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1. Minimal surfaces in Riemannian 4-manifolds

N : an oriented Riemannian 4-dimensional manifold with its metric h.

=⇒ For a ∈ N , the eigenvalues of ∗ : V2 TaN −→ V2 TaN are ±1, and
the corresponding eigenspaces are of dimension 3.

We have a bundle decompositionV2 TN =
V2
+TN ⊕

V2
−TN

(notice the double covering SO(4) −→ SO(3)× SO(3)).

We see that
V2
±TN are locally generated by

1√
2
(θ12 ± θ34),

1√
2
(θ13 ± θ42),

1√
2
(θ14 ± θ23),

where θij := ei ∧ ej and (e1, e2, e3, e4) is a local ordered orthonormal frame
field of TN giving the orientation of N .



• If N is hyperKähler, then one of
V2
±TN is a product bundle.

• If N = E4, then both of
V2
±TN are product bundles.

The twistor spaces associated with N are the sphere bundles in
V2
±TN :

U
³V2

+TN
´
:=
n
Θ ∈ V2+TN ¯̄

ĥ(Θ,Θ) = 1
o
,

U
³V2
−TN

´
:=
n
Θ ∈ V2−TN ¯̄

ĥ(Θ,Θ) = 1
o
.



M : a Riemann surface,

F :M −→ N : a conformal immersion of a Riemann surface M into N .

ΘF,±: sections of U
³V2

±F
∗TN

´
defined by ΘF,± :=

1√
2
(ξ1 ∧ ξ2 ± ξ3 ∧ ξ4),

where ξ1, ξ2, ξ3, ξ4 form a local orthonormal frame field of F
∗TN s.t.

• (ξ1, ξ2, ξ3, ξ4) gives the orientation of N ,
• ξ1, ξ2 ∈ dF (TM) so that (ξ1, ξ2) gives the orientation of M .

IF,±: the complex structures of F ∗TN corresponding to ΘF,±.

Then ΘF,± =
1√
2
(e ∧ IF,±(e) + e⊥ ∧ IF,±(e⊥)),

where e (respectively, e⊥) is a unit tangent (respectively, normal) vector of F .

If N is hyperKähler so that
V2
+TN (respectively,

V2
−TN) is a product bundle,

then we can consider ΘF,+ (respectively, ΘF,−) to be a map from M into CP 1.



Theorem (A, 2020)

Suppose that N is hyperKähler and that F :M −→ N is minimal.

Then one of ΘF,+,ΘF,− is a holomorphic map from M into CP 1.

In particular, we have the following corollary, which is a well-known theorem

(see pp. 16—22 in D.A.Hoffman and R.Osserman, The geometry of the

generalized Gauss map, Memoirs of AMS 236, 1980).

Corollary

F :M −→ E4 : a conformal and minimal immersion of M into E4.

Then the Gauss map GF :M −→ CP 1 × CP 1 of F is holomorphic.



Proof of the theorem

Suppose that
V2
+TN is a product bundle.

Then we can suppose that

Θ+,1 :=
1√
2
(θ12 + θ34), Θ+,2 :=

1√
2
(θ13 + θ42), Θ+,3 :=

1√
2
(θ14 + θ23)

are horizontal. These sections form an orthonormal frame field of
V2
+TN .

gF,+: a CP 1-valued function satisfying

ΘF,+ =
1− |gF,+|2
1 + |gF,+|2

Θ+,1 +
2Re gF,+

1 + |gF,+|2
Θ+,2 +

2Im gF,+

1 + |gF,+|2
Θ+,3.

w: a local complex coordinate of M .

If we set dF

µ
∂

∂w

¶
=

4X
i=1

ψiei, then we obtain gF,+ =
√
−1ψ

1 +
√
−1ψ2

ψ3 −
√
−1ψ4.



Suppose that F :M −→ N is minimal. Then ∇∂/∂wdF
µ
∂

∂w

¶
= 0.

We set ∇ei =
4X
j=1

ω
j
i ej (i = 1, 2, 3, 4).

=⇒ • ωij = −ω
j
i ,

• ω32 = −ω41, ω42 = ω31, ω
4
3 = −ω21,

• ∂ψ
i

∂w
+
X
j 6=i

ψjωij

µ
∂

∂w

¶
= 0 (i = 1, 2, 3, 4).

