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Abstract

We conduct the spectral analysis of a time-dependent Schrödinger
operator that can be considered as the quantized Hamiltonian of a non-
relativistic many-body system in the mean-field regime. The basic prop-
erties of these Hamiltonians in general two-particle interactions satisfy-
ing suitable decay conditions are shown. Specifically, we determine the
location of the essential spectrum and the finiteness or infiniteness of
the discrete spectrum. The Hartree equation analysis plays an essential
role in our study. 1
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1 Introduction

In this paper we conduct a spectral analysis of a time-dependent Schrödinger
operator Ht on L

2(Rd
x) defined by

Ht = −∆+ V ∗ |φt|2.

Here, ∆ is the generalized Laplacian on L2(Rd), V is a real-valued function on
Rd, and φt : Rd → C is a time-global solution of the Hartree equation

i∂tφt = −∆φt + (V ∗ |φt|2)φt (1.1)

where ∗ denotes the convolution in Rd. Therefore, the term V ∗ |φt|2 can be
formally expressed as

V ∗ |φt|2(x) =
∫
Rd

V (x− y)|φt|2(y)dy, x ∈ Rd.

The operator Ht is the quantum counterpart of the classical mean-field Hamil-
tonian, which describes a particle influenced by the collective force of many
other particles with pairwise potential V and macroscopic density ρt(x) =
|φt(x)|2 (see e.q., [G]). The state of this system, described by the density op-
erator D(t) = ⟨φt, ·⟩φt, is governed by the von Neumann equation

i∂tD(t) = [Ht, D(t)],
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which is equivalent to the Hartree equation (1.1). The operator Ht has recently
been applied for the mean-field analysis of many-boson systems (see e.q., [AB]
and references therein). We are interested in the relationship between the
mean-field Hamiltonian Ht and the Hartree solution φt. The Hartree equation
has been thoroughly investigated in partial differential equation theory, but
the spectral property of Ht is less well-known. In this paper, we investigate
the basic properties of Ht using several results from the Hartree theory.

The present paper is organized as follows: In Section 2, we first investigate
the properties of the potential V ∗ |φt|2 from a suitable two-particle interaction
V : Rd → R and any initial value satisfying φ ∈ H2(Rd) of equation (1.1).
Next, we prove some spectral properties ofHt in a generalized spatial dimension
d. In particular, we prove the stability theorem for the essential spectrum
(Theorem 2.5) and the existence of a ground state for Ht (Corollary 2.6). Using
the general perturbation theory, recently developed by Arai [Ar], we prove that
discrete eigenvalues of Ht are stable (Theorem 2.9, Corollary 2.10). Finally, in
Section 3, we show the finiteness or infiniteness of discrete eigenvalues of Ht

for d = 3 (Theorems 3.1–3.2).

2 Mean-Field Hamiltonian in General Dimen-

sions

In the following, we denote Lp(Rd) (resp. Hs(Rd)) as Lp (resp. Hs) for 0 < p ≤
∞ and s ∈ R. Unless otherwise stated, we assume that V : Rd → R satisfies
the following two conditions:

(A) V is even; i.e., V (x) = V (−x) for any x ∈ Rd.

(B) There exist some V1 ∈ Lp and V2 ∈ L∞ such that V = V1 + V2, where
p = 2 if d = 1, 2, 3 and p > d/2 if d ≥ 4.

The following proposition is well-known:

Proposition 2.1. For any φ0 ∈ H2, there exists a time-global solution φt of
(1.1) uniquely defined on a suitable open interval Iφ0 of R containing the origin
such that φt ∈ C(Iφ0 , H

2) ∩ C1(Iφ0 , L
2). Furthermore, mass and energy are

conserved:

∥φt∥L2 = ∥φ∥L2 , t ∈ Iφ0 ,

E(φt) : = ∥∇φt∥2L2 +
1

2

∫
Rd

V ∗ |φt|2(x)|φt|2(x)dx

= E(φ0), t ∈ Iφ0 .

(2.1)
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The proof is shown in Chapter 4 of [Caz].

In the following, we set

Vt = V ∗ |φt|2, t ∈ R

and
⟨x⟩θ = (1 + |x|2)θ/2, x ∈ Rd, θ ∈ R.

Before proving the self-adjointness of Ht, we need the following two lemmas.
Since the first lemma is well-known, its proof is omitted (see e.q., [Is]).

Lemma 2.2. Let V : Rd → R satisfy (B). Then we have

∥V f∥L2 ≤ t−
d
2p∥⟨x⟩−2∥Lp∥V ∥Lp∥1− t∆f∥L2 (2.2)

for any t > 0 and f ∈ D(−∆).

