Gromov-Lawson-Schoen-Yau theory and isoparametric foliations

Tang Zizhou (唐梓洲)

School of Mathematical Sciences, Beijing Normal University zztang@bnu.edu.cn

Joint work with Xie Y.Q. (谢余铨) & Yan W.J. (彦文娇)

Available at arXiv: 1107.5234

Introduction of Rie.... Gromov-Lawson theory The "double" manifold...

Home Page

Page 1 of 21

Go Back

Full Screen

Close

Quit

1 Introduction

Definition 1.1. A Riemannian manifold M is said to carry a metric of positive scalar curvature R_M if

 $R_M \ge 0$ and $R_M(p) > 0$ at some point $p \in M$.

Denote by $R_M > 0$ if M carries a metric of positive scalar curvature (*p.s.c.*).

Question: Which compact manifolds admit Riemannian metrics of *p.s.c.*?

Introduction of Rie.... Gromov-Lawson theory The "double" manifold...

```
Home Page
```

 \square

Theorem (A. Lichnerowicz, 1963) For a Rie. manifold X^{4k} , which is compact and Spin

$$R_X > 0 \Longrightarrow \widehat{A}(X) = 0$$

Remark For example: $\mathbb{C}P^{2k}$ is not Spin, but $\widehat{A}(\mathbb{C}P^{2k}) = (-1)^k 2^{-4k} {2k \choose k} \neq 0.$

Theorem (N. Hitchin, 1974) There is a ring homomorphism

$$\alpha: \Omega^{spin}_* \longrightarrow KO^{-n}(pt)$$

 $\alpha = \widehat{A}$ if dim = 4k. For X compact spin, $R_X > 0 \Rightarrow \alpha(X) = 0$.

For example There exist 8k + 1 and 8k + 2 dimensional exotic spheres with $\alpha \neq 0$. Thus, these exotic spheres admit no metrics of *p.s.c.*

Introduction of Rie.... Gromov-Lawson theory The "double" manifold...

 \square

Home Page		
Title	Page	
•• ••		
•		
Page 3 of 21		
Go Back		
Full Screen		
Close		
Quit		

Theorem (Gromov-Lawson, [Ann. of Math. 1980]; Schoen-Yau, [Manuscripta Math. 1979])

Let M be a manifold obtained from a compact Riemannian manifold N by surgeries of $codim \ge 3$. Then

$$R_N > 0 \Longrightarrow R_M > 0.$$

Introduction of Rie.... Gromov-Lawson theory The "double" manifold...

Home Page			
Title	Title Page		
•• ••			
•			
Page 4 of 21			
Go Back			
Full Screen			
Close			
Quit			

2 Gromov-Lawson theory around a point

Let X be a Rie. manifold of dimension n with $R_X > 0$. Fix $p \in X$ with $R_X(p) > 0$. $D^n := \{x \in X^n : |x| \le \overline{r}\}$: a small normal ball centered at p. Consider a hypersurface of $D^n \times \mathbb{R}$:

 $M^n := \{ (x, t) \in D^n \times \mathbb{R} : (|x|, t) \in \gamma \}$

where |x| = dist(x, p), and γ is a curve in the (r, t)-plane as pictured below:

ri

 r_{∞}

N: the unit exterior normal vector of M. The curve γ begins with a vertical line segment $t = 0, r_1 \leq r \leq \bar{r}$, and ends with a horizontal line segment $r = r_{\infty} > 0$, with r_{∞} small enough.

Fix $q = (x, t) \in M$ corresponding to $(r, t) \in \gamma$.

orthonormal basis on $T_q M \longleftrightarrow$ principal curvatures of M $e_1, e_2, ..., e_{n-1}, e_n \longleftrightarrow \underbrace{\lambda_1, \lambda_2, ..., \lambda_{n-1}}_{=(-\frac{1}{r} + O(r))sin\theta}, \lambda_n := k.$

where e_n is the tangent vector to γ , $k \ge 0$ is the curvature of the plane curve γ .

