} = -4\Delta_{b}u + 4Wu, \quad u_{0}\left(x,0\right) = 0, \end{cases}$$

for $u = (4\pi\tau)^{-2}e^{-f}$ and $\tau = T - t$.

イロト 不得下 イヨト イヨト

CR Li-Yau-Perelman Reduced Distance

Let p, q be two point in M and $\gamma(\tau), \tau \in [0, \overline{\tau}]$, be a Legendrian curve joining p and q with $\gamma(0) = p$ and $\gamma(\overline{\tau}) = q$.

Theorem

Let $(M, J, \hat{\theta})$ be a closed spherical pseudohermitian 3-manifold with positive Tanaka-Webster curvature and vanishing torsion. Under under

$$\begin{cases} \frac{\partial}{\partial t}\theta\left(t\right) = -2W\left(t\right)\theta\left(t\right),\\ \frac{\partial u}{\partial t} = -4\Delta_{b}u + 4Wu, \quad u_{0}\left(x,0\right) = 0, \end{cases}$$

We have

$$f(q,\overline{\tau}) \leq \frac{2}{\sqrt{\overline{\tau}}} \int_{0}^{\overline{\tau}} \sqrt{\tau} (W + \frac{1}{8} \langle \dot{\gamma}(\tau), \dot{\gamma}(\tau) \rangle_{L_{\theta}}) d\tau.$$

CR Li-Yau-Perelman Reduced Distance

For

$$\mathcal{L}(\gamma) = \int\limits_{0}^{\overline{ au}} \sqrt{ au} (W + rac{1}{8} \left< \dot{\gamma}(au), ~\dot{\gamma}(au)
ight>_{L_{ heta}}) d au,$$

one can define the CR Perelman reduced distance by

$$I_{cc}(q,\overline{\tau}) \equiv \inf_{\gamma} \frac{2}{\sqrt{\overline{\tau}}} \mathcal{L}(\gamma)$$

and CR Perelman reduced volume by

$$V_{cc}(\overline{\tau}) \equiv \int_{M} (4\pi\overline{\tau})^{-l_0} \exp\{-\frac{2}{\sqrt{\overline{\tau}}}L(x,\overline{\tau})\}d\mu$$

where $\inf f$ is taken over all Legendrian curves $\gamma(\tau)$ joining p, q and $L(x, \overline{\tau})$ is the corresponding minimum for $\mathcal{L}(\gamma)$.

There is no nontrivial closed shrinking CR Yamabe soliton on a closed pseudohermitian 3-manifold with positive Tanaka-Webster curvature and vanishing pseudohermitian torsion.

Theorem

If $(M, J, \mathring{\theta})$ is a closed spherical CR 3-manifold with vanishing torsion and positive CR Yamabe constant, then solutions of the CR (normalized) Yamabe flow converge smoothly to, up to the CR automorphism, a unique limit contact form of constant Webster scalar curvature as $t \to \infty$.

(Greenleaf, 1986) Let (M^{2n+1}, J, θ) be a complete pseudohermitian manifold. For a real smooth function u on (M, J, θ) ,

$$\frac{1}{2}\Delta_b |\nabla_b u|^2 = |(\nabla^H)^2 u|^2 + \langle \nabla_b u, \nabla_b \Delta_b u \rangle_{L_{\theta}} + (2Ric - nTor)((\nabla_b u)_{\mathbf{C}}, (\nabla_b u)_{\mathbf{C}}) - 2i\sum_{\alpha=1}^n (u_{\alpha}u_{\overline{\alpha}0} - u_{\overline{\alpha}}u_{\alpha 0}).$$

(Greenleaf, 1986; Chang-Chiu, 2009) Let (M^{2n+1}, J, θ) be a complete pseudohermitian manifold. For a real smooth function u on (M, J, θ) ,

$$\begin{array}{rcl} \frac{1}{2}\Delta_b |\nabla_b u|^2 &=& |(\nabla^H)^2 u|^2 + (1 + \frac{2}{n}) < \nabla_b u, \nabla_b \Delta_b u >_{L_{\theta}} \\ &+ [2Ric + (n-4) \operatorname{Tor}]((\nabla_b u)_{\mathbf{C}}, (\nabla_b u)_{\mathbf{C}}) \\ &- \frac{4}{n} < Pu + \overline{P}u, d_b u >_{L_{\theta}^*}. \end{array}$$

The Proofs: The CR Bochner Formulae for Witten Sublaplacian

Theorem

(Chang-Kuo-Lai, 2011) Let (M, J, θ) be a pseudohermitian (2n+1)-manifold. For a (smooth) real function f on M and m > 2n, we have

$$\frac{1}{2}L|\nabla_{b}f|^{2} \geq 2(\sum_{\alpha,\beta=1}^{n}|f_{\alpha\beta}|^{2}+\sum_{\substack{\alpha,\beta=1\\\alpha\neq\beta}}^{n}|f_{\alpha\overline{\beta}}|^{2})+\frac{1}{m}|Lf|^{2}+\frac{n}{2}f_{0}^{2} + [2Ric_{m,n}(L)-Tor(L)](\nabla_{b}f,\nabla_{b}f) + \langle\nabla_{b}f,\nabla_{b}Lf\rangle+2\langle J\nabla_{b}f,\nabla_{b}f_{0}\rangle$$

