Moment maps and isoparametric hypersurfaces in spheres

Hiroshi TAMARU (田丸 博士)

Osaka City University & OCAMI (moved from Hiroshima University on 2018)

Workshop on Isoparametric Theory (Beijing Normal University) 2019/June/04.

Abstract (1/2)

Story

- (\mathbb{E}) Isoparametric hypersurfaces in spheres with g = 4 (four distinct principal curvatures) are interesting.
- (承) ∃ both homogeneous and inhomogeneous examples, which we would like to understand more nicely.
- (転) Our expectation: g = 4 cases would be related to moment maps (of linear Hamiltonian actions).
- (結) Our results: for most of the homogeneous examples, our expectation is true.

Abstract (2/2)

Note

Based on joint works with Shinobu Fujii:

- [F2010] Fujii: Homogeneous isoparametric hypersurfaces in spheres with four distinct principal curvatures and moment maps, Tohoku Math. J. (2010)
- [FT2015] Fujii & T.: Moment maps and isoparametric hypersurfaces in spheres — Hermitian cases, Transf. Groups (2015)
- [F] Fujii: Moment maps and isoparametric hypersurfaces in spheres Grassmannian cases, (almost) preprint

(We will comment on [Miyaoka2013] later.)

Sec. 1 - Isoparametric Hypersurfaces in Spheres (1/6)

Recall isoparametric hypersurfaces (probably everyone knows...)

Def.

- $S^{n+1} \supset M^n$: isoparametric if
 - the principal curvatures are constant.

Thm. (Münzner)

The number g of distinct principal curvatures satisfies

• $g \in \{1, 2, 3, 4, 6\}.$

Note

- Any homogeneous hypersurfaces in S^{n+1} is isoparametric.
- Only g = 4 case, \exists inhomogeneous examples (OT-FKM type).

Sec. 1 - Isoparametric Hypersurfaces in Spheres (2/6)

We think S^{n+1} is the unit sphere of \mathbb{R}^{n+2} .

Thm. (Münzner)

For an (complete) isoparametric hypersurface $M^n \subset S^{n+1}$,

- Let λ₁ > · · · > λ_g the principal curvatures, and m_i the multiplicity of λ_i. Then m_i = m_{i+2} (subscription mod g);
- M is a regular level set of $f: \mathbb{R}^{n+2} \to \mathbb{R}$ satisfying
 - f is a homogeneous polynimial of degree g;

-
$$||\text{grad } f(P)||^2 = g^2 ||P||^{2g-2};$$

$$-2 \triangle f(P) = (m_2 - m_1)g^2 ||P||^{g-2}.$$

The above *f* is called the **Cartan-Münzner polynomial** of *M*.

Sec. 1 - Isoparametric Hypersurfaces in Spheres (3/6)

Our Expectation (rough version)

 Every Cartan-Münzner polynomial f with g = 4 are obtained by some linear Hamiltonian action H ∩ (ℝⁿ⁺², ω).

Note

• $n = \dim M = m_1 + m_2 + m_3 + m_4 = 2(m_1 + m_2)$ is even.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Sec. 1 - Isoparametric Hypersurfaces in Spheres (4/6)

Thm (Hsiang-Lawson, Takagi-Takahashi)

Isoparametric hypersurfaces in spheres with g = 4 are precisely obtained by the isotropy representations of

- (1) SO_{n+2}/SO_nSO_2 ;
- (2) $SU_{n+2}/S(U_nU_2);$
- (3) SO_{10}/U_5 ;
- (4) $E_6/U_1Spin_{10};$
- (5) Sp_{n+2}/Sp_nSp_2 ;
- (6) $SO_5 \times SO_5 / SO_5$.

Note (isotropy rep.)

For a Riemannian symmetric space G/K,

- K preserves the inner product on $T_o(G/K)$;
- hence K acts on the unit sphere S^{n+1} in $T_o(G/K)$;
- if rank (G/K) = 2, then it is cohomogeneity one on S^{n+1} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Sec. 1 - Isoparametric Hypersurfaces in Spheres (6/6)

Note (invariant polynomials)

For homogeneous cases; an orbit of $K \curvearrowright T_o(G/K) = \mathbb{R}^{n+2}$,

- the Cartan-Münzner polynomial f is K-invariant.
- not so many K-inv. homogeneous polynomials on $T_o(G/K)$...

So, inv. polynomials have many chances to be Cartan-Münzner.

