Minimization problem related with Lyapunov inequality

M.Hashizume ${ }^{1}$
Department of Mathematics, Graduate School of Science, Osaka City University 3-3-138 Sugimoto Sumiyoshi-ku, Osaka-shi, Osaka 558-8585 Japan

Abstract

We consider a minimization problem on bounded smooth domain Ω in \mathbb{R}^{N}

$$
S^{\prime}:=\inf \left\{\left.\frac{\|\nabla u\|_{2}^{2}}{\|u\|_{2^{*}}^{2}}\left|u \in H^{1}(\Omega) \backslash\{0\}, \int_{\Omega}\right| u\right|^{2^{*}-2} u=0\right\} .
$$

This minimization problem plays a crucial role related with L^{p} Lyapunovtype inequalities $(1 \leq p \leq \infty)$ for linear partial differential equations with Neumann boundary conditions (on bounded smooth domains in \mathbb{R}^{N}). In this paper, we prove that existence of the minimizer of S^{\prime} and L^{p} Lyapunov-type inequalities in critical case.
Keywords: Minimization problem, Critical, Sign changing, Lyapunov inequalities, Neumann, Neumann boundary value problem

1. Introduction

Let $N \geq 3$ and Ω be a bounded domain in \mathbb{R}^{N} with a smooth boundary. We consider the linear elliptic equation

$$
\left\{\begin{array}{cl}
-\Delta u(x)=a(x) u(x) & \text { in } \Omega \tag{1}\\
\frac{\partial u}{\partial \nu}(x)=0 & \text { on } \partial \Omega
\end{array}\right.
$$

where the function $a: \Omega \rightarrow \mathbb{R}$ belongs to the set Λ defined as

$$
\Lambda:=\left\{a \in L^{N / 2}(\Omega) \backslash\{0\} \mid \int_{\Omega} a(x) d x \geq 0 \text { and (1) has nontrivial solutions }\right\} .
$$

${ }^{1}$ e-mail:m13sa60a23@ex.media.osaka-cu.ac.jp

We define β_{p} as

$$
\beta_{p}=\inf \left\{\left\|a^{+}\right\|_{L^{p}(\Omega)} \mid a \in \Lambda \cap L^{p}(\Omega)\right\} .
$$

The eigenvalues of the eigenvalue problem

$$
\left\{\begin{array}{cl}
-\Delta u(x)=\lambda u(x) & \text { in } \Omega \\
\frac{\partial u}{\partial \nu}(x)=0 & \text { on } \partial \Omega
\end{array}\right.
$$

belong to Λ. Thus Λ is not empty therefore Λ is well defined. Cañada, Montero and Villegas [4] proved that β_{p} is attained in the case $N / 2<p \leq \infty$, $\beta_{p}=0$ and it is not attained in the case $1 \leq p<N / 2$. But the case $p=N / 2$ has not been studied so far. In this paper we prove the case $p=N / 2$ for $N \geq 4$. As result, $\beta_{N / 2}$ is attained and the minimizer $a(x)$ is represented by the form

$$
a(x)=|u(x)|^{\frac{4}{N-2}}
$$

where $u(x)$ is solutions of some quasilinear elliptic equation. Timoshin[10] considered similar problem with Dirichlet boundary conditions, that is,

$$
\begin{gather*}
\left\{\begin{array}{cc}
-\Delta u(x)=a(x) u(x) & \text { in } \Omega \\
u(x)=0 & \text { on } \partial \Omega
\end{array}\right. \tag{2}\\
\tilde{\Lambda}:=\left\{a \in L^{N / 2}(\Omega) \backslash\{0\} \mid(2) \text { has nontrivial solutions }\right\} . \\
\tilde{\beta}_{p}=\inf \left\{\|a\|_{L^{p}(\Omega)} \mid a \in \tilde{\Lambda} \cap L^{p}(\Omega)\right\} .
\end{gather*}
$$

About this problem, he proved that $\tilde{\beta}_{p}$ is not attained in the case $p=N / 2$ by using not attainability of Sobolev best constant on the bounded domains. The result is $\tilde{\beta}_{p}=S$ is not attained where S is Sobolev best constant. This result is different from with Neumann boundary conditions.

2. Main Theorem

Theorem 2.1.

