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Abstract.

The talk is devoted to the remarkable towers of bundles
MY s M85t >0

with fiber the circle St.

This towers are defined by the nilpotent groups of the polynomial
transformations of the real line.

Each M"™, n > 2, is a smooth nilmanifold with a 2-form

which gives a symplectic structure on any M?Z2F.

Such manifolds play an important role in different areas of mathematics.
We will discuss the differential-geometric and algebro-topologic
results and unsolved problems, concerning this manifolds.



Groups of polynomial transformations.

Put L™ = {ps(t) =t + X0_, z3t"T1 z;, € R}
We have L" = R" : pp(t) = z = (x1,...,Zn).

We will consider L™ as the n-dim group of polynomial transformations
of the real line

R—R: t— ps(2),

with the multiplication: z xy = z, where

(pa * py) (t) = pz(t) = py(p=(t)) mod ¢" T2,



Example.

For n = 4:

4
pz(t) = (pz * py) (1) = pe(t) + Y yppz(®)* T mod t°:
k=1

1 + y1,

zo = x2 + 2x1Y1 + Y2,

23 = 23+ (222 + 27)y1 + 32192 + ¥3

24 = x4 + 2(x3 + x122)y1 + 3(z2 + 2D)y2 + 421y3 + Y4

<1



Nilpotent group structure on R”,

ey

The group L™ = R"™ has the structure of nilpotent group with
the upper central series

LyC---CLjC---CLg=1L",
where L = {0 € R},

n
RV = {p(t) =t + > xpth T}
k=q+1

We have

LZ’:{xEL”|VyELn: [z, y] ELZ’_|_1}
and Lg/Lg_l = R is the center of L™/L", ¢q =0,...,n— 1.



The canonical matrix representation.

The left multiplication x gives the canonical matrix representation

(z:v—z%v): p:L" = GT(n+1): p(ps(t)) (3}):( 1 )

I *x U

into the group of lower triangular (n+ 1) x (n+ 1)-matrices with
ones on the diagonal:

p(px(t)) =X = (xzk)a ?:,]{‘:O,...,’I’L,
where z; . = [pe(¢)*T1]; 11 is the coefficient of ' T1 in p.(¢)F.



For n = 4:

o= (1) =

L1
L2
L3

Example.

1
211 1
2zo + 33% 3xq 1

2(x3 4 z1w2) 3(w2+27) 4z 1)

(1)

vl
v2

v3

\v4)



Deformation to the standard group structure.

The multiplication * on R™ can be written down as

zxy =z +y+ Alz)y,

where A(z) = (a;(x)) is the lower triangular (n x n)-matrix with
zeros on the diagonal and

a;p(z) =z = [p2 (O 41, i F k.



Any linear transformation B : R"® — R™ of coordinates in R"
by B € GL(n,R) gives a transformed multiplication on R";

rxpy 2 BL(Be) « (By)) =

= B~ Y(Bz + By + A(Bz)By) =
=z +y+ (B 1A(Bz)B)y.

In the case of a scalar matrix 7F, we obtain

rxry=x+vy+ A(Tx)y.

This gives a deformation of multiplication * (r = 1) to
the standard addition (= = 0) on R".



Example. For n = 4:

rxy=1x+y+TA1(x)y + 7% As(x)y,

where
0 0]
221 O o 0 O
AL@) = 120 321 0 @ =1
2x3 3xo 4x7 O 2r1xo 3z



Cocompact lattices.

The multiplication % gives the free actions of L™ on R":

The left shift V— Tk gives a linear action p,
The right shift V= Uk gives a non-linear action.

Let us consider the canonical lattice:
M= {p(t) € L" : x; € Z}
with the upper central series:
rhc---crgc---crg=r".

This lattice ' = Z" is cocompact (uniform).

10



Nilmanifolds.

With respect to the right shifts we obtain
a smooth closed and compact nilmanifold

M"™ =R"/™.

The tangent bundle of M" is

T(M™) =R" X R" - M" =

R™ /T

with respect to the linear action p (left shift) on a fiber R".
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We have the towers of groups
"Lt ..t

morrtos... ot
and the induced tower
M — Mt =51
of bundles M™ — M™~1 with the fiber S1.

For each n the monomorphism holds

in 1t LY — L™ 1 in(z1) = (wl,...,xlf,...,aj?).

