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1. Minimal surfaces in Riemannian 4-manifolds

N: an oriented Riemannian 4-dimensional manifold with its metric h.
— For a € N, the eigenvalues of * : A°TyN — A°TyN are +1, and

the corresponding eigenspaces are of dimension 3.

We have a bundle decomposition
2 2 2
N TN = AZTN & N\ZTN
(notice the double covering SO(4) — SO(3) x SO(3)).

We see that /\iT N are locally generated by

1 1 1
E(Qm + 034), 5(913 + 049), 5(914 + 623),

where 6;; ;= e; A e; and (eq, e, €3, e4) is a local ordered orthonormal frame
field of TIN giving the orientation of V.



e [f NV is hyperKahler, then one of /\QiT N is a product bundle.
o If N = E*, then both of /\2iT N are product bundles.

The twistor spaces associated with /N are the sphere bundles in /\2iT N
2 o 2
U(ALTV) = {0 e ATV

U(ALTN) = {6 € A\ZTN

h(O,0) = 1},

h(6,0) = 1}.



M: a Riemann surface,

F: M — N: a conformal immersion of a Riemann surface M into V.

1
OF 4: sections of U(/\QiF”TN) defined by O 1 = E(& N+ E3NEy),

where &1, &, &3, &4 form a local orthonormal frame field of F*TIN s.t.

o (£1,89,&3,&4) gives the orientation of IV,
o £1,& € dF(TM) so that (&1, &2) gives the orientation of M.

I +: the complex structures of F*T'N corresponding to O 4.

1
Then Op 1 =——(e AIpi(e)+et Alpi(eh)),

V2

where e (respectively, ™)

is a unit tangent (respectively, normal) vector of F'.

If NV is hyperKahler so that /\iT N (respectively, /\2_T N) is a product bundle,
then we can consider Op (respectively, © F,—) to be a map from M into CPL.



Theorem (A, 2020)
Suppose that N 1is hyperKahler and that F' : M — N 1is minimal.
Then one of O 1, O _ is a holomorphic map from M into cPl.

In particular, we have the following corollary, which is a well-known theorem
(see pp. 16-22 in D. A. Hoffman and R. Osserman, The geometry of the
generalized Gauss map, Memoirs of AMS 236, 1980).

Corollary

F: M —s E*: a conformal and minimal immersion of M into E*.
Then the Gauss map Gp : M — CP! x CP! of F is holomorphic.



Proof of the theorem
Suppose that /\iTN is a product bundle.

Then we can suppose that

1 1 1

Or1:= 5012+ 031). O121= =5 (013 +012). O 3= —5(01a + O23)

are horizontal. These sections form an orthonormal frame field of /\iTN .

g+ a CP'-valued function satisfying

1 —lgp 4l 2Regp, 4 2Im g, 4
F4 = +1 +,2 +3
L+ |gp 4|2 L+ |gp 4 L+ ]gp 4|
w: a local complex coordinate of M.
0 wl + V=19
If we set dF (8w> Z W'e;, then we obtain gF 4+ =V— EYas AT}



Suppose that F': M — N 1s minimal. Then Vg /5—dF ( 0 ) 0.

ow
4 .
We set Ve; = » wle; (i=1,2,3,4).
7=1
]
— o w;. = —wj,
° wg = —w%, w% = w%, wél = —w%,
awl 0
W) =0 (i=1,2.34).
5+ 2w () 0 G-r2ad
JF1

OgF +
ow

Using these, we can obtain = 0.



F: M — N: a conformal and minimal immersion of M into IV,
U= dF(9/0w).
— Wdw gives a section of F"'TN @ C ® T*M on M.

V: the connection of F*TN ® C ® T*M given by the Levi-Civita connection
V of h.

I Va/aw(\lldw) — O'( 0 9

ow’ Ow

) dw (o: the 2nd fundamental form of F').

We see that

o 0 0 0
Q.h(a(aw,aw>, 0(811}’810)) dw ® dw ® dw Q dw

does not depend on the choice of a local complex coordinate w and

we can define a complex quartic differential ) on M.

