# On the moduli spaces of left-invariant geometric structures

### Hiroshi TAMARU

Osaka City University & OCAMI

Workshop on geometric analysis and homogeneous geometry (The University of Queensland) 27/Jun/2019

# Intro (1/4)

- I moved from Hiroshima University to Osaka City University on Oct/2018.
- This talk is based on several joint works with my young collaborators.

### Announcement (conference)

- Symmetry and shape
  - Celebrating the 60th birthday of Prof. J. Berndt, 28–31 October 2019, Santiago de Compostela, Spain.

# Intro (2/4)

#### Motivation

- For some distinguish geometric structures, left-invariant ones on Lie groups provide several nice examples.
- It is important to examine whether given Lie groups admit some distinguished left-invariant geometric structures or not.

# Intro (3/4)

### Our Approach

- In this talk, we consider an approach from the "moduli spaces" of some left-invariant geometric structures.
- As applications, we determine the existence and nonexistence of distinguished ones, for some very particular Lie groups.

### Key Tool

 Group actions on (Riemannian or pseudo-Riemannian) symmetric spaces.

# Intro (4/4)

#### Contents

Topic 1: Left-invariant Riemannian metrics

Topic 2: Left-invariant pseudo-Riemannian metrics

Topic 3: Left-invariant symplectic structures

# Topic 1: Riemannian metrics (1/7)

### Setting

- G: a (simply-connected) Lie group,  $\mathfrak{g} := \operatorname{Lie}(G)$ ,
- $\widetilde{\mathfrak{M}}(\mathfrak{g}) := \{ \text{positive definite inner product on } \mathfrak{g} \},$  $\cong \{ \text{left-inv. Riem. metrics on } G \}.$

### Def.

• The orbit space  $\mathfrak{PM}(\mathfrak{g}) := \mathbb{R}^{\times} \mathrm{Aut}(\mathfrak{g}) \backslash \mathfrak{M}(\mathfrak{g})$  is called the **moduli space** of left-invariant Riem. metrics on G.

#### Note

- $\mathbb{R}^{\times} \curvearrowright \widetilde{\mathfrak{M}}(\mathfrak{g})$  gives scaling;  $\operatorname{Aut}(\mathfrak{g}) \curvearrowright \widetilde{\mathfrak{M}}(\mathfrak{g})$  gives isometry.
- So it is enough to work on  $\mathfrak{PM}(\mathfrak{g})$ .



# Topic 1: Riemannian metrics (2/7)

#### Note

- $\widetilde{\mathfrak{M}}(\mathfrak{g}) \cong \mathrm{GL}(n,\mathbb{R})/\mathrm{O}(n)$  if  $n := \dim \mathfrak{g}$ ;
- so  $\widetilde{\mathfrak{M}}(\mathfrak{g})$  is a Riemannian symmetric space.

#### Note

 $\begin{array}{l} \bullet \ \mathfrak{PM}(\mathfrak{g}) := \mathbb{R}^{\times} \mathrm{Aut}(\mathfrak{g}) \backslash \widetilde{\mathfrak{M}}(\mathfrak{g}) \\ \cong \mathbb{R}^{\times} \mathrm{Aut}(\mathfrak{g}) \backslash \mathrm{GL}(n,\mathbb{R}) / \mathrm{O}(\textit{n}) \ (\mathsf{double coset space}). \end{array}$ 

We are interested in the case that  $\mathfrak{PM}(\mathfrak{g})$  is small.

# Topic 1: Riemannian metrics (3/7)

### Thm. (Lauret 2003)

•  $\mathfrak{PM}(\mathfrak{g}) = \{ \mathrm{pt} \} \text{ iff } \mathfrak{g} = \mathbb{R}^n, \ \mathfrak{g}_{\mathbb{R}\mathrm{H}^n}, \ \mathfrak{h}^3 \oplus \mathbb{R}^{n-3}.$ 

#### **Notation**

- $\mathfrak{g}_{\mathbb{R}\mathrm{H}^n}$  is the solvable part of the Iwasawa dec. of  $\mathfrak{so}(n,1)$ .  $(\mathfrak{g}_{\mathbb{R}\mathrm{H}^n}=\mathrm{span}\{e_1,\ldots e_n\}$  with  $[e_1,e_j]=e_j\ (j\in\{2,\ldots,n\}))$
- $\mathfrak{h}^3$  is the 3-dim. Heisenberg Lie algebra.

