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Abstract.

The talk is devoted to the remarkable towers of bundles

Mn →Mn−1 → · · · → S1, n > 2,

with �ber the circle S1.

This towers are de�ned by the nilpotent groups of the polynomial

transformations of the real line.

Each Mn, n > 2, is a smooth nilmanifold with a 2-form

which gives a symplectic structure on any M2k.

Such manifolds play an important role in di�erent areas of mathematics.

We will discuss the di�erential-geometric and algebro-topologic

results and unsolved problems, concerning this manifolds.
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Groups of polynomial transformations.

Put Ln = {px(t) = t+
∑n
k=1 xkt

k+1, xk ∈ R}.
We have Ln ∼= Rn : px(t)⇒ x = (x1, . . . , xn).

We will consider Ln as the n-dim group of polynomial transformations

of the real line

R→ R : t 7→ px(t),

with the multiplication: x ∗ y = z, where

(px ∗ py)(t) = pz(t) = py(px(t)) mod tn+2.
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Example.

For n = 4:

pz(t) = (px ∗ py)(t) = px(t) +
4∑

k=1

ykpx(t)k+1 mod t6 :

z1 = x1 + y1,

z2 = x2 + 2x1y1 + y2,

z3 = x3 + (2x2 + x2
1)y1 + 3x1y2 + y3

z4 = x4 + 2(x3 + x1x2)y1 + 3(x2 + x2
1)y2 + 4x1y3 + y4.
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Nilpotent group structure on Rn.

The group Ln ∼= Rn has the structure of nilpotent group with

the upper central series

Lnn ⊂ · · · ⊂ Lnq ⊂ · · · ⊂ Ln0 = Ln,

where Lnn = {0 ∈ R},

Rn−q ∼= Lnq = {px(t) = t+
n∑

k=q+1

xkt
k+1}.

We have

Lnq = {x ∈ Ln | ∀y ∈ Ln : [x, y] ∈ Lnq+1}

and Lnq /L
n
q−1
∼= R is the center of Ln/Lnq , q = 0, . . . , n− 1.

4



The canonical matrix representation.

The left multiplication ∗ gives the canonical matrix representation

(x : v → x ∗ v) : ρ : Ln → GT (n+ 1) : ρ(px(t))

(
1
v

)
=

(
1

x ∗ v

)
into the group of lower triangular (n+ 1)× (n+ 1)-matrices with

ones on the diagonal:

ρ(px(t)) = X = (xik), i, k = 0, . . . , n,

where xi,k = [px(t)k+1]i+1 is the coe�cient of ti+1 in px(t)k.
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Example.

For n = 4:

ρ(px(t))

(
1
v

)
=


1
x1 1
x2 2x1 1
x3 2x2 + x2

1 3x1 1
x4 2(x3 + x1x2) 3(x2 + x2

1) 4x1 1




1
v1
v2
v3
v4

 .
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Deformation to the standard group structure.

The multiplication ∗ on Rn can be written down as

x ∗ y = x+ y +A(x)y,

where A(x) = (aik(x)) is the lower triangular (n×n)-matrix with

zeros on the diagonal and

aik(x) = xi,k = [px(t)k+1]i+1, i 6= k.
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Any linear transformation B : Rn → Rn of coordinates in Rn

by B ∈ GL(n,R) gives a transformed multiplication on Rn:

x ∗B y
def
= B−1((Bx) ∗ (By)) =

= B−1(Bx+By +A(Bx)By) =

= x+ y + (B−1A(Bx)B)y.

In the case of a scalar matrix τE, we obtain

x ∗τ y = x+ y +A(τx)y.

This gives a deformation of multiplication * (τ = 1) to

the standard addition (τ = 0) on Rn.
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Example. For n = 4:

x ∗ y = x+ y + τA1(x)y + τ2A2(x)y,

where

A1(x) =


0

2x1 0
2x2 3x1 0
2x3 3x2 4x1 0

 , A2(x) =


0
0 0
x2

1 0 0
2x1x2 3x2

1 0 0

 .
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Cocompact lattices.

