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Introduction

Kähler manifold

Let M̄n be an Kähler n-manifold, that is, an 2n-dimensional manifold with a
almost complex structure J : T M̄n → T M̄n satisfying that

J2 = −I ,

< Jv , Jw >=< v ,w >,

DJ = 0,

where v ,w ∈ T M̄n and D is the Levi-Civita connection on M̄n.

Complex space forms are the simplest Kähler-Einstein manifold.

Let M̄n(4c) denote an n-dimensional complex space form with constant
holomorphic sectional curvature 4c .

When c > 0, M̄n(4c) = CPn(4c),
When c = 0, M̄n(4c) = C n,
When c < 0, M̄n(4c) = CHn(4c).
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Lagrangian submanifolds

Let φ : M → M̄n be an isometric immersion from an n-dimensional
Riemannian manifold M into a Kähler n-manifold M̄n.

Then M is called a Lagrangian submanifold if the almost complex
structure J of M̄n carries each tangent space of M into its
corresponding normal space.

Example 1-3: Rn → Cn, RPn → CPn, RHn → CHn.
Example 4: Whitney sphere in Cn. It is defined as the Lagrangian immersion
of the unit sphere Sn, centered at the origin of Rn+1, in Cn, given by

φ : Sn → Cn : φ(x1, x2, . . . , xn, xn+1) =
1 + ixn+1

1 + x2
n+1

(x1, . . . , xn). (1)
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Example 5: Whitney spheres in CPn. They are a one-parameter family of
Lagrangian spheres in CPn, given by

φ̄θ : Sn → CPn(4) :

φ̄θ(x1, x2, . . . , xn, xn+1) = π ◦
( (x1, . . . , xn)

cθ + isθxn+1
;

sθcθ(1 + x2
n+1) + ixn+1

c2
θ + s2θx2

n+1

)
, (2)

where θ > 0, cθ = cosh θ, sθ = sinh θ, π : S2n+1(1)→ CPn(4) is the Hopf
fibration.
Example 6: Whitney spheres in CHn. They are a one-parameter family of
Lagrangian spheres in CHn, given by

φ̄θ : Sn → CHn(−4) :

φ̄θ(x1, x2, . . . , xn, xn+1) = π ◦
( (x1, . . . , xn)

sθ + icθxn+1
;

sθcθ(1 + x2
n+1)− ixn+1

s2θ + c2
θx2

n+1

)
, (3)

where θ > 0, cθ = cosh θ, sθ = sinh θ, π : H2n+1
1 (−1)→ CHn(4) is the Hopf

fibration.
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A general method for constructing Lagrangian
submanifolds in complex projective space

In view of Reckziegel’s results, we have

Let φ : M → CPn(4c) be a Lagrangian isometric immersion.

We consider the Hopf fibration: π : S2n+1(c)→ CPn(4c).

Then there exists an isometric covering map τ : M̂ → M and a C-totally real
isometric immersion φ̃ : M̂ → S2n+1(c) such that φ ◦ τ = π ◦ φ̃.

Conversely, let φ̃ : M̂ → S2n+1(c) be a C-totally real isometric immersion.
Then φ = π ◦ φ̃ : M → CPn(4c) is an Lagrangian isometric immersoin.

Under this correspondence, the second fundamental form hφ and hφ̃ satisfy

hφ = π∗hφ̃. We shall denote hφ and hφ̃ simply by h.
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Parallel submanifolds

Let φ : M → M̄ be an isometric immersion. If at each point p of M, the first
derivative of the second fundamental form ∇h vanishes, i.e., ∇h ≡ 0, we call
M a submanifold with parallel second fundamental form, i.e, a parallel
submanifold.

Examples: straight lines, circles, planes, round spheres, round cylinders in R3;
circles, round spheres, a product of two circles in S3, Veronese surface in S4.

Some examples of Lagrangian parallel submanifolds:

Rn → Cn, RPn → CPn, RHn → CHn.

SU(k)/SO(k) (k ≥ 3)→ CP
1
2 k(k+1)−1.

SU(k) (k ≥ 3)→ CPk2−1.

SU(2k)/Sp(k) (k ≥ 3)→ CP2k2−k−1.

E6/F4 → CP26.
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Motivation of our research work

From the Riemannian geometric point of view, one of the most fundamental
problems in the study of Lagrangian submanifolds is:

the classification of Lagrangian submanifolds in complex space forms with
parallel second fundamental form.

In 1980s, H. Naitoh classified the Lagrangian submanifolds with parallel
second fundamental form in complex projective space.

Prof. Naitoh’s method is based on the theory of Lie groups and symmetric
spaces.
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In the irreducible case, the classification is clear, Naitoh completely classified
the Lagrangian submanifolds with parallel second fundamental form and
without Euclidean factor in complex projective space. He showed that such a
submanifold is always locally symmetric and is one of the symmetric spaces:

SO(k + 1)/SO(k) (k ≥ 2).

SU(k)/SO(k) (k ≥ 3).

SU(k) (k ≥ 3).

SU(2k)/Sp(k) (k ≥ 3).

E6/F4.

However, little information is given on how to construct all reducible
examples.
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Question

How to determine all reducible parallel Lagrangian submanifolds of complex
projective space?

Our main result

We obtain a complete and explicit classification of all (irreducible and
reducible) parallel Lagrangian submanifolds of complex projective space by
an elementary geometric method.
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Calabi product Lagrangian immersions in CPn

Calabi product Lagrangian immersion

Definition

Let ψ1 : (M1, g1)→ CPn1(4) and ψ2 : (M2, g2)→ CPn2(4) be two
Lagrangian immersions.

π : S2n+1(c)→ CPn(4c) is the Hopf fibration.

