CR Li-Yau Gradient Estimate and Perelman Entropy Formulae

Shu-Cheng Chang
National Taiwan University

The 10th Pacific Rim Geometry Conference Osaka-Fukuoka, Part I, Dec. 1-5, 2011

Contents

- Motivations
- Pseudohermitian 3-Manifold
- The CR Li-Yau Gradient Estimate
- The CR Li-Yau-Hamilton and Li-Yau-Perelman Harnack Estimate
- Perelman Entropy Formulas and Li-Yau-Perelman Reduce Distance
- The Proofs

Motivations

Problem
 geometrization problem of contact 3-manifolds via CR curvature flows

- The Cartan Flow: Spherical CR structure
- The torsion flow : the CR analogue of the Ricci flow

The Torsion Flow

- The torsion flow

$$
\left\{\begin{aligned}
\partial_{t} J_{(t)} & =2 A_{J, \theta} \\
\partial_{t} \theta_{(t)} & =-2 W \theta_{(t)}
\end{aligned}\right.
$$

Here $J=i \theta^{1} \otimes Z_{1}-i \theta^{\overline{1}} \otimes Z_{\overline{1}}$ and $A_{J, \theta}=A_{11} \theta^{1} \otimes Z_{\overline{1}}+A_{\overline{11}} \theta^{\overline{1}} \otimes Z_{1}$.

The CR Yamabe Flow

- In particular, we start from the initial data with vanishing torsion :

$$
\left\{\begin{array}{l}
\partial_{t} J_{(t)}=0 \\
\partial_{t} \theta_{(t)}=-2 W \theta_{(t)}
\end{array}\right.
$$

- The CR Yamabe Flow (Chang-Chiu-Wu, 2010, Chang-Kuo, 2011)

$$
\partial_{t} \theta_{(t)}=-2 W \theta_{(t)}
$$

Poincare Conjecture and Thurston Geometrization Conjecture via Ricci Flow

- Sphere and Torus decomposition
- Singularity formation
(1) Li-Yau gradient estimate for heat equation (1986)
(2) Hamilton-Ivy curvature pinching estimate $(1982,1995)$
(3) Hamilton Harnack inequality (1982, 1988, 1993, etc)
(9) Perelman entropy formulae and reduce distance $(2002,2003)$
- Geometric surgery by Hamilton and Perelman

Geometrization problem of contact 3-manifolds

- Contact Decomposition theorem and Classification
- CR Geometric and Analytic aspects :
(1) Existence of a " best possible geometric CR structure" on closed contact 3-manifolds- spherical CR structure with vanishing torsion.
(2)
$R_{i j}:$ Ricci curvature tensor $\leftrightarrow A_{11}:$ pseudohermitian torsion

Problem

Sub-Laplacian Δ_{b} is degenerated along the missing dirction T by comparing the Riemannian Laplacian Δ.

geometrization problem of contact 3-manifolds

Problem

We proposed to deform any fixed CR structure under the torsion on a contact three dimensional space which shall break up due to the contact topological decomposition.

Problem

The asymptoic state of the torsion flow is expected to be broken up into pieces which satisfy the spherical CR structure with vanishing torsion.

Problem

The deformation will encounter singularities. The major question is to find a way to describe all possible singularities.

Pseudohermitian 3-manifold

- Let (M, J, θ) be the pseudohermitian 3-manifold.
(1) (M, θ) is a contact 3 -manifold with $\theta \wedge d \theta \neq 0 . \quad \xi=\operatorname{ker} \theta$ is called the contact structure on M.
(2) A $C R$-structure compatible with ξ is a smooth endomorphism $J: \xi \rightarrow \xi$ such that $J^{2}=$-identity.
(3) The CR structure J can extend to $\mathbf{C} \otimes \boldsymbol{\xi}$ and decomposes $\mathbf{C} \otimes \boldsymbol{\xi}$ into the direct sum of $T_{1,0}$ and $T_{0,1}$ which are eigenspaces of J with respect to i and $-i$, respectively.

Pseudohermitian 3-manifold

- Given a pseudohermitian structure (J, θ) :
(1) The Levi form $\langle,\rangle_{L_{\theta}}$ is the Hermitian form on $T_{1,0}$ defined by $\langle Z, W\rangle_{L_{\theta}}=-i\langle d \theta, Z \wedge \bar{W}\rangle$.
(2) The characteristic vector field of θ is the unique vector field T such that $\theta(T)=1$ and $\mathcal{L}_{T} \theta=0$ or $d \theta(T, \cdot)=0$.
(3) Then $\left\{T, Z_{1}, Z_{\overline{1}}\right\}$ is the frame field for $T M$ and $\left\{\theta, \theta^{1}, \theta^{\overline{1}}\right\}$ is the coframe.

