Gromov－Lawson－Schoen－Yau theory and isoparametric foliations

Tang Zizhou（唐梓洲）
School of Mathematical Sciences，Beijing Normal University zztang＠bnu．edu．cn

Joint work with Xie Y．Q．（谢余铨）\＆Yan W．J．（彦文娇）
Available at arXiv： 1107.5234

1 Introduction

Definition 1.1. A Riemannian manifold M is said to carry a metric of positive scalar curvature R_{M} if

$$
R_{M} \geq 0 \text { and } R_{M}(p)>0 \text { at some point } p \in M
$$

Home Page

Title Page
44

Theorem (A. Lichnerowicz, 1963) For a Rie. manifold $X^{4 k}$, which is compact and Spin

$$
R_{X}>0 \Longrightarrow \widehat{A}(X)=0
$$

Remark For example: $\mathbb{C} P^{2 k}$ is not Spin, but $\widehat{A}\left(\mathbb{C} P^{2 k}\right)=(-1)^{k} 2^{-4 k}\binom{2 k}{k} \neq 0$.

Theorem (N. Hitchin, 1974) There is a ring homomorphism

$$
\alpha: \Omega_{*}^{s p i n} \longrightarrow K O^{-n}(p t)
$$

$\alpha=\widehat{A}$ if $\operatorname{dim}=4 k$. For X compact spin, $R_{X}>0 \Rightarrow \alpha(X)=0$.
For example There exist $8 k+1$ and $8 k+2$ dimensional exotic spheres with

Theorem
(Gromov-Lawson, [Ann. of Math. 1980];
Schoen-Yau, [Manuscripta Math. 1979])
Let M be a manifold obtained from a compact Riemannian manifold N by surgeries of codim ≥ 3. Then

$$
R_{N}>0 \Longrightarrow R_{M}>0
$$

2 Gromov-Lawson theory around a point

Let X be a Rie. manifold of dimension n with $R_{X}>0$. Fix $p \in X$ with $R_{X}(p)>0 . D^{n}:=\left\{x \in X^{n}:|x| \leq \bar{r}\right\}:$ a small normal ball centered at p.
Consider a hypersurface of $D^{n} \times \mathbb{R}$:

$$
M^{n}:=\left\{(x, t) \in D^{n} \times \mathbb{R}: \quad(|x|, t) \in \gamma\right\}
$$

where $|x|=\operatorname{dist}(x, p)$, and γ is a curve in the (r, t)-plane as pictured below:

N : the unit exterior normal vector of M. The curve γ begins with a vertical line segment $t=0, r_{1} \leq r \leq \bar{r}$, and ends with a horizontal line segment $r=r_{\infty}>0$, with r_{∞} small enough.

Fix $q=(x, t) \in M$ corresponding to $(r, t) \in \gamma$.

$$
\text { orthonormal basis on } T_{q} M \longleftrightarrow \text { principal curvatures of } M
$$

$$
e_{1}, e_{2}, \ldots, e_{n-1}, e_{n} \longleftrightarrow \underbrace{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n-1}}_{=\left(-\frac{1}{r}+O(r)\right) \sin \theta}, \lambda_{n}:=k .
$$

where e_{n} is the tangent vector to $\gamma, k \geq 0$ is the curvature of the plane curve γ.
By Gauss equation:

$$
K_{i j}^{M}=K_{i j}^{D \times \mathbb{R}}+\lambda_{i} \lambda_{j}
$$

Since $D \times \mathbb{R}$ has the product metric,

$$
\begin{aligned}
& K_{i j}^{D \times \mathbb{R}}=K_{i j}^{D}, \quad 1 \leq i, j \leq n-1 \\
& K_{n, j}^{D \times \mathbb{R}}=K_{\frac{\partial}{\partial r}, j}^{D} \cos ^{2} \theta,
\end{aligned}
$$

$$
\begin{aligned}
\Longrightarrow R_{M} & =R_{D}-2 \operatorname{Ric}^{D}\left(\frac{\partial}{\partial r}, \frac{\partial}{\partial r}\right) \sin ^{2} \theta+(n-1)(n-2)\left(\frac{1}{r^{2}}+O(1)\right) \sin ^{2} \theta \\
& +\mathbf{2}(n-1)\left(-\frac{1}{r}+O(r)\right) k \sin \theta
\end{aligned}
$$

3 The "double" manifold on isoparametric foliation

Assumptions: $X^{n}(n \geq 3)$ compact, connected, $\partial X=\emptyset$.
Y^{n-1} : a compact, connected embedding hypersurface in X, with trivial normal bundle $\quad(\Rightarrow \exists$ a unit normal vector field ξ on $Y)$, and $\pi_{0}(X-Y) \neq 0 \quad\left(\Rightarrow Y^{n-1}\right.$ separates X^{n} into two components, $\left.X_{+}^{n}, X_{-}^{n}\right)$.