We denote by ψ̃i : Mi → S2ni+1(1) the horizontal lifts of ψi , i = 1, 2,
respectively.

Let γ̃(t) = (r1e i(
r2
r1
t)
, r2e i(− r1

r2
t)

), be a special Legendre curve, where r1 and r2
are positive constants with r21 + r22 = 1,

Then ψ = π(γ̃1ψ̃1; γ̃2ψ̃2) : I ×M1 ×M2 → CPn(4) is a Lagrangian
immersion, where n = n1 + n2 + 1.

We call ψ a Calabi product Lagrangian immersion of ψ1 and ψ2.

When n1 (or n2) is zero, we call ψ a Calabi product Lagrangian immersion of
ψ2 (or ψ1) and a point.
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Calabi product Lagrangian immersions in CPn

Characterizations of the Calabi products

Theorem (1.6, Li-Wang, Results Math, 2011)

Let ψ : M → CPn(4) be a Lagrangian immersion. If M admits two
orthogonal distributions T1 (of dimension 1, spanned by a unit vector E1)
and T2 (of dimension n − 1, spanned by {E2, . . . ,En}), and there exist local
functions λ1, λ2 such that{

h(E1,E1) = λ1JE1, h(E1,Ei ) = λ2JEi ,

λ1 6= 2λ2, i = 2, . . . , n.
(4)

If M has parallel second fundamental form, then ψ is locally a Calabi product
Lagrangian immersion of a point and an (n − 1)-dimensional Lagrangian
immersion ψ1 : M1 → CPn−1(4) which has parallel second fundamental form.

Conversely, if ψ is locally a Calabi product Lagrangian immersion of a point
and an (n − 1)-dimensional Lagrangian immersion ψ1 : M1 → CPn−1(4)
which has parallel second fundamental form, then M has parallel second
fundamental form.
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Characterizations of the Calabi products

Theorem (4.6, Li-Wang, Results Math, 2011)

Let ψ : M → CPn(4) be a Lagrangian immersion. If M admits three
mutually orthogonal distributions T1 (spanned by a unit vector E1), T2, and
T3 of dimension 1, n1 and n2 respectively, with 1 + n1 + n2 = n, and there
three real functions λ1, λ2 and λ3 (2λ3 6= λ1 6= 2λ2 6= 2λ3) such that for all
Ei ∈ T2, Eα ∈ T3,{

h(E1,E1) = λ1JE1, h(E1,Ei ) = λ2JEi ,

h(E1,Eα) = λ3JEα.
(5)

If M has parallel second fundamental form, then ψ is locally a Calabi
product Lagrangian immersion of two lower dimensional Lagrangian
submanifolds ψi (i = 1, 2) with parallel second fundamental form.

Conversely, if ψ is locally a Calabi product Lagrangian immersion of two
lower dimensional Lagrangian submanifolds ψi (i = 1, 2) with parallel second
fundamental form, then M has parallel second fundamental form.
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Theorem (Dillen-Li-Vrancken-Wang, 2011—Main Theorem)

Let M be a Lagrangian submanifold in CPn(4) with constant holomorphic
sectional curvature 4, suppose that M has parallel second fundamental form,
then either M is totally geodesic, or

(i) M is locally the Calabi product of a point with a lower dimensional
Lagrangian submanifold with parallel second fundamental form, or

(ii) M is locally the Calabi product of two lower dimensional Lagrangian
submanifolds with parallel second fundamental form, or

(iii) n = 1
2k(k + 1)− 1, k ≥ 3, and M is congruent with SU(k)/SO(k), or

(iv) n = k2 − 1, k ≥ 3, and M is congruent with SU(k), or

(v) n = 2k2 − k − 1, k ≥ 3, and M is congruent with SU
(
2k
)
/Sp(k), or

(vi) n = 26 and M is congruent with E6/F4.

We notice that here we don’t assume the minimal condition.
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Remark

According to our main theorem, we get a list of all parallel Lagrangian
submanifolds in complex projective space. For example,

When n=1, M1 is locally isometric to RP1.

When n=2, M2 is locally isometric to RP2, or S1 × S1(the latter
immersion is a Calabi product Lagrangian immersion).

When n=3, M3 is locally isometric to RP3, or S1 × S2, or S1 × S1 × S1.
(The latter two immersions are Calabi product Lagrangian immersions).

When n=4, M4 is locally isometric to RP4, or S1 × S3, or S1 × S1 × S2,
or S1 × S1 × S1 × S1. (The last three immersions are Calabi product
Lagrangian immersions).

When n=5, M5 is locally isometric to RP5, or SU(3)/SO(3), or
S1 × S4, or S1 × S2 × S2, or S1 × S1 × S3, or S1 × S1 × S1 × S2, or
S1 × S1 × S1 × S1 × S1. (The last five immersions are Calabi product
Lagrangian immersions).

We notice that here Calabi procuct plays a very important role.
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Main result and remarks

Main techniques

We use the techniques developped in [Hu-Li-Simon-Vrancken, Differential
Geom. Appl., 2009] and [Hu-Li-Vrancken, J. Differential Geom., 2011], in
which they give a complete classification of locally strongly convex affine
hypersurfaces of Rn+1 with parallel cubic form, and also the characterizations
for Calabi product Lagrangian immersions in [Li-Wang, Results Math., 2011].

There exist many similarities between the study of minimal Lagrangian
submanifolds of complex space forms and the study of affine hypersurfaces in
affine differential geometry (eg. there exist totally symmetric cubic form in
both two cases).

The difference tensor K ←→ The second fundamental form h.

K satisfies the apolarity condition, namely trKX = 0 for all X
←→
h satisfies the minimal condition, namely trh=0.
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