Using these, we can obtain
∂gF,+
∂w

= 0. ¤



F :M −→ N : a conformal and minimal immersion of M into N ,

Ψ := dF (∂/∂w).

=⇒ Ψdw gives a section of F ∗TN ⊗ C⊗ T ∗M on M .

∇: the connection of F ∗TN ⊗ C⊗ T ∗M given by the Levi-Civita connection

∇ of h.
=⇒ ∇∂/∂w(Ψdw) = σ

µ
∂

∂w
,
∂

∂w

¶
dw (σ: the 2nd fundamental form of F ).

We see that

Q := h

µ
σ

µ
∂

∂w
,
∂

∂w

¶
, σ

µ
∂

∂w
,
∂

∂w

¶¶
dw ⊗ dw ⊗ dw ⊗ dw

does not depend on the choice of a local complex coordinate w and

we can define a complex quartic differential Q on M .

If N is a 4-dimensional Riemannian space form,

then we see by the equations of Codazzi that Q is holomorphic.



Theorem The following are mutually equivalent :

(a) at each point of M , principal curvatures do not depend on the choice of

a unit normal vector of F ;

(b) h(σ(T1, T1),σ(T1, T1)) = h(σ(T1, T2),σ(T1, T2)),

h(σ(T1, T1), σ(T1, T2)) = 0 for T1 := dF (∂/∂u), T2 := dF (∂/∂v);

(c) Q ≡ 0;
(d) one of ΘF,+, ΘF,− is horizontal w.r.t. the connection ∇̂ of

V2F ∗TN
induced by ∇;

(e) one of IF,± is parallel w.r.t. ∇;
(f) we have one of IF,±σ(T1, T1) = σ(T1, T2).



We say that a minimal immersion F is isotropic

if one of (a) ∼ (f) in the above theorem holds.
We easily see

• (a), (b), (c) and (f) are mutually equivalent,
• (d) and (e) are equivalent.
In addition, (a) and (d) are equivalent (Friedrich).



Suppose N = S4.

Bryant showed that an isotropic minimal surface (superminimal surface) is

given by the composition of

• the twistor map
CP 3 −→ S4 (= HP 1), aC 7−→ aH (a ∈ C4 \ {0} = H2 \ {0})

associated with S4,

• a holomorphic immersion F̂ :M −→ CP 3 which is horizontal in
the twistor space CP 3 (= Sp(2)/U(2) ∼= SO(5)/U(2)).



Suppose N = E4.

Then a conformal immersion F :M −→ E4 is an isotropic minimal immersion

if and only if

the composition of F with an isometry of E4 is a holomorphic immersion into

C2 = E4.

Suppose that N is hyperKähler.

Then a conformal immersion F :M −→ N is an isotropic minimal immersion

compatible with the orientation of N

if and only if

F is a complex curve w.r.t. a complex structure given by

the hyperKähler structure of N .



Suppose that N is a Kähler surface.

Then a conformal immersion F :M −→ N is an isotropic minimal immersion

which is compatible with the orientation of N and

equipped with at least one complex point

if and only if

F is a complex curve w.r.t. the complex structure given by

the Kähler structure of N .



R: the curvature tensor of ∇:
R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

R̂: the curvature tensor of ∇̂.
=⇒ R̂(X1, X2)(Y1 ∧ Y2) = (R(X1, X2)Y1) ∧ Y2 + Y1 ∧R(X1, X2)Y2.
(e1, e2): a local ordered orthonormal frame field of TM giving the orientation

of M .

• If one of ΘF,± is horizontal, then R̂(e1, e2)ΘF,+ = 0 or R̂(e1, e2)ΘF,− = 0.
• If ΘF,± are horizontal, then R̂(e1, e2)ΘF,± = 0 and F is totally geodesic.



Theorem (A, 2020)

F :M −→ N : a conformal and minimal immersion s.t. R̂(e1, e2)ΘF,± = 0.
Then Q is holomorphic.

In addition, if ∇̂ΘF,± 6= 0, then we can choose (e1, e2, e3, e4) satisfying
(a) the connection forms ω, ω⊥ given by ω := h(∇e1, e2), ω⊥ := h(∇e3, e4)
satisfy d ∗ ω = 0 and d ∗ ω⊥ = 0;

(b) the 2nd fundamental form of F is constructed by a solution of

an over-determind system s.t. the compatibility condition is given by

d ∗ ω = 0 and d ∗ ω⊥ = 0.