Its composition with the projection L™ — Ll is the identity map.
Thus for each n the bundle

Mt — 8t with the fiber L} /%

has a section.
12



Left invariant differential operators.

Let us fix the polynomial ring R[xq,...,xn] as the ring of functions
on L™ = R",
Put for f(x) € Rl[z1q,...,xn]

RUF(2) L flaxy) = 3 Di(f(x))y!

[7|=0

where Ry is the right shift operator,
I =(i1,...,in) and yl = yzllyf{&

From the associativity equation R7RZ = R;R% we have

S S Dipsf(a)yl = Y Drfa)(yx2)E.

11]>0|J|>0 |[K|>0

13



Example n = 3. We have Dgf(z) = f(x),

9 9 o D
D = 201 —— 2 .
(1.0,0) = 5y, + "1 g + (222 + $1)8x3,
0 0
D =9 43;4- 2
(0,1,0) 0xo T :1318333
o
Do) =5,

D(1,0,00P(0,1,0) = P(1,1,0) T 2DP(0,0,1)

D©0,1,00P(1,0,00 = P(1,1,0) T 3P(0,0,1)-

14



The algebra A™ generated by the operators D; is the algebra of
all left invariant differential operators on R[x1,...,zn] for the left
shift LZ:

Lof(x) = f(z*x),
that is
L;Drf(x) = DrLif(x)

for z as parameter.

15



Algebra of the left invariant operators.

The algebra A™ is multiplicatively generated by
the operators

g’l, — &L—I-Z;E%q@q, — 1,...,7@,
where 0; = %, and z;, is the coefficient of t4+1 in the polynomial
px(t) 11, as before.

The commutators of this operators are

[€i,&5] = (G — )€1
with & = 0 if ¢ > n.

Example. For n =3

A3 = R[€1, 2,631/ ([€1, €2] = €3, [€1, €3] = [€2,€3] = 0).

16



The operators {¢;} constitute a basis in the Lie algebra L£" of the
left invariant vector fields on the group L™, and the operator &,
corresponds to the one-parameter subgroup ¢, (s) of polynomials

1
{gom(t; s) =t(1l —mst™)"m mod tn+2}, m=12,....n

We have

pm(tis) = t+st™ T3 (L+m)(14+2m) ... (1+(k-1)m) tkm+1
k>2

Note ¢ (t,1) ¢ '™ for m > 1, but om(t;m) = pm(t; 1)™ e ™.

17



Example. For n =4
p1(t;8) =t + st? + s%t> + 5% + s4t°,
3
wo(t; s) =t + st> + 58%5,

p3(t; ) =t + st*,
wa(t;s) =t + st°.

01(t; 1) = eq *eo *63_)2 * 62,

where ez 1(e3(t)) =t.
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Cohomology ring of a differential graded algebra.

A differential graded algebra (d. g. a.) (C,d) is a graded algebra
C=)>) CP
p=0

with a differential d : C — C of degree 1, i. e. d(CP) c cprt1
and d?2 = 0, such that a-b = (=1)P%a for a € CP, b € CY,
dab = (da)b 4 (—1)Pa(db) for a € CP.

Put ZPC = ker(d : CP — CPT1) — cocycles group,
BPC = Im(d : CP~1 — CP) — coboundaries group,
and HPC = ZPC/BPC — cohomology group.

Then H*C = Z HPC
p=0

is a d.g.a. (with d = 0) — cohomology ring of C.

19



Example.

Let X be a smooth n-dimensional compact manifold.
Then we have a d.g.a. of smooth real differential forms

C(X) =Y CP(X).
p=0

In a coordinate neighbourhood U C X we have for w € CP(X)

w = Zuilu_ip(a:)dazil A ANdz®, oz = (z1,...,2") e,

— S 1A ... ip —
dw = Z duzlmzp Adx"l A A dx™P =
11 <tp<---<ip
— Z ﬁuzlzpdxo/\dx 1/\/\dCCp
i1 <in<---<ip O

and H*C(X) = H*(X:R).
20



Differential graded algebra
of the left invariant differential forms on the nilmanifold.

Let wi,...,wn be the basis of the left invariant differential
1-forms on L™ dual to the basis {¢;}.

Let

n

w= Y wi

i=1
be the Maurer-Cartan form taking values
in the Lie algebra L™ of vector fields &, 1 =1,...,n.

