Special Lagrangian submanifolds
in the complex sphere and the complex cone

Takashi Sakai
Tokyo Metropolitan University & OCAMI

February 1–3, 2013
The 6th OCAMI-KNUGRG Joint Differential Geometry Workshop on
Submanifold Theory in Symmetric Spaces
and
Lie Theory in Finite and Infinite Dimensions
Plan of this talk

Purpose
Study the geometry of special Lagrangian submanifolds, especially their singularities, in a non-flat Calabi-Yau manifold.

1. Calabi-Yau manifolds and special Lagrangian geometry
2. Calabi-Yau metrics on the complex sphere and the complex cone
3. Special Lagrangian conormal bundles
4. Cohomogeneity one special Lagrangian submanifolds
Motivation and history

1982 Harvey-Lawson, Calibrated geometries
1996 Strominger-Yau-Zaslov, a conjecture on the mirror symmetry
2001- Joyce, Construction of examples of special Lagrangian submanifolds in \mathbb{C}^n
2003- Joyce, Conical singularities on a special Lagrangian submanifolds
2004- Haskins, Special Lagrangian cones in \mathbb{C}^n
2005- Ionel-MinOo, Karigiannis-MinOo, Anciaux
 Special Lagrangian submanifolds in T^*S^n
Calabi-Yau manifolds

Definition

\[(M, J, \omega, \Omega) : \text{Calabi-Yau manifold} \]
\[\overset{\text{def}}{\iff} (M, J, \omega) : \text{Kähler manifold of complex dimension } n \]
\[\Omega : \text{non-vanishing holomorphic } (n, 0)\text{-form on } M \]
\[\frac{\omega^n}{n!} = (-1)^{\frac{n(n-1)}{2}} \left(\frac{\sqrt{-1}}{2}\right)^n \Omega \wedge \bar{\Omega} \]

Calabi-Yau manifold \iff Ricci-flat Kähler
\[\iff \text{Hol}_0(M, g) \subset SU(n) \]
Special Lagrangian submanifolds

\((M, J, \omega, \Omega)\) : Calabi-Yau manifold

Definition

\(L \subset M\) : **special Lagrangian submanifold** of phase \(\theta\)

\(\overset{\text{def}}{\iff} L \text{ is calibrated by } \Re(e^{i\theta \Omega}) \text{ for some } \theta \in \mathbb{R}.\)

\(\text{i.e. } \Re(e^{i\theta \Omega})|_L = \text{vol}|_L\)

\(\iff\) \begin{align*}
\dim_{\mathbb{R}} L &= n \\
\omega|_L &\equiv 0 \quad \text{(Lagrangian)} \\
\Im(e^{i\theta \Omega})|_L &\equiv 0
\end{align*}

Theorem (Harvey-Lawson)

A special Lagrangian submanifold is a calibrated submanifold, so is volume minimizing in its homology class.
Stenzel metric on T^*S^n

$S^n = \text{SO}(n + 1)/\text{SO}(n) =: G/K$

$T^*S^n = \{(x, \xi) \in \mathbb{R}^{n+1} \times \mathbb{R}^{n+1} \mid \|x\| = 1, \langle x, \xi \rangle = 0\}$

$Q^n = \left\{(z_1, \ldots, z_{n+1}) \in \mathbb{C}^{n+1} \left| \sum_{i=1}^{n+1} z_i^2 = 1 \right. \right\} \cong G^{\mathbb{C}}/K^{\mathbb{C}}$

$\Phi : T^*S^n \longrightarrow Q^n \subset \mathbb{C}^{n+1} \text{ diffeo}$

$(x, \xi) \longmapsto x \cosh(\|\xi\|) + \sqrt{-1} \frac{\xi}{\|\xi\|} \sinh(\|\xi\|)$