ξ on $Y \rightsquigarrow a$ unit normal v.f. in a neighborhood of Y, still denoted by ξ.
$D\left(X_{ \pm}\right)$:= the double of $X_{ \pm}$, the manifold obtained by gluing $X_{ \pm}$with itself along the boundary Y.

Define a continuous function $r: X^{n} \longrightarrow \mathbb{R}$

$$
x \mapsto\left\{\begin{array}{cl}
\operatorname{dist}(x, Y) & \text { if } x \in X_{+} \\
-\operatorname{dist}(x, Y) & \text { if } x \in X_{-}
\end{array}\right.
$$

where $\operatorname{dist}(x, Y)$ is the distance from x to the hypersurface Y.
Let $Y_{r}:=\{x \in X \mid r(x)=r\}, \bar{r}>0$ small. Consider a manifold

$$
M^{n}:=\left\{(x, t) \in X^{n} \times \mathbb{R}|(|r(x)|, t) \in \gamma,|r(x)| \leq \bar{r}\}\right.
$$

where γ is the plane curve as before.
Home Page

We obtain:

$$
\begin{equation*}
R_{M}=\sum_{i \neq j}^{k} K_{i j}^{M}=R_{X}+2 A \sin ^{2} \theta+2 k H(r) \sin \theta \tag{1}
\end{equation*}
$$

where

$$
A:=\sum_{i<j \leq n-1} \mu_{i} \mu_{j}-\operatorname{Ric}^{X}(\xi, \xi), \quad H(r)=\sum_{i=1}^{n-1} \mu_{i}(r): \text { mean curvature of } Y_{r} .
$$

Gromov and Lawson computed the scalar curvature of M constructed from

From now on, we deal with $X^{n}=S^{n}(1)$, and Y^{n-1} is a minimal isoparametric hypersurface in $S^{n}(1)$, i.e., minimal hypersurface with constant principal curvatures, separating S^{n} into $S_{+}^{n}(r \geq 0)$ and $S_{-}^{n}(r \leq 0)$.
Gauss equation implies

$$
S=(n-1)(n-2)-R_{Y}
$$

where S is norm square of the second fundamental form.

Peng and Terng:([Annals of Math. Studies, 1983])
If Y is a minimal isoparametric hypersurface in S^{n}, then

$$
S=(g-1)(n-1),
$$

Theorem 3.1 Let Y^{n-1} be a minimal isoparametric hypersurface in $S^{n}(1)$, $n \geq 3$. Then each of doubles $D\left(S_{+}^{n}\right)$ and $D\left(S_{-}^{n}\right)$ has a metric of positive scalar curvature. Moreover, there is still an isoparametric foliation in $D\left(S_{+}^{n}\right)$ (or $D\left(S_{-}^{n}\right)$).
Outline of proof. The scalar curvature of M restricted to Y_{r} is
$\left.R_{M}\right|_{Y_{r}}=n(n-1) \cos ^{2} \theta+(n-g-1)(n-1) \sin ^{2} \theta+a(r) \sin ^{2} \theta+2 k H(r) \sin \theta$,
where $H(r)$ has the property that

$$
H(0)=0 \quad \text { and } \quad H(r)>0 \text { for any } r>0
$$

and $a(r)$ satisfies

$$
\lim _{r \rightarrow 0} a(r)=0
$$

In fact, $a(r)$ is identically 0 when $n-1-g=0$.
In each of two cases $n-1-g>0$ and $n-1-g=0$, we can control the "bending angle" of the curve γ, so that $\left.R_{M}\right|_{Y_{r}}>0$.