21



The Maurer—Cartan equation

1
dw = ——|w, w]
2

in our case takes the form

dwg = > (k—1) wp A w. (1)
((k,1): k>1>0, k+l=q}

Here [w,w](¢1,¢2) = [w((1), w((2)].

Note that dwy = dw>, = 0 and (1) is independent of n.

Examples: dws = woAwq, dwg = 2w3Awi, dws = 3waAwi +w3Aws.

22



Bigraded cohomology ring.

We have H*(M™;R) = H(A(wq1,...,wn),d)
where A( ) is the exterior algebra, and d has the form (1).

Set bideg wq = (1, —20q). It follows from (1) that
the differential complex (A(wq,...,wn),d) can be decomposed as
a sum of differential subcomplexes

A%+ 3" (A2, d),

g=1
where AO =R and (A~24,d) is generated by the forms
Wiy A Awiy, S=1,...,m, 41 >ip > >is>0, i1+ F1is = q.

23



For any n > 2 we have:
1 n. — rrl,—2 n. 1,—4 n. —
H"(M";R)=H (M™;R)+ H (M"' R)=RR

with the generators [wq1] and [ws] correspondingly.
Thus HY(M™2) =2+ Z, n > 2.

The ring H*(M™,R) has the structure of a bigraded ring

n s(2n+1-—s)
R+ > Y HS (MY R).
s=12¢=s(s+1)

Set n(s,q) = q — %(S —1)(s—2). For any k > n(s,q) we have
HS’_Qq(Mk, R) — HS,—Q(](M]C—I-].’ R)

24



Example for n = 4.

We have:
H*(M* R) = H*(A (w1, ws,w3,wa), d),

where dwi = dwp = 0, dw3z = wo A w1y, dwg = 2wz A wy.

4 s(9—s)

H*(M*R) =R+ > Y H2U(M*R).

s=12¢=s(s+1)

25



oo W NN O —

-
o © 0~ O

= O

w2
w3

w4

10 differential subcomplexes.

1
=

N

wo N\ w1q

w3 N\ wq
wq N\ W1
w3 N\ wy

wqg N\ wo
waq N\ w3

VAN

w3 N\ wo A wiq
wgq N\ wo N\ w1q
wqg N\ w3z N\ wiq
wqg N\ w3z N\ wo

wg N w3z Nwo A\ wq
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dim O

Generators of the Poincare duality.

1 2 3 4
wi]  +—  |wa Aw3z Aw)]
wo] — [waAw3zAwi]
[w1 A w4]
)
[wo A w3]

> [wa N w3 Aws A wq]

27



Toric bundles.

For each n and g < [%} there are exact sequences
0— RITL 5 gl pn—a
0—zitl o+l a0,

which give a smooth bundle

. 1 —
xd ML M
with fibre torus T4¢+1,

28



Symplectic nilmanifolds M™.

A smooth manifold M is called symplectic if it carries
a nondegenerate closed 2-form <2 which is called
a symplectic form.

Consider the smooth bundle with fibre circle S1
Ty = wg VAN V)

The left invariant 1-form w, 41 is @ connection in the bundle .
The curvature form of this bundle is

Qp = S (k — Dwp, A w
{(k,1): k+l=n+1, k>1>0}

and we have 7, = dwy 4.
The nilmanifold M?2™ with the form o, is symplectic.

Conjecture. €2, is an integer form for any n.
29



Example. For n =3, ¢ = 1 we have the smooth bundle
ma MY — M? = T2
with the fibre T2 and the symplectic form:

Q4 = 3wg N wy + w3z A wo.

The base is the symplectic manifold with the form €25 = wo A w1
and (m)*Q, =0.

The manifold M3 x S is symplectic with the form

2wz N\ w1 + wo A dt.

30



The manifold M2"—1 has the form

Qop1 = > (k — Dwg, A wy.
{(k,1): k+1=2n, k>1>0}

For n > 2 the form w, IS not closed, thus the 2-form

Q=C2, 1 +wnAdt

is not closed on M27—1 x 81 byt Q" is closed and gives the
fundamental cocycle on this manifold.

31



Nonformality of nilmanifolds.

A simplicial complex X is called formal if its rational homotopy
type is a formal consequence of its cohomology ring.

Theorem. (F. E. A. Johnson, E. G. Rees, 1989)
If G is a nilpotent Lie group and I' C G is a discrete cocompact

subgroup, then G/I" is formal if and only if G is abelian.