Pseudohermitian 3-manifold

- The pseudohermitian connection of (J, θ) is the connection $\nabla^{\psi . h}$. on $T M \otimes C$ (and extended to tensors) given by

$$
\nabla^{\psi \cdot h \cdot} Z_{1}=\omega_{1}^{1} \otimes Z_{1}, \nabla^{\psi \cdot h \cdot} Z_{\overline{1}}=\omega_{\overline{1}}^{\overline{1}} \otimes Z_{\overline{1}}, \nabla^{\psi \cdot h \cdot} T=0
$$

with

$$
\begin{gathered}
d \theta^{1}=\theta^{1} \wedge \omega_{1}{ }^{1}+A^{1}{ }_{\overline{1}} \theta \wedge \theta^{\overline{1}} \\
\omega_{1}{ }^{1}+\omega_{\overline{1}}{ }^{\overline{1}}=0 .
\end{gathered}
$$

- Differentiating $\omega_{1}{ }^{1}$ gives

$$
d \omega_{1}^{1}=W \theta^{1} \wedge \theta^{\overline{1}} \quad(\bmod \theta)
$$

where W is the Tanaka-Webster curvature.

Pseudohermitian 3-manifold

- We can define the covariant differentiations with respect to the pseudohermitian connection.
(1)

$$
f_{, 1}=Z_{1} f ; \quad f_{1 \overline{1}}=Z_{\overline{1}} Z_{1} f-\omega_{1}{ }^{1}\left(Z_{\overline{1}}\right) Z_{1} f .
$$

(2) We define the subgradient operator ∇_{b} and the sublaplacian operator Δ_{b}

$$
\nabla_{b} f=f_{, \overline{1}} Z_{1}+f_{, 1} Z_{\overline{1}},
$$

and

$$
\Delta_{b} f=f_{, 1 \overline{1}}+f_{, \overline{1} 1}
$$

Pseudohermitian 3-manifold

Example

D is the strictly pseudoconvex domain

$$
D \subset \mathbf{C}^{2} \text { and } M=\partial D
$$

with

$$
D=\{r<0\} \quad \text { and } \quad M=\{r=0\} .
$$

Choose

$$
\xi=T M \cap J_{\mathbf{C}^{2}} T M \quad \text { and } \quad \theta=-\left.i \partial r\right|_{M}
$$

with

$$
J=\left.J_{\mathbf{C}^{2}}\right|_{\xi}
$$

Li-Yau Harnack Estimate

Theorem

(Li-Yau, 1986) The Li-Yau Harnack estimate

$$
\frac{\partial(\ln u)}{\partial t}-|\nabla \ln u|^{2}+\frac{m}{2 t} \geq 0
$$

for the positive solution $u(x, t)$ of the time-independent heat equation

$$
\frac{\partial u(x, t)}{\partial t}=\Delta u(x, t)
$$

in a complete Riemannian m-manifold with nonnegative Ricci curvature.

Li-Yau-Hamilton Inequality

Theorem

(Hamilton, 1993) Hamilton Harnack estimate (trace version)

$$
\frac{\partial R}{\partial t}+\frac{R}{t}+2 \nabla R \cdot V+2 R i c(V, V) \geq 0
$$

for the Ricci flow

$$
\frac{\partial g_{i j}}{\partial t}=-2 R_{i j}
$$

on Riemannian manifolds with positive curvature operator.

Subelliptic Li-Yau gradient estimate

Consider the heat equation

$$
\left(L-\frac{\partial}{\partial t}\right) u(x, t)=0
$$

in a closed m-manifold with a positive measure and an operator with respect to the sum of squares of vector fields

$$
L=\sum_{i=1}^{l} X_{i}^{2}, \quad I \leq m
$$

where $X_{1}, X_{2}, \ldots, X_{I}$ are smooth vector fields which satisfy Hörmander's condition : the vector fields together with their commutators up to finite order span the tangent space at every point of M.

Subelliptic Li-Yau gradient estimate

Theorem

(Cao-Yau, 1994) Suppose that $\left[X_{i},\left[X_{j}, X_{k}\right]\right]$ can be expressed as linear combinations of $X_{1}, X_{2}, \ldots, X_{I}$ and their brackets $\left[X_{1}, X_{2}\right], \ldots,\left[X_{I-1}, X_{l}\right]$. Then, for the positive solution $u(x, t)$ of heat flow on $M \times[0, \infty)$, there exist constants $C^{\prime}, C^{\prime \prime}, C^{\prime \prime \prime}$ and $\frac{1}{2}<\lambda<\frac{2}{3}$, such that for any $\delta>1$, $f(x, t)=\ln u(x, t)$ satisfies the following gradient estimate

$$
\sum_{i}\left|X_{i} f\right|^{2}-\delta f_{t}+\sum_{\alpha}\left(1+\left|Y_{\alpha} f\right|^{2}\right)^{\lambda} \leq \frac{C^{\prime}}{t}+C^{\prime \prime}+C^{\prime \prime \prime} t^{\frac{\lambda}{\lambda-1}}
$$

with $\left\{Y_{\alpha}\right\}=\left\{\left[X_{i}, X_{j}\right]\right\}$.