Let Y be a compact minimal isoparametric hypersurface in S^{n} with focal submanifolds M_{+}and M_{-}.
Proposition 3.2 Let the ring of coefficient $R=\mathbb{Z}$ if M_{+}and M_{-}are both orientable and $R=\mathbb{Z}_{2}$, otherwise. Then for the cohomology groups, we have isomorphisms:

$$
\left\{\begin{array}{l}
H^{0}\left(D\left(S_{+}^{n}\right)\right) \cong R \\
H^{1}\left(D\left(S_{+}^{n}\right)\right) \cong H^{1}\left(M_{+}\right) \\
H^{q}\left(D\left(S_{+}^{n}\right)\right) \cong H^{q-1}\left(M_{-}\right) \oplus H^{q}\left(M_{+}\right) \quad \text { for } 2 \leq q \leq n-2 \\
H^{n-1}\left(D\left(S_{+}^{n}\right)\right) \cong H^{n-2}\left(M_{-}\right) \\
H^{n}\left(D\left(S_{+}^{n}\right)\right) \cong R
\end{array}\right.
$$

Home Page

Proposition 3.3 $D\left(S_{+}^{n}\right)$ is a π-manifold, i.e. stably parallelizable manifold. In particular, $D\left(S_{+}^{n}\right)$ is an orientable, spin manifold with all the Stiefel-Whitney and Pontrjagin classes vanishing.
Corollary 3.4 The KO-numbers $\alpha\left(D\left(S_{+}^{n}\right)\right)=0, \alpha\left(D\left(S_{-}^{n}\right)\right)=0$.
Proof of Prop 3.3.

$$
\begin{gathered}
B^{m_{+}+1} \hookrightarrow S_{+}^{n}=B\left(\nu_{+}\right) \\
\downarrow \pi \\
M_{+}
\end{gathered}
$$

Since S_{+}^{n} has a metric, we can define

$$
\begin{array}{rl}
B_{1}^{n} \sqcup_{i d} B_{2}^{n} & S\left(\nu_{+} \oplus \mathbf{1}\right) \\
e & \longmapsto \begin{cases}\left(e, \sqrt{1-|e|^{2}}\right) & \text { for } e \in B_{1}^{n} \\
\left(e,-\sqrt{1-|e|^{2}}\right) & \text { for } e \in B_{2}^{n}\end{cases}
\end{array}
$$

where B_{1}^{n}, B_{2}^{n} are two copies of $S_{+}^{n}=B\left(\nu_{+}\right)$.
Thus $D\left(S_{+}^{n}\right) \cong S\left(\nu_{+} \oplus \mathbf{1}\right)$, sphere bundle of Whitney sum $\nu_{+} \oplus \mathbf{1}$.
$\Longrightarrow T\left(S\left(\nu_{+} \oplus \mathbf{1}\right)\right) \oplus \mathbf{1} \cong \pi^{*} T M_{+} \oplus \pi^{*}\left(\nu_{+} \oplus \mathbf{1}\right) \cong \pi^{*} T S^{n} \oplus \mathbf{1} \cong(\mathbf{n}+\mathbf{1})$
$\Longrightarrow D\left(S_{+}^{n}\right)$ is stably parallelizable, i.e., a π-manifold.

For isoparametric hypersurfaces in $S^{n}(1)$,
Münzner: g can only be $1,2,3,4$ or 6 .
$g=1$, an isoparametric hypersurface must be a hypersphere, $D\left(S_{+}^{n}\right)=S^{n}$.
$g=2$, an isoparametric hypersurface must be $S^{k}(r) \times S^{n-k-1}(s), r^{2}+s^{2}=1$,

$$
D\left(S_{+}^{n}\right)=S^{k} \times S^{n-k} \text { or } S^{k+1} \times S^{n-k-1} .
$$

$g=3$, all the isoparametric hypersurfaces are homogeneous. (E.Cartan, 1930's)

Home Page

Title Page

44

Homogeneous hypersurfaces in $S^{n}(1)$: principal orbits of the isotropy representation of symmetric spaces of rank two, classified completely by Hsiang and Lawson ([J. Diff. Geom. 1971]).
G : compact Lie group.
$G \times S^{n} \rightarrow S^{n}:$ cohomogeneity one action. $S^{n} / G=[-1,1]$.

$$
\text { orbits } Y, M_{ \pm} \longleftrightarrow \text { isotropy subgroups } K_{0}, K_{ \pm} .
$$

By the group actions

$$
\begin{aligned}
K_{ \pm} \times\left(G \times B_{ \pm}^{m_{+}+1}\right) & \longrightarrow G \times B_{ \pm}^{m_{+}+1} \\
(k, g, x) & \longmapsto\left(g k^{-1}, k \bullet x\right)
\end{aligned}
$$

we obtain a decomposition

$$
S^{n}=G \times_{K_{+}} B_{+}^{m_{+}+1} \cup_{Y} G \times_{K_{-}} B_{-}^{m_{-}+1},
$$

where $B_{ \pm}^{m_{ \pm}+1}$ denote the normal disc to the orbit $M_{ \pm}=G / K_{ \pm}$, and \bullet is a slice representation.

