Moment maps and isoparametric hypersurfaces in spheres

Sec. 1 Sec. 2 Sec. 2 Sec. 3 Sec. 3 Sec. 4 Sec. 4

Hiroshi TAMARU (田丸 博士)

Osaka City University & OCAMI (moved from Hiroshima University on 2018)

Workshop on Isoparametric Theory (Beijing Normal University) 2019/June/04.

Story

- $($ 起) Isoparametric hypersurfaces in spheres with $g = 4$ (four distinct principal curvatures) are interesting.
- (承) *∃* both homogeneous and inhomogeneous examples, which we would like to understand more nicely.

Sec. 1 Sec. 2 Sec. 2 Sec. 3 Sec. 3 Sec. 4 Sec. 4

Abstract (1/2)

- (\mathbb{t}) Our expectation: $g = 4$ cases would be related to moment maps (of linear Hamiltonian actions).
- (結) Our results: for most of the homogeneous examples, our expectation is true.

Note

Based on joint works with Shinobu Fujii:

• [F2010] Fujii: Homogeneous isoparametric hypersurfaces in spheres with four distinct principal curvatures and moment maps, Tohoku Math. J. (2010)

Sec. 1 Sec. 2 Sec. 2 Sec. 3 Sec. 3 Sec. 4 Sec. 4

Abstract (2/2)

- *•* [FT2015] Fujii & T.: Moment maps and isoparametric hypersurfaces in spheres — Hermitian cases, Transf. Groups (2015)
- *•* [F] Fujii: Moment maps and isoparametric hypersurfaces in spheres — Grassmannian cases, (almost) preprint

(We will comment on [Miyaoka2013] later.)

Sec. 1 Sec. 2 Sec. 2 Sec. 3 Sec. 3 Sec. 4 Sec. 4

Sec. 1 - Isoparametric Hypersurfaces in Spheres (1/6)

Recall isoparametric hypersurfaces (probably everyone knows...)

Def.

S ⁿ+1 *⊃ Mⁿ* : **isoparametric** if

• the principal curvatures are constant.

Thm. (Münzner)

The number *g* of distinct principal curvatures satisfies

*• g ∈ {*1*,* 2*,* 3*,* 4*,* 6*}*.

Note

- *•* Any homogeneous hypersurfaces in *S ⁿ*+1 is isoparametric.
- *•* Only *g* = 4 case, *∃* inhomogeneous examples (OT-FKM type).

Sec. 1 - Isoparametric Hypersurfaces in Spheres (2/6)

Sec. 1 Sec. 2 Sec. 2 Sec. 3 Sec. 3 Sec. 4 Sec. 4

We think S^{n+1} is the unit sphere of \mathbb{R}^{n+2} .

Thm. (Münzner)

For an (complete) isoparametric hypersurface $M^n \subset S^{n+1}$,

- Let $\lambda_1 > \cdots > \lambda_g$ the principal curvatures, and m_i the multiplicity of λ_i . Then $m_i = m_{i+2}$ (subscription $\text{mod } g$);
- M is a regular level set of $f : \mathbb{R}^{n+2} \to \mathbb{R}$ satisfying
	- *f* is a homogeneous polynimial of degree *g*;

-
$$
||\text{grad } f(P)||^2 = g^2 ||P||^{2g-2}
$$
;

$$
-2\triangle f(P)=(m_2-m_1)g^2||P||^{g-2}.
$$

The above *f* is called the **Cartan-Münzner polynomial** of *M*.

Sec. 1 - Isoparametric Hypersurfaces in Spheres (3/6)

Sec. 1 Sec. 2 Sec. 2 Sec. 3 Sec. 3 Sec. 4 Sec. 4

Our Expectation (rough version)

• Every Cartan-Münzner polynomial f with $g = 4$ are obtained by some linear Hamiltonian action $H \curvearrowright (\mathbb{R}^{n+2},\omega).$

Note

• $n = \dim M = m_1 + m_2 + m_3 + m_4 = 2(m_1 + m_2)$ is even.