The multiplication ∗ gives the free actions of Ln on Rn:

The left shift v → x ∗ v gives a linear action ρ,

The right shift v → v ∗ x gives a non-linear action.

Let us consider the canonical lattice:

Γn = {px(t) ∈ Ln : xi ∈ Z}

with the upper central series:

Γnn ⊂ · · · ⊂ Γnq ⊂ · · · ⊂ Γn0 = Γn.

This lattice Γn ∼= Zn is cocompact (uniform).
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Nilmanifolds.

With respect to the right shifts we obtain

a smooth closed and compact nilmanifold

Mn = Rn/Γn.

The tangent bundle of Mn is

T (Mn) = Rn ×Γn Rn →Mn = Rn/Γn

with respect to the linear action ρ (left shift) on a �ber Rn.
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We have the towers of groups

Ln → Ln−1 → · · · → L1,

Γn → Γn−1 → · · · → Γ1

and the induced tower

Mn →Mn−1 → · · · →M1 = S1

of bundles Mn →Mn−1 with the �ber S1.

For each n the monomorphism holds

in : L1 → Ln : in(x1) = (x1, . . . , x
k
1, . . . , x

n
1).

Its composition with the projection Ln → L1 is the identity map.

Thus for each n the bundle

M1 → S1 with the �ber Ln1/Γn1

has a section.
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Left invariant di�erential operators.

Let us �x the polynomial ring R[x1, . . . , xn] as the ring of functions

on Ln ∼= Rn.
Put for f(x) ∈ R[x1, . . . , xn]

Ryxf(x)
def
= f(x ∗ y) =

∑
|I|>0

DI(f(x))yI

where R
y
x is the right shift operator,

I = (i1, . . . , in) and yI = y
i1
1 . . . yinn .

From the associativity equation R
y
xR

z
x = RzyR

y
x we have∑

|I|>0

∑
|J |>0

DIDJf(x)yJzI =
∑
|K|>0

DKf(x)(y ∗ z)K.
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Example n = 3. We have D0f(x) = f(x),

D(1,0,0) =
∂

∂x1
+ 2x1

∂

∂x2
+ (2x2 + x2

1)
∂

∂x3
,

D(0,1,0) =
∂

∂x2
+ 3x1

∂

∂x3
,

D(0,0,1) =
∂

∂x3
.

D(1,0,0)D(0,1,0) = D(1,1,0) + 2D(0,0,1),

D(0,1,0)D(1,0,0) = D(1,1,0) + 3D(0,0,1).

14



The algebra An generated by the operators DI is the algebra of

all left invariant di�erential operators on R[x1, . . . , xn] for the left

shift Lzx:

Lzxf(x) = f(z ∗ x),

that is

LzxDIf(x) = DILzxf(x)

for z as parameter.
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Algebra of the left invariant operators.

The algebra An is multiplicatively generated by

the operators

ξi = ∂i +
∑

xi,q∂q, i = 1, . . . , n,

where ∂i = ∂
∂xi

, and xiq is the coe�cient of tq+1 in the polynomial

px(t)i+1, as before.

The commutators of this operators are

[ξi, ξj] = (j − i)ξi+j

with ξq = 0 if q > n.

Example. For n = 3

A3 = R[ξ1, ξ2, ξ3]/([ξ1, ξ2] = ξ3, [ξ1, ξ3] = [ξ2, ξ3] = 0).
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The operators {ξi} constitute a basis in the Lie algebra Ln of the
left invariant vector �elds on the group Ln, and the operator ξm

corresponds to the one-parameter subgroup φm(s) of polynomials{
ϕm(t; s) = t(1−mstm)−

1
m mod tn+2

}
, m = 1,2, . . . , n.