Define

$$F\left(x,t, a, c
ight) = t\left(\left|
abla_{b}f
ight|^{2}\left(x
ight) + af_{t} + ctf_{0}^{2}\left(x
ight)
ight).$$

Theorem

Let (M^3, J, θ) be a pseudohermitian 3-manifold. Suppose that

$$(2W + Tor)(Z, Z) \ge -2k |Z|^2$$

for all $Z \in T_{1,0}$, where k is an nonnegative constant. If u(x, t) is the positive solution on $M \times [0, \infty)$. Then

$$\begin{pmatrix} \Delta_b - \frac{\partial}{\partial t} \end{pmatrix} F \geq \frac{1}{a^2 t} F^2 - \frac{1}{t} F - 2 \langle \nabla_b f, \nabla_b F \rangle + t \left[+ \left(1 - c - \frac{2c}{a^2} F \right) f_0^2 \right. \\ \left. + \left(- \frac{2(a+1)}{a^2 t} F - 2k - \frac{2}{ct} \right) |\nabla_b f|^2 + 4ct f_0 V(f) \right].$$

イロト イヨト イヨト イヨト

Let (M^3, J, θ) be a pseudohermitian 3-manifold. Suppose that

$$(2W + Tor)(Z, Z) \ge -2k |Z|^2$$

for all $Z \in T_{1,0}$, where k is an nonnegative constant. Let a, c, $T < \infty$ be fixed. For each $t \in [0, T]$, let $(p(t), s(t)) \in M \times [0, t]$ be the maximal point of F on $M \times [0, t]$. Then at (p(t), s(t)), we have

$$0 \geq \frac{1}{a^{2}t}F(F-a^{2})+t\left[4|f_{11}|^{2}+(1-c-\frac{2c}{a^{2}}F)f_{0}^{2}\right.\\\left.+\left(-\frac{2(a+1)}{a^{2}t}F-2k-\frac{2}{ct}\right)|\nabla_{b}f|^{2}+4ctf_{0}V(f)\right].$$

Define

$$V(\varphi) = (A_{11}\varphi_{\bar{1}})_{\bar{1}} + (A_{\bar{1}\bar{1}}\varphi_{1})_{1} + A_{11}\varphi_{\bar{1}}\varphi_{\bar{1}} + A_{\bar{1}\bar{1}}\varphi_{1}\varphi_{1}.$$

Theorem

Let (M^3, J, θ) be a pseudohermitian 3-manifold. Suppose that

$$[\Delta_b, \mathbf{T}] u = \mathbf{0}.$$

Then $f(x, t) = \ln u(x, t)$ satisfies

$$V(f) = 0.$$

イロト イ団ト イヨト イヨト 二日

The Proofs

We claim that for each fixed $T < \infty$,

$$F(p(T), s(T), -4, c) < \frac{16}{3c},$$

where we choose a = -4 and $0 < c < \frac{1}{3}$. Here $(P(T), s(T)) \in M \times [0, T]$ is the maximal point of F on $M \times [0, T]$. We prove by contradiction. Suppose not, that is

$$F(p(T), s(T), -4, c) \geq \frac{16}{3c}.$$

Due to Proposition ??, $(p(t), s(t)) \in M \times [0, t]$ is the maximal point of F on $M \times [0, t]$ for each $t \in [0, T]$. Since F(p(t), s(t)) is continuous in the variable t when a, c are fixed and F(p(0), s(0)) = 0, by Intermediate-value theorem there exists a $t_0 \in (0, T]$ such that

$$F(p(t_0), s(t_0), -4, c) = \frac{16}{3c}$$

・聞き ・ ほき・ ・ ほき・ … ほ

Hence

$$\left(-\frac{2(a+1)}{a^{2}t_{0}}F(p(t_{0}), s(t_{0}), -4, c)-\frac{2}{ct_{0}}\right)=0$$

and

$$\begin{array}{rcl} 0 & \geq & \frac{1}{16s(t_0)} \frac{16}{3c} \left(\frac{16}{3c} - 16 \right) + \left(1 - c - \frac{2c}{16} \frac{16}{3c} \right) s\left(t_0 \right) f_0^2 \\ & = & \frac{16}{s(t_0)} \frac{1}{3c} \left(\frac{1}{3c} - 1 \right) + \left(\frac{1}{3} - c \right) s\left(t_0 \right) f_0^2. \end{array}$$

Since $0 < c < \frac{1}{3}$, this leads to a contradiction. Hence

$$F(P(T), s(T), -4, c) < \frac{16}{3c}.$$

◆□ > ◆圖 > ◆臣 > ◆臣 > ─ 臣

This implies that

$$\max_{(x, t) \in M \times [0, T]} t \left[\left| \nabla_b f \right|^2 (x) - 4f_t + ctf_0^2 (x) \right] < \frac{16}{3c}.$$

When we fix on the set $\{T\} \times M$, we have

$$T\left[\left|\nabla_{b}f\right|^{2}(x)-4f_{t}+cTf_{0}^{2}(x)\right] < \frac{16}{3c}$$

Since T is arbitrary, we obtain

$$\frac{|\nabla_b u|^2}{u^2} - 4\frac{u_t}{u} + ct\frac{u_0^2}{u^2} < \frac{16}{3ct}$$

Finally let $c \rightarrow \frac{1}{3}$, then we are done. This completes the proof.

・ロン ・聞と ・ヨン ・ヨン … ヨ

Thank you very much!

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – 釣�?