CR Li-Yau gradient estimate

By choosing a frame $\left\{\mathbf{T}, Z_{1}, Z_{\overline{1}}\right\}$ of $T M \otimes \mathbf{C}$ with respect to the Levi form and $\left\{X_{1}, X_{2}\right\}$ such that

$$
J\left(Z_{1}\right)=i Z_{1} \text { and } J\left(Z_{\overline{1}}\right)=-i Z_{\overline{1}}
$$

and

$$
Z_{1}=\frac{1}{2}\left(X_{1}-i X_{2}\right) \text { and } Z_{\overline{1}}=\frac{1}{2}\left(X_{1}+i X_{2}\right)
$$

it follows that

$$
\left[X_{1}, X_{2}\right]=-2 \mathbf{T} \quad \text { and } \quad \Delta_{b}=\frac{1}{2}\left(X_{1}^{2}+X_{2}^{2}\right)=\frac{1}{2} L
$$

Note that

$$
W(Z, Z)=W x^{1} x^{\overline{1}} \quad \text { and } \quad \operatorname{Tor}(Z, Z)=2 \operatorname{Re}\left(i A_{\overline{1} \overline{1}} x^{\overline{1}} x^{\overline{1}}\right)
$$

for all $Z=x^{1} Z_{1} \in T_{1,0}$.

The CR-pluriharmonic Operator

Definition

(Graham-Lee, 1988) Let ($M^{2 n+1}, J, \theta$) be a complete pseudohermitian manifold. Define

$$
P \varphi=\sum_{\alpha=1}^{n}\left(\varphi_{\bar{\alpha}}^{\bar{\alpha}} \beta+i n A_{\beta \alpha} \varphi^{\alpha}\right) \theta^{\beta}=\left(P_{\beta} \varphi\right) \theta^{\beta}, \quad \beta=1,2, \cdots, n
$$

which is an operator that characterizes CR-pluriharmonic functions. Here

$$
P_{\beta} \varphi=\sum_{\alpha=1}^{n}\left(\varphi_{\bar{\alpha}}{ }^{\bar{\alpha}}{ }_{\beta}+i n A_{\beta \alpha} \varphi^{\alpha}\right)
$$

CR Li-Yau gradient estimate

Theorem

(Chang-Tie-Wu, 2009) Let (M, J, θ) be a closed pseudohermitian 3-manifold with nonnegative Tanaka-Webster curvature and vanishing torsion. If $u(x, t)$ is the positive solution of $C R$ heat flow on $M \times[0, \infty)$ such that u is the CR-pluriharmonic function

$$
P u=0
$$

at $t=0$. Then

$$
\left|\nabla_{b} f\right|^{2}+3 f_{t} \leq \frac{9}{t}
$$

on $M \times[0, \infty)$.

CR Li-Yau Gradient Estimate

Theorem

(Chang-Kuo-Lai, 2011) Let (M, J, θ) be a closed pseudohermitian $(2 n+1)$-manifold. Suppose that

$$
2 \operatorname{Ric}(X, X)-(n-2) \operatorname{Tor}(X, X) \geq 0
$$

for all $X \in T_{1,0} \oplus T_{0,1}$. If $u(x, t)$ is the positive solution of

$$
\left(\Delta_{b}-\frac{\partial}{\partial t}\right) u(x, t)=0
$$

with $\left[\Delta_{b}, \mathbf{T}\right] u=0$ on $M \times[0, \infty)$. Then $f(x, t)=\ln u(x, t)$ satisfies the following subgradient estimate

$$
\left[\left|\nabla_{b} f\right|^{2}-\left(1+\frac{3}{n}\right) f_{t}+\frac{n}{3} t\left(f_{0}\right)^{2}\right]<\frac{\left(\frac{9}{n}+6+n\right)}{t}
$$

CR Li-Yau gradient estimate

- subgradient estimate of the logarithm of the positive solution to heat flow :

Theorem

Let (M, J, θ) be a closed pseudohermitian 3-manifold with nonnegative Tanaka-Webster curvature and vanishing torsion. If $u(x, t)$ is the positive solution of $C R$ heat flow on $M \times[0, \infty)$ such that u is the CR-pluriharmonic function

$$
P u=0
$$

at $t=0$. Then there exists a constant C_{1} such that u satisfies the subgradient estimate

$$
\frac{\left|\nabla_{b} u\right|^{2}}{u^{2}} \leq \frac{C_{1}}{t}
$$

on $M \times(0, \infty)$.

CR Li-Yau Gradient Estimate for Witten Sublaplacian

We consider the heat equation

$$
\frac{\partial u(x, t)}{\partial t}=L u(x, t)
$$

in a closed pseudohermitian $(2 n+1)$-manifold $(M, J, \theta, d \mu)$ with

$$
L u(x, t):=\Delta_{b} u(x, t)-\nabla_{b} \phi(x) \cdot \nabla_{b} u(x, t) .
$$

Here $d \mu=e^{-\phi(x)} \theta \wedge(d \theta)^{n}$.