- $G = \text{SO}(n + 1)$ acts on T^*S^n and Q^n with cohomogeneity one.
- φ is G-equivariant.
Theorem (Stenzel)

\[\omega_{Stz} = \sqrt{-1} \partial \bar{\partial} u(r^2) = \sqrt{-1} \sum_{i,j=1}^{n+1} \frac{\partial^2}{\partial z_i \partial \bar{z}_j} u(r^2) dz_i \wedge d\bar{z}_j \]

gives a complete Ricci-flat Kähler metric on \(Q^n \cong T^* S^n \), where \(r^2 = \|z\|^2 \) and \(u : \mathbb{R} \to \mathbb{R} \) is defined by \(U(t) = u(\cosh t) \) where \(U \) satisfies

\[\frac{d}{dt}(U'(t))^n = cn(\sinh t)^{n-1} \quad (c > 0) \]

- When \(n = 2 \), the Stenzel metric coincides with the Eguchi-Hanson metric on \(T^* S^2 \).
Stenzel metric on $T^* S^n$

$\Omega_{Stz} : \text{holomorphic } (n, 0)\text{-form on } Q^n$

$$\Omega_{Stz} \wedge d(z_1^2 + z_2^2 + \cdots + z_{n+1}^2) = dz_1 \wedge dz_2 \wedge \cdots \wedge dz_{n+1}$$

Then, $\exists \lambda \in \mathbb{C}$ s.t.

$$\omega^n_{Stz} = \lambda \Omega_{Stz} \wedge \overline{\Omega}_{Stz}$$

Moreover, ω_{Stz} and Ω_{Stz} are $SO(n + 1)$-invariant.

Hence, $(T^* S^n, J, \omega_{Stz}, \Omega_{Stz})$ is a cohomogeneity one Calabi-Yau manifold.
Calabi-Yau metric on the complex cone

\[T^\circ S^n = T^* S^n \setminus S^n \] excluding the zero-section

\[Q^n_0 = \{(z_1, \ldots, z_{n+1}) \in \mathbb{C}^{n+1} \mid \sum z_i^2 = 0\} \]

\[\Psi : T^\circ S^n \longrightarrow Q^n_0 \setminus \{0\} \text{ diffeo} \]

\[(x, \xi) \longmapsto \|\xi\| x + \sqrt{-1} \xi \]

\[Q^n \xrightarrow{\|z\| \to \infty} Q^n_0 \]

\[\frac{d}{dt} (U'(t))^n = c (\sinh t)^{n-1} \]

\[\frac{d}{dt} (F'(t))^n = c e^{t(n-1)} \]

\[F(t) = c e^{\frac{n-1}{n} t} \]

is a solution, and we define \(f \) by \(F(\tau) = f(\frac{1}{2} e^\tau) \).

Proposition (Hashimoto-S.)

Let \(f(r^2) = c r^{\frac{2(n-1)}{n}} \) \((c > 0)\), and define \(\omega_{cone} = \sqrt{-1} \partial \bar{\partial} f(r^2) \).

Then \(\omega_{cone} \) gives a Ricci-flat Kähler metric on \(Q^n_0 \).
Austere submanifold

Definition (Harvey-Lawson)

\[X \subset M : \text{austere submanifold} \]

\[\iff \] for all \(\xi \in N_x X \), the set of eigenvalues with their multiplicities of the shape operator \(A_\xi \) of \(X \) is invariant under the multiplication by \(-1\).

- An austere submanifolds is a minimal submanifold.
- A minimal surface is an austere submanifold.