Lemma 2.3. Let q > 1 and V ∈ Lq. Then Vt ∈ Lq and

∥Vt∥Lq ≤ ∥V ∥Lq∥φ0∥2L2 (2.3)

holds for any t ∈ Iφ0 . Moreover, we have

∥Vt − Vs∥Lq ≤ 2∥V ∥Lq∥φ0∥L2∥φt − φs∥L2 , t, s ∈ Iφ0 . (2.4)

Proof. Since |φt|2 ∈ L1 and ∥|φt|2∥L1 = ∥φ0∥2L2 , the Hölder-Young inequality
gives

∥Vt∥Lq ≤ ∥V ∥Lq∥|φt|2∥L1

= ∥V ∥Lq∥φ0∥2L2 ,

which implies (2.3). To prove (2.4), we first calculate (2.5) by the Minkowski
inequality as follows:

∥Vt − Vs∥Lq = ∥V ∗ (|φt|2 − |φs|2)∥Lq

= ∥V ∗ {(|φt| − |φs|)(|φt|+ |φs|)}∥Lq

≤ ∥V ∗ {(|φt| − |φs|)|φt|}∥Lq + ∥V ∗ {(|φt| − |φs|)|φs|}∥Lq

≤ ∥V ∥Lq∥(|φt| − |φs|)|φt|∥L1 + ∥V ∥Lq∥(|φt| − |φs|)|φs|∥L1 .

(2.5)

The final inequality of (2.5) again uses the Hölder-Young inequality. Applying
the Schwarz inequality and the conservation of mass, the final right-hand side
of the above inequality becomes

∥V ∥Lq∥|φt| − |φs|∥L2∥φt|∥L2 + ∥V ∥Lq∥|φt| − |φs|∥L2∥φs|∥L2

≤ ∥V ∥Lq∥φt − φs∥L2∥φt∥L2 + ∥V ∥Lq∥φt − φs∥L2∥φs|∥L2

= 2∥V ∥Lp∥φt − φs∥L2∥φ0∥L2 .

(2.6)

Combining (2.5) and (2.6), we obtain (2.4).

3



Proposition 2.4. For any V : Rd → R satisfying assumptions (A) and (B),
the following properties hold:
(i) Ht is a self-adjoint operator on L2 with D(Ht) = D(−∆) for any t ∈ Iφ0 .
(ii) For any fixed t0 ∈ Iφ0 , Ht converges to Ht0 in the norm resolvent sense as
t→ t0.

Proof. Property (i) follows directly from Lemmas 2.2 and 2.3 and the Kato-
Rellich theorem. To prove (ii), we calculate

(Ht − z)−1 − (Hs − z)−1 = (Ht − z)−1(Vs − Vt)(Hs − z)−1

for z ∈ C \ R. Hence by Lemma 2.7 below, we have

∥(Ht − z)−1 − (Hs − z)−1∥ ≤ ∥(Ht − z)−1(Vs − Vt)(Hs − z)−1∥

≤ αC(s, z)

|Imz|
∥φt − φs∥L2 .

Since φt ∈ C1(Iφ0 , L
2) by Proposition 2.1, the proof is complete.

Imposing stronger assumptions on V , we can identify the essential spectrum
σess(Ht). For this purpose, we specify a class of potentials V .

We say that V ∈ Lp+L∞,ϵ if for any ϵ > 0 there exist V1 ∈ Lp and V2 ∈ L∞

such that
V = V1 + V2, ∥V2∥L∞ < ϵ.

Theorem 2.5. Assume that V : Rd → R satisfies (A) and belongs to the class
of Lp(Rd) + L∞,ϵ(Rd) for p = 2 (d = 3), p > d/2 (d ≥ 4). Then we have

σess(Ht) = [0,∞). (2.7)

Proof. As is well-known (see e.q., [ReSi IV]), it is sufficient to show that Vt ∈
Lp(Rd)+L∞,ϵ(Rd). By the Hölder inequality and the conservation of mass, we
have

∥V2 ∗ |φt|2∥L∞ ≤ ∥V2∥L∞∥φt∥2L2

≤ ϵ∥φ0∥2L2 .
(2.8)

Combining this inequality with Lemma 2.3 completes the proof.

As a corollary, we note the existence of a ground state of Ht.

Corollary 2.6. Let V be given as in Theorem 2.5. Also, assume that E(φ0) <
0. Then, Ht has a ground state for any t ∈ Iφ0 .
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Proof. By the min-max principle (see e.q., [ReSi, IV]), finding a unit vector
ψ ∈ D(Ht) ⊂ H2 such that ⟨ψ,Htψ⟩ < 0 is sufficient, since we know that
inf σess(Ht)=0 by Theorem 2.5. However, since energy is conserved, we have

⟨φt, Htφt⟩ = ⟨φt,−∆φt⟩+ ⟨φt, Vtφt⟩
≤ 2⟨φt,−∆φt⟩+ ⟨φt, Vtφt⟩
= 2E(φt) = 2E(φ0) < 0.