Bakry-Emery pseudohermitian Ricci curvature

- The ∞-dimensional Bakry-Emery pseudohermitian Ricci curvature

$$
\operatorname{Ric}(L)(W, W):=R_{\alpha \bar{\beta}} W_{\bar{\alpha}} W_{\beta}+\operatorname{Re}\left[\phi_{\alpha \bar{\beta}} W_{\bar{\alpha}} W_{\beta}\right]
$$

- The m-dimensional Bakry-Emery pseudohermitian Ricci curvature

$$
\begin{gathered}
\operatorname{Ric}_{m, n}(L):=\operatorname{Ric}(L)-\frac{\nabla_{b} \phi \otimes \nabla_{b} \phi}{2(m-2 n)}, \quad m>2 n \\
\operatorname{Tor}(L)(W, W):=2 \operatorname{Re}\left[\sum_{\alpha, \beta=1}^{n}\left(i(n-2) A_{\bar{\alpha} \bar{\beta}}-\phi_{\bar{\alpha} \bar{\beta}}\right) W_{\alpha} W_{\beta}\right] .
\end{gathered}
$$

CR Li-Yau Gradient Estimate for Witten Sublaplacian

Theorem

Let (M, J, θ) be a closed pseudohermitian $(2 n+1)$-manifold. Suppose that

$$
2 \operatorname{Ric}_{m, n}(L)(X, X)-\operatorname{Tor}(L)(X, X) \geq 0
$$

for all $X \in T_{1,0} \oplus T_{0,1}$. If $u(x, t)$ is the positive solution of $\left(L-\frac{\partial}{\partial t}\right) u(x, t)=0$ with

$$
[L, \mathbf{T}] u=0
$$

on $M \times[0, \infty)$. Then $f(x, t)=\ln u(x, t)$ satisfies the following Li-Yau type subgradient estimate

$$
\left[\left|\nabla_{b} f\right|^{2}-\left(1+\frac{3}{n}\right) f_{t}+\frac{n}{3} t\left(f_{0}\right)^{2}\right]<\frac{m}{2 n t}\left[\frac{9}{n}+6+n\right] .
$$

CR Harnack inequality

Theorem

Let (M, J, θ) be a closed pseudohermitian $(2 n+1)$-manifold. Suppose that

$$
2 \operatorname{Ric}_{m, n}(L)(X, X)-\operatorname{Tor}(L)(X, X) \geq 0
$$

for all $X \in T_{1,0} \oplus T_{0,1}$. If $u(x, t)$ is the positive solution of $\left(L-\frac{\partial}{\partial t}\right) u(x, t)=0$ with

$$
[L, \mathbf{T}] u=0
$$

on $M \times[0, \infty)$. Then for any x_{1}, x_{2} in M and $0<t_{1}<t_{2}<\infty$, we have the Harnack inequality

$$
\frac{u\left(x_{2}, t_{2}\right)}{u\left(x_{1}, t_{1}\right)} \geq\left(\frac{t_{2}}{t_{1}}\right)^{-\left[\frac{m\left(\frac{9}{n}+6+n\right)}{2 n\left(1+\frac{3}{n}\right)}\right]} \exp \left\{-\frac{\left(1+\frac{3}{n}\right)}{4}\left[\frac{d_{c c}\left(x_{1}, x_{2}\right)^{2}}{\left(t_{2}-t_{1}\right)}\right]\right\}
$$

CR Li-Yau Gradient Estimate

Note that

$$
[L, \mathbf{T}] u=2 \operatorname{Im} Q u-4 \operatorname{Re}\left(\phi_{\alpha} u_{\beta} A_{\bar{\alpha} \bar{\beta}}\right)+\left\langle\nabla_{b} \phi_{0}, \nabla_{b} u\right\rangle
$$

and

$$
\left[\Delta_{b}, \mathbf{T}\right] u=2 \operatorname{Im} Q u .
$$

Here Q is the purely holomorphic second-order operator defined by

$$
Q u=2 i\left(A_{\bar{\alpha} \bar{\beta}} u_{\alpha}\right)_{\beta} .
$$

CR Li-Yau-Hamilton Inequality

Theorem

(Chang-Kuo, 2011) Let (M, J, $̊$) be a closed spherical pseudohermitian 3-manifold with positive Tanaka-Webster curvature and vanishing torsion.
Then

$$
4 \frac{\left|\nabla_{b} W\right|^{2}}{W^{2}}-\frac{W_{t}}{W}-\frac{1}{t} \leq 0
$$

under the CR Yamabe flow

$$
\frac{\partial}{\partial t} \theta(t)=-2 W(t) \theta(t), \quad \theta(0)=\stackrel{\circ}{\theta}
$$

Furthermore, we get a subgradient estimate of logarithm of the positive Tanaka-Webster curvature

$$
\frac{\left|\nabla_{b} W\right|^{2}}{W^{2}} \leq \frac{1}{4 t}
$$

for all $t \in(0, T)$.