If N is a 4-dimensional Riemannian space form,

then we see by the equations of Codazzi that () is holomorphic.



Theorem The following are mutually equivalent:

(a) at each point of M, principal curvatures do not depend on the choice of

a unit normal vector of F

(b) h(o(T1,T1),0(T1,T1)) = ho(T1, T3), 0 (11, T3)),
ho(Th,T1),0(Th,Ty)) = 0 for Th := dF(0/0u), Ty := dF(0/0v);

() @ =0;

(d) one of O, O _ is horizontal w.r.t. the connection V of /\2F*TN
induced by V;

(e) one of Ik 1 is parallel w.r.t. V;

(f) we have one of Ip +o(T1,T1) = o(T1,T5).



We say that a minimal immersion F' is isotropic
if one of (a) ~ (f) in the above theorem holds.
We easily see

e (a), (b), (¢) and (f) are mutually equivalent,

e (d) and (e) are equivalent.

In addition, (a) and (d) are equivalent (Friedrich).



Suppose N = S%
Bryant showed that an isotropic minimal surface (superminimal surface) is

given by the composition of
e the twistor map
CP3 — S*(=HPY), aC+— aH (a e C*\ {0} =H"\{0})
associated with 9%,

e a holomorphic immersion F': M — CP3 which is horizontal in

the twistor space CP? (= Sp(2)/U(2) = SO(5)/U(2)).



Suppose N = 4.
Then a conformal immersion F : M — E* is an isotropic minimal immersion
if and only if

the composition of F with an isometry of E* is a holomorphic immersion into

C2 = g4

Suppose that IV is hyperKahler.

Then a conformal immersion F' : M — N is an isotropic minimal immersion
compatible with the orientation of N

if and only if

F'is a complex curve w.r.t. a complex structure given by

the hyperKahler structure of V.



Suppose that NV is a Kahler surface.

Then a conformal immersion F' : M — N is an isotropic minimal immersion
which is compatible with the orientation of N and

equipped with at least one complex point

if and only if

F'is a complex curve w.r.t. the complex structure given by

the Kahler structure of V.



R: the curvature tensor of V:
RX,Y)Z =V xVyZ —-VyVxZ — V[ij]Z,
R: the curvature tensor of V.
— R(X1, X5)(Y1 AY2) = (R(X1, X2)Y1) A Ya + Y] A R(X1, X5)Y5.

(e1,€2): a local ordered orthonormal frame field of TM giving the orientation
of M.

o If one of O 4 is horizontal, then R(el, e2)OF 4 =0 or R(el, e2)Op _ = 0.

e If OF 4 are horizontal, then R(ey,e9)0 F+ = 0 and F is totally geodesic.



Theorem (A, 2020)

F: M —s N: a conformal and minimal immersion s.t. R(eq, e2)OF + = 0.

Then () is holomorphic.

In addition, if @@F,i # 0, then we can choose (e, e, e3,e4) satisfying

(a) the connection forms w, wr given by w = h(Vey, es), w = h(Ves, ey)
satisfy d * w =0 and d * w™ = 0:;

(b) the 2nd fundamental form of I is constructed by a solution of

an over-determind system s.t. the compatibility condition is given by
dxw =0 and d x wt = 0.

Remark If N is a space form, then ]?2(61, e2)OF + = 0.

Remark The condition d * w = 0 means that on a neighborhood of each point

of M, there exists a local complex coordinate w = u + v/ —1v satistying
e] = e MF(/0u), e9 = e MEF(9/dv) for a function .



Proof of the theorem

Since ' 1s minimal, we have Vg /a—\If — 0.

0 0 o 0
Since R(ey, e2)OF + = 0, we have R(aw 8w> <8w @w) 0.
0 0

Oow’ Ow

Therefore we obtain V£ 90w ° ( ) = 0 and this means that () is

holomorphic.

Suppose @QFai # 0.

Then principal curvatures ot F' at each point depend on the choice of a unit

normal vector.

e3: a locally defined unit normal vector field which gives the maximum of
the absolute values of principal curvatures of F' at each point.