Remark If N is a space form, then R̂(e1, e2)ΘF,± = 0.

Remark The condition d ∗ ω = 0 means that on a neighborhood of each point
of M , there exists a local complex coordinate w = u +

√
−1v satisfying

e1 = e
−λdF (∂/∂u), e2 = e−λdF (∂/∂v) for a function λ.



Proof of the theorem

Since F is minimal, we have ∇∂/∂wΨ = 0.

Since R̂(e1, e2)ΘF,± = 0, we have R̂
µ
∂

∂w
,
∂

∂w

¶µ
∂

∂w
∧ ∂

∂w

¶
= 0.

Therefore we obtain ∇⊥
∂/∂w

σ

µ
∂

∂w
,
∂

∂w

¶
= 0 and this means that Q is

holomorphic.

Suppose ∇̂ΘF,± 6= 0.
Then principal curvatures of F at each point depend on the choice of a unit

normal vector.

e3: a locally defined unit normal vector field which gives the maximum of

the absolute values of principal curvatures of F at each point.

Then the maximum is positive and therefore we can suppose that e1, e2 give

principal directions of F w.r.t. e3.



e4: a unit normal vector field perpendicular to e3.

σkij := h(σ(ei, ej), ek) (i, j = 1, 2, k = 3, 4).

=⇒ σk11 + σk22 = 0 (k = 3, 4), σ312 = 0, σ411 = 0.

f± := σ311 ± σ412 =⇒ f± 6= 0.
pj := 2ω(ej), q

j := (−1)3−jω⊥(e3−j) (j = 1, 2).
Then R̂(e1, e2)ΘF,± = 0 mean

e1(log |f±|) = −p2 ± q1, e2(log |f±|) = p1 ± q2.
Since ∇ is torsion-free, we obtain 2[e1, e2] + p1e1 + p2e2 = 0.
Therefore we obtain

• e1(p1) + e2(p2) = 0, i.e., d ∗ ω = 0,
• e2(q1)− e1(q2) =

1

2
(p1q1 + p2q2), i.e., d ∗ ω⊥ = 0.

¤



2. Space-like surfaces with zero mean curvature vector

in Lorentzian 4-manifolds and Willmore surfaces

in 3-dimensional space forms

N : an oriented Lorentzian 4-dimensional manifold with its metric h,

F :M −→ N : a space-like and conformal immersion of M into N

with zero mean curvature vector.

=⇒ ∇∂/∂w(Ψdw) = σ

µ
∂

∂w
,
∂

∂w

¶
dw

µ
Ψ := dF

µ
∂

∂w

¶¶
.

We can define a complex quartic differential Q on M by

Q := h

µ
σ

µ
∂

∂w
,
∂

∂w

¶
, σ

µ
∂

∂w
,
∂

∂w

¶¶
dw ⊗ dw ⊗ dw ⊗ dw.



We see that Q ≡ 0 if and only if
the 2nd fundamental form is light-like or zero, that is,

the shape operator of a light-like normal vector field vanishes.

If N is a 4-dimensional Lorentzian space form,

then we see by the equations of Codazzi that Q is holomorphic, and

Q ≡ 0 means that a light-like normal vector field is contained in a constant
direction.

Remark L0: the constant sectional curvature of N .

• L0 = 0 =⇒ N = E41.

• L0 > 0 =⇒ N = S41(L0) =

½
x ∈ E51

¯̄̄̄
hx, xi4,1 =

1

L0

¾
.

• L0 < 0 =⇒ N = H41(L0) =

½
x ∈ E52

¯̄̄̄
hx, xi3,2 =

1

L0

¾
.



ι :M −→ S3 = {x ∈ E51 | hx, xi4,1 = 0, x5 = 1}: a conformal immersion,
e3: a unit normal vector field of ι in S

3,

H : the mean curvature of ι w.r.t. e3.

=⇒ γι := e3 +Hι is a map from M into the de Sitter 4-space

S41 = {x ∈ E51 | hx, xi4,1 = 1}.

Reg (ι): the set of non-umbilical points of ι.