Note (symplectic structures)

- if G/K is Hermitian ((1)–(4)), \exists canonical ω on $T_o(G/K)$.
- otherwise, the choice of ω is already a problem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Sec. 2 - Moment maps (1/4)

Let (\mathfrak{p}, ω) be a symplectic manifold.

Def.

$H \curvearrowright (\mathfrak{p}, \omega)$ is Hamiltonian if

- *H* preserves ω;
- $\exists \mu : \mathfrak{p} \to \mathfrak{h}^*$: moment map.

Def.

- $\mu:\mathfrak{p}\to\mathfrak{h}^*$ is a moment map for $H\curvearrowright(\mathfrak{p},\omega)$ if
 - μ is *H*-equivariant;
 - $d\mu$ is "compatible" with ω .

The moment maps give a procedure to obtain equivariant maps.

Sec. 2 - Moment maps (2/4)

Note

Let us take

- $\mu: \mathfrak{p} \to \mathfrak{h}^*$ be a moment map for $H \curvearrowright (\mathfrak{p}, \omega)$,
- $|| \cdot ||$: an *H*-invariant norm on \mathfrak{h}^* .

Then $||\mu||^2 : \mathfrak{p} \to \mathbb{R}$ is *H*-invariant.

Note (cf. Ohnita)

Let us consider

- G/K: Hermitian symm. space with cplx str $J = \operatorname{ad}_Z (Z \in \mathfrak{k})$,
- $\langle, \rangle := -[\text{Killing form of } \mathfrak{g}]. \text{ (and } \omega(X, Y) = \langle JX, Y \rangle)$

Then the moment map μ of $K \curvearrowright T_o(G/K)$ is

- $\mu(P) = (1/2)\langle [P, [P, Z]], \cdot \rangle$,
- hence $||\mu||^2$ is K-inv. homogeneous polynomial of degree 4.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Sec. 2 - Moment maps (3/4)

Our Expectation (exact version)

Every Cartan-Münzner polynomial f with g = 4 can be written as $f = ||\mu||^2$, where μ is a moment map of some linear Hamiltonian action $K \curvearrowright \mathbb{R}^{n+2}$, and $|| \cdot ||$ is a *K*-inv. norm on \mathfrak{t}^* .

Note

If this is true, then isoparametric hypersurfaces in S^{n+1} could be understood in terms of group actions (even for inhomogeneous cases)...

Sec. 2 - Moment maps (4/4)

 \exists related but different study:

Thm. (Miyaoka 2013)

Every Cartan-Münzner polynomial f with g = 4 are written by

• $||\mu(\cdot, Y_{\cdot})||^2$,

where μ is a moment map of some Hamiltonian $H \curvearrowright T\mathbb{R}^{n+2}$, and some mysterious $Y \in \mathfrak{X}(\mathbb{R}^{n+2})$.

The advantage of this is $T\mathbb{R}^{n+2}$ has a natural symplectic structure, but we would like to consider $H \curvearrowright \mathbb{R}^{n+2}$, not on $T\mathbb{R}^{n+2}$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Sec. 3 - Results (1/7)

Recall

Isoparametric hypersurfaces in spheres with g = 4 are precisely obtained by the isotropy representations of

- (1) SO_{n+2}/SO_nSO_2 ;
- (2) $SU_{n+2}/S(U_nU_2);$
- (3) SO_{10}/U_5 ;
- (4) E_6/U_1Spin_{10} ;
- (5) Sp_{n+2}/Sp_nSp_2 ;
- (6) $SO_5 \times SO_5 / SO_5$.

Main Thm. (F2010, FT2015, F)

• Our expectation is true for (1)–(5).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Sec. 3 - Results (2/7)

Note

In order to show our expectation for $M^n \subset S^{n+1}$, we need to

- find ω on \mathbb{R}^{n+2} ;
- find a Hamiltonian action $H \curvearrowright (\mathbb{R}^{n+2}, \omega)$;
- find an *H*-invariant norm on \mathfrak{h}^* ;
- and check that it is Cartan-Münzner polynomial.

Sec. 3 - Results (3/7)

Proof for (1)-(4):

Since they are Hermitian,

- \exists canonical symplectic form ω on $T_o(G/K)$;
- K ∩ (T_o(G/K), ω) is Hamiltonian;
- we know μ (recall $2\mu(P) = \langle [P, [P, Z]], \cdot \rangle \rangle$;
- since ℓ = u₁ ⊕ ℓ' (with ℓ' semisimple part), we have two-parameter family of K-invariant norms, say || · ||_{a,b};
- by calculating grad and \triangle , we find a, b to be Cartan-Müzner.