Corollary. The symplectic nilmanifolds M?2™ are nonformal,
m > 2, and M2 = T2 is formal.

32



Realizing nilmanifolds as symplectic submanifolds
of complex projective spaces CPYN
denote by X, (N) the symplectic blow up of CPY along M?2".

Theorem. (I.K. Babenko, I.A. Taimanov, 1999)
For m > 2 and N > 2m + 1 the symplectic manifolds X,,(IN) are

simply connected and nonformal.

The proof of this result makes use of the fact that in the cohomology
ring H*(M?2") there are nontrivial Massey products.

33



Universal properties of M™.

The manifold M" = K(I'",1) is the Eilenberg-Maclane space
and thus for any CW-complex X

(X, M"] = HI (X, ™).

The manifold M™ is the classifying space

for the discrete group I, that is M™" = BI'™

and thus [X, M"] is the set of isomorphism classes
of principal I'"-bundles over a CW-complex X;

we have

[X, M™] = Hom(m1(X), ™),
Hy(M™ Z) = H,(T™;Z),  HY(M™Z) = H"(,; 7).

34



Cellular subdivision of M™",

Consider the cellular subdivision
(pt) =M8’CM{”C CM}Z’_l C M} = M",
where M = VI, St M /M = vSFHL M /M = VS,

For the Z-homology groups of pair we obtain the exact sequence

0 — Hoy(M") —» Hoy(M"/M7{") — &;*17Z — H{(M"™) — 0.

Using that M"™ = K(I'"; 1) and M7 = K(V}_17Z;1)
for the homotopy groups of pair we obtain the exact sequence

0 — Rn — Vje1Z —T" — 0.

Here VI ,Z is the free product of Z

(2

and Ry, = mo(M™, M7) is its subgroup. It is a free group.

35



The multiplicative generators of the group ' c L"
are e (t) =t +tFT1 k=1,... n. Put eg(t) = t.
Note @q(t; 1) = eq(t) for ¢ > [3].

It is clear that if el = 'l x-- -*e%” = eg Where I = (i1,...,in) € Z",
then I = 0.
We have
[ers eptal = €Bpqn*ei*. .., i>2k+2, k>1,
[ek,ek+1]=ezk+1*ej*..., 13 >2k+1, k>1.

Thus the group Hi(M™;Z) =T /[n,Tn] has only 2-torsion.

36



Hopf’s integral homology formula.

Let G=F/R and F is a free group. Then

H>(G,7Z) = (RN [F,F])/|F, R].

Thus
where F" = VI'_,7Z and

0— Rp— Vi 1Z —-T" =0,

and therefore to each element a € H>(M™,7Z) corresponds an
element

g = la1,b1] - ... - [ag, bg] € (Rp N [F", F™]).

37



Example n = 3.

3 has the generators e, eo, ez and the relations
le1,e0] = e3, [e1,e3] =eqg, [en,e3] = ep.

Thus Hi(M3,2) =13/[M3, 131 =2a Z.

In this case F3 has the generators c1, €2, C3,
R3 has the generators rq1, ro, r3 and

: —1
R3 — F3 . ry [01763]7 ro — [62703]7 r3 — [61762]63 .

We have r3 ¢ [F3, F3].
The generators of

Hy(M3:2) =707

correspond to r1 and ro.

38



Example n = 4.

4 has the generators eq, eo, e3, e4 and the relations
— — 2 _
[617 62] — €3 * €4, [617 63] — €4, [617 64] — €0,

[eia e]] — €0, 1,] = 2,3,4.
Thus H{(M*Z2) =T4/[T*TH =Z®Z & Z>.

39



Consider an oriented 2-dimentional surface Sg of genus g.

We have S2 = K(Gy, 1),

where G, = 71(S7) is the group with the generators a1, b1, ..., ag, by
and a single relation [a1,b1] - ... - [ag,bg] = 1,
that is

07— V29,7 — Gy — 0.

We have
[S2, M™] = Hom[Gy, ™.

40



Corollary.
Each element a € H>(M"™, Z), n > 2, is realised by a smooth

mapping
fa:Sg— M"™ (fo)«([ST]) =a

for some g.

The form 2, is integer if and only if

(faSn, [S2]) € Z.

41



Let m, : M*t1 s M"™ be a smooth bundle with the fibre SI.

Denote by &,4+1 = §,41(m) the field of vectors
tangent to the fiber of this bundle.