=⇒ γι|Reg (ι) is a space-like immersion s.t. the induced metric g is given by
g = ε2gM , where ε :=

p
H2 −KM + 1, and KM is the curvature of

the induced metric gM by ι.

We call γι :M −→ S41 the conformal Gauss map of ι.

We see that ι is a light-like normal vector field of γι|Reg (ι) and
that the trace of the shape operator of γι|Reg (ι) w.r.t. ι vanishes.



ν: a light-like normal vector field of γι|Reg (ι) s.t. hν, ιi4,1 = −1.
=⇒ The trace of the shape operator of γι|Reg (ι) w.r.t. ν is given by

−(∆H + 2H) (∆: the Laplacian on Reg (ι) w.r.t. g).

Since ∆H + 2H =
1

ε2
(∆MH + 2ε2H), we obtain

Theorem (Bryant) An immersion ι is Willmore if and only if

the mean curvature vector of γι|Reg (ι) vanishes.



ι :M −→ S3: a conformal immersion,

Ξ := 2σM ⊗ HessMH + (H2 + 1)σM ⊗ σM − 2dH ⊗∇MσM , where

• σM : the 2nd fundamental form of ι,
• H : the mean curvature of ι,
• HessMH : the Hessian of H w.r.t. the Levi-Civita connection ∇M of gM .

We consider Ξ to be a complex 4-linear function on the complexification of

the tangent space of M at each point.

Proposition (Bryant)

If ι is Willmore, then a complex quartic differential

Q̃ := Ξ

µ
∂

∂w
,
∂

∂w
,
∂

∂w
,
∂

∂w

¶
dw ⊗ dw ⊗ dw ⊗ dw

is holomorphic.



Theorem (A) M : a Riemann surface,

ι :M −→ S3: a conformal and Willmore immersion.

Then the holomorphic quartic differential Q for a conformal immersion

F := γι|Reg (ι) coincides with Q̃ on Reg (ι) up to a nonzero constant.

Remark We can have analogous discussions

for ι :M −→ H3 = {x ∈ E51 | hx, xi4,1 = 0, x1 = 1, x5 > 0}
or E3 = {x ∈ E51 | hx, xi4,1 = 0, x5 = x1 + 1}.



ι :M −→ S31 = {x ∈ E52 | hx, xi3,2 = 0, x5 = 1}:
a space-like and conformal immersion,

e3: a normal vector field of ι in S
3
1 s.t. he3, e3i3,2 = −1,

H : the mean curvature of ι w.r.t. e3.

=⇒ • γι := −e3 +Hι is a map from M into the anti-de Sitter 4-space

H41 = {x ∈ E52 | hx, xi3,2 = −1},
• γι|Reg (ι) is a space-like immersion s.t. g = ε2gM³
ε :=

p
H2 +KM − δ

´
.

We call γι :M −→ H41 the conformal Gauss map of ι.

We can show that an immersion ι is Willmore if and only if

the mean curvature vector of γι|Reg (ι) vanishes.



Ξ := 2σM ⊗ HessMH − (H2 − δ)σM ⊗ σM − 2dH ⊗∇MσM .

Proposition (A) If ι is Willmore, then Q̃ is holomorphic.

Theorem (A) M : a Riemann surface,

ι :M −→ S31: a conformal and Willmore immersion.

Then the holomorphic quartic differential Q for a conformal immersion

F := γι|Reg (ι) coincides with Q̃ on Reg (ι) up to a nonzero constant.

Remark We can have analogous discussions

for ι :M −→ H31 = {x ∈ E52 | hx, xi3,2 = 0, x1 = 1}
or E31 = {x ∈ E52 | hx, xi3,2 = 0, x5 = x1 + 1}.



ι :M −→ L+ := {x ∈ E41 | hx, xi3,1 = 0, x4 > 0}:
a space-like and conformal immersion,

ξ: a light-like normal vector field of ι in E41 s.t. hξ, ιi3,1 = −1,
H : the mean curvature of ι w.r.t. a normal vector field ι.

=⇒ • γι := −ξ +Hι is a map from M into E41,

• γι|Reg (ι) is a space-like immersion s.t. g = ε2gM (ε :=
√
H2 −K ).

We call γι :M −→ E41 the conformal Gauss map of ι.