Taking ψ = φt/∥φt∥, the proof is completed.

Next, we develop a stability theorem for a discrete eigenvalue of Ht. For
this purpose, we adopt the general perturbation theory established in [Ar].

Let us denote the resolvent set of a self-adjoint operator T by ρ(T ). For
z ∈ ρ(T ), we set

RT (z) = (T − z)−1.

We first prove the following lemma:

Lemma 2.7. There exists a positive constant α dependent only on V and φ0

such that
∥(Vt − Vs)RHs(z)∥ ≤ αC(s, z)∥φt − φs∥L2

holds for all s, t ∈ Iφ0 and z ∈ ρ(H). Here we set

C(s, z) = ∥RHs(z)∥+ ∥HsRHs(z)∥.

Remark 2.8. Since supz∈K C(s, z) < ∞ holds for all compact subsets K ⊂
ρ(H), it follows that

lim
t→s

∥(Vt − Vs)RHs(z)∥ = 0 (2.9)

uniformly in z on each compact subset K ⊂ ρ(H).

Proof. Since

∥(Vt − Vs)RHs(z)∥ ≤ ∥(Vt − Vs)(−∆+ 1)−1∥∥(−∆+ 1)RHs(z)∥
=: B1B2,

(2.10)

we only need to estimate B1 and B2. We first estimate B1. Setting t = 1 in
(2.2) together with (2.4) we see that

B1 ≤ ∥⟨x⟩−2∥Lp∥Vt − Vs∥Lp

≤ 2∥⟨x⟩−2∥Lp∥V ∥Lp∥φ0∥L2∥φt − φs∥L2 .
(2.11)
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Next we estimate B2. First we note that, by (2.2) and (2.3),

∥Vsf∥L2 ≤ ∥⟨x⟩−2∥Lp∥Vs∥Lp{t1−
d
2p∥ −∆f∥+ t−

d
2∥f∥}

≤ ∥⟨x⟩−2∥Lp∥V ∥Lp∥φ0∥2L2{t1−
d
2p∥ −∆f∥L2 + t−

d
2∥f∥L2}

holds for any f ∈ D(−∆). Since 1− d/(2p) > 0 by assumption (B), we obtain

∥Vsf∥L2 ≤ 1

2
∥ −∆f∥L2 + C∥f∥L2

for any f ∈ D(−∆), where C > 0 depends only on V . Hence we see that

∥ −∆RHs(z)∥ = ∥(Hs − Vs)RHs(z)∥
≤ ∥HsRHs(z)∥+ ∥VsRHs(z)∥

≤ ∥HsRHs(z)∥+
1

2
∥ −∆RHs(z)∥+ C∥RHs(z)∥,

which implies the inequality

B2 ≤ 2∥HsRHs(z)∥+ (2C + 1)∥RHs(z)∥. (2.12)

Combining (2.10), (2.11), and (2.12), we complete the proof.

In stating the following result, we require some notations defined in [Ar].
Suppose that t0 ∈ Iφ0 is arbitrary and fixed. Suppose also that Ht0 has an
isolated eigenvalue E0 ∈ R. Let r0 be a constant satisfying

0 < r0 < min
E∈σ(Ht0 )\{E0}

|E − E0|.

Then, we define
Cr0(E0) = {z ∈ C||z − E0| < r0}.

Note that Cr0(E0) ⊂ R \ σ(Ht0). By virtue of Remark 2.8, there exists δ > 0
such that

sup
z∈Cr0 (E0)

∥(Vt − Vt0)RHt0
(z)∥ <

(
1 + r sup

z∈Cr0(E0)

∥RHt0
(z)∥

)−1

for any t ∈ (t0 − δ, t0 + δ).
We now state the following:

Theorem 2.9. Suppose that the multiplicity m(E0) of E0 is finite. Then,
for all t ∈ (t0 − δ, t0 + δ), Ht has exactly m(E0) eigenvalues in the interval
(E0 − r0, E0 + r0), including multiplicities, and σ(Ht) ∩ (E0 − r0, E0 + r0)
consists of these eigenvalues alone.
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Corollary 2.10. Suppose in addition that m(E0) = 1 and let Ω0 be a nor-
malized eigenvector of Ht0 with an eigenvalue E0, i.e., Ht0Ω0 = E0Ω0 and
∥Ω0∥ = 1. Then, for all t ∈ (t0 − δ, t0 + δ), Ht has a simple eigenvalue Et in
the interval (E0 − r0, E0 + r0) given by

Et = E0 +
⟨Ω0, Vt − Vt0Ω0⟩+

∑∞
n=1 cn(t)