#### Note

- Recall:  $\mathfrak{PM}(\mathfrak{g}) := \mathbb{R}^{\times} \mathrm{Aut}(\mathfrak{g}) \backslash \widetilde{\mathfrak{M}}(\mathfrak{g})$ .
- $\mathbb{R}^{\times} \mathrm{Aut}(\mathfrak{g})$  is parabolic in  $\mathrm{GL}(n,\mathbb{R})$  for  $\mathfrak{g} = \mathfrak{g}_{\mathbb{R}\mathrm{H}^n}$ ,  $\mathfrak{h}^3 \oplus \mathbb{R}^{n-3}$ .

# Topic 1: Riemannian metrics (4/7)

### Prop. (Hashinaga-T. 2017)

• If  $\mathfrak g$  is 3-dim. solvable, then dim  $\mathfrak{PM}(\mathfrak g) \leq 1$ .

### Ex. (Hashinaga-T. 2017)

Consider  $\mathfrak{g}:=\mathfrak{r}_{3,a}\;(a\in[-1,1))$  spanned by  $\{e_1,e_2,e_3\}$  with

• 
$$[e_1, e_2] = e_2$$
,  $[e_1, e_3] = ae_3$ ,  $[e_2, e_3] = 0$ .

Then we have

$$\bullet \ \mathfrak{PM}(\mathfrak{g}) \cong \left\{ \left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \lambda & 1 \end{array} \right) \mid \lambda \geq 0 \right\} \cong [0, +\infty).$$

# Topic 1: Riemannian metrics (5/7)

 $\mathfrak{PM}(\mathfrak{g})$  derives a generalization of "Milnor frames".

### Thm. (Milnor 1976)

- g : 3-dim. unimodular Lie algebra;
- $\langle,\rangle$  : (positive definite) inner product on  $\mathfrak{g}$ .

Then  $\exists \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ ,  $\exists \{x_1, x_2, x_3\}$  onb of  $\mathfrak{g}$  wrt  $\langle, \rangle$  such that

•  $[x_1, x_2] = \lambda_3 x_3$ ,  $[x_2, x_3] = \lambda_1 x_1$ ,  $[x_3, x_1] = \lambda_2 x_2$ .

#### Note

- If  $\mathfrak{g} = \mathfrak{sl}(2,\mathbb{R})$  then  $\lambda_1 > 0$ ,  $\lambda_2 > 0$ ,  $\lambda_3 < 0$ ;
- But  $\mathfrak{M}(\mathfrak{g})\cong \mathrm{GL}(3,\mathbb{R})/\mathrm{O}(3)$  has dimension 6;
- So  $\lambda_1$ ,  $\lambda_2$ ,  $\lambda_3$  parametrize the orbit space  $\operatorname{Aut}(\mathfrak{g})\backslash\widetilde{\mathfrak{M}}(\mathfrak{g})$ .

# Topic 1: Riemannian metrics (6/7)

#### Rem.

• "varying inner products"  $\leftrightarrow$  "varying bracket products".

### Prop. (Hashinaga-T. 2017)

Consider  $\mathfrak{g}:=\mathfrak{r}_{3,a}$   $(a\in[-1,1)).$  Then  $\forall\langle,\rangle$  on  $\mathfrak{g},$ 

•  $\exists \lambda \in [0, +\infty)$ ,  $\exists k > 0$ ,  $\exists \{x_1, x_2, x_3\}$ : ONB wrt  $k\langle,\rangle$  such that  $[x_1, x_2] = x_2 + \lambda(a - 1)x_3$ ,  $[x_1, x_3] = ax_3$ ,  $[x_2, x_3] = 0$ .

#### Cor.

Let G be a Lie groups with  $Lie(G) = \mathfrak{r}_{3,a}$ . Then

- ∄ left-inv. Einstein metrics on *G*;
- $\exists$  left-inv. Ricci soliton metric on G (corresponding to  $\lambda = 0$ ).

# Topic 1: Riemannian metrics (7/7)

#### Comments

 One can obtain a generalization of Milnor's theorem, theoretically for any Lie algebras.

#### However

• If  $\mathfrak{PM}(\mathfrak{g})$  is large (i.e.,  $\mathrm{Aut}(\mathfrak{g})$  is small), then the resulting bracket still contains lots of parameters.

### Topic 2: Pseudo-Riemannian metrics (1/7)

We can apply the same strategy for pseudo-Riemannian cases.