Remark We see that H is determined by the induced metric gM .



Theorem (A) An immersion ι satisfies ∆MH − 2ε2 = 0 if and only if
the mean curvature vector of γι|Reg (ι) vanishes.

Remark The Euler-Lagrange equation for Willmore surfaces in L+ is given

by ∆MH + 2H2 = 0.

Ξ := σM ⊗ HessMH −HσM ⊗ σM − dH ⊗∇MσM ,

where σM is the 2nd fundamental form of ι w.r.t. a normal vector field ι.

Proposition (A) If ι satisfies ∆MH − 2ε2 = 0, then Q̃ is holomorphic.

Theorem (A) M : a Riemann surface,

ι :M −→ L+ ⊂ E41: a conformal immersion s.t. ∆MH − 2ε2 = 0.
Then the holomorphic quartic differential Q for a conformal immersion

F := γι|Reg (ι) coincides with Q̃ on Reg (ι) up to a nonzero constant.



3. Space-like surfaces with zero mean curvature vector

in neutral 4-manifolds

(N, h): an oriented neutral 4-dimensional manifold.

=⇒ The metric h induces an indefinite metric ĥ of
V2 TN defined by

ĥ(xi ∧ xj, xk ∧ xl) = h(xi, xk)h(xj, xl)− h(xi, xl)h(xj, xk).
(e1, e2, e3, e4): a local ordered pseudo-orthonormal frame field of TN giving

the orientation of N .

Θ±,1 :=
1√
2
(θ12 ± θ34), Θ±,2 :=

1√
2
(θ13 ± θ42), Θ±,3 :=

1√
2
(θ14 ± θ23).

=⇒ Θ±,1, Θ±,2, Θ±,3 are mutually orthogonal and satisfy

ĥ(Θ±,1,Θ±,1) = 1, ĥ(Θ±,2,Θ±,2) = ĥ(Θ±,3,Θ±,3) = −1.
Therefore ĥ has signature (2, 4).



V2
+ TN ,

V2
− TN : SO(2, 2)-invariant subbundles of

V2 TN with rank 3 s.t.

all the elements of
V2
+ TN are SU(1, 1)-invariant

(notice the double covering

SO0(2, 2) −→ SO0(1, 2)× SO0(1, 2)).
=⇒ Each fiber of

V2
+ TN (resp.

V2
− TN) is spanned by

Θ−,1, Θ+,2, Θ+,3 (resp. Θ+,1, Θ−,2, Θ−,3).

In particular, we see

• V2 TN =
V2
+TN ⊕

V2
−TN ,

• V2+ TN ⊥ V2− TN w.r.t. ĥ,

• The restriction of ĥ on each of V2+ TN , V2− TN has signature (1, 2).



• If N is neutral hyperKähler, then one of
V2
±TN is a product bundle.

• If N = E42, then both of
V2
±TN are product bundles.

The space-like twistor spaces associated with N are fiber bundles in
V2
±TN

given by

U+

³V2
+TN

´
:=
n
Θ ∈ V2+TN ¯̄

ĥ(Θ,Θ) = 1
o
,

U+

³V2
−TN

´
:=
n
Θ ∈ V2−TN ¯̄

ĥ(Θ,Θ) = 1
o
.



M : a Riemann surface,

F :M −→ N : a space-like and conformal immersion of M into N .

ΘF,±: sections of U+
³V2

±F
∗TN

´
defined by ΘF,± :=

1√
2
(ξ1 ∧ ξ2 ∓ ξ3 ∧ ξ4),

where ξ1, ξ2, ξ3, ξ4 form a local pseudo-orthonormal frame field of F
∗TN

s.t.

• (ξ1, ξ2, ξ3, ξ4) gives the orientation of N ,
• ξ1, ξ2 ∈ dF (TM) so that (ξ1, ξ2) gives the orientation of M .

IF,±: the complex structures of F ∗TN corresponding to ΘF,±.

Then ΘF,± =
1√
2
(e ∧ IF,±(e)− e⊥ ∧ IF,±(e⊥)),

where

• e is a unit tangent vector of F ,
• e⊥ is a normal vector of F with h(e⊥, e⊥) = −1.



If N is neutral hyperKähler so that
V2
+TN (respectively,

V2
−TN) is a product

bundle, then we can consider ΘF,+ (respectively, ΘF,−) to be a map from M
into CH1.