Theorem (Harvey-Lawson)

\[X \subset \mathbb{R}^n : \text{austere} \iff N^* X \subset T^* \mathbb{R}^n \cong \mathbb{C}^n : \text{special Lagrangian} \]
Special Lagrangian conormal bundles

\[X \subset S^n : \text{submanifold} \]

\[\Phi : N^1 X \times S^1 \longrightarrow S^{2n+1} \subset \mathbb{R}^{2n+2} \]

\[(x, \xi, e^{i\theta}) \mapsto (\cos \theta x, \sin \theta \xi) \]

Theorem (Harvey-Lawson)

\[X \subset S^n : \text{austere} \iff \Phi : \text{minimal Legendrian} \]

Borrelli-Gorodski defined a map \(\tilde{\Phi} \) modifying \(\Phi \) and showed that

\[A_\xi \text{ does not have 0-eigenvalue} \implies \tilde{\Phi} : \text{Legendrian immersion} \]
$X \subset S^n$: submanifold

Then $L = N^* X$ is a Lagrangian submanifold of $T^* S^n$ with respect to the canonical symplectic structure ω_0.

Theorem (Karigiannis-Min-Oo)

$L = N^* X$ is a Lagrangian submanifold of $T^* S^n$ with respect to ω_{Stz}. Moreover, L is a special Lagrangian submanifold of $T^* S^n$ if and only if X is an austere submanifold in S^n.
Weakly reflective submanifold

Definition (Ikawa-Tasaki-S.)

\(X \subset M \) : weakly reflective submanifold (WRS)
\[\xrightarrow{\text{def}} \quad \text{for each } x \in X \text{ and each } \xi \in N_x X, \]
there exists an isometry \(\sigma_\xi \) of \(M \) which satisfies

\[
\sigma_\xi(x) = x, \quad (d\sigma_\xi)_x \xi = -\xi, \quad \sigma_\xi(X) = X.
\]

We call \(\sigma_\xi \) a reflection of \(X \) with respect to \(\xi \).
Weakly reflective submanifolds

Example

\[S^n(1) \times S^n(1) \subset S^{2n+1}(\sqrt{2}) \] is a weakly reflective submanifold.

Proposition

\[\text{reflective} \subset \text{WRS} \subset \text{austere} \subset \text{minimal} \]

Proposition (Podestà, Ikawa-Tasaki-S.)

Any singular orbit of a cohomogeniety one action on a Riemannian manifold is a weakly reflective submanifold.
An orbit $\text{Ad}(K)H$ of an irreducible s-representation which is an austere submanifold in the hypersphere S is one of the following list:

1. An orbit through a restricted root

2. $R = A_2; \quad H = 2e_1 - e_2 - e_3, \quad e_1 + e_2 - 2e_3$

3. $R = A_3; \quad H = e_1 + e_2 - e_3 - e_4$

4. $R = D_n; \quad H = e_1$

5. $R = D_4; \quad H = e_1 + e_2 + e_3 \pm e_4$

6. $R = B_2$ with constant multiplicities; \quad $H = e_1 + \frac{e_1 + e_2}{\sqrt{2}}$

7. $R = G_2; \quad H = \alpha_1 + \frac{\alpha_2}{\sqrt{3}}$

Moreover, in the cases (1)~(5), these austere orbits are weakly reflective submanifolds in S.

Takashi Sakai
Special Lagrangian submanifolds in the complex sphere
Case of type B_2
Moment map and Lagrangian submanifolds

\((M, \omega) : \text{symplectic manifold}\)

\(G \acts M : \text{Hamiltonian action}\)

\[\mu : M \rightarrow g^* \quad \text{moment map}\]

1. \(\omega(\tilde{X}_x, Y) = \langle X, d\mu(Y) \rangle \quad (\forall X \in g, \forall Y \in T_x M)\)

2. \(\mu(g \cdot x) = \text{Ad}^*(g)\mu(x) \quad (\forall g \in G, \forall x \in M)\)

Proposition

\(L \subset (M, \omega) : G\text{-invariant connected submanifold}\)

Suppose that \(G\) acts on \(L\) with cohomogeneity one. Then

\(L\) is isotropic \(\iff\) \(\exists c \in Z(g^*) \text{ s.t. } L \subset \mu^{-1}(c)\)

\((i.e. \ \omega|_L \equiv 0)\)
Theorem (Harvey-Lawson, Joyce)