Let $N \geq 4, \Omega$ be bounded with smooth boundary. Then $\beta_{N / 2}$ is attained. Furthermore $\beta_{N / 2}=S^{\prime}$ where

$$
S^{\prime}:=\inf \left\{\left.\frac{\|\nabla u\|_{2}^{2}}{\|u\|_{2^{*}}^{2}}\left|u \in H^{1}(\Omega) \backslash\{0\}, \int_{\Omega}\right| u\right|^{2^{*}-2} u=0\right\} .
$$

From this, the minimizer of $\beta_{N / 2}$ is represented that

$$
a(x)=|u(x)|^{\frac{4}{N-2}}
$$

where $u(x)$ is a solution of

$$
\left\{\begin{array}{cl}
-\Delta u(x)=|u(x)|^{\frac{4}{N-2}} u(x) & \text { in } \Omega \tag{3}\\
\frac{\partial u}{\partial \nu}(x)=0 & \text { on } \partial \Omega .
\end{array}\right.
$$

3. Preliminaries

Lemma 3.1. We have

$$
S^{\prime}<\frac{S}{2^{\frac{2}{N}}}
$$

where S is Sobolev best constant.
Without loss of generality, we may assume that $0 \in \partial \Omega$, and that the mean curvature of $\partial \Omega$ at 0 is strictly positive.
For all $\varepsilon>0, u_{\varepsilon}(x) \in H^{1}(\Omega)$ is defined by

$$
u_{\varepsilon}(x):=\frac{\left(N(N-2) \varepsilon^{2}\right)^{\frac{N-2}{4}}}{\left(\varepsilon^{2}+|x|^{2}\right)^{\frac{N-2}{2}}}=\varepsilon^{\frac{2-N}{2}} U\left(\frac{x}{\varepsilon}\right)
$$

where

$$
U(x)=\frac{(N(N-2))^{\frac{N-2}{4}}}{\left(1+|x|^{2}\right)^{\frac{N-2}{2}}} .
$$

In addition, we define $\tilde{u}_{\varepsilon}(x)$ as follows.

$$
\tilde{u}_{\varepsilon}(x):=\phi(x) u_{\varepsilon}(x)
$$

where $\phi(x)$ is a suitable cut off function. Then, we have the following estimates due to Adimurthi and Mancini(see [1]) as $\varepsilon \rightarrow 0$:

$$
\frac{\left\|\nabla \tilde{u}_{\varepsilon}\right\|_{2}^{2}}{\left\|\tilde{u}_{\varepsilon}\right\|_{2^{*}}^{2}}= \begin{cases}\frac{S}{2^{\frac{2}{N}}}\left(1-c_{0} \varepsilon|\log \varepsilon|+O(\varepsilon)\right) & N=3 \\ \frac{S}{2^{\frac{2}{N}}}\left(1-c_{1} \varepsilon+O\left(\varepsilon^{2}|\log \varepsilon|\right)\right) & N=4 \\ \frac{S}{2^{\frac{2}{N}}}\left(1-c_{2} \varepsilon+O\left(\varepsilon^{2}\right)\right) & N \geq 5\end{cases}
$$

where c_{0}, c_{1}, c_{2} are positive constants which depend only on N.
For each \tilde{u}_{ε} there exist a constant $a_{\varepsilon}>0$ such that

$$
\tilde{u}_{\varepsilon}-a_{\varepsilon} \in X:=\left\{\left.u \in H^{1}(\Omega)\left|\int_{\Omega}\right| u\right|^{2^{*}-2} u=0\right\} .
$$

Proposition 3.2. We obtain

$$
a_{\varepsilon}=O\left(\varepsilon^{\frac{(N-2)^{2}}{2(N+2)}}\right) .
$$

Proof of Proposition 3.2. For $s \geq 1(s \neq N /(N-2))$ we have

$$
\left\|\tilde{u}_{\varepsilon}\right\|_{s}^{s}=O\left(\varepsilon^{\min \left\{s \frac{2-N}{2}+N, s \frac{N-2}{2}\right\}}\right) .
$$

In particular,

$$
\begin{array}{r}
\left\|\tilde{u}_{\varepsilon}\right\|_{1}=O\left(\varepsilon^{\frac{N-2}{2}}\right) \\
\left\|\tilde{u}_{\varepsilon}\right\|_{\frac{N+2}{N-2}}^{\frac{N+2}{N-2}}=O\left(\varepsilon^{\frac{N-2}{2}}\right) \\
\left\|\tilde{u}_{\varepsilon}\right\|_{2^{*}}^{2^{*}}=O(1) .
\end{array}
$$