Then the maximum is positive and therefore we can suppose that e, eo give

principal directions of ' w.r.t. es.



e4: a unit normal vector field perpendicular to es.
o = hloles,e5),ep) (6,5 =1,2, k= 3,4).
= o, +0ob,=0 (k=3,4), 03,=0, of; =0.

fi = Jil)’l + 0%2. — f+ #0.

P =2w(e), ¢ = (1) Twt(ezy) (1=1,2).
Then R(eq, e2)OF + = 0 mean

erlog|fe)) = —p* £¢', exllog|fel) =p' £¢*
Since V is torsion-free, we obtain 2|eq, eg] + ple + pPes = 0.
Therefore we obtain
o e1(pl) +ex(p?) =0, ie., d*w =0,

1 .
o e5(ql) —e1(¢?) = 5(191(11 +p%¢%), ie, dxwt =0



2. Space-like surfaces with zero mean curvature vector
in Lorentzian 4-manifolds and Willmore surfaces

in 3-dimensional space forms

N: an oriented Lorentzian 4-dimensional manifold with its metric A,
F: M — N: a space-like and conformal immersion of M into N

with zero mean curvature vector.

_ 0 0 0
— Va/aw<\lfdw> = O'(aw, 021)) dw (\If = dF (6_21}))

We can define a complex quartic differential () on M by

0 0 0o 0
Q'_h<0(8w’8w>’ O(@w’@w)) dw ® dw ® dw ® dw.




We see that Q = 0 if and only if
the 2nd fundamental form is light-like or zero, that is,

the shape operator of a light-like normal vector field vanishes.

If N is a 4-dimensional Lorentzian space form,
then we see by the equations of Codazzi that () is holomorphic, and
() = 0 means that a light-like normal vector field is contained in a constant

direction.

Remark L(: the constant sectional curvature of V.

e j=0 = N =EFEj}.

o j >0 = N—Sf(LO)_{er%

1
<$7 x>4,1 — L_O}

oLm<O:$]V:Hﬂhﬁ:{m€Eg




LM — S ={z € B} | (g, r)41 =0, z° = 1}: a conformal immersion,
es: a unit normal vector field of ¢ in S5,
H: the mean curvature of ¢+ w.r.t. es.

—> 7, :=e3+ Huis a map from M into the de Sitter 4-space
St={zr e B} | (z,2)41 =1},

Reg (1): the set of non-umbilical points of ¢.

— %’Reg (1) Is a space-like immersion s.t. the induced metric g is given by
g =e2gM where ¢ := VH2 - KM 4 1, and KM is the curvature of
the induced metric gM by ¢.

We call v, : M — S% the conformal Gauss map of ¢.

We see that ¢ is a light-like normal vector field of %’Reg (0) and

that the trace of the shape operator of %\Reg (1) WIt ¢ vanishes.



v: a light-like normal vector field of v,|geg () s-t. (v, 0041 = —1.

—> The trace of the shape operator of %|Reg () Wt v is given by
—(AH +2H) (A: the Laplacian on Reg (¢) w.r.t. g).

1
Since AH +2H = —Q(AMH +2¢°H), we obtain
3

Theorem (Bryant) An immersion ¢ is Willmore if and only if

the mean curvature vector of %\Reg (1) vanishes.



M — S3: a conformal 1minersion,
20 @ Hess% +(H*+ 1)oM @ oM —2dH @ VMM where

e oM. the 2nd fundamental form of L,

L .
.
—
o
]

e H: the mean curvature of ¢,
o Hess% - the Hessian of H w.r.t. the Levi-Civita connection VM of ¢

We consider = to be a complex 4-linear function on the complexification of

the tangent space of M at each point.

Proposition (Bryant)

If 1 1s Willmore, then a complex quartic differential

O.—3 o 0 0 O
T\ ow’ Ow’ Ow’ Ow

)dw@dw@dw@dw

1s holomorphic.



Theorem (A) M: a Riemann surface,
L M — S3: a conformal and Willmore immersion.
Then the holomorphic quartic differential () for a conformal immersion

F = %‘Reg (1) coincides with Q on Reg (¢) up to a monzero constant.