### Setting

- $\mathfrak{g} := \operatorname{Lie}(G)$ , dim G = p + q,
- $\widetilde{\mathfrak{M}}_{(p,q)}(\mathfrak{g}) := \{ \text{inner product on } \mathfrak{g} \text{ with signature } (p,q) \}$  $\cong \{ \text{left-inv. metrics on } G \text{ with signature } (p,q) \}.$

#### Def.

•  $\mathfrak{PM}_{(p,q)}(\mathfrak{g}) := \mathbb{R}^{\times} \mathrm{Aut}(\mathfrak{g}) \backslash \widetilde{\mathfrak{M}}_{(p,q)}(\mathfrak{g})$  is called the **moduli** space of left-invariant metrics on G with signature (p,q).

# Topic 2: Pseudo-Riemannian metrics (2/7)

#### Note

- $ullet \ \widetilde{\mathfrak{M}}_{(p,q)}(\mathfrak{g}) \cong \mathrm{GL}(p+q,\mathbb{R})/\mathrm{O}(p,q);$
- which is a pseudo-Riemannian symmetric space.

We are interested in the case that  $\mathfrak{PM}_{(p,q)}(\mathfrak{g})$  is small.

# Topic 2: Pseudo-Riemannian metrics (3/7)

### Nice Fact (Wolf 1974)

• Let G/H be a reductive symmetric space, and  $G\supset Q$  a parabolic subgroup. Then  $\#(Q\backslash G/H)$  is finite.

#### Cor.

•  $\#\mathfrak{PM}_{(p,q)}(\mathfrak{g}) < \infty$  for  $\mathfrak{g} = \mathfrak{g}_{\mathbb{R}\mathrm{H}^{p+q}}$  or  $\mathfrak{h}^3 \oplus \mathbb{R}^{p+q-3}$ .

#### Known Results

- #  $\mathfrak{PM}_{(n-1,1)}(\mathfrak{g}_{\mathbb{R}H^n}) = 3$  (Nomizu 1979).
- $\# \mathfrak{PM}_{(2,1)}(\mathfrak{h}^3) = 3$  (Rahmani 1992).

# Topic 2: Pseudo-Riemannian metrics (4/7)

#### Recall

- #  $\mathfrak{PM}_{(n-1,1)}(\mathfrak{g}_{\mathbb{R}H^n}) = 3$  (Nomizu 1979).
- #  $\mathfrak{PM}_{(2,1)}(\mathfrak{h}^3) = 3$  (Rahmani 1992).

### Thm. (Kubo-Onda-Taketomi-T. 2016)

• #  $\mathfrak{PM}_{(p,q)}(\mathfrak{g}_{\mathbb{R}\mathrm{H}^{p+q}})=3$  for  $\forall p,q\in\mathbb{Z}_{\geq 1}.$ 

### Thm. (Kondo-T.)

• #  $\mathfrak{PM}_{(n,1)}(\mathfrak{h}^3 \oplus \mathbb{R}^{n-3}) = 6$  for  $\forall n \geq 4$ .

# Topic 2: Pseudo-Riemannian metrics (5/7)

One can give a generalization of Milnor's theorem for these cases, and can calculate the curvatures directly.

### Thm. (Kubo-Onda-Taketomi-T. 2016)

Among  $\# \mathfrak{PM}_{(p,q)}(\mathfrak{g}_{\mathbb{R}\mathrm{H}^{p+q}})=3$  for  $\forall p,q\in\mathbb{Z}_{\geq 1}$ ,

- all of them have constant sectional curvatures;
- one is positive, one is negative, and one is flat.

### Thm. (Kondo-T.)

Among  $\# \mathfrak{PM}_{(n,1)}(\mathfrak{h}^3 \oplus \mathbb{R}^{n-3}) = 6$  for  $\forall n \geq 4$ ,

- only one is flat;
- other five are (algebraic) Ricci soliton, but not Einstein.

### Topic 2: Pseudo-Riemannian metrics (6/7)

Why 
$$\# \mathfrak{PM}_{(p,q)}(\mathfrak{g}_{\mathbb{R}\mathrm{H}^{p+q}}) = 3$$
 ?