Next, by defining a new action of the isotropy subgroup K_{+}on $G \times S^{m_{+}+1}$

$$
\begin{aligned}
& K_{+} \times\left(G \times S^{m_{+}+1}\right) \longrightarrow G \times S^{m_{+}+1} \\
& \quad(k, g,(x, t)) \longmapsto\left(g k^{-1}, k \star(x, t):=(k \bullet x, t)\right)
\end{aligned}
$$

g	$\left(m_{+}, m_{-}\right)$	(U, K)	K_{0}	K_{+}	K_{-}
1	$n-1$	$\begin{aligned} & \left(S^{1} \times S O(n+1), S O(n)\right) \\ & n \geq 2 \end{aligned}$	$S O(n-1)$	$S O(n)$	$S O(n)$
2	(p, q)	$\begin{aligned} & (S O(p+2) \times S O(q+2) \\ & S O(p+1) \times S O(q+1) \\ & p, q \geq 1 \end{aligned}$	$S O(p) \times S O(q)$	$S O(p+1) \times S O(q)$	$S O(p) \times S O(q+1)$
3	$(1,1)$	$(S U(3), S O(3))$	$\mathbb{Z}_{2}+\mathbb{Z}_{2}$	$S(O(2) \times O(1))$	$S(O(1) \times O(2))$
3	(2, 2)	$(S U(3) \times S U(3), S U(3))$	T^{2}	$S(U(2) \times U(1))$	$S(U(1) \times U(2))$
3	$(4,4)$	($S U(6), S p(3)$)	$S p(1)^{3}$	$S p(2) \times S p(1)$	$S p(2) \times S p(1)$
3	$(8,8)$	$\left(E_{6}, F_{4}\right)$	$\operatorname{Spin}(8)$	$\operatorname{Spin}(9)$	$\operatorname{Spin}(9)$
4	$(2,2)$	$(S O(5) \times S O(5), S O(5))$	T^{2}	$S O(2) \times S O(3)$	$U(2)$
4	$(4,5)$	$(S O(10), U(5))$	$S U(2)^{2} \times U(1)$	$S p(2) \times U(1)$	$S U(2) \times U(3)$
4	$(6,9)$	$\left(E_{6}, T \cdot \operatorname{Spin}(10)\right)$	$U(1) \cdot \operatorname{Spin}(6)$	$U(1) \cdot \operatorname{Spin}(7)$	$S^{1} \cdot S U(5)$
4	(1, m-2)	$\begin{aligned} & (S O(m+2), S O(m) \times S O(2)) \\ & m \geq 3 \end{aligned}$	$S O(m-2) \times \mathbb{Z}_{2}$	$S O(m-2) \times S O(2)$	$O(m-1)$
4	(2, 2m-3)	$\begin{aligned} & S U(m+2), S(U(m) \times U(2))) \\ & m \geq 3 \end{aligned}$	$S\left(U(m-2) \times T^{2}\right)$	$S(U(m-2) \times U(2))$	$S\left(U(m-1) \times T^{2}\right)$
4	(4, 4m-5)	$\begin{aligned} & (S \bar{p}(m+2), S p(m) \times S p(2)) \\ & m>2 \end{aligned}$	$S p(m-2) \times S p(1)^{2}$	$S p(m-2) \times S p(2)$	$S p(m-1) \times S p(1)^{2}$
6	$(1,1)$	$\left(G_{2}, S O(4)\right)$	$\mathbb{Z}_{2}+\mathbb{Z}_{2}$	$O(2)$	$O(2)$
6	$(2,2)$	$\left(G_{2} \times G_{2}, G_{2}\right)$	T^{2}	$U(2)$	$U(2)$

Introduction of Rie.