Sec. 1 - Isoparametric Hypersurfaces in Spheres (4/6)

Sec. 1 Sec. 2 Sec. 2 Sec. 3 Sec. 3 Sec. 4 Sec. 4

Thm (Hsiang-Lawson, Takagi-Takahashi)

Isoparametric hypersurfaces in spheres with $g = 4$ are precisely obtained by the isotropy representations of

- (1) SO_{n+2}/SO_nSO_2 ;
- (2) $SU_{n+2}/S(U_nU_2);$
- (3) SO_{10}/U_5 ;
- (4) *E*6*/U*1*Spin*10;
- (5) *Spn*+2*/SpnSp*2;
- (6) *SO*⁵ *× SO*5*/SO*5.

Sec. 1 - Isoparametric Hypersurfaces in Spheres (5/6)

Sec. 1 Sec. 2 Sec. 2 Sec. 3 Sec. 3 Sec. 4 Sec. 4

Note (isotropy rep.)

For a Riemannian symmetric space *G/K*,

- the isotropy representation is $K \cap T_o(G/K) = \mathbb{R}^{n+2}$;
- *• K* preserves the inner product on *To*(*G/K*);
- hence *K* acts on the unit sphere S^{n+1} in $T_o(G/K)$;
- if rank $(G/K) = 2$, then it is cohomogeneity one on S^{n+1} .

Sec. 1 - Isoparametric Hypersurfaces in Spheres (6/6)

Sec. 1 Sec. 2 Sec. 2 Sec. 3 Sec. 3 Sec. 4 Sec. 4

Note (invariant polynomials)

For homogeneous cases; an orbit of $K \curvearrowright \mathcal{T}_o(G/K) = \mathbb{R}^{n+2}$,

- the Cartan-Münzner polynomial *f* is *K*-invariant.
- *•* not so many *K*-inv. homogeneous polynomials on *To*(*G/K*)...

So, inv. polynomials have many chances to be Cartan-Münzner.

Note (symplectic structures)

- *•* if *G/K* is Hermitian ((1)–(4)), *∃* canonical *ω* on *To*(*G/K*).
- *•* otherwise, the choice of *ω* is already a problem.

Sec. 2 - Moment maps $(1/4)$

Sec. 1 Sec. 2 Sec. 2 Sec. 3 Sec. 3 Sec. 4 Sec. 4

Let (\mathfrak{p}, ω) be a symplectic manifold.

Def.

 $H \curvearrowright (\mathfrak{p}, \omega)$ is **Hamiltonian** if

- *• H* preserves *ω*;
- *• ∃µ* : p *→* h *∗* : moment map.

Def.

 $\mu:{\mathfrak{p}}\to{\mathfrak{h}}^*$ is a moment map for $H\curvearrowright ({\mathfrak{p}}, \omega)$ if

- *• µ* is *H*-equivariant;
- *• dµ* is "compatible" with *ω*.

The moment maps give a procedure to obtain equivariant maps.

Sec. 2 - Moment maps (2/4)

Note

Let us take

- \bullet $\mu:\mathfrak{p}\rightarrow\mathfrak{h}^*$ be a moment map for $H\curvearrowright (\mathfrak{p}, \omega)$,
- *• || · ||* : an *H*-invariant norm on h *∗* .

Then $||\mu||^2$: $\mathfrak{p} \to \mathbb{R}$ is *H*-invariant.

Note (cf. Ohnita)

Let us consider

• G/K : Hermitian symm. space with cplx str $J = \mathrm{ad}_Z (Z \in \mathfrak{k})$,

Sec. 1 Sec. 2 Sec. 2 Sec. 3 Sec. 3 Sec. 4 Sec. 4

• \langle , \rangle := −[Killing form of g]. (and $ω(X, Y) = \langle JX, Y \rangle$)

Then the moment map μ of $K \cap T_o(G/K)$ is

- $\mu(P) = (1/2)\langle [P,[P,Z]], \cdot \rangle,$
- hence $||\mu||^2$ is *K*-inv. homogeneous polynomial of degree 4.

Our Expectation (exact version)

Every Cartan-Münzner polynomial *f* with $g = 4$ can be written as $f = ||\mu||^2$, where μ is a moment map of some linear Hamiltonian action $K \curvearrowright \mathbb{R}^{n+2}$, and $||\cdot||$ is a K -inv. norm on $\mathfrak{k}^*.$

Sec. 1 Sec. 2 Sec. 2 Sec. 3 Sec. 3 Sec. 4 Sec. 4

Sec. 2 - Moment maps (3/4)

Note

If this is true, then isoparametric hypersurfaces in S^{n+1} could be understood in terms of group actions (even for inhomogeneous cases)...