Remark We can have analogous discussions
for o : M — H3 = {CUEE|<£CCU>41=O et =1, 22> 0}
or B3 = {:EEE5\<37:E>41—O$—33 + 1}.



L:M%S%:{CIZEES | <ZC,£IZ>3’2:O, 565:1}:
a space-like and conformal immersion,
e3: a normal vector field of ¢ in Sf s.t. {(e3,e3)32 = —1,

H: the mean curvature of ¢ w.r.t. es.
—> e 7y, := —e3+ H¢is a map from M into the anti-de Sitter 4-space
Hy = {z € E3 | (z,2)32 = —1},

o %’Reg (1) Is & space-like immersion s.t. g = g

(8 = \/H2—|—KM—5).

M

Wecall v, : M — H f the conformal Gauss map of ¢.

We can show that an immersion ¢ is Willmore if and only it

the mean curvature vector of v,|Re, (,) Vanishes.



==20M @ Hess% —(H? = §)oM @ oM —2dH @ VMM,

Proposition (A) If v is Willmore, then Q is holomorphic.

Theorem (A) M: a Riemann surface,
L M — Sifz a conformal and Willmore immersion.
Then the holomorphic quartic differential () for a conformal immersion

F = %‘Reg (1) coincides with Q on Reg (¢) up to a nonzero constant.

Remark We can have analogous discussions
forL:M%Hf’—{a:EESHm@gQ:O :1:1:1}
orE3 {:EEE | (z,7)32 =0, r’ =zt 4 1},



LM — LT ={z ¢ E% | (z,7)31 =0, x>0}
a space-like and conformal immersion,
¢: a light-like normal vector field of ¢ in Eil st (&, )31 = —1,

H: the mean curvature of ¢+ w.r.t. a normal vector field «.

—> ey, := —¢+ Huis amap from M into Ef,

) %\Reg (1) 1s & space-like immersion s.t. g = e2gM (e .= vVH? - K).
We call v, : M — Eil the conformal Gauss map of ¢.

Remark We see that H is determined by the induced metric g™



Theorem (A) An immersion v satisfies AMH — 22 = 0 if and only if

the mean curvature vector of %\Reg (1) vanishes.

Remark The Euler-Lagrange equation for Willmore surfaces in L™ is given
by AMH +2H? = 0.

== O'M(X)HGSS%—HO'M@O'M—dH@VMO’M,

M

where o' is the 2nd fundamental form of ¢+ w.r.t. a normal vector field «.

Proposition (A) If ¢ satisfies AME — 92 =0, then Q is holomorphic.

Theorem (A) M: a Riemann surface,
LM — LT C E%: a conformal immersion s.t. AMEp 92—
Then the holomorphic quartic differential () for a conformal immersion

F = %‘Reg (1) coincides with Q on Reg (¢) up to a monzero constant.



3. Space-like surfaces with zero mean curvature vector

in neutral 4-manifolds

(N, h): an oriented neutral 4-dimensional manifold.

— The metric h induces an indefinite metric A of /\2 T'N defined by

AN

h(ZCZ A Ljy L A ZCZ> — h<x27 ZCk)h(ZC], ZCZ) o h(xla ZCZ)I’L(ZU], Qﬁk)

(e1,€9,€e3,e4): alocal ordered pseudo-orthonormal frame field of TN giving

the orientation of V.

1 1 1
Ot 1= ﬁ(em +034), O49:= E(QB + 042), O+ 3:= —=(014 £ th3).

= O4 1, O4 9, O4 3 are mutually orthogonal and satisty

S

AN AN AN

h(©+1,0+1) =1, hO+2,049)=h(0+3,0+3)=—1
Therefore h has signature (2,4).