Recall that

$$
2^{p-1}\left(a^{p}+b^{p}\right) \geq(a+b)^{p}(a, b \geq 0, p \geq 1)
$$

a, b and p are replaced by $a=\left|a_{\varepsilon}-\tilde{u}_{\varepsilon}\right|, b=\tilde{u}_{\varepsilon}, p=(N+2) /(N-2)$ in each, we obtain

$$
\begin{aligned}
2^{\frac{4}{N-2}}\left(\left|a_{\varepsilon}-\tilde{u}_{\varepsilon}\right|^{\frac{N+2}{N-2}}+\tilde{u}_{\varepsilon}^{\frac{N+2}{N-2}}\right) & \geq\left(\left|a_{\varepsilon}-\tilde{u}_{\varepsilon}\right|+\tilde{u}_{\varepsilon}\right)^{\frac{N+2}{N-2}} \\
& \geq a_{\varepsilon}^{N+2} .
\end{aligned}
$$

We integrate above inequality over Ω and we have

$$
2^{\frac{4}{N-2}} \int_{\Omega}\left(\left|a_{\varepsilon}-\tilde{u}_{\varepsilon}\right|^{\frac{N+2}{N-2}}+\tilde{u}_{\varepsilon}^{\frac{N+2}{N-2}}\right) \geq \int_{\Omega} a_{\varepsilon}^{\frac{N+2}{N-2}}
$$

hence

$$
\begin{equation*}
2^{\frac{4}{N-2}} \int_{\Omega}\left|a_{\varepsilon}-\tilde{u}_{\varepsilon}\right|^{\frac{N+2}{N-2}} \geq \int_{\Omega} a_{\varepsilon}^{\frac{N+2}{N-2}}-2^{\frac{4}{N-2}} \int_{\Omega} \tilde{u}_{\varepsilon}^{\frac{N+2}{N-2}} \tag{4}
\end{equation*}
$$

Since

$$
\int_{\Omega}\left|\tilde{u}_{\varepsilon}-a_{\varepsilon}\right|^{2^{*}-2}\left(\tilde{u}_{\varepsilon}-a_{\varepsilon}\right)=0
$$

we calculate using (4)

$$
\begin{aligned}
0 & =\int_{\Omega}\left|\tilde{u}_{\varepsilon}-a_{\varepsilon}\right|^{2^{*}-2}\left(\tilde{u}_{\varepsilon}-a_{\varepsilon}\right) \\
& =\int_{\left[\tilde{u}_{\varepsilon}>a_{\varepsilon}\right]}\left(\tilde{u}_{\varepsilon}-a_{\varepsilon}\right)^{\frac{N+2}{N-2}}-\int_{\left[a_{\varepsilon}>\tilde{u}_{\varepsilon}\right]}\left(a_{\varepsilon}-\tilde{u}_{\varepsilon}\right)^{\frac{N+2}{N-2}} \\
& =2^{\frac{N+2}{N-2}} \int_{\left[\tilde{u}_{\varepsilon}>a_{\varepsilon}\right]}\left(\tilde{u}_{\varepsilon}-a_{\varepsilon}\right)^{\frac{N+2}{N-2}}-2^{\frac{4}{N-2}} \int_{\Omega}\left|a_{\varepsilon}-u_{\varepsilon}\right|^{\frac{N+2}{N-2}} \\
& \leq 2^{\frac{N+2}{N-2}} \int_{\left[\tilde{u}_{\varepsilon}>a_{\varepsilon}\right]}\left(\tilde{u}_{\varepsilon}-a_{\varepsilon}\right)^{\frac{N+2}{N-2}}-\left\{\int_{\Omega} a_{\varepsilon}^{\frac{N+2}{N-2}}-2^{\frac{4}{N-2}} \int_{\Omega} \tilde{u}_{\varepsilon}^{\frac{N+2}{N-2}}\right\} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\int_{\Omega} a_{\varepsilon}^{\frac{N+2}{N-2}} & \leq 2^{\frac{4}{N-2}}\left\{2 \int_{\left[\tilde{u}_{\varepsilon}>a_{\varepsilon}\right]}\left(\tilde{u}_{\varepsilon}-a_{\varepsilon}\right)^{)^{N+2}}+\int_{\Omega} \tilde{u}_{\varepsilon}^{\frac{N+2}{N-2}}\right\} \\
& \leq 2^{\frac{4}{N-2}}\left\{2 \int_{\left[\tilde{u}_{\varepsilon}>a_{\varepsilon}\right]} \tilde{u}_{\varepsilon}^{\frac{N+2}{N-2}}+\int_{\Omega} \tilde{u}_{\varepsilon}^{\frac{N+2}{N-2}}\right\} \\
& \leq 2^{\frac{4}{N-2}} 3 \int_{\Omega} u_{\varepsilon}^{\frac{N+2}{N-2}} .
\end{aligned}
$$