By Gauss equuation:

$$K_{ij}^M = K_{ij}^{D \times \mathbb{R}} + \lambda_i \lambda_j,$$

Since $D \times \mathbb{R}$ has the product metric,

$$\begin{split} K_{ij}^{D \times \mathbb{R}} &= K_{ij}^{D}, \qquad 1 \le i, j \le n-1 \\ K_{n,j}^{D \times \mathbb{R}} &= K_{\frac{\partial}{\partial r}, j}^{D} \cos^{2} \theta, \end{split}$$

$$\implies R_M = R_D - 2Ric^D(\frac{\partial}{\partial r}, \frac{\partial}{\partial r})sin^2\theta + (n-1)(n-2)(\frac{1}{r^2} + O(1))sin^2\theta + \frac{2(n-1)(-\frac{1}{r} + O(r))ksin\theta}{r}$$

3 The "double" manifold on isoparametric foliation

Assumptions: X^n $(n \ge 3)$ compact, connected, $\partial X = \emptyset$. Y^{n-1} : a compact, connected embedding hypersurface in X, with trivial normal bundle $(\Rightarrow \exists a \text{ unit normal vector field } \xi \text{ on } Y)$, and $\pi_0(X - Y) \ne 0$ $(\Rightarrow Y^{n-1} \text{ separates } X^n \text{ into two components, } X^n_+, X^n_-)$.

 ξ on $Y \rightsquigarrow a$ unit normal v.f. in a neighborhood of Y, still denoted by ξ . $D(X_{\pm}):=$ the double of X_{\pm} , the manifold obtained by gluing X_{\pm} with itself along the boundary Y.

Define a continuous function $r: X^n \longrightarrow \mathbb{R}$

$$x \mapsto \begin{cases} dist(x,Y) & \text{if } x \in X_+ \\ -dist(x,Y) & \text{if } x \in X_- \end{cases}$$

where dist(x, Y) is the distance from x to the hypersurface Y.

Let $Y_r := \{x \in X | r(x) = r\}, \overline{r} > 0$ small. Consider a manifold

 $M^n := \{ (x,t) \in X^n \times \mathbb{R} \mid (|r(x)|,t) \in \gamma, |r(x)| \le \bar{r} \}$

where γ is the plane curve as before.

Fix $q = (x, t) \in M \cap (X_+ \times \mathbb{R})$, corresponding to $(r, t) \in \gamma$ (r > 0). Choose an o.n. basis $e_1, e_2, ..., e_{n-1}$ on $T_x Y_r$ such that

 $A_{\xi}e_i = \mu_i e_i \quad for \ i = 1, ..., n - 1,$

where A_{ξ} is the shape operator of the hypersurface Y_r in X. Principal curvatures of M in $X_+ \times \mathbb{R}$:

$$\lambda_i = \mu_i \sin\theta$$
 for $i = 1, ..., n - 1$, where $\sin\theta := \langle N, \xi \rangle$
 $\lambda_n := k$.

Home Page		
Title	Title Page	
•• ••		
Page 8 of 21		
Go Back		
Full Screen		
Close		
Quit		

We obtain:

$$R_M = \sum_{i \neq j}^{\kappa} K_{ij}^M = R_X + 2Asin^2\theta + 2kH(r)sin\theta \tag{1}$$

where

$$A := \sum_{i < j \le n-1} \mu_i \mu_j - Ric^X(\xi, \xi), \quad H(r) = \sum_{i=1}^{n-1} \mu_i(r) : \text{mean curvature of } Y_r.$$

Gromov and Lawson computed the scalar curvature of M constructed from a submanifold with trivial normal bundle. Their formula is expressed in form of estimate, losing a factor 2 and **one item related to the second fundamental form** of the submanifold. But this mistake would result in the missing of the item H(r) in our formula (1), which is essential for our research.

Rosenberg and Stolz [Ann. Math. Studies, 2001] modified Gromov-Lawson's expression, but they also lost the second fundamental form.

Introduction of Rie.... Gromov-Lawson theory The "double" manifold...

Home Page

Title Page

Page 9 of 2

Go Back

Full Screen

Close

Quit

From now on, we deal with $X^n = S^n(1)$, and Y^{n-1} is a minimal isoparametric hypersurface in $S^n(1)$, *i.e.*, minimal hypersurface with constant principal curvatures, separating S^n into S^n_+ ($r \ge 0$) and S^n_- ($r \le 0$).

Gauss equation implies

$$S = (n-1)(n-2) - R_Y$$

where S is norm square of the second fundamental form.

Peng and Terng:(*[Annals of Math. Studies, 1983]*) If *Y* is a minimal isoparametric hypersurface in *S*^{*n*}, then

S = (g-1)(n-1),

where g is the number of distinct principal curvatures of Y. Therefore, $R_Y \ge 0$, and

$$R_N = 0 \iff (m_+, m_-) = (1, 1).$$

Ноте	Home Page	
Title	Title Page	
••	•• ••	
•	►	
Page 1	Page 10 of 21	
Go Back		
Full Screen		
Close		
Quit		

Theorem 3.1 Let Y^{n-1} be a minimal isoparametric hypersurface in $S^n(1)$, $n \ge 3$. Then each of doubles $D(S^n_+)$ and $D(S^n_-)$ has a metric of positive scalar curvature. Moreover, there is still an isoparametric foliation in $D(S^n_+)$ (or $D(S^n_-)$).