/\i TN, /\2_ TN: SO(2,2)-invariant subbundles of /\2 TN with rank 3 s.t.
all the elements of /\i TN are SU(1,1)-invariant

(notice the double covering

S00(2,2) — SOq(1,2) x SOq(1,2)).
—> FKach fiber of /\i TN (resp. A2 TN) is spanned by
©_1,042 6043 (resp. O41,0_59 O_3).
In particular, we see
e N°TN = N2TN @ N> TN,
e \N"TN L A2TN wrt. h,
e The restriction of k on each of /\i TN, N> TN has signature (1,2).



e If NV is neutral hyperKahler, then one of /\QiT N is a product bundle.
o [f N = E%, then both of /\2iT N are product bundles.

The space-like twistor spaces associated with N are fiber bundles in /\iT N
given by

h(0,0) = 1},

U (AZTV) = {6 e ALTN

U, (/\Q_TN) - {@ c N2 TN

h(O,0) = 1}.



M: a Riemann surface,

F: M — N: a space-like and conformal immersion of M into V.

1
OF 4 sections of Uy (/\iF*TN) defined by Op 4 = E(gl NE FE3NE),
where &1, &9, &3, &4 form a local pseudo-orthonormal frame field of F*T'N
S.t.

o (£1,£9,&3,&4) gives the orientation of IV,
o {1,& € dF(TM) so that (&1, &) gives the orientation of M.

I +: the complex structures of F*TN corresponding to O 4.

1
Then @F7:|: = —(6 A\ ]F7:|:(6) — eJ— /\ IF,:I:(6J‘)),

V2

where

e ¢ is a unit tangent vector of F'

e e is a normal vector of F with h(e’,el) = —1.



If N is neutral hyperKéhler so that /\%FT N (respectively, A° TN) is a product

bundle, then we can consider O p (respectively, © F,—) to be a map from M
into CH?.

Theorem (A, 2020) Suppose
o NV is neutral hyperKahler,

o ' : M — N has zero mean curvature vector.

Then one of Op 1, O _ 1s a holomorphic map from M into CH!

Corollary (A, 2020)
F:M— E%: a space-like and conformal immersion with zero mean

curvature vector.
Then the Gauss map Gp : M — CH! x CH! of F is holomorphic.



M: a Riemann surface,
F: M — N: a space-like and conformal immersion of M into N

with zero mean curvature vector.

_ 0 0 0

We can define a complex quartic differential () on M by

o 0 o 0
Q°h<a(5’w’8w>’ 0(811}’821})) dw ® dw ® dw ® dw.

If N is a 4-dimensional neutral space form,

then we see by the equations of Codazzi that () is holomorphic.



Theorem The following are mutually equivalent:

(a) at each point of M, principal curvatures do not depend on the choice of
a normal vector e of F with h(e™,eT) = —1;
(b) h(o(T1,T1),0(T1,T1)) = ho(T1, T3), 0 (11, T3)),
h(o (T1, T1),0(11,Ty)) = 0 for Ty := dF(0/0u), Ty := dF(0/0v);
(¢) @ A
(d) one 0f OF 4, O _ s horizontal w.r.t. V;
(e) one of Ig 1 s parallel w.r.t. V;
(

f) we have one of Ip yo(T1,T1) = o(11,Th).

We say that F is isotropic if one of (a) ~ (f) in the above theorem holds.



Theorem (A, 2020)
F: M — N: a space-like and conformal immersion

with zero mean curvature vector and ]%(61, )0 F+=0.
Then @) is holomorphic.
In addition, if @@F,i +# 0, then we can choose (e, e, €3, ¢e4) satisfying
(a) the connection forms w, wr given by w := h(Vey, es), w = h(Ves, e4)

satisfy d x w = 0 and d x w = 0:;

(b) the 2nd fundamental form of F is constructed by a solution of

an over-determind system s.t. the compatibility condition is given by
dxw =0 and d*w™ = 0.

Remark If N is a 4-dimensional neutral space form, then R(eq, e2)OF + = 0.



4. Time-like surfaces with zero mean curvature vector

in neutral 4-manifolds

The time-like twistor spaces associated with N are fiber bundles in /\iT N
given by

AN

1(0,0) = —1} (e = +,—).