Sec. 1 Sec. 2 Sec. 2 Sec. 3 Sec. 3 Sec. 4 Sec. 4

Sec. 2 - Moment maps (4/4)

∃ related but different study:

Thm. (Miyaoka 2013)

Every Cartan-Münzner polynomial f with $g = 4$ are written by

• $||\mu(\cdot, Y_{\cdot})||^{2}$,

where μ is a moment map of some Hamiltonian $\boldsymbol{H}\curvearrowright \mathcal{T} \mathbb{R}^{n+2}$, and some mysterious $Y \in \mathfrak{X}(\mathbb{R}^{n+2}).$

The advantage of this is $\mathcal{T} \mathbb{R}^{n+2}$ has a natural symplectic structure, but we would like to consider $H \curvearrowright \mathbb{R}^{n+2}$, not on $\mathcal{T} \mathbb{R}^{n+2}.$

Sec. 3 - Results (1/7)

Sec. 1 Sec. 2 Sec. 2 Sec. 3 Sec. 3 Sec. 4 Sec. 4

Recall

Isoparametric hypersurfaces in spheres with $g = 4$ are precisely obtained by the isotropy representations of

- (1) *SO*_{*n*+2}/*SO*_{*n}SO*₂;</sub>
- (2) $SU_{n+2}/S(U_nU_2);$
- (3) SO_{10}/U_5 ;
- (4) *E*6*/U*1*Spin*10;
- (5) *Spn*+2*/SpnSp*2;
- (6) *SO*⁵ *× SO*5*/SO*5.

Main Thm. (F2010, FT2015, F)

• Our expectation is true for (1) – (5) .

Note

In order to show our expectation for $M^n \subset S^{n+1}$, we need to

Sec. 1 Sec. 2 Sec. 2 Sec. 3 Sec. 3 Sec. 4 Sec. 4

Sec. 3 - Results (2/7)

- find ω on \mathbb{R}^{n+2} ;
- find a Hamiltonian action $H \curvearrowright (\mathbb{R}^{n+2}, \omega)$;
- *•* find an *H*-invariant norm on h *∗* ;
- and check that it is Cartan-Münzner polynomial.

Sec. 3 - Results (3/7)

Sec. 1 Sec. 2 Sec. 2 Sec. 3 Sec. 3 Sec. 4 Sec. 4

Proof for $(1)-(4)$:

Since they are Hermitian,

- *• ∃* canonical symplectic form *ω* on *To*(*G/K*);
- $K \curvearrowright (T_o(G/K), \omega)$ is Hamiltonian;
- we know μ (recall $2\mu(P) = \langle [P, [P, Z]], \cdot \rangle);$
- \bullet since $\mathfrak{k} = u_1 \oplus \mathfrak{k}'$ (with \mathfrak{k}' semisimple part), we have two-parameter family of *K*-invariant norms, say *|| · ||a,b*;
- by calculating grad and \triangle , we find a, b to be Cartan-Mnzner.

Note

- *•* [F2010] proved the classical cases (1)–(3) by matrix.
- *•* [FT2015] proved (1)–(4) by Lie algebra theory (roots).

Sec. 3 - Results (4/7)

Sec. 1 Sec. 2 Sec. 2 Sec. 3 Sec. 3 Sec. 4 Sec. 4

Observation

In order to attack Case (5): *Spn*+2*/SpnSp*2:

- this is Grassmannian: $G_2(\mathbb{H}^{n+2}) = Sp_{n+2}/Sp_nSp_2;$
- *•* this is not Hermitian, and the isotropy representation does not look like Hamiltonian;
- one can identify $\mathcal{T}_{o}(G_{2}(\mathbb{H}^{n+2})) = \mathbb{H}^{n} \oplus \mathbb{H}^{n};$
- *•* this is same for other Grassmannians: $\mathcal{T}_o(G_2(\mathbb{R}^{n+2})) = \mathbb{R}^n \oplus \mathbb{R}^n$, $\mathcal{T}_o(G_2(\mathbb{C}^{n+2})) = \mathbb{C}^n \oplus \mathbb{C}^n$.