CR Li-Yau-Hamilton Inequality

Theorem

(Chang-Kuo, 2011) Let (M, J,,) be a closed spherical pseudohermitian 3-manifold with positive Tanaka-Webster curvature and vanishing torsion. Then

$$
4 \frac{\left|\nabla_{b} u\right|^{2}}{u^{2}}-\frac{u_{t}}{u}-\frac{1}{t} \leq 0
$$

under the time-dependent $C R$ heat equations with potentials evolving by the CR Yamabe flow

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} \theta(t)=-2 W(t) \theta(t) \\
\frac{\partial u}{\partial t}=4 \Delta_{b} u+2 W u, \quad u_{0}(x, 0)=0 .
\end{array}\right.
$$

Perelman Entropy Formulae

Theorem

Its monotonicity property of the Perelman entropy functional together with Li-Yau-Perelman reduced distance imply the no local collapsing theorem under the Ricci flow.

Perelman Entropy Formulae

Theorem

G. Perelman proved that the \mathcal{F}-functional

$$
\mathcal{F}\left(g_{i j}, \varphi\right)=\int_{M}\left(R+|\nabla \varphi|^{2}\right) e^{-\varphi} d \mu
$$

is nondecreasing under the following coupled Ricci flow

$$
\left\{\begin{array}{l}
\frac{\partial g_{i j}}{\partial t}=-2 R_{i j} \\
\frac{\partial \varphi}{\partial t}=-\Delta \varphi+|\nabla \varphi|^{2}-R
\end{array}\right.
$$

in a closed Riemannian m-manifold $\left(M, g_{i j}\right)$.

Perelman Entropy Formulae

Theorem

G. Perelman showed that the \mathcal{W}-functional

$$
\mathcal{W}\left(g_{i j}, \varphi, \tau\right)=\int_{M}\left[\tau\left(R+|\nabla \varphi|^{2}\right)+\varphi-m\right](4 \pi \tau)^{-\frac{m}{2}} e^{-\varphi} d \mu, \tau>0
$$

is nondecreasing as well under the following coupled Ricci flow

$$
\left\{\begin{array}{l}
\frac{\partial g_{i j}}{\partial t}=-2 R_{i j} \\
\frac{\partial \varphi}{\partial t}=-\triangle \varphi+|\nabla \varphi|^{2}-R+\frac{m}{2 \tau} \\
\frac{d \tau}{d t}=-1
\end{array}\right.
$$

Perelman Entropy Formulae

- The Ricci flow

$$
\frac{\partial g_{i j}}{\partial t}=-2 R_{i j}
$$

coupled with the conjugate heat equation

$$
\frac{\partial u}{\partial t}=-\triangle u+R u
$$

(1) For $u=e^{-\varphi}$.
(2) For $u=(4 \pi \tau)^{-\frac{m}{2}} e^{-\varphi}, \tau=T-t$.

CR Li-Yau-Perelman Harnack Estimate

Theorem

Let $(M, J, \stackrel{\theta}{\theta})$ be a closed spherical pseudohermitian 3-manifold with nonnegative Tanaka-Webster curvature and vanishing torsion. Under

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} \theta(t)=-2 W(t) \theta(t) \\
\frac{\partial u}{\partial t}=-4 \Delta_{b} u+4 W u, \quad u_{0}(x, 0)=0,
\end{array}\right.
$$

we have

$$
\Delta_{b} f-\frac{3}{4}\left|\nabla_{b} f\right|^{2}+\frac{1}{2} W-\frac{1}{\tau} \leq 0
$$

on $M \times[0, T)$ with $u=e^{-f} \quad$ and $\tau=T-t$.

CR Perelman Entropy Formulae

We define the CR Perelman \mathcal{F}-functional by

$$
\begin{aligned}
\mathcal{F}(\theta(t), f(t)) & =4 \int_{M}\left[\left(\Delta_{b} f-\frac{3}{4}\left|\nabla_{b} f\right|^{2}+\frac{1}{2} W\right)\right] e^{-f} d \mu \\
& =\int_{M}\left(2 W+\left|\nabla_{b} f\right|^{2}\right) e^{-f} d \mu
\end{aligned}
$$

with the constraint

$$
\int_{M} e^{-f} d \mu=1
$$

Monotonicity Property of CR Perelman Entropy

We derive the following monotonicity property of $\mathrm{CR} \mathcal{F}$-functional.