We have

ϕm(t; s) = t+stm+1+
∑
k>2

(1+m)(1+2m) . . . (1+(k−1)m)
sk

k!
tkm+1.

Note φm(t,1) /∈ Γn for m > 1, but ϕm(t;m) = ϕm(t; 1)m ∈ Γn.
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Example. For n = 4

ϕ1(t; s) = t+ st2 + s2t3 + s3t4 + s4t
5,

ϕ2(t; s) = t+ st3 +
3

2
s2t5,

ϕ3(t; s) = t+ st4,

ϕ4(t; s) = t+ st5.

ϕ1(t; 1) = e1 ∗ e2 ∗ e−2
3 ∗ e6

4,

where e−1
3 (e3(t)) = t.
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Cohomology ring of a di�erential graded algebra.

A di�erential graded algebra (d. g. a.) (C, d) is a graded algebra

C =
∑
p>0

Cp

with a di�erential d : C → C of degree 1, i. e. d(Cp) ⊂ Cp+1

and d2 = 0, such that a · b = (−1)pqba for a ∈ Cp, b ∈ Cq,
dab = (da)b+ (−1)pa(db) for a ∈ Cp.

Put ZpC = ker(d : Cp → Cp+1)− cocycles group,

BpC = Im(d : Cp−1 → Cp)− coboundaries group,

and HpC = ZpC/BpC − cohomology group.

Then H∗C =
∑
p>0

HpC

is a d.g.a. (with d = 0) � cohomology ring of C.
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Example.

Let X be a smooth n-dimensional compact manifold.

Then we have a d.g.a. of smooth real di�erential forms

C(X) =
∑
p>0

Cp(X).

In a coordinate neighbourhood U ⊂ X we have for ω ∈ Cp(X)

ω =
∑

ui1...ip(x)dxi1 ∧ · · · ∧ dxip, x = (xi1, . . . , xi1) ∈ U,

dω =
∑

i1<i2<···<ip
dui1...ip ∧ dx

i1 ∧ · · · ∧ dxip =

=
∑

i1<i2<···<ip

∂

∂xi0
ui1...ipdx

i0 ∧ dxi1 ∧ · · · ∧ dxip

and H∗C(X) = H∗(X;R).
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Di�erential graded algebra

of the left invariant di�erential forms on the nilmanifold.

Let ω1, . . . , ωn be the basis of the left invariant di�erential

1-forms on Ln dual to the basis {ξi}.

Let

ω =
n∑
i=1

ωiξi

be the Maurer-Cartan form taking values

in the Lie algebra Ln of vector �elds ξi, i = 1, . . . , n.
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The Maurer�Cartan equation

dω = −
1

2
[ω, ω]

in our case takes the form

dωq =
∑

{(k,l): k>l>0, k+l=q}
(k − l) ωk ∧ ωl. (1)

Here [ω, ω](ζ1, ζ2) = [ω(ζ1), ω(ζ2)].

Note that dω1 = dω2 = 0 and (1) is independent of n.

Examples: dω3 = ω2∧ω1, dω4 = 2ω3∧ω1, dω5 = 3ω4∧ω1+ω3∧ω2.
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Bigraded cohomology ring.

We have H∗(Mn;R) = H(Λ(ω1, . . . , ωn), d)

where Λ( ) is the exterior algebra, and d has the form (1).

Set bideg ωq = (1,−2q). It follows from (1) that

the di�erential complex (Λ(ω1, . . . , ωn), d) can be decomposed as

a sum of di�erential subcomplexes

Λ0 +
n∑

q=1

(Λ−2q, d),

where Λ0 = R and (Λ−2q, d) is generated by the forms

ωi1 ∧ · · · ∧ ωis, s = 1, . . . , n, i1 > i2 > · · · > is > 0, i1 + · · ·+ is = q.
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For any n > 2 we have:

H1(Mn;R) = H1,−2(Mn;R) +H1,−4(Mn;R) = R⊕ R

with the generators [ω1] and [ω2] correspondingly.