U-(AZN) = {6 € AZIN
M: a Lorentz surface (two-dimensional manifold with a holomorphic system of

paracomplex coordinate neighborhoods),

F: M — N: a time-like and conformal immersion of M into V.

1
OF +: sections of U— (/\QiF*TN) defined by O 1 = ﬁ(& NE &4 NE9),

where &1, &9, &3, &4 form a local pseudo-orthonormal frame field of F*TIN
(we suppose that &1, &9 are space-like) s.t.

o (£1,89,&3,&4) gives the orientation of IV,
e {1,&3 € dF(TM) so that (&1, &3) gives the orientation of M.



JF 4+ the paracomplex structures of F*T'N corresponding to O 4.

1
Then @F,i = —(6 A JF,i(e) — @J— VAN JF,i(GJ—))j

V2

where
e ¢ is a unit tangent vector of F'

e e is a normal vector of F with h(e’,el) = —1.

If N is neutral hyperKéhler so that /\iTN (respectively, A2 TN) is a product
bundle, then we can consider ©p (respectively, © F,—) to be a map from M

into CH! (a hyperboloid of one sheet as a Lorentz surface).



A hyperboloid of one-sheet is given by H? = {z € E3 | (z, T)1 9= —1}.
Let R+, R— be open subsets of H 12 defined by

Ry = {z = (z!,2° 27%) H12 | 23 #£ 1},
R_={z=(z!, 2% 2%) € H? | 25 # —1}.

C: the paracomplex plane = {W=u+jv|uveR}
(7: the paraimaginary unit),
W|? = v = u? — v

Cs={weCl||w?*=6} (6§=0,1).

The stereographic projections pry are bijective maps from R+ onto C \ (4
defined by

2Re w 2Im W 1+ qu L



The geometric definition of pr+

» pr(p



Since pro (R NR_) =C\ (C1 U Cp), we see that the composition
pr_ o prjr1 pro(R+NR_) — pr_(R+NR-)
is holomorphic.

Therefore, noticing Ry UR_ = H 12 , we can consider H 12 to be a Lorentz
surface, which is denoted by CH?.

Theorem (A, 2020) Suppose
o IV is neutral hyperKahler,

o [': M — N has zero mean curvature vector.

Then one of Op 1, O _ 1s a holomorphic map from M into CH!

Corollary (A, 2020)

F:M— E%: a time-like and conformal tmmersion with zero mean

curvature vector,
Then the Gauss map Gp : M — CH! x CH! of F is holomorphic.



M a Lorentz surtace,
F: M — N: a time-like and conformal immersion of M into N
with zero mean curvature vector,

w = u + jv: a local paracomplex coordinate ot M,

veir(z) (s (@ im)

_ 0 0
— Va/aw<qfdw> = O'(aw, aﬂ}) dw.

We can define a paracomplex quartic differential ) on M by

0 0 0 0
Q.—h(g(aw,aw>, 0(810’810)) dw Q@ dw Q dw @ dw.

If N is a 4-dimensional neutral space form,

then we see by the equations of Codazzi that () is holomorphic.



Theorem The following are equivalent:

(a) h(o(T1,T1), 0(T1, 1)) = —h(o(T1, T2), 0(T1, T2)),
h(o(T1,T1),0(T1,T5)) = 0 for Ty .= dF(0/0u), Ts := dF(9/0v);

(b) Q@ =0.

We say that F' is isotropic if one of (a), (b) in the above theorem holds.

Theorem (A, 2020) The following are mutually equivalent:
(a) one of O, O _ is horizontal w.r.t V;

(b) one of Jg 1 is parallel w.r.t. V;

(c) we have one of Jp4o(T1,T1) = o(T1,Ty).

In addition, if F' satisfies one of (a), (b), (c), then F' is isotropic.

We say that F is strictly isotropic if one of (a), (b), (¢) in the above theorem
holds for the orientation of V.



It is possible that although F' is isotropic, none of the covariant derivatives of

Op 1, Op_ wrt. V become zero.

Proposition (A, 2020)
If both v@F,—l— and @@F,— are light-like, then one of the following holds:

(a) the shape operator of a light-like normal vector field vanishes and then

() vanishes:

(b) the shape operator of any normal vector field is zero or light-like, and

then @) 1s zero or null.