Theorem

Let $(M, J, \stackrel{\theta}{\theta})$ be a closed spherical pseudohermitian 3-manifold with nonnegative Tanaka-Webster curvature and vanishing torsion. Then

$$
\begin{aligned}
\frac{d}{d t} \mathcal{F}(\theta(t), f(t)) & =8 \int_{M}\left|\left(\nabla^{H}\right)^{2} f+\frac{W}{2} L_{\theta}\right|^{2} u d \mu+2 \int_{M} W\left|\nabla_{b} f\right|^{2} u d \mu \\
& \geq 0
\end{aligned}
$$

under

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} \theta(t)=-2 W(t) \theta(t), \\
\frac{\partial u}{\partial t}=-4 \Delta_{b} u+4 W u, \quad u_{0}(x, 0)=0 .
\end{array}\right.
$$

CR Li-Yau-Perelman Harnack Estimate

Theorem

Let $(M, J, \stackrel{\theta}{\theta})$ be a closed spherical pseudohermitian 3-manifold with nonnegative Tanaka-Webster curvature and vanishing torsion. Under

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} \theta(t)=-2 W(t) \theta(t) \\
\frac{\partial u}{\partial t}=-4 \Delta_{b} u+4 W u, \quad u_{0}(x, 0)=0
\end{array}\right.
$$

we have

$$
\Delta_{b} f-\frac{3}{4}\left|\nabla_{b} f\right|^{2}+\frac{1}{2} W+\frac{f}{8 \tau}-\frac{1}{2 \tau} \leq 0
$$

on $M \times[0, T)$ with $u=(4 \pi \tau)^{-2} e^{-f} \quad$ and $\tau=T-t$.

CR Perelman Entropy Formulae

Define the CR Perelman \mathcal{W}-functional by

$$
\begin{aligned}
\mathcal{W}(\theta(t), f(t), \tau) & =4 \int_{M} \tau\left[\Delta_{b} f-\frac{3}{4}\left|\nabla_{b} f\right|^{2}+\frac{1}{2} W+\frac{f}{8 \tau}-\frac{1}{2 \tau}\right] \frac{e^{-f}}{(4 \pi \tau)^{2}} d \mu \\
& =\int_{M}\left[\tau\left(2 W+\left|\nabla_{b} f\right|^{2}\right)+\frac{f}{2}-2\right](4 \pi \tau)^{-2} e^{-f} d \mu
\end{aligned}
$$

with the constraint

$$
\int_{M}(4 \pi \tau)^{-2} e^{-f} d \mu=1
$$

Monotonicity Property of CR Perelman Entropy

Theorem

Let $(M, J, \stackrel{\theta}{\theta})$ be a closed spherical pseudohermitian 3-manifold with nonnegative Tanaka-Webster curvature and vanishing torsion. Then

$$
\begin{aligned}
& \frac{d}{d t} \mathcal{W}(\theta(t), f(t), \tau(t)) \\
& =8 \tau \int_{M}\left|\left(\nabla^{H}\right)^{2} f+\frac{W}{2} L_{\theta}-\frac{1}{4 \tau} L_{\theta}\right|^{2} u d \mu \\
& \quad+\tau \int_{M}\left[2 W\left|\nabla_{b} f\right|^{2}+\frac{\left|\nabla_{b} f\right|^{2}}{\tau}\right] u d \mu \\
& \geq 0
\end{aligned}
$$

uner

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} \theta(t)=-2 W(t) \theta(t), \\
\frac{\partial u}{\partial t}=-4 \Delta_{b} u+4 W u, \quad u_{0}(x, 0)=0,
\end{array}\right.
$$

for $u=(4 \pi \tau)^{-2} e^{-f} \quad$ and $\tau=T-t$.

CR Li-Yau-Perelman Reduced Distance

Let p, q be two point in M and $\gamma(\tau), \tau \in[0, \bar{\tau}]$, be a Legendrian curve joining p and q with $\gamma(0)=p$ and $\gamma(\bar{\tau})=q$.

Theorem

Let $(M, J, \stackrel{\theta}{\theta})$ be a closed spherical pseudohermitian 3-manifold with positive Tanaka-Webster curvature and vanishing torsion. Under under

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} \theta(t)=-2 W(t) \theta(t) \\
\frac{\partial u}{\partial t}=-4 \Delta_{b} u+4 W u, \quad u_{0}(x, 0)=0
\end{array}\right.
$$

We have

$$
f(q, \bar{\tau}) \leq \frac{2}{\sqrt{\bar{\tau}}} \int_{0}^{\bar{\tau}} \sqrt{\tau}\left(W+\frac{1}{8}\langle\dot{\gamma}(\tau), \dot{\gamma}(\tau)\rangle_{L_{\theta}}\right) d \tau
$$

CR Li-Yau-Perelman Reduced Distance

For

$$
\mathcal{L}(\gamma)=\int_{0}^{\bar{\tau}} \sqrt{\tau}\left(W+\frac{1}{8}\langle\dot{\gamma}(\tau), \dot{\gamma}(\tau)\rangle_{L_{\theta}}\right) d \tau
$$

one can define the CR Perelman reduced distance by

$$
I_{c c}(q, \bar{\tau}) \equiv \inf _{\gamma} \frac{2}{\sqrt{\bar{\tau}}} \mathcal{L}(\gamma)
$$

and CR Perelman reduced volume by

$$
V_{c c}(\bar{\tau}) \equiv \int_{M}(4 \pi \bar{\tau})^{-I_{0}} \exp \left\{-\frac{2}{\sqrt{\bar{\tau}}} L(x, \bar{\tau})\right\} d \mu
$$

where $\inf f$ is taken over all Legendrian curves $\gamma(\tau)$ joining p, q and $L(x, \bar{\tau})$ is the corresponding minimum for $\mathcal{L}(\gamma)$.