Thus H1(Mn;Z) = Z + Z, n > 2.

The ring H∗(Mn,R) has the structure of a bigraded ring

R +
n∑

s=1

s(2n+1−s)∑
2q=s(s+1)

Hs,−2q(Mn;R).

Set n(s, q) = q − 1
2(s− 1)(s− 2). For any k > n(s, q) we have

Hs,−2q(Mk;R) = Hs,−2q(Mk+1;R).
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Example for n = 4.

We have:

H∗(M4;R) = H∗(Λ(ω1, ω2, ω3, ω4), d),

where dω1 = dω2 = 0, dω3 = ω2 ∧ ω1, dω4 = 2ω3 ∧ ω1.

H∗(M4;R) = R +
4∑

s=1

s(9−s)∑
2q=s(s+1)

Hs,−2q(M4;R).
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10 di�erential subcomplexes.

q\s 0 1 2 3 4
0 1
1 ω1
2 ω2

3 ω3
1→ ω2 ∧ ω1

4 ω4
2→ ω3 ∧ ω1

5 ω4 ∧ ω1
ω3 ∧ ω2

6 ω4 ∧ ω2
−2→ ω3 ∧ ω2 ∧ ω1

7 ω4 ∧ ω3
−1→ ω4 ∧ ω2 ∧ ω1

8 ω4 ∧ ω3 ∧ ω1
9 ω4 ∧ ω3 ∧ ω2

10 ω4 ∧ ω3 ∧ ω2 ∧ ω1
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Generators of the Poincare duality.

dim 0 1 2 3 4
[ω1] ←→ [ω4 ∧ ω3 ∧ ω2]
[ω2] ←→ [ω4 ∧ ω3 ∧ ω1]

[ω1 ∧ ω4]
l

[ω2 ∧ ω3]
1 ←→ [ω4 ∧ ω3 ∧ ω2 ∧ ω1]
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Toric bundles.

For each n and q <
[
n+1

2

]
there are exact sequences

0→ Rq+1 → Ln+1 → Ln−q → 0,

0→ Zq+1 → Γn+1 → Γn−q → 0,

which give a smooth bundle

πqn : Mn+1 →Mn−q

with �bre torus Tq+1.
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Symplectic nilmanifolds Mn.

A smooth manifold M is called symplectic if it carries

a nondegenerate closed 2-form Ω which is called

a symplectic form.

Consider the smooth bundle with �bre circle S1

πn = π0
n : Mn+1 →Mn.

The left invariant 1-form ωn+1 is a connection in the bundle πn.

The curvature form of this bundle is

Ωn =
∑

{(k,l): k+l=n+1, k>l>0}
(k − l)ωk ∧ ωl

and we have π∗Ωn = dωn+1.

The nilmanifold M2n with the form Ω2n is symplectic.

Conjecture. Ωn is an integer form for any n.
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Example. For n = 3, q = 1 we have the smooth bundle

π1
3 : M4 →M2 = T2

with the �bre T2 and the symplectic form:

Ω4 = 3ω4 ∧ ω1 + ω3 ∧ ω2.

The base is the symplectic manifold with the form Ω2 = ω2 ∧ ω1

and (π1
3)∗Ω2 = 0.

The manifold M3 × S1 is symplectic with the form

2ω3 ∧ ω1 + ω2 ∧ dt.
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The manifold M2n−1 has the form

Ω2n−1 =
∑

{(k,l): k+l=2n, k>l>0}
(k − l)ωk ∧ ωl.

For n > 2 the form ωn is not closed, thus the 2-form

Ω = Ω2n−1 + ωn ∧ dt

is not closed on M2n−1 × S1 but Ωn is closed and gives the

fundamental cocycle on this manifold.
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Nonformality of nilmanifolds.

A simplicial complex X is called formal if its rational homotopy

type is a formal consequence of its cohomology ring.