Outline of proof. The scalar curvature of M restricted to Y_r is

 $R_M|_{Y_r} = n(n-1)\cos^2\theta + (n-g-1)(n-1)\sin^2\theta + a(r)\sin^2\theta + 2kH(r)\sin\theta,$

where H(r) has the property that

$$H(0) = 0$$
 and $H(r) > 0$ for any $r > 0$

and a(r) satisfies

$$\lim_{r \to 0} a(r) = 0$$

In fact, a(r) is identically 0 when n - 1 - g = 0. In each of two cases n - 1 - g > 0 and n - 1 - g = 0, we can control the "bending angle" of the curve γ , so that $R_M|_{Y_r} > 0$.

Home Page		
Title	Page	
•• ••		
• •		
Page 11 of 21		
Go Back		
Full Screen		
Close		
Quit		

Let Y be a compact minimal isoparametric hypersurface in S^n with focal submanifolds M_+ and M_- .

Proposition 3.2 Let the ring of coefficient $R = \mathbb{Z}$ if M_+ and M_- are both orientable and $R = \mathbb{Z}_2$, otherwise. Then for the cohomology groups, we have isomorphisms:

$$\begin{cases} H^{0}(D(S_{+}^{n})) \cong R \\ H^{1}(D(S_{+}^{n})) \cong H^{1}(M_{+}) \\ H^{q}(D(S_{+}^{n})) \cong H^{q-1}(M_{-}) \oplus H^{q}(M_{+}) & \text{for } 2 \leq q \leq n-2 \\ H^{n-1}(D(S_{+}^{n})) \cong H^{n-2}(M_{-}) \\ H^{n}(D(S_{+}^{n})) \cong R \end{cases}$$

For $D(S_{-}^{n})$, similar identities hold.

Introduction of Rie.... Gromov-Lawson theory The "double" manifold...

Home	Home Page	
Title Page		
••	••	
•		
Page 12 of 21		
Go Back		
Full Screen		
Close		
Quit		

Proposition 3.3 $D(S_+^n)$ is a π -manifold, i.e. stably parallelizable manifold. In particular, $D(S_+^n)$ is an orientable, spin manifold with all the Stiefel-Whitney and Pontrjagin classes vanishing.

Corollary 3.4 *The KO-numbers* $\alpha(D(S_{+}^{n})) = 0, \alpha(D(S_{-}^{n})) = 0.$ *Proof of Prop 3.3.*

$$B^{m_{+}+1} \hookrightarrow S^{n}_{+} = B(\nu_{+})$$
$$\downarrow \pi$$
$$M_{+}$$

Since S^n_+ has a metric, we can define

$$B_1^n \sqcup_{id} B_2^n \longrightarrow S(\nu_+ \oplus \mathbf{1})$$

$$e \longmapsto \begin{cases} (e, \sqrt{1 - |e|^2}) & \text{for } e \in B_1^n \\ (e, -\sqrt{1 - |e|^2}) & \text{for } e \in B_2^n \end{cases}$$

where B_1^n , B_2^n are two copies of $S_+^n = B(\nu_+)$.

Thus $D(S_+^n) \cong S(\nu_+ \oplus \mathbf{1})$, sphere bundle of Whitney sum $\nu_+ \oplus \mathbf{1}$. $\implies T(S(\nu_+ \oplus \mathbf{1})) \oplus \mathbf{1} \cong \pi^* T M_+ \oplus \pi^* (\nu_+ \oplus \mathbf{1}) \cong \pi^* T S^n \oplus \mathbf{1} \cong (\mathbf{n+1})$ $\implies D(S_+^n)$ is stably parallelizable, *i.e.*, a π -manifold.

For isoparametric hypersurfaces in $S^n(1)$, Münzner: g can only be 1, 2, 3, 4 or 6.

g=1, an isoparametric hypersurface must be a hypersphere, $D(S_+^n) = S^n$.

g=2, an isoparametric hypersurface must be $S^k(r) \times S^{n-k-1}(s)$, $r^2 + s^2 = 1$, $D(S^n_+) = S^k \times S^{n-k}$ or $S^{k+1} \times S^{n-k-1}$.

g=3, all the isoparametric hypersurfaces are homogeneous. (*E.Cartan*, 1930's)

g=4, except for the unknown case $(m_+, m_-)=(7, 8)$, all isoparametric hypersurfaces are either of OT-FKM-type or homogeneous.