The CR Yamabe Shrinking Soliton

Theorem

There is no nontrivial closed shrinking CR Yamabe soliton on a closed pseudohermitian 3-manifold with positive Tanaka-Webster curvature and vanishing pseudohermitian torsion.

Theorem

If $(M, J, \dot{\theta})$ is a closed spherical CR 3-manifold with vanishing torsion and positive CR Yamabe constant, then solutions of the $C R$ (normalized) Yamabe flow converge smoothly to, up to the $C R$ automorphism, a unique limit contact form of constant Webster scalar curvature as $t \rightarrow \infty$.

The Proofs: The CR Bochner Formulae for Sublaplacian

Theorem

(Greenleaf, 1986) Let ($\left.M^{2 n+1}, J, \theta\right)$ be a complete pseudohermitian manifold. For a real smooth function u on (M, J, θ),

$$
\begin{aligned}
\frac{1}{2} \Delta_{b}\left|\nabla_{b} u\right|^{2}= & \left|\left(\nabla^{H}\right)^{2} u\right|^{2}+<\nabla_{b} u, \nabla_{b} \Delta_{b} u>_{L_{\theta}} \\
& +(2 \text { Ric }-n \text { Tor })\left(\left(\nabla_{b} u\right)_{\mathbf{C}},\left(\nabla_{b} u\right)_{\mathbf{C}}\right) \\
& -2 i \sum_{\alpha=1}^{n}\left(u_{\alpha} u_{\bar{\alpha} 0}-u_{\bar{\alpha}} u_{\alpha 0}\right)
\end{aligned}
$$

The Proofs: The CR Bochner Formulae

Theorem

(Greenleaf, 1986; Chang-Chiu, 2009) Let ($M^{2 n+1}, J, \theta$) be a complete pseudohermitian manifold. For a real smooth function u on (M, J, θ),

$$
\begin{aligned}
\frac{1}{2} \Delta_{b}\left|\nabla_{b} u\right|^{2}= & \left|\left(\nabla^{H}\right)^{2} u\right|^{2}+\left(1+\frac{2}{n}\right)<\nabla_{b} u, \nabla_{b} \Delta_{b} u>_{L_{\theta}} \\
& +[2 R i c+(n-4) \text { Tor }]\left(\left(\nabla_{b} u\right)_{\mathbf{C}},\left(\nabla_{b} u\right)_{\mathbf{C}}\right) \\
& -\frac{4}{n}<P u+\bar{P} u, d_{b} u>_{L_{\theta}^{*}} .
\end{aligned}
$$

The Proofs: The CR Bochner Formulae for Witten Sublaplacian

Theorem

(Chang-Kuo-Lai, 2011) Let (M, J, θ) be a pseudohermitian
$(2 n+1)$-manifold. For a (smooth) real function f on M and $m>2 n$, we have

$$
\begin{aligned}
\frac{1}{2} L\left|\nabla_{b} f\right|^{2} \geq & 2\left(\sum_{\alpha, \beta=1}^{n}\left|f_{\alpha \beta}\right|^{2}+\sum_{\alpha, \beta=1}^{n}\left|f_{\alpha \bar{\beta}}\right|^{2}\right)+\frac{1}{m}|L f|^{2}+\frac{n}{2} f_{0}^{2} \\
& +\left[2 R i c_{m, n}(L)-\operatorname{Tor}(L)\right]\left(\nabla_{b} f, \nabla_{b} f\right) \\
& +\left\langle\nabla_{b} f, \nabla_{b} L f\right\rangle+2\left\langle J \nabla_{b} f, \nabla_{b} f_{0}\right\rangle
\end{aligned}
$$

The Proofs

Define

$$
F(x, t, a, c)=t\left(\left|\nabla_{b} f\right|^{2}(x)+a f_{t}+c t f_{0}^{2}(x)\right) .
$$

Theorem

Let $\left(M^{3}, J, \theta\right)$ be a pseudohermitian 3-manifold. Suppose that

$$
(2 W+\text { Tor })(Z, Z) \geq-2 k|Z|^{2}
$$

for all $Z \in T_{1,0}$, where k is an nonnegative constant. If $u(x, t)$ is the positive solution on $M \times[0, \infty)$. Then

$$
\begin{aligned}
\left(\Delta_{b}-\frac{\partial}{\partial t}\right) F \geq & \frac{1}{a^{2} t} F^{2}-\frac{1}{t} F-2\left\langle\nabla_{b} f, \nabla_{b} F\right\rangle+t\left[+\left(1-c-\frac{2 c}{a^{2}} F\right) f_{0}^{2}\right. \\
& \left.+\left(-\frac{2(a+1)}{a^{2} t} F-2 k-\frac{2}{c t}\right)\left|\nabla_{b} f\right|^{2}+4 c t f_{0} V(f)\right] .
\end{aligned}
$$