Theorem (A, 2020) Suppose

• N is neutral hyperKähler,

• F :M −→ N has zero mean curvature vector.

Then one of ΘF,+,ΘF,− is a holomorphic map from M into CH1.

Corollary (A, 2020)

F :M −→ E42: a space-like and conformal immersion with zero mean

curvature vector.

Then the Gauss map GF :M −→ CH1 × CH1 of F is holomorphic.



M : a Riemann surface,

F :M −→ N : a space-like and conformal immersion of M into N

with zero mean curvature vector.

=⇒ ∇∂/∂w(Ψdw) = σ

µ
∂

∂w
,
∂

∂w

¶
dw

µ
Ψ = dF

µ
∂

∂w

¶¶
.

We can define a complex quartic differential Q on M by

Q := h

µ
σ

µ
∂

∂w
,
∂

∂w

¶
, σ

µ
∂

∂w
,
∂

∂w

¶¶
dw ⊗ dw ⊗ dw ⊗ dw.

If N is a 4-dimensional neutral space form,

then we see by the equations of Codazzi that Q is holomorphic.



Theorem The following are mutually equivalent :

(a) at each point of M , principal curvatures do not depend on the choice of

a normal vector e⊥ of F with h(e⊥, e⊥) = −1;
(b) h(σ(T1, T1),σ(T1, T1)) = h(σ(T1, T2),σ(T1, T2)),

h(σ(T1, T1), σ(T1, T2)) = 0 for T1 := dF (∂/∂u), T2 := dF (∂/∂v);

(c) Q ≡ 0;
(d) one of ΘF,+, ΘF,− is horizontal w.r.t. ∇̂;
(e) one of IF,± is parallel w.r.t. ∇;
(f) we have one of IF,±σ(T1, T1) = σ(T1, T2).

We say that F is isotropic if one of (a) ∼ (f) in the above theorem holds.



Theorem (A, 2020)

F :M −→ N : a space-like and conformal immersion

with zero mean curvature vector and R̂(e1, e2)ΘF,± = 0.
Then Q is holomorphic.

In addition, if ∇̂ΘF,± 6= 0, then we can choose (e1, e2, e3, e4) satisfying
(a) the connection forms ω, ω⊥ given by ω := h(∇e1, e2), ω⊥ := h(∇e3, e4)
satisfy d ∗ ω = 0 and d ∗ ω⊥ = 0;

(b) the 2nd fundamental form of F is constructed by a solution of

an over-determind system s.t. the compatibility condition is given by

d ∗ ω = 0 and d ∗ ω⊥ = 0.

Remark If N is a 4-dimensional neutral space form, then R̂(e1, e2)ΘF,± = 0.



4. Time-like surfaces with zero mean curvature vector

in neutral 4-manifolds

The time-like twistor spaces associated with N are fiber bundles in
V2
±TN

given by

U−
³V2

εTN
´
:=
n
Θ ∈ V2εTN ¯̄

ĥ(Θ,Θ) = −1
o

(ε = +,−).
M : a Lorentz surface (two-dimensional manifold with a holomorphic system of

paracomplex coordinate neighborhoods),

F :M −→ N : a time-like and conformal immersion of M into N .

ΘF,±: sections of U−
³V2

±F
∗TN

´
defined by ΘF,± :=

1√
2
(ξ1 ∧ ξ3 ± ξ4 ∧ ξ2),

where ξ1, ξ2, ξ3, ξ4 form a local pseudo-orthonormal frame field of F
∗TN

(we suppose that ξ1, ξ2 are space-like) s.t.

• (ξ1, ξ2, ξ3, ξ4) gives the orientation of N ,
• ξ1, ξ3 ∈ dF (TM) so that (ξ1, ξ3) gives the orientation of M .



JF,±: the paracomplex structures of F ∗TN corresponding to ΘF,±.

Then ΘF,± =
1√
2
(e ∧ JF,±(e)− e⊥ ∧ JF,±(e⊥)),

where

• e is a unit tangent vector of F ,
• e⊥ is a normal vector of F with h(e⊥, e⊥) = −1.