\(M \) : Calabi-Yau manifold of complex dimension \(n \)

\(P \subset M \) : isotropic \(C^\infty \)-submanifold of dimension \((n - 1)\)

\(\implies \) locally \(\exists ! \) \(L \) : special Lagrangian submanifold

s.t. \(P \subset L \subset M \)

\(G \actson M, \quad \mu : M \rightarrow \mathfrak{g}^* \)

\(c \in Z(\mathfrak{g}^*) \quad \text{s.t.} \quad G \actson \mu^{-1}(c) \) has \((n - 1)\)-dim. principal orbit

\(\pi : \mu^{-1}(c) \rightarrow \mu^{-1}(c)/G \)

Then, for a curve \(\sigma(s) \subset \mu^{-1}(c)/G \)

\(L := \pi^{-1}(\sigma) \subset M \) is a \(G \)-invariant Lagrangian submanifold.

Moreover, the condition for \(L \) to be special Lagrangian can be described as a first order ODE on the orbit space \(\mu^{-1}(c)/G \).
Moment map of $SO(p) \times SO(q)$-action on $T^* S^n$

\[G = \left(\frac{SO(p)}{SO(q)} \right) \subset SO(n + 1) \]

$G \ltimes Q^n \subset \mathbb{C}^{n+1}$: Hamiltonian action

We give a basis of \mathfrak{g} by

\[\{ X_{ij} \mid 1 \leq i < j \leq p \} \cup \{ X_{ij} \mid p + 1 \leq i < j \leq n + 1 \}, \]

where $X_{ij} = E_{ji} - E_{ij} \in \mathfrak{so}(n + 1)$.

By the dual basis of the above, the moment map $\mu : Q^n \to \mathfrak{g}^*$ of $G \ltimes Q^n$ can be represented as

\[\mu(z) = u'(r^2) \left(\text{Im}(z_i \bar{z}_j)_{1 \leq i < j \leq p}, \text{Im}(z_i \bar{z}_j)_{p+1 \leq i < j \leq n+1} \right) \]
Here we demonstrate in a generic case $3 \leq p \leq q$.
In this case $Z(g^*) = \{0\}$. Define

$$\Sigma = \left\{ \left(\frac{1}{\cos \tau}, 0, \ldots, 0, \frac{1}{\sin \tau}, 0, \ldots, 0 \right) \in \mathbb{C}^{n+1} \middle| \begin{array}{c} \tau = t + \sqrt{-1} \xi_1, \\
0 \leq t \leq \pi/2, \xi_1 \in \mathbb{R} \end{array} \right\}$$

Then

$$G \cdot \Sigma = \mu^{-1}(0) \subset Q^n.$$

Therefore Σ can be identified with the orbit space $\mu^{-1}(0)/G$ of $G \sim \mu^{-1}(0)$.
Let $\tau(s) \subset (t, \xi_1)$ be a regular curve, and define a curve $\sigma \subset \Sigma$

$$\sigma(s) = (\cos \tau(s), 0, \ldots, 0, \sin \tau(s), 0, \ldots, 0)$$

Theorem (Hashimoto-S.)

$L = G \cdot \sigma \subset Q^n$ is a Lagrangian submanifold with respect to ω_{Stz}. Moreover, $L = G \cdot \sigma \subset Q^n$ is a special Lagrangian submanifold of phase θ if and only if $\tau(s)$ satisfies

$$\text{Im} \left(e^{\sqrt{-1}\theta} \tau'(\cos \tau)^{p-1}(\sin \tau)^{q-1} \right) = 0. \quad (\ast)$$
Case of $n = 6, \ p = 3, \ q = 4, \ \theta = 0$
Case of $n = 6$, $p = 3$, $q = 4$, $\theta = \pi/4$
Case of $n = 6$, $p = 3$, $q = 4$, $\theta = \pi/2$