Note

- [F2010] proved the classical cases (1)–(3) by matrix.
- [FT2015] proved (1)–(4) by Lie algebra theory (roots).

Sec. 3 - Results (4/7)

Observation

In order to attack Case (5): Sp_{n+2}/Sp_nSp_2 :

- this is Grassmannian: $G_2(\mathbb{H}^{n+2}) = Sp_{n+2}/Sp_nSp_2;$
- this is not Hermitian, and the isotropy representation does not look like Hamiltonian;
- one can identify $T_o(G_2(\mathbb{H}^{n+2})) = \mathbb{H}^n \oplus \mathbb{H}^n$;
- this is same for other Grassmannians:

 $T_o(G_2(\mathbb{R}^{n+2})) = \mathbb{R}^n \oplus \mathbb{R}^n, \ T_o(G_2(\mathbb{C}^{n+2})) = \mathbb{C}^n \oplus \mathbb{C}^n.$

Hence

Let us consider

- $V := \mathbb{K}^n \oplus \mathbb{K}^n$, where $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}, \mathbb{H}\}$.
- \mathbb{K}^n has $\langle x, y \rangle := \operatorname{Re}({}^t \overline{x} y)$. Then also on V.
- V is symplectic by $\omega((x_1, x_2), (y_1, y_2)) := \langle x_1, y_2 \rangle \langle x_2, y_1 \rangle.$

200

Sec. 3 - Results (5/7)

Prop.

 $H \curvearrowright (V = \mathbb{K}^n \oplus \mathbb{K}^n, \omega)$ is Hamiltonian, where

- $SO_2 \frown V$ as "rotation" $(V \cong \mathbb{K}^n \otimes \mathbb{R}^2)$.
- $U := SO_n, U_n, SP_nSp_1$ acts on \mathbb{K}^n , and also on V diagonally.
- $H := U \cdot SO_2$.

Proof for (1), (2), (5)

- Calculate a moment map μ (one can get explicit forms);
- \mathfrak{h} has two or three components, so \exists inv. norms $|| \cdot ||_{a,b,c}$.
- Let $f := ||\mu||_{a,b,c}^2$. Calculate $||\operatorname{grad} f||^2$ and $\triangle f$.
- Find *a*, *b*, *c* so that *f* is Cartan-Münzner.

Sec. 3 - Results (6/7)

Note

For $\mathbb{K} = \mathbb{H}$,

- the isoparametric hypersurface is an orbit of Sp_nSp₂,
- but the Hamiltonian action is by $Sp_nSp_1SO_2$.

Remark 1

In order to prove our expectation,

 the Hamitonian action could be given by a smaller group. (smaller than the full normalizer of the given isoparametric hypersurface)

Sec. 3 - Results (7/7)

Note

For $\mathbb{K} = \mathbb{C}$,

- the isoparametric hypersurface is an orbit of $S(U_nU_2)$,
- since this is Hermitian, the Cartan-Mnzner polynomial f is written by the moment map of this action.
- since this is Grassmannian, f can also be written by the moment map of U_nSO_2 -action.

Remark 2

In order to prove our expectation, remind that

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Sec. 4 - Summary (1/3)

Our Expectation

Every Cartan-Münzner polynomial f with g = 4 can be written as $f = ||\mu||^2$, where μ is a moment map of some linear Hamiltonian action $H \curvearrowright \mathbb{R}^{n+2}$, and $||\cdot||$ is an *H*-inv. norm on \mathfrak{h}^* .

Results

• Our expectation is true for most of homogeneous cases.

Sec. 4 - Summary (2/3)

Problem 1 (ongoing):

- Our expectation is also true for other remaining cases ?
 - homogeneous one obtained by SO_5 (adjoint rep.) ?
 - inhomogeneous ones (i.e., OT-FKM type) ?

Problem 2 (dreaming):

Prove our expectation without using classification.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Sec. 4 - Summary (3/3)

Problem 3 (just thinking):

Our method can be applied to other ambient spaces?
particulary, hypersurfaces in Hermitian symmetric spaces (e.g., CPⁿ, CHⁿ, higher rank cases, ...)

• Thank you very much!