If N is neutral hyperKähler so that
V2
+TN (respectively,

V2
−TN) is a product

bundle, then we can consider ΘF,+ (respectively, ΘF,−) to be a map from M
into C̃H1 (a hyperboloid of one sheet as a Lorentz surface).



A hyperboloid of one-sheet is given by H21 = {x ∈ E32 | hx, xi1,2 = −1}.
Let R+, R− be open subsets of H21 defined by

R+ := {x = (x1, x2, x3) ∈ H21 | x3 6= 1},
R− := {x = (x1, x2, x3) ∈ H21 | x3 6= −1}.
C̃: the paracomplex plane = {w̃ = u + jv | u, v ∈ R}

(j: the paraimaginary unit),

|w̃|2 := w̃w̃ = u2 − v2,
Cδ := {w̃ ∈ C̃ | |w̃|2 = δ} (δ = 0, 1).
The stereographic projections pr± are bijective maps from R± onto C̃ \ C1
defined by

pr−1± (w̃) =

Ã
2Re w̃

1− |w̃|2, ∓
2Im w̃

1− |w̃|2, ∓
1 + |w̃|2
1− |w̃|2

!
(w̃ ∈ C̃ \ C1).
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Since pr±(R+ ∩R−) = C̃ \ (C1 ∪ C0), we see that the composition
pr− ◦ pr−1+ : pr+(R+ ∩R−) −→ pr−(R+ ∩R−)

is holomorphic.

Therefore, noticing R+ ∪R− = H21 , we can consider H21 to be a Lorentz
surface, which is denoted by C̃H1.

Theorem (A, 2020) Suppose

• N is neutral hyperKähler,

• F :M −→ N has zero mean curvature vector.

Then one of ΘF,+,ΘF,− is a holomorphic map from M into C̃H1.

Corollary (A, 2020)

F :M −→ E42: a time-like and conformal immersion with zero mean

curvature vector,

Then the Gauss map GF :M −→ C̃H1 × C̃H1 of F is holomorphic.



M : a Lorentz surface,

F :M −→ N : a time-like and conformal immersion of M into N

with zero mean curvature vector,

w = u + jv: a local paracomplex coordinate of M ,

Ψ := dF

µ
∂

∂w

¶ µ
∂

∂w
=
1

2

µ
∂

∂u
+ j

∂

∂v

¶¶
.

=⇒ ∇∂/∂w(Ψdw) = σ

µ
∂

∂w
,
∂

∂w

¶
dw.

We can define a paracomplex quartic differential Q on M by

Q := h

µ
σ

µ
∂

∂w
,
∂

∂w

¶
, σ

µ
∂

∂w
,
∂

∂w

¶¶
dw ⊗ dw ⊗ dw ⊗ dw.

If N is a 4-dimensional neutral space form,

then we see by the equations of Codazzi that Q is holomorphic.



Theorem The following are equivalent :

(a) h(σ(T1, T1),σ(T1, T1)) = −h(σ(T1, T2),σ(T1, T2)),
h(σ(T1, T1), σ(T1, T2)) = 0 for T1 := dF (∂/∂u), T2 := dF (∂/∂v);

(b) Q ≡ 0.

We say that F is isotropic if one of (a), (b) in the above theorem holds.

Theorem (A, 2020) The following are mutually equivalent :

(a) one of ΘF,+, ΘF,− is horizontal w.r.t. ∇̂;
(b) one of JF,± is parallel w.r.t. ∇;
(c) we have one of JF,±σ(T1, T1) = σ(T1, T2).

In addition, if F satisfies one of (a), (b), (c), then F is isotropic.

We say that F is strictly isotropic if one of (a), (b), (c) in the above theorem

holds for the orientation of N .



It is possible that although F is isotropic, none of the covariant derivatives of

ΘF,+, ΘF,− w.r.t. ∇̂ become zero.

Proposition (A, 2020)

If both ∇̂ΘF,+ and ∇̂ΘF,− are light-like, then one of the following holds :
(a) the shape operator of a light-like normal vector field vanishes and then

Q vanishes ;

(b) the shape operator of any normal vector field is zero or light-like, and

then Q is zero or null.



Remark

Suppose that N is a 4-dimensional neutral space form.

• Condition (a) implies that a light-like normal vector field of the surface is
contained in a constant direction.