- Recall:  $\mathfrak{PM}_{(p,q)}(\mathfrak{g}_{\mathbb{R}\mathrm{H}^{p+q}})\cong Q_{1,p+q-1}\backslash\mathrm{GL}(p+q,\mathbb{R})/\mathrm{O}(p,q);$
- Consider:  $O(p,q) \curvearrowright GL(p+q,\mathbb{R})/Q_{1,p+q-1} \cong \mathbb{R}P^{p+q-1}$ ;
- Since O(p,q) preserves  $\langle , \rangle_{p,q}$ , it also preserves

$$\begin{split} &\{[v] \in \mathbb{R}\mathrm{P}^{p+q-1} \mid v : \mathsf{spacelike}\}, \\ &\{[v] \in \mathbb{R}\mathrm{P}^{p+q-1} \mid v : \mathsf{lightlike}\}, \\ &\{[v] \in \mathbb{R}\mathrm{P}^{p+q-1} \mid v : \mathsf{timelike}\}. \end{split}$$

### Similar for $\mathfrak{h}^3 \oplus \mathbb{R}^{n-3}$

- $O(n-1,1) \curvearrowright GL(n,\mathbb{R})/Q_{1,n-3,2} \cong F_{1,n-3}(\mathbb{R}^n);$
- it is a (partial) flag manifold.



# Topic 2: Pseudo-Riemannian metrics (7/7)

#### Comments

- For  $H^3 \times \mathbb{R}^{n-3}$  with  $n \ge 4$ , there exist exactly 6 left-inv. Lorentzian metrics up to "automorphism" and scaling.
- At the moment we do not know whether these 6 metrics are "nonisometric" up to scaling or not.

# Topic 3: Nondegenerate 2-forms (1/4)

We apply same strategy for studying left-inv. symplectic structures.

### Setting

- $\mathfrak{g} := \operatorname{Lie}(G)$ , dim G = 2n,
- $\widetilde{\Omega}(\mathfrak{g}) := \{ \text{nondegeneate 2-forms on } \mathfrak{g} \}$  $\cong \{ \text{left-inv. nondegeneate 2-forms on } G \}.$

#### Def.

•  $\mathfrak{P}\Omega(\mathfrak{g}) := \mathbb{R}^{\times} \mathrm{Aut}(\mathfrak{g}) \backslash \widetilde{\Omega}(\mathfrak{g})$  is called the **moduli space** of left-invariant nondegenerate 2-forms on G.

# Topic 3: Nondegenerate 2-forms (2/4)

#### Note

- $\widetilde{\Omega}(\mathfrak{g}) \cong \mathrm{GL}(2n,\mathbb{R})/\mathrm{Sp}(n,\mathbb{R}),$
- which is a pseudo-Riemannian symmetric space.

We are interested in the case that  $\mathfrak{P}\Omega(\mathfrak{g})$  is small.

### Cor. (of Theorem by Wolf)

•  $\#\mathfrak{P}\Omega(\mathfrak{g})<\infty$  for  $\mathfrak{g}=\mathfrak{g}_{\mathbb{R}\mathrm{H}^{2n}}$  or  $\mathfrak{h}^3\oplus\mathbb{R}^{2n-3}$ .

# Topic 3: Nondegenerate 2-forms (3/4)

### Thm. (CastellanosMoscoso-T.)

- $\#\mathfrak{P}\Omega(\mathfrak{g}_{\mathbb{R}\mathrm{H}^{2n}})=1;$
- $\#\mathfrak{P}\Omega(\mathfrak{h}^3\oplus\mathbb{R}^{2n-3})\leq 5.$

We can construct a kind of Milnor frames of symplectic basis.

#### Cor.

- $\exists 1$  left-inv. symplectic structure on  $G_{\mathbb{R}\mathrm{H}^2}$ ;
- $\not\exists$  left-inv. symplectic structures on  $G_{\mathbb{R}\mathrm{H}^{2n}}$  if  $n \geq 2$ ;
- $\exists 1$  left-inv. symplectic structure on  $H^3 \times \mathbb{R}^{2n-3}$ .

# Topic 3: Nondegenerate 2-forms (4/4)

#### Note

Classification of left-invariant symplectic structures are known for

- dim = 2 (easy)
- dim = 4 (Ovando 2006)
- dim = 6 & nilpotent (Goze-Khakimdjanov-Medina 2004)

#### Plan

 We will try to apply our method to some other Lie groups (whose automorphism groups are not small...).

# Summary (1/2)

### Summary

 Left-invariant Riem. metrics can be studied by isometric actions on some noncompact Riem. symmetric spaces.

 Left-invariant pseudo-Riem. metrics can be studied by isometric actions on some pseudo-Riem. symmetric spaces.

 Left-invariant symplectic structures can also be studied by isometric actions on some other pseudo-Riem. symmetric spaces.

# Summary (2/2)

#### Plan

- Our method could be applied to other geometric structures.
- It would be practical if  $Aut(\mathfrak{g})$  is large.

Thank you very much!