Problem. Classify the sequences of smooth manifolds
s MPTL 5 MM o >0,

with the fiber S, such that
- for each n > 1 there exists an integer closed 2-form €2,, on M™

satisfying the condition

T = dwp41, Where (wy41,8,41) = &1l

- for each even n the form €2, is nondegenerate.

42



The following problem is closely related to the previous one and
has self-contained interest:
Problem. For the towers

MP— M558t

of fibrations described above
calculate the cohomology rings H*(M"™; k) for k = Z and Q.
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Consider the bundle
in . B — M"™
with the fiber D2, such that 0E = M"T1,

In the exact sequence of the pair (F,0F)
the Gyzin homomorphism has the form

g HI(M™) — HTT2(M™) : jl'a = [Qnla.
Thus we get the exact sequence
0 < kerjg_1 + HI(M™ 1) cokerj;_o < 0.
In the case of rational coefficients we get
dim HI(M™T1) = (dim kerj,_1) + (dim cokerj;_5).

Denote the Betti number dim Hi1(M"™,Q) by by.
Thus we have the estimate

1
ot <oy 4 b
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D. V. Millionshikov has obtained results on the Betti numbers bg

for manifolds M™ defined by the groups L".
His approach is based on the calculations by L. Goncharova

of infinite dimensional Lie algebras cohomologies.

For such manifolds he proved that

5 =3 for all n > 5;

3 =5 for all n > 11.
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D. V. Millionshchikov used some combinatorial arguments and
the Goncharova theorem to sketch the proof of the statement

bg = Fa2
for n sufficiently large (n > 3q + 2),
where F, 4o is the (¢ + 2)-th Fibonacci number.
Thatis Fyyo =F,41+ Fy, q20, Fg =0, F; = 1.
However no detailed proof of this statement appeared till now.
Recently he suggested to consider the last statement as a conjecture.

Using the computer, Millionschikov calculated Betti numbers b{;
for n < 30.
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Addendum.
Massey products.

Let (C,d) — a d.g.a. For a € CP put
a = (—1)Pa.
Then we obtain the involution on C, i.e. ab = ab, a = a, and

dab = (da)b + a(db) for a € CP.

Let TO = T,S(O) — the algebra of upper triangular (kxk)-matrices
over C with zeros on the diagonal. For A = (a;;) € TP put
dA = (daij) and A = (5,2])

Let J¥ = (J5) € TP, such that J = 0, if (4,5) # (1,k), and

k —
t]lk—l-

50



Lemma. Let A= (a;;) € T, 4, such that a;,41 € C% and

dA = AA — egnT1

for some ¢ € C'. Then

—dai’i_|_1=0,
-ceC™ wherem=ki1+---+kn—n-+ 2,
- dc = 0.

Show that dc = 0. We have:
dA = —dA = —AA — cJ" 1L
Using that J*t1A4 = AJ7*+1 =0, we obtain
dAA = (dA)A + A(dA) = —AAA+ AAA = 0.
So
(de)J" T = d(AA) — ddA = 0.
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Definition. Take n homogeneous elements aq,...,an in C,
which are cocycles, i.e. da; =0, 1 =1,...,n.
Assume that there exists a matrix A € T79+1 such that:

- Q41 = G4
- A satisfies the equation

dA = AA — egnt1

for some c € C.

In this case it is told that the Massey product (aq,...,an) Of the
cocycles a1,...,an is defined and equals cocycle c.
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Examples n = 2.

0 a1 ai3
0 ao
0
So
O 0 1
C O 0| =
0
and
da1 = dao = 0,

for some aq3.

O a1 ai3 O O ajars
O ao | = O O
0 0
O O ajan O day dajsz
O O — O dao
O O

c = (a1,ap) = aiap —dai3
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Examples n = 3.