Hence

Let us consider

- $V := \mathbb{K}^n \oplus \mathbb{K}^n$, where $\mathbb{K} \in \{ \mathbb{R}, \mathbb{C}, \mathbb{H} \}$.
- \mathbb{K}^n has $\langle x, y \rangle := \text{Re}(\sqrt[t]{x}y)$. Then also on *V*.
- *V* is symplectic by $\omega((x_1, x_2), (y_1, y_2)) := \langle x_1, y_2 \rangle \langle x_2, y_1 \rangle$.

 2990

Sec. 3 - Results (5/7)

Sec. 1 Sec. 2 Sec. 2 Sec. 3 Sec. 3 Sec. 4 Sec. 4

Prop.

- $H \curvearrowright (V = \mathbb{K}^n \oplus \mathbb{K}^n, \omega)$ is Hamiltonian, where
	- *SO*₂ \curvearrowright *V* as "rotation" (*V* \cong \mathbb{K}^n ⊗ \mathbb{R}^2).
	- $U := SO_n$, U_n , SP_nSp_1 acts on \mathbb{K}^n , and also on V diagonally.
	- $H := U \cdot SO_2$.

Proof for (1), (2), (5)

- *•* Calculate a moment map *µ* (one can get explicit forms);
- *•* h has two or three components, so *∃* inv. norms *|| · ||a,b,^c* .
- Let $f := ||\mu||_{a,b,c}^2$. Calculate $||\text{grad } f||^2$ and $\triangle f$.
- Find *a*, *b*, *c* so that *f* is Cartan-Münzner.

Sec. 1 Sec. 2 Sec. 2 Sec. 3 Sec. 3 Sec. 4 Sec. 4

Sec. 3 - Results (6/7)

Note

For $\mathbb{K} = \mathbb{H}$,

- *•* the isoparametric hypersurface is an orbit of *SpnSp*2,
- *•* but the Hamiltonian action is by *SpnSp*1*SO*2.

Remark 1

In order to prove our expectation,

• the Hamitonian action could be given by a smaller group. (smaller than the full normalizer of the given isoparametric hypersurface)

Note

For $\mathbb{K} = \mathbb{C}$,

- the isoparametric hypersurface is an orbit of $S(U_nU_2)$,
- since this is Hermitian, the Cartan-Mnzner polynomial *f* is written by the moment map of this action.

Sec. 1 Sec. 2 Sec. 2 Sec. 3 Sec. 3 Sec. 4 Sec. 4

Sec. 3 - Results (7/7)

• since this is Grassmannian, *f* can also be written by the moment map of U_nSO_2 -action.

Remark 2

In order to prove our expectation, remind that

• some different Hamitonian actions could give the same Cartan-Müzner polynomial.

Our Expectation

Every Cartan-Münzner polynomial *f* with $g = 4$ can be written as $f = ||\mu||^2$, where μ is a moment map of some linear Hamiltonian $\mathsf{action} \; H \curvearrowright \mathbb{R}^{n+2}, \; \mathsf{and} \; \vert\vert \cdot \vert\vert \; \mathsf{is} \; \mathsf{an} \; H\text{-}\mathsf{inv}. \; \mathsf{norm} \; \mathsf{on} \; \mathfrak{h}^*.$

Sec. 1 Sec. 2 Sec. 2 Sec. 3 Sec. 3 Sec. 4 Sec. 4

Sec. 4 - Summary $(1/3)$

Results

• Our expectation is true for most of homogeneous cases.

Problem 1 (ongoing):

• Our expectation is also true for other remaining cases ?

Sec. 1 Sec. 2 Sec. 2 Sec. 3 Sec. 3 Sec. 4 Sec. 4

Sec. 4 - Summary (2/3)

- homogeneous one obtained by SO_5 (adjoint rep.) ?
- inhomogeneous ones (i.e., OT-FKM type) ?

Problem 2 (dreaming):

• Prove our expectation without using classification.

Problem 3 (just thinking):

• Our method can be applied to other ambient spaces? - particulary, hypersurfaces in Hermitian symmetric spaces (e.g., $\mathbb{C}P^n$, $\mathbb{C}H^n$, higher rank cases, ...)

Sec. 1 Sec. 2 Sec. 2 Sec. 3 Sec. 3 Sec. 4 Sec. 4

Sec. 4 - Summary (3/3)

• Thank you very much!