Theorem. (F. E. A. Johnson, E. G. Rees, 1989)

If G is a nilpotent Lie group and Γ ⊂ G is a discrete cocompact

subgroup, then G/Γ is formal if and only if G is abelian.

Corollary. The symplectic nilmanifolds M2m are nonformal,

m > 2, and M2 = T2 is formal.
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Realizing nilmanifolds as symplectic submanifolds

of complex projective spaces CPN ,
denote by Xm(N) the symplectic blow up of CPN along M2n.

Theorem. (I.K. Babenko, I.A. Taimanov, 1999)

For m > 2 and N > 2m+ 1 the symplectic manifolds Xm(N) are

simply connected and nonformal.

The proof of this result makes use of the fact that in the cohomology

ring H∗(M2n) there are nontrivial Massey products.
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Universal properties of Mn.

The manifold Mn = K(Γn,1) is the Eilenberg-MacLane space

and thus for any CW -complex X

[X,Mn] = H1(X,Γn).

The manifold Mn is the classifying space

for the discrete group Γn, that is Mn = BΓn

and thus [X,Mn] is the set of isomorphism classes

of principal Γn-bundles over a CW -complex X;

we have

[X,Mn] = Hom(π1(X),Γn),

Hk(Mn;Z) = Hk(Γn;Z), Hk(Mn;Z) = Hk(Γn;Z).
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Cellular subdivision of Mn.

Consider the cellular subdivision

(pt) = Mn
0 ⊂M

n
1 ⊂ · · · ⊂M

n
n−1 ⊂M

n
n = Mn,

where Mn
1 = ∨ni=1S

1
i , M

n
k+1/M

n
k = ∨Sk+1, Mn

n/M
n
n−1 = ∨Sn.

For the Z-homology groups of pair we obtain the exact sequence

0→ H2(Mn)→ H2(Mn/Mn
1 )→ ⊕ni=1Z→ H1(Mn)→ 0.

Using that Mn = K(Γn; 1) and Mn
1 = K(∨ni=1Z; 1)

for the homotopy groups of pair we obtain the exact sequence

0→ Rn → ∨ni=1Z→ Γn → 0.

Here ∨ni=1Z is the free product of Z
and Rn = π2(Mn,Mn

1 ) is its subgroup. It is a free group.
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The multiplicative generators of the group Γn ⊂ Ln

are ek(t) = t+ tk+1, k = 1, . . . , n. Put e0(t) = t.

Note ϕq(t; 1) = eq(t) for q > [n2].

It is clear that if eI = e
i1
1 ∗· · ·∗e

in
n = e0 where I = (i1, . . . , in) ∈ Zn,

then I = 0.

We have

[ek, ek+2] = e2
2k+2 ∗ ei ∗ . . . , i > 2k + 2, k > 1,

[ek, ek+1] = e2k+1 ∗ ej ∗ . . . , j > 2k + 1, k > 1.

Thus the group H1(Mn;Z) = Γn/[Γn,Γn] has only 2-torsion.

36



Hopf's integral homology formula.

Let G = F/R and F is a free group. Then

H2(G,Z) ∼= (R ∩ [F, F ])/[F,R].

Thus

H2(Mn,Z) ∼= (Rn ∩ [Fn, Fn])/[Fn, Rn],

where Fn = ∨ni=1Z and

0→ Rn → ∨ni=1Z→ Γn → 0,

and therefore to each element a ∈ H2(Mn,Z) corresponds an

element

g = [a1, b1] · ... · [ag, bg] ∈ (Rn ∩ [Fn, Fn]).
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Example n = 3.

Γ3 has the generators e1, e2, e3 and the relations

[e1, e2] = e3, [e1, e3] = e0, [e2, e3] = e0.

Thus H1(M3,Z) = Γ3/[Γ3,Γ3] = Z⊕ Z.

In this case F3 has the generators c1, c2, c3,

R3 has the generators r1, r2, r3 and

R3 → F3 : r1 7→ [c1, c3], r2 7→ [c2, c3], r3 7→ [c1, c2]c−1
3 .