([CCJ, Ann. Math.2007], [Q.S.Chi, preprint, 2011])

g=6, all the isoparametric hypersurfaces are homogeneous. ([Dorfmeister and Neher, 1983], [R.Miyaoka, preprint, 2009])

Introduction of Rie.... Gromov-Lawson theory The "double" manifold...

Home Page

Title Page

Page 14 of 2

Go Back

Full Screen

Close

Quit

Homogeneous hypersurfaces in $S^n(1)$: principal orbits of the isotropy representation of symmetric spaces of rank two, classified completely by Hsiang and Lawson ([J. Diff. Geom. 1971]).

G: compact Lie group. $G \times S^n \to S^n$: cohomogeneity one action. $S^n/G = [-1, 1]$.

orbits $Y, M_{\pm} \iff isotropy \ subgroups \ K_0, K_{\pm}$.

By the group actions

$$K_{\pm} \times (G \times B_{\pm}^{m_{+}+1}) \longrightarrow G \times B_{\pm}^{m_{+}+1}$$
$$(k, g, x) \longmapsto (gk^{-1}, k \bullet x)$$

we obtain a decomposition

$$S^{n} = G \times_{K_{+}} B^{m_{+}+1}_{+} \cup_{Y} G \times_{K_{-}} B^{m_{-}+1}_{-},$$

where $B_{\pm}^{m_{\pm}+1}$ denote the normal disc to the orbit $M_{\pm} = G/K_{\pm}$, and \bullet is a slice representation.

Introduction of Rie.... Gromov-Lawson theory The "double" manifold...

Next, by defining a new action of the isotropy subgroup K_+ on $G \times S^{m_++1}$

$$K_{+} \times (G \times S^{m_{+}+1}) \longrightarrow G \times S^{m_{+}+1}$$
$$(k, g, (x, t)) \longmapsto (gk^{-1}, k \star (x, t)) := (k \bullet x, t))$$

we have a diffeomorphism

$$D(S_{+}^{n}) = G \times_{K_{+}} B^{m_{+}+1} \cup_{Y} G \times_{K_{+}} B^{m_{+}+1} = G \times S^{m_{+}+1}/K_{+}.$$

Introduction of Rie.... Gromov-Lawson theory The "double" manifold...

Home Page		
Title Page		
•• ••		
•	Þ	
Page 17 of 21		
Go Back		
Full Screen		
Close		
Quit		

g	(m_+, m)	(U, K)	K_0	K_+	<i>K</i> _
1	n-1	$(S^1 \times SO(n+1), SO(n))$	SO(n-1)	SO(n)	SO(n)
		$n \ge 2$			
2	(p,q)	$(SO(p+2) \times SO(q+2),$	$SO(p) \times SO(q)$	$SO(p+1) \times SO(q)$	$SO(p) \times SO(q+1)$
		$SO(p+1) \times SO(q+1))$			
		$p,q \ge 1$			
3	(1, 1)	(SU(3), SO(3))	$\mathbb{Z}_2 + \mathbb{Z}_2$	$S(O(2) \times O(1))$	$S(O(1) \times O(2))$
3	(2, 2)	$(SU(3) \times SU(3), SU(3))$	T^2	$S(U(2) \times U(1))$	$S(U(1) \times U(2))$
3	(4, 4)	(SU(6), Sp(3))	$Sp(1)^{3}$	$Sp(2) \times Sp(1)$	$Sp(2) \times Sp(1)$
3	(8, 8)	(E_6, F_4)	Spin(8)	Spin(9)	Spin(9)
4	(2, 2)	$(SO(5) \times SO(5), SO(5))$	T^2	$SO(2) \times SO(3)$	U(2)
4	(4, 5)	(SO(10), U(5))	$SU(2)^2 \times U(1)$	$Sp(2) \times U(1)$	$SU(2) \times U(3)$
4	(6, 9)	$(E_6, T \cdot Spin(10))$	$U(1) \cdot Spin(6)$	$U(1) \cdot Spin(7)$	$S^1 \cdot SU(5)$
4	(1, m-2)	$(SO(m+2), SO(m) \times SO(2))$	$SO(m-2) \times \mathbb{Z}_2$	$SO(m-2) \times SO(2)$	O(m-1)
		$m \ge 3$			
4	(2, 2m-3)	$(SU(m+2), S(U(m) \times U(2)))$	$S(U(m-2) \times T^2)$	$S(U(m-2) \times U(2))$	$S(U(m-1) \times T^2)$
		$m \ge 3$			
4	(4, 4m-5)	$(Sp(m+2), Sp(m) \times Sp(2))$	$Sp(m-2) \times Sp(1)^2$	$Sp(m-2) \times Sp(2)$	$Sp(m-1) \times Sp(1)^2$
		$m \ge 2$			
6	(1, 1)	$(G_2, SO(4))$	$\mathbb{Z}_2 + \mathbb{Z}_2$	O(2)	O(2)
6	(2, 2)	$(G_2 \times G_2, G_2)$	T^2	U(2)	U(2)