O a1 ai13 aig\ (O a1 a13 aia O O ajap ajapg + aizas
O ao» ang O a> aog| O O ana3
O a3 O a3z | 0 O
O 0 O
So

O 0 01 OO0 a1ao C_LlCL24+C_Ll3CL3 0 dal dCL13 da14
. O 0 O _ O O ana3s B O dar> daog
0O Of 0 0 0 das
0 0 0

So, da; =0, :1=1,2,3, ajap =day3, ao2a3 = daoa,
and <a1, an, a3> =c=ajao4 +a13a3, degc=ky + ko + k3 — 1.
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Examples n = 3.
H*(M3) = H*(A(w1,ws,w3),d), where dwy = dwy = 0,
dws = wo Awy. The generators of H*(M3):
wil], [wa], [w3 Awi], w3z Aws], [w3z Awy Awi].
So, for
a] = wi, G2 = W2, A3 — W] = 413 — W3, A4 — —W3

and (w1,wo,wq1) = —2w3 A w1,

a1 = wi, a2 = w1y, a3 =wp > a13 = 0, apqg = w3
and (w1, w1, ws) = w3 Awy,

a] = w1, a2 = w2, a3 = w2 = a13 = w3, a4 =0

and (w1,wo,w2) = —w3z A wo.
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The matrix equation
dA = AA — cgntl
for n > 4 gives the following relations:

da; ;41 = da; =0,

k—1
dai,k — Z C_Li,qaq,/m Z—|— 2 < k <n
q=1+1
and
n
(a1, an) =c= ) a140gn+1 — da1n41;
q=2

where dc = 0. So
da; i4o = Qj;410;41 ;42 = QjG; 41,
da; i13 = ; j410i41 ;43 + 0 j420;42 ;43 = (A4, 41, 042)-
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= 4,
le n =
mp
EXxa

ai
Wi
w2
w1

a
w2
w1
w2

as
w1
w1
w2

ais
w3
w3

a4

az)
<CL1, an,

— dw4
Nwi =
w3
—w3z 2

O
O

ldw4
=2

Wi

- /\w3 N\ W
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We have

(a1,ap,a3,a4) = a12a25 + a13a35 + a14a4s.

For (ws,w1,w1,wq):
daps = (w1, w1,w1) =0 = aps =0

dazs = —wi Awy =0 =a35 =0

1 1
dayg = (w2, w1, w1) = Sdwa = a14 = Swa.

So, we obtained:

1
(wo, w1, w1, w1) = —5waAwy 7= 0.
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For <CU]_,CU2,(U2,(,02>:
aps =0, a35 =0
and

da1s = (w1,w2,w2) = w3 A wo.

We can’t find such a14 and therefore the Massey product (w1, wo, wp, wo)
is not well defined in H*(M?%).
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Infinite-dimensional algebra of vector fields of the line.

Introduce:

the group Loo = lim« Ly,

Lie algebra Lo = lim Ly,

and algebra of operators A = lim« A,.

Let I3 = {a* 1L k> 1} be the well known Lie algebra of vector
fields on the line.

We have L = 17.
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Theorem.(L. V. Goncharova, 1973)
3q2:|:q

dimHI(;) =1 TE="5—,
k() {O, otherwise

Thus, dimH9(l1) =2 for ¢ > 1.

The cohomological product in H*(l1) is trivial.
It was V. M. Buchstaber (1978) who raised the problem whether
H*(l1) is generated, with respect to Massey products, by Hl(ll).
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The Heisenberg group.

Let us fix a decomposition R* = RF x R, n =k +1,
and a bilinear mapping B : RF x RF — R,

We define a multiplication on R"™ by the formula

(v1,wy) - (vo,wo) = (v1 + vo, w1 + wo + B(vy,v2))
where v; e RF, w, e R!, 1 =1, 2.

Note the relation
B(vy,v2) = A(vy)vo,
where A is the linear mapping R* — Hom/(RF, R).

Thus we obtain a group structure on R",
which is noncommutative for nonsymmetric mapping B.
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A linear change of coordinates

B = (By,B5) € GL(k,R) x GL(I,R) C GL(n,R)

gives a new multiplication

(v1,w1) * (v2, w2) = (v1 + vo, w1 + wo + B5 1B(Bivy, B1vs)).

For the scalar matrix 7E we get

(v1,w1) *r (v, w2) = (v1 + v, w1 + wo + TB(v1,v2))

and this gives a deformation into the standard addition.

Note: this is a bilinear deformation.
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To obtain the well-known Heisenberg group take £k =2, [ =1
and for v; = (a:z,yz) put

.22 o B2 1. _ O 7\ (x2) _
B:R“xR°—R .B(vl,vg)—<az1 y1> (O O) (y2>—7':131y2.

The Heisenberg multiplication on R3:

(z1,y1,w1) - (o, yp,wp) = (1 + xp,y1 + Yo, w1 + wp + 721Y2).
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