Remark

Suppose that N is a 4-dimensional neutral space form.

e Condition (a) implies that a light-like normal vector field of the surface is
contained in a constant direction.
The conformal Gauss map of a time-like surface in a 3-dimensional
Lorentzian space form of Willmore type with () = 0 has this property.

e We can characterize surfaces with condition (b), based on

the Gauss-Codazzi-Ricci equations.



M an oriented two-dimensional manifold,
LM — N13 = S%, E% or Hf: a time-like immersion
(we consider S}, B, H i)’ to be subsets of ES),
es: a unit normal vector field of ¢ in N3,
H: the mean curvature of ¢+ w.r.t. es,
v, = e3+ He,
A=H2— KM
(0 =1,00r =1, K M. the curvature of the induced metric g™ by L),
Reg (¢): the set of nonzero points of A.

— %’Reg () 18 & time-like immersion of Reg (¢) into S% s.t.
the induced metric g by %\Reg (1) is given by g = AgM.

We call v, : M — Sél the conformal Gauss map of v : M — Nf’.



e . is a light-like normal vector field of a time-like immersion %‘Reg (1)
e the trace of the shape operator of %‘Reg (1) WIt ¢ IS zero,

e if we denote by v a light-like normal vector field of %|Reg (1) satisfying
(t,v)32 = —1, then the trace of the shape operator of %‘Reg () Wb vis

%(AM H +2AH).

Since A = 0 means that AM H = 0, we obtain

given by —

Theorem (A) An immersion 1 : M — N} satisfies AMH 4 2NH =0
if and only if the mean curvature vector of %\Reg () - Reg (¢) — S%

vanishes.

We say that ¢ is of Willmore type (d:ef> AMHF + 9AH = 0.



M a Lorentz surtace,
M — N 13 . a time-like and conformal immersion,
20 @ Hess% +(H*+0)cM @ oM — 2dH @ VMM

(0™ the 2nd fundamental form of ¢).

L .
.
—
e
el

Proposition (A) If +: M — Nf) is of Willmore type,

then a paracomplex quartic differential

o 0 0 0
ow’ Ow’ Ow’ Ow

[1]

Q:: )dw@dw@dw@dw

is holomorphic (w = u + jv: a local paracomplex coordinate of M).



Theorem (A)

LM — N13: a time-like and conformal tmmersion of Willmore type.

On Reg (v), the following hold:

(a) the null points of the differential Q for F := 7|Reg (,) coincide with
the null points of ), and a null point of () s just given by a condition
that the shape operator of F' w.r.t. v is light-like;

(b) except the null points, () coincides with Q up to a nonzero constant;

(¢) Q@ = 0 if and only if a light-like normal vector field v of F' is contained

i a constant direction.

Remark

Suppose e ¢ as in the above theorem satisfies Q) = 0:

o (ViT)" #+ (V)" (T = dF(8/0u), Ty = dF(3/0v)).

—> For Op 4 with F' = ’VL‘Reg (1) @@F,i are light-like.



(e1,e3): alocal ordered pseudo-orthonormal frame field of TM giving

the orientation of M .

Theorem (A, 2020)
F: M — N: a time-like and conformal immersion
with zero mean curvature vector and R(el, e3)OF + = 0.

Then () s holomorphic and
the 2nd fundamental form of F' is constructed by solutions of four families

of ordinary differential equations defined along integral curves of light-like

vector fields e; £ es and given by the connection forms w := —h(Veq,e3),

wT = —h(Vey, eq).



If VO F + are zero or light-like, then R(el, e3)OF 4+ are zero or light-like.

Theorem (A, 2020)

F: M — N: a time-like and conformal immersion with zero mean
curvature vector s.t. }?(61, e3)OF + are zero or light-like.

Then the 2nd fundamental form of F' is constructed by solutions of suitable

two families of ordinary differential equations of the four famailies in the

previous theorem.



THE FIRST TALK HAS ENDED.