(cf. [H.Ma and H.Ohnita, Math. Z., 2009])

Example: $(g, m_+, m_-) = (3, 1, 1)$.

Cartan: the isoparametric hypersurface must be a tube of constant radius over a standard Veronese embedding of $\mathbb{R}P^2$ into S^4 .

 ν : the normal bundle of $\mathbb{R}P^2 \hookrightarrow S^4$, so $T\mathbb{R}P^2 \oplus \nu = 4$. η : Hopf line bundle over $\mathbb{R}P^2$.

$$T\mathbb{R}P^{2} \oplus \mathbf{1} = 3\eta$$

$$\implies 3\eta \oplus \nu = T\mathbb{R}P^{2} \oplus \mathbf{1} \oplus \nu = \mathbf{5}$$

$$\implies 4\eta \oplus \nu = 5 \oplus \eta.$$

Since $4\eta = 4$, by obstruction theory, we have $\nu \oplus \mathbf{1} = \eta \oplus \mathbf{2}$. Thus $D(S_+^4) = S(\nu_+ \oplus \mathbf{1}) = S(\eta \oplus \mathbf{2})$, furthermore,

$$D(S_{+}^{4}) \cong S^{2} \times S^{2}/(x, y_{1}, y_{2}, y_{3}) \sim (-x, -y_{1}, y_{2}, y_{3}),$$

where $x \in S^2$, $(y_1, y_2, y_3) \in S^2$.

On the other hand, the Grassmannian manifold is represented by

$$G_2(\mathbb{R}^4) \cong S^2 \times S^2/(x,y) \sim (-x,-y)$$

By calculation, we see $G_2(\mathbb{R}^4)$ is not spin, while as mentioned before, $D(S_+^4)$ is spin!

When g = 4, the OT-FKM-type isoparametric hypersurfaces are level hypersurfaces of the following isoparametric functions restricted on S^{2l-1} :

$$F : \mathbb{R}^{2l} \to \mathbb{R}$$
$$F(z) = |z|^4 - 2\sum_{k=0}^m \langle P_k z, z \rangle^2,$$

where $\{P_0, \dots, P_m\}$ is a symmetric Clifford system on \mathbb{R}^{2l} .

Multiplicities : (m, l-m-1, m, l-m-1).

Focal submanifolds $M_+ := (F|_{S^{2l-1}})^{-1}(1), M_- := (F|_{S^{2l-1}})^{-1}(-1).$

Since M_+ has a trivial normal bundle in S^{2l-1} , we just consider M_- .

If $m \not\equiv 0 \pmod{4}$, F is determined by m and l up to a rigid motion of S^{2l-1} ; If $m \equiv 0 \mod 4$, there are inequivalent representations of the Clifford algebra on \mathbb{R}^l parameterized by an integer q, the index of the representation. (cf. [Q.M.Wang, J. Diff. Geom. 1988])

In fact,

$$tr(P_0P_1\cdots P_m)=2q\delta(m),$$

where $\delta(m)$ is the dimension of the irreducible Clifford algebra \mathcal{C}_{m-1} -modules.

Denote by $M_{-}(m, l, q)$ the corresponding focal submanifold.

For the topology on $D(S_{-}^{2l-1})$, we have:

Theorem 3.5 Given an odd prime p, for any q_1, q_2 , if $q_1 \not\equiv \pm q_2 \pmod{p}$, then $D(S^n_-)(m, l, q_1)$ and $D(S^n_-)(m, l, q_2)$ have different homotopy types.

Outline of proof. By Pontrjagin class, Wu square modular \mathbb{Z}_p , Thom isomorphism as well as Gysin sequence.

Introduction of Rie.... Gromov-Lawson theory The "double" manifold...

Home Page		
Title	Page	
••	••	
•	Þ	
Page 21 of 21		
Go Back		
Full Screen		
Close		
Quit		

Thank you!