The Proofs

Theorem

Let $\left(M^{3}, J, \theta\right)$ be a pseudohermitian 3-manifold. Suppose that

$$
(2 W+\text { Tor })(Z, Z) \geq-2 k|Z|^{2}
$$

for all $Z \in T_{1,0}$, where k is an nonnegative constant. Let $a, c, T<\infty$ be fixed. For each $t \in[0, T]$, let $(p(t), s(t)) \in M \times[0, t]$ be the maximal point of F on $M \times[0, t]$. Then at $(p(t), s(t))$, we have

$$
\begin{aligned}
0 \geq & \frac{1}{a^{2} t} F\left(F-a^{2}\right)+t\left[4\left|f_{11}\right|^{2}+\left(1-c-\frac{2 c}{a^{2}} F\right) f_{0}^{2}\right. \\
& \left.+\left(-\frac{2(a+1)}{a^{2} t} F-2 k-\frac{2}{c t}\right)\left|\nabla_{b} f\right|^{2}+4 c t f_{0} V(f)\right] .
\end{aligned}
$$

The Proofs

Define

$$
V(\varphi)=\left(A_{11} \varphi_{\overline{1}}\right)_{\overline{1}}+\left(A_{\overline{1} \overline{1}} \varphi_{1}\right)_{1}+A_{11} \varphi_{\overline{1}} \varphi_{\overline{1}}+A_{\overline{1} \overline{1}} \varphi_{1} \varphi_{1} .
$$

Theorem

Let $\left(M^{3}, J, \theta\right)$ be a pseudohermitian 3-manifold. Suppose that

$$
\left[\Delta_{b}, \mathbf{T}\right] u=0
$$

Then $f(x, t)=\ln u(x, t)$ satisfies

$$
V(f)=0
$$

The Proofs

We claim that for each fixed $T<\infty$,

$$
F(p(T), s(T),-4, c)<\frac{16}{3 c}
$$

where we choose $a=-4$ and $0<c<\frac{1}{3}$. Here $(P(T), s(T)) \in M \times[0, T]$ is the maximal point of F on $M \times[0, T]$. We prove by contradiction. Suppose not, that is

$$
F(p(T), s(T),-4, c) \geq \frac{16}{3 c}
$$

Due to Proposition ??, $(p(t), s(t)) \in M \times[0, t]$ is the maximal point of F on $M \times[0, t]$ for each $t \in[0, T]$. Since $F(p(t), s(t))$ is continuous in the variable t when a, c are fixed and $F(p(0), s(0))=0$, by Intermediate-value theorem there exists a $t_{0} \in(0, T]$ such that

$$
F\left(p\left(t_{0}\right), s\left(t_{0}\right),-4, c\right)=\frac{16}{3 c}
$$

The Proofs

Hence

$$
\left(-\frac{2(a+1)}{a^{2} t_{0}} F\left(p\left(t_{0}\right), s\left(t_{0}\right),-4, c\right)-\frac{2}{c t_{0}}\right)=0
$$

and

$$
\begin{aligned}
0 & \geq \frac{1}{16 s\left(t_{0}\right)} \frac{16}{3 c}\left(\frac{16}{3 c}-16\right)+\left(1-c-\frac{2 c}{16} \frac{16}{3 c}\right) s\left(t_{0}\right) f_{0}^{2} \\
& =\frac{16}{s\left(t_{0}\right)} \frac{1}{3 c}\left(\frac{1}{3 c}-1\right)+\left(\frac{1}{3}-c\right) s\left(t_{0}\right) f_{0}^{2} .
\end{aligned}
$$

Since $0<c<\frac{1}{3}$, this leads to a contradiction.
Hence

$$
F(P(T), s(T),-4, c)<\frac{16}{3 c} .
$$

The Proofs

This implies that

$$
\max _{(x, \mathrm{t}) \in M \times[0, T]} t\left[\left|\nabla_{b} f\right|^{2}(x)-4 f_{t}+c t f_{0}^{2}(x)\right]<\frac{16}{3 c} .
$$

When we fix on the set $\{T\} \times M$, we have

$$
T\left[\left|\nabla_{b} f\right|^{2}(x)-4 f_{t}+c T f_{0}^{2}(x)\right]<\frac{16}{3 c} .
$$

Since T is arbitrary, we obtain

$$
\frac{\left|\nabla_{b} u\right|^{2}}{u^{2}}-4 \frac{u_{t}}{u}+c t \frac{u_{0}^{2}}{u^{2}}<\frac{16}{3 c t} .
$$

Finally let $c \rightarrow \frac{1}{3}$, then we are done. This completes the proof.

Thank you very much!

