PARALLELISM OF NORMAL JACOBI OPERATOR FOR REAL HYPERSURFACES IN COMPLEX TWO-PLANE GRASSMANNIANS

IMSOON JEONG* AND YOUNG JIN SUH

Abstract. In this talk, we introduce a notion of normal Jacobi operator \bar{R}_N for hypersurfaces M in a complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$ in such a way that

$$\bar{R}_N X = \bar{R}(X, N)N \in \text{End} \,(T_x M), \quad x \in M$$

for any tangent vector field X on M, where \bar{R} and N respectively denote the Riemannian curvature tensor and a unit normal vector field of M in $G_2(\mathbb{C}^{m+2})$. The ambient space $G_2(\mathbb{C}^{m+2})$ has a remarkable geometric structure. It was known that $G_2(\mathbb{C}^{m+2})$ is the unique compact irreducible Riemannian symmetric space equipped with both a Kähler structure J and a quaternionic Kähler structure \mathfrak{J}. And the structure vector field ξ, $\xi = -JN$, of a real hypersurface M in $G_2(\mathbb{C}^{m+2})$ is said to be a Reeb vector field. The almost contact structure vector fields $\{\xi_1, \xi_2, \xi_3\}$ are defined by $\xi_i = -J_i N$, $i = 1, 2, 3$, where $\{J_1, J_2, J_3\}$ denote a canonical local basis of quaternionic Kähler structure \mathfrak{J} on $G_2(\mathbb{C}^{m+2})$. If the distributions \mathfrak{D} and $\mathfrak{D}^\perp = \text{Span}\{\xi_1, \xi_2, \xi_3\}$ are invariant by the shape operator A of M, that is, $g(AD, \mathfrak{D}^\perp) = 0$, where $T_x M = \mathfrak{D} \oplus \mathfrak{D}^\perp$, $x \in M$, then we call M is \mathfrak{D}^\perp-invariant. The normal Jacobi operator \bar{R}_N is said to be Reeb parallel on M if the covariant derivative of the normal Jacobi operator \bar{R}_N along the direction of the Reeb vector ξ identically vanishes, that is, $\nabla_\xi \bar{R}_N = 0$.

Related to such a Reeb parallel normal Jacobi operator \bar{R}_N, we give a complete classification of \mathfrak{D}^\perp-invariant real hypersurfaces in complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$ with Reeb parallel normal Jacobi operator.

*Corresponding author.

Imsoon Jeong and Young Jin Suh
Department of Mathematics,
Kyungpook National University,
Taegu 702-701, KOREA
E-mail address: imsoon.jeong@gmail.com
E-mail address: yjsuh@knu.ac.kr