We have r3 /∈ [F3, F3].
The generators of

H2(M3;Z) = Z⊕ Z

correspond to r1 and r2.
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Example n = 4.

Γ4 has the generators e1, e2, e3, e4 and the relations

[e1, e2] = e3 ∗ e4, [e1, e3] = e2
4, [e1, e4] = e0,

[ei, ej] = e0, i, j = 2,3,4.

Thus H1(M4,Z) = Γ4/[Γ4,Γ4] = Z⊕ Z⊕ Z2.
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Consider an oriented 2-dimentional surface S2
g of genus g.

We have S2
g = K(Gg,1),

where Gg = π1(S2
g ) is the group with the generators a1, b1, . . . , ag, bg

and a single relation [a1, b1] · ... · [ag, bg] = 1,

that is

0→ Z→ ∨2g
i=1Z→ Gg → 0.

We have

[S2
g ,M

n] = Hom[Gg,Γ
n].
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Corollary.

Each element a ∈ H2(Mn,Z), n > 2, is realised by a smooth

mapping

fa : S2
g →Mn, (fa)∗([S2

g ]) = a

for some g.

The form Ωn is integer if and only if

〈f∗aΩn, [S2
g ]〉 ∈ Z.
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Let πn : Mn+1 → Mn be a smooth bundle with the �bre S1.

Denote by ξn+1 = ξn+1(πn) the �eld of vectors

tangent to the �ber of this bundle.

Problem. Classify the sequences of smooth manifolds

πn : Mn+1 →Mn, n > 0,

with the �ber S1, such that

- for each n > 1 there exists an integer closed 2-form Ωn on Mn

satisfying the condition

π∗nΩn = dωn+1, where 〈ωn+1, ξn+1〉 = ||ξn+1||,

- for each even n the form Ωn is nondegenerate.
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The following problem is closely related to the previous one and

has self-contained interest:

Problem. For the towers

Mn →Mn−1 → · · · → S1

of �brations described above

calculate the cohomology rings H∗(Mn; k) for k = Z and Q.
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Consider the bundle

π̂n : E →Mn

with the �ber D2, such that ∂E = Mn+1.

In the exact sequence of the pair (E, ∂E)
the Gyzin homomorphism has the form

jnq : Hq(Mn)→ Hq+2(Mn) : jnq a = [Ωn]a.

Thus we get the exact sequence

0← kerjnq−1 ← Hq(Mn+1)← cokerjnq−2 ← 0.

In the case of rational coe�cients we get

dimHq(Mn+1) = (dim kerjnq−1) + (dim cokerjnq−2).

Denote the Betti number dimHq(Mn,Q) by bnq .

Thus we have the estimate

bn+1
q 6 bnq−1 + bnq .
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D. V. Millionshikov has obtained results on the Betti numbers bnq
for manifolds Mn de�ned by the groups Ln.

His approach is based on the calculations by L. Goncharova

of in�nite dimensional Lie algebras cohomologies.

For such manifolds he proved that

bn2 = 3 for all n > 5;

bn3 = 5 for all n > 11.
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D. V. Millionshchikov used some combinatorial arguments and

the Goncharova theorem to sketch the proof of the statement

bnq = Fq+2

for n su�ciently large (n > 3q + 2),

where Fq+2 is the (q + 2)-th Fibonacci number.

That is Fq+2 = Fq+1 + Fq, q > 0, F0 = 0, F1 = 1.

However no detailed proof of this statement appeared till now.

Recently he suggested to consider the last statement as a conjecture.

Using the computer, Millionschikov calculated Betti numbers bnq
for n 6 30.
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Addendum.

Massey products.

Let (C, d) � a d.g.a. For a ∈ Cp put

ā = (−1)pa.

Then we obtain the involution on C, i.e. āb = ā̄b, ¯̄a = a, and

dab = (da)b+ ā(db) for a ∈ Cp.