The conformal Gauss map of a time-like surface in a 3-dimensional

Lorentzian space form of Willmore type with Q ≡ 0 has this property.
• We can characterize surfaces with condition (b), based on
the Gauss-Codazzi-Ricci equations.



M : an oriented two-dimensional manifold,

ι :M −→ N31 = S
3
1, E

3
1 or H

3
1 : a time-like immersion

(we consider S31, E
3
1, H

3
1 to be subsets of E

5
2),

e3: a unit normal vector field of ι in N
3
1 ,

H : the mean curvature of ι w.r.t. e3,

γι := e3 +Hι,

Λ := H2 −KM + δ

(δ = 1, 0 or −1, KM : the curvature of the induced metric gM by ι),

Reg (ι): the set of nonzero points of Λ.

=⇒ γι|Reg (ι) is a time-like immersion of Reg (ι) into S42 s.t.
the induced metric g by γι|Reg (ι) is given by g = ΛgM .

We call γι :M −→ S42 the conformal Gauss map of ι :M −→ N31 .



• ι is a light-like normal vector field of a time-like immersion γι|Reg (ι),
• the trace of the shape operator of γι|Reg (ι) w.r.t. ι is zero,
• if we denote by ν a light-like normal vector field of γι|Reg (ι) satisfying
hι, νi3,2 = −1, then the trace of the shape operator of γι|Reg (ι) w.r.t. ν is
given by − 1

Λ
(∆MH + 2ΛH).

Since Λ ≡ 0 means that ∆MH = 0, we obtain

Theorem (A) An immersion ι :M −→ N31 satisfies ∆
MH + 2ΛH = 0

if and only if the mean curvature vector of γι|Reg (ι) : Reg (ι) −→ S42
vanishes.

We say that ι is of Willmore type
def⇐⇒ ∆MH + 2ΛH = 0.



M : a Lorentz surface,

ι :M −→ N31 : a time-like and conformal immersion,

Ξ := 2σM ⊗ HessMH + (H2 + δ)σM ⊗ σM − 2dH ⊗∇MσM

(σM : the 2nd fundamental form of ι).

Proposition (A) If ι :M −→ N31 is of Willmore type,

then a paracomplex quartic differential

Q̃ := Ξ

µ
∂

∂w
,
∂

∂w
,
∂

∂w
,
∂

∂w

¶
dw ⊗ dw ⊗ dw ⊗ dw

is holomorphic (w = u + jv: a local paracomplex coordinate of M).



Theorem (A)

ι :M −→ N31 : a time-like and conformal immersion of Willmore type.

On Reg (ι), the following hold :

(a) the null points of the differential Q for F := γι|Reg (ι) coincide with
the null points of Q̃, and a null point of Q is just given by a condition

that the shape operator of F w.r.t. ν is light-like;

(b) except the null points, Q coincides with Q̃ up to a nonzero constant ;

(c) Q ≡ 0 if and only if a light-like normal vector field ν of F is contained
in a constant direction.

Remark

Suppose • ι as in the above theorem satisfies Q̃ ≡ 0;
•
¡
∇T1T1

¢⊥ 6= ± ¡∇T1T2¢⊥ (T1 = dF (∂/∂u), T2 = dF (∂/∂v)).

=⇒ For ΘF,± with F = γι|Reg (ι), ∇̂ΘF,± are light-like.



(e1, e3): a local ordered pseudo-orthonormal frame field of TM giving

the orientation of M .

Theorem (A, 2020)

F :M −→ N : a time-like and conformal immersion

with zero mean curvature vector and R̂(e1, e3)ΘF,± = 0.
Then Q is holomorphic and

the 2nd fundamental form of F is constructed by solutions of four families

of ordinary differential equations defined along integral curves of light-like

vector fields e1 ± e3 and given by the connection forms ω := −h(∇e1, e3),
ω⊥ := −h(∇e2, e4).



If ∇̂ΘF,± are zero or light-like, then R̂(e1, e3)ΘF,± are zero or light-like.

Theorem (A, 2020)

F :M −→ N : a time-like and conformal immersion with zero mean

curvature vector s.t. R̂(e1, e3)ΘF,± are zero or light-like.
Then the 2nd fundamental form of F is constructed by solutions of suitable

two families of ordinary differential equations of the four families in the

previous theorem.



THE FIRST TALK HAS ENDED.