1 +
∑∞

n=1 dn(t)
,

where

cn(t) : =
(−1)n+1

2πi

∫
Cr0 (E0)

dz⟨Ω0, [(Vt − Vt0)RHt(z)]
n+1Ω0⟩,

dn(t) : =
(−1)n+1

2πi

∫
Cr0 (E0)

dz
⟨Ω0, [(Vt − Vt0)RHt(z)]

nΩ0⟩
E0 − z

and σ(Ht) ∩ (E0 − r0, E0 + r0) = {Et}. Moreover, a normalized eigenvector of
Ht is given as

Ωt =
Ω0 +

∑∞
n=1Ωt,n√

1 +
∑∞

n=1 dn(t)
,

where

Ωt,n :=
(−1)n+1

2πi

∫
Cr0 (E0)

dz(Ht0 − z)−1[(Vt − Vt0)RHt(z)]
nΩ0.

Proof. Both of the above statements are direct consequences of Theorem A.3
and Corollary A.4 in [Ar]. In that reference, equation (2.9) is given as Hypoth-
esis (A).

3 Mean-Field Hamiltonian in Three Spatial Di-

mensions

In this section we consider the case d = 3, and show the finiteness or infiniteness
of the discrete spectrum σdisc(Ht) of Ht.

First we treat the finiteness. We assume that

(C) V ≤ 0, V ∈ L1(R3) ∩ L2(R3).

Clearly, condition (C) implies condition (B) in Section 2.

Theorem 3.1. Assume that V satisfies (A) and (C). Then σdisc(Ht) ⊂
(−∞, 0). Moreover, the number of discrete eigenvalues N(Ht) can be esti-
mated by a(∥V ∥L1∥φt∥L3)2/3, where a > 0 is some universal constant.
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Proof. The first statement immediately follows from Theorem 2.5. The second
follows from the Lieb-Cwickel-Rosenbljum bound (see e.g., [Si2])

N(Ht) ≤ a∥Vt∥
2
3

L
3
2

and the estimate
∥Vt∥L 3

2
≤ ∥V ∥L1∥φt∥L3

given by the Hölder-Young inequality.

Finally, we consider the infiniteness of σdisc(Ht) with

V (x) := − a

|x|γ
, a > 0, γ ∈ (0, 2) (3.1)

and φ0 in S(R3), denoting the space of rapidly decreasing C∞ functions on R3.
For such V and φ0, the following proposition holds:

Proposition 3.2. There exists a unique solution φt ∈ C1(R,S(R3)) of (1.1).
The proof is provided in Proposition 3.1 of [HaOz].

We also need the following lemma:

Lemma 3.3. For any pair (α, β) satisfying 0 < α < d < β, we have∫
Rd

|x− y|−α⟨y⟩−β ≤ C⟨x⟩−α.

For the proof, the reader is referred to Appendix 2, Lemma 1(c) in [AS] and
Lemma 17.2 in [Is].

We can now state the following:

Theorem 3.2. Let V : R3 → R be of the form (3.1). Then, Ht is a self-
adjoint operator on L2 and σess(Ht) = [0,∞). Moreover, σdisc(Ht) ⊂ (−∞, 0)
is infinite.

Proof. Let us consider the first part of the statement. By the proof of Lemma
2.5 in [HaOz], we have

∥Vt∥L∞ ≤ C∥∇φt∥γ∥φt∥2−γ.

Moreover, by the virtue of Lemma 3.3, we see that∣∣∣∣∫
R3

|x− y|−γ|φt|2(y)dy
∣∣∣∣ ≤ ∥⟨y⟩4|φt|2∥L∞

∫
R3

|x− y|−γ⟨y⟩−4dy

≤ C⟨y⟩−γ,
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since φt ∈ S(R3) is true by Proposition 3.2. Therefore, we know that Vt ∈ L∞

and Vt tends to 0 as |x| → ∞, implying that Vt ∈ L2 + L∞,ϵ. Hence, as when
proving Theorem 2.5, we have completed the proof of the first part.

It remains to prove the infiniteness of σdisc(Ht). By a well-known theorem
(see e.q., [Ar, Si2]), it is sufficient to show that there exists C,R > 0 such that

Vt(x) ≤ − C

|x|γ
, |x| ≥ R.

Following the proof of Proposition 5 in [Si1], we need only to show that∫
|y|≥r0

|x− y|γ|φt(x− y)|2|y|−γdy → 0 as |x| → ∞. (3.2)

Since
|y|γ|φt(y)|2 ≤ ∥⟨y⟩4+γ|φt(y)|2∥L∞⟨y⟩−4,

the above integral can be estimated by∫
R3

|x− y|γ|φt(x− y)|2|y|−γdy =

∫
R3

|y|γ|φt(y)|2|x− y|−γdy

≤ C

∫
R3

⟨y⟩−4|x− y|−γ

≤ C⟨x⟩−γ,

which demonstrates the truth of (3.2).
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