Let T0
k = T0

k (C) � the algebra of upper triangular (k×k)-matrices

over C with zeros on the diagonal. For A = (aij) ∈ T0
k put

dA = (daij) and Ā = (āij).

Let Jk = (Jkij) ∈ T0
k , such that Jkij = 0, if (i, j) 6= (1, k), and

Jk1k = 1.
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Lemma. Let A = (aij) ∈ T0
n+1, such that ai,i+1 ∈ Cki and

dA = ĀA− cJn+1

for some c ∈ C. Then
- dai,i+1 = 0,
- c ∈ Cm, where m = k1 + · · ·+ kn − n+ 2,
- dc = 0.

Show that dc = 0. We have:

dĀ = −d̄A = −AĀ− cJn+1.

Using that Jn+1A = AJn+1 = 0, we obtain

dĀA = (dĀ)A+ ¯̄A(dA) = −AĀA+AĀA = 0.

So

(dc)Jn+1 = d(ĀA)− ddA = 0.
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De�nition. Take n homogeneous elements a1, . . . , an in C,

which are cocycles, i.e. dai = 0, i = 1, . . . , n.

Assume that there exists a matrix A ∈ T0
n+1 such that:

- ai,i+1 = ai
- A satis�es the equation

dA = ĀA− cJn+1

for some c ∈ C.

In this case it is told that the Massey product 〈a1, . . . , an〉 of the
cocycles a1, . . . , an is de�ned and equals cocycle c.
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Examples n = 2.0 ā1 ā13
0 ā2

0


0 a1 a13

0 a2
0

 =

0 0 ā1a2
0 0

0

 .

So

c

0 0 1
0 0

0

 =

0 0 ā1a2
0 0

0

−
0 da1 da13

0 da2
0


and

da1 = da2 = 0, c = 〈a1, a2〉 = ā1a2 − da13

for some a13.
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Examples n = 3.


0 ā1 ā13 ā14

0 ā2 ā24
0 ā3

0




0 a1 a13 a14
0 a2 a24

0 a3
0

 =


0 0 ā1a2 ā1a24 + ā13a3

0 0 ā2a3
0 0

0


So

c


0 0 0 1

0 0 0
0 0

0

 =


0 0 ā1a2 ā1a24 + ā13a3

0 0 ā2a3
0 0

0

−


0 da1 da13 da14
0 da2 da24

0 da3
0

 .

So, dai = 0, i = 1,2,3, ā1a2 = da13, ā2a3 = da24,

and 〈a1, a2, a3〉 = c = ā1a24 + ā13a3, deg c = k1 + k2 + k3 − 1.
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Examples n = 3.

H∗(M3) = H∗(Λ(ω1, ω2, ω3), d), where dω1 = dω2 = 0,

dω3 = ω2 ∧ ω1. The generators of H∗(M3):

[ω1], [ω2], [ω3 ∧ ω1], [ω3 ∧ ω2], [ω3 ∧ ω2 ∧ ω1].

So, for

a1 = ω1, a2 = ω2, a3 = ω1 ⇒ a13 = ω3, a24 = −ω3

and 〈ω1, ω2, ω1〉 = −2ω3 ∧ ω1,

a1 = ω1, a2 = ω1, a3 = ω2 ⇒ a13 = 0, a24 = ω3

and 〈ω1, ω1, ω2〉 = ω3 ∧ ω1,

a1 = ω1, a2 = ω2, a3 = ω2 ⇒ a13 = ω3, a24 = 0

and 〈ω1, ω2, ω2〉 = −ω3 ∧ ω2.
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The matrix equation

dA = ĀA− cJn+1

for n > 4 gives the following relations:

dai,i+1 = dai = 0,

dai,k =
k−1∑

q=i+1

āi,qaq,k, i+ 2 6 k 6 n

and

〈a1, . . . , an〉 = c =
n∑

q=2

ā1,qaq,n+1 − da1,n+1,

where dc = 0. So

dai,i+2 = āi,i+1ai+1,i+2 = āiai+1,

dai,i+3 = āi,i+1ai+1,i+3 + āi,i+2ai+2,i+3 = 〈ai, ai+1, ai+2〉.
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Example n = 4.