(cf. [H.Ma and H.Ohnita, Math. Z., 2009])

Example: $\left(g, m_{+}, m_{-}\right)=(3,1,1)$.
Cartan: the isoparametric hypersurface must be a tube of constant radius over a standard Veronese embedding of $\mathbb{R} P^{2}$ into S^{4}. ν : the normal bundle of $\mathbb{R} P^{2} \hookrightarrow S^{4}$, so $T \mathbb{R} P^{2} \oplus \nu=\mathbf{4}$.
η : Hopf line bundle over $\mathbb{R} P^{2}$.

$$
\begin{aligned}
& T \mathbb{R} P^{2} \oplus \mathbf{1}=3 \eta \\
\Longrightarrow & 3 \eta \oplus \nu=T \mathbb{R} P^{2} \oplus \mathbf{1} \oplus \nu=\mathbf{5} \\
\Longrightarrow & 4 \eta \oplus \nu=5 \oplus \eta .
\end{aligned}
$$

Since $4 \eta=\mathbf{4}$, by obstruction theory, we have $\nu \oplus \mathbf{1}=\eta \oplus \mathbf{2}$.
Thus $D\left(S_{+}^{4}\right)=S\left(\nu_{+} \oplus \mathbf{1}\right)=S(\eta \oplus \mathbf{2})$, furthermore,

$$
D\left(S_{+}^{4}\right) \cong S^{2} \times S^{2} /\left(x, y_{1}, y_{2}, y_{3}\right) \sim\left(-x,-y_{1}, y_{2}, y_{3}\right)
$$

where $x \in S^{2},\left(y_{1}, y_{2}, y_{3}\right) \in S^{2}$.
On the other hand, the Grassmannian manifold is represented by

$$
G_{2}\left(\mathbb{R}^{4}\right) \cong S^{2} \times S^{2} /(x, y) \sim(-x,-y)
$$

By calculation, we see $G_{2}\left(\mathbb{R}^{4}\right)$ is not spin, while as mentioned before, $D\left(S_{+}^{4}\right)$ is spin!

When $g=4$, the OT-FKM-type isoparametric hypersurfaces are level hypersurfaces of the following isoparametric functions restricted on $S^{2 l-1}$:

$$
\begin{gathered}
F: \mathbb{R}^{2 l} \rightarrow \mathbb{R} \\
F(z)=|z|^{4}-2 \sum_{k=0}^{m}\left\langle P_{k} z, z\right\rangle^{2},
\end{gathered}
$$

where $\left\{P_{0}, \cdots, P_{m}\right\}$ is a symmetric Clifford system on $\mathbb{R}^{2 l}$.
Multiplicities: $(m, l-m-1, m, l-m-1)$.
Focal submanifolds $M_{+}:=\left(\left.F\right|_{S^{2 l-1}}\right)^{-1}(1), M_{-}:=\left(\left.F\right|_{S^{2 l-1}}\right)^{-1}(-1)$.

If $m \not \equiv 0(\bmod 4), F$ is determined by m and l up to a rigid motion of $S^{2 l-1}$;
If $m \equiv 0 \bmod 4$, there are inequivalent representations of the Clifford algebra on \mathbb{R}^{l} parameterized by an integer q, the index of the representation. (cf. [Q.M.Wang, J. Diff. Geom. 1988])
In fact,

$$
\operatorname{tr}\left(P_{0} P_{1} \cdots P_{m}\right)=2 q \delta(m)
$$

where $\delta(m)$ is the dimension of the irreducible Clifford algebra \mathcal{C}_{m-1}-modules.

Denote by $M_{-}(m, l, q)$ the corresponding focal submanifold.
For the topology on $D\left(S_{-}^{2 l-1}\right)$, we have:
Theorem 3.5 Given an odd prime p, for any q_{1}, q_{2}, if $q_{1} \not \equiv \pm q_{2}(\bmod p)$, then
$D\left(S_{-}^{n}\right)\left(m, l, q_{1}\right)$ and $D\left(S_{-}^{n}\right)\left(m, l, q_{2}\right)$ have different homotopy types.
Outline of proof. By Pontrjagin class, Wu square modular \mathbb{Z}_{p}, Thom isomor-

Introduction of Rie. Gromov-Lawson theory The "double" manifold.

Thank you!

Home Page

Title Page

4

4

Page 21 of 21

Go Back