a1 a2 a3 a13 a24 〈a1, a2, a3〉
ω1 ω2 ω1 ω3 −ω3 2ω3 ∧ ω1 = dω4
ω2 ω1 ω1 −ω3 0 ω3 ∧ ω1 = 1

2dω4
ω1 ω2 ω2 ω3 0 ω3 ∧ ω2
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We have

〈a1, a2, a3, a4〉 = ā12a25 + ā13a35 + ā14a45.

For 〈ω2, ω1, ω1, ω1〉:

da25 = 〈ω1, ω1, ω1〉 = 0⇒ a25 = 0

da35 = −ω1 ∧ ω1 = 0⇒ a35 = 0

da14 = 〈ω2, ω1, ω1〉 =
1

2
dω4 ⇒ a14 =

1

2
ω4.

So, we obtained:

〈ω2, ω1, ω1, ω1〉 = −
1

2
ω4 ∧ ω1 6= 0.
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For 〈ω1, ω2, ω2, ω2〉:

a25 = 0, a35 = 0

and

da14 = 〈ω1, ω2, ω2〉 = ω3 ∧ ω2.

We can't �nd such a14 and therefore the Massey product 〈ω1, ω2, ω2, ω2〉
is not well de�ned in H∗(M4).
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In�nite-dimensional algebra of vector �elds of the line.

Introduce:

the group L∞ = lim←Ln
Lie algebra L∞ = lim←Ln
and algebra of operators A∞ = lim←An.

Let l1 = {xk+1 d
dx, k > 1} be the well known Lie algebra of vector

�elds on the line.

We have L∞ ∼= l1.
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Theorem.(L. V. Goncharova, 1973)

dimH
q
k(l1) =

{
1, if k = 3q2±q

2 ,
0, otherwise

Thus, dimHq(l1) = 2 for q > 1.

The cohomological product in H∗(l1) is trivial.

It was V. M. Buchstaber (1978) who raised the problem whether

H∗(l1) is generated, with respect to Massey products, by H1(l1).
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The Heisenberg group.

Let us �x a decomposition Rn = Rk × Rl, n = k + l,

and a bilinear mapping B : Rk × Rk → Rl.

We de�ne a multiplication on Rn by the formula

(v1, w1) · (v2, w2) = (v1 + v2, w1 + w2 + B(v1, v2))

where vi ∈ Rk, wi ∈ Rl, i = 1,2.

Note the relation

B(v1, v2) = A(v1)v2,

where A is the linear mapping Rk → Hom(Rk,Rl).

Thus we obtain a group structure on Rn,
which is noncommutative for nonsymmetric mapping B.
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A linear change of coordinates

B = (B1, B2) ∈ GL(k,R)×GL(l,R) ⊂ GL(n,R)

gives a new multiplication

(v1, w1) ∗ (v2, w2) = (v1 + v2, w1 + w2 +B−1
2 B(B1v1, B1v2)).

For the scalar matrix τE we get

(v1, w1) ∗τ (v2, w2) = (v1 + v2, w1 + w2 + τB(v1, v2))

and this gives a deformation into the standard addition.

Note: this is a bilinear deformation.
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To obtain the well-known Heisenberg group take k = 2, l = 1

and for vi = (xi, yi) put

B : R2 × R2 → R1 : B(v1, v2) =
(
x1 y1

)(0 τ
0 0

)(
x2
y2

)
= τx1y2.

The Heisenberg multiplication on R3:

(x1, y1, w1) · (x2, y2, w2) = (x1 + x2, y1 + y2, w1 + w2 + τx1y2).
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