Therefore

$$
a_{\varepsilon}^{\frac{N+2}{N-2}} \leq C_{0} \int_{\Omega} u_{\varepsilon}^{\frac{N+2}{N-2}}=C_{0}\left\|u_{\varepsilon}\right\|_{\frac{N+2}{N-2}}^{N-2}=O\left(\varepsilon^{\frac{N-2}{2}}\right) .
$$

Hence we obtain

$$
a_{\varepsilon}=O\left(\varepsilon^{\left.\frac{(N-2)^{2}}{\varepsilon^{2(N+2)}}\right) .}\right.
$$

Proof. We estimate $\left\|\tilde{u}_{\varepsilon}-a_{\varepsilon}\right\|_{2^{*}}^{2}$ similarly to Girão and Weth(see [7]) using Proposition.

$$
\begin{aligned}
\int_{\Omega}\left|\tilde{u}_{\varepsilon}-a_{\varepsilon}\right|^{2^{*}} & \geq \int_{\Omega}\left|\tilde{u}_{\varepsilon}\right|^{2^{*}}+|\Omega| a_{\varepsilon}^{2^{*}}-C\left(a_{\varepsilon} \int_{\Omega}\left|\tilde{u}_{\varepsilon}\right|^{\frac{N+2}{N-2}}+a_{\varepsilon}^{\frac{N+2}{N-2}} \int_{\Omega}\left|\tilde{u}_{\varepsilon}\right|\right) \\
& =\int_{\Omega}\left|\tilde{u}_{\varepsilon}\right|^{2^{*}}+O\left(\varepsilon^{\frac{N(N-2)}{N+2}}\right) .
\end{aligned}
$$

Consequently

$$
\left\|\tilde{u}_{\varepsilon}-a_{\varepsilon}\right\|_{2^{*}}^{2} \geq\left\|\tilde{u}_{\varepsilon}\right\|_{2^{*}}^{2}+O\left(\varepsilon^{\frac{N(N+2)}{N+2}}\right)
$$

and therefore

$$
\begin{aligned}
\frac{\left\|\nabla\left(\tilde{u}_{\varepsilon}-a_{\varepsilon}\right)\right\|_{2}^{2}}{\left\|\tilde{u}_{\varepsilon}-a_{\varepsilon}\right\|_{2^{*}}^{2}} & \leq \frac{\left\|\nabla \tilde{u}_{\varepsilon}\right\|_{2}^{2}}{\left\|\tilde{u}_{\varepsilon}\right\|_{2^{*}}^{2}+O\left(\varepsilon^{\frac{N(N-2)}{N+2}}\right)} \\
& =\frac{\left\|\nabla \tilde{u}_{\varepsilon}\right\|_{2}^{2}}{\left\|\tilde{u}_{\varepsilon}\right\|_{2^{*}}^{2}}+O\left(\varepsilon^{\frac{N(N-2)}{N+2}}\right)
\end{aligned}
$$

We recall that the value of Sobolev quotient of $\tilde{u}_{\varepsilon}(x)$ in the case $N=3$, $N=4$ and $N \geq 5$ and taking account of the fact that $N \geq 4$ we obtain

$$
\frac{\left\|\nabla\left(\tilde{u}_{\varepsilon}-a_{\varepsilon}\right)\right\|_{2}^{2}}{\left\|\tilde{u}_{\varepsilon}-a_{\varepsilon}\right\|_{2^{*}}^{2}}<\frac{S}{2^{\frac{2}{N}}} \text { for } \varepsilon \text { small enough, }
$$

and hence

$$
S^{\prime}<\frac{S}{2^{\frac{2}{N}}}
$$

Lemma 3.3. If $S^{\prime}<S / 2^{N / 2}$ then S^{\prime} is attained.
Proof. We consider a minimizing sequence $\left\{u_{n}\right\} \in X$ for S^{\prime}. Then u_{n} is bounded in $H^{1}(\Omega)$. So we can suppose, up to a subsequence,

$$
\begin{aligned}
& u_{n} \rightharpoonup u \text { in } H^{1}(\Omega) \quad(n \rightarrow \infty) \\
& u_{n} \rightarrow u \text { in } L^{p}(\Omega) \quad(n \rightarrow \infty) \quad\left(1 \leq p<2^{*}\right) \\
& u_{n} \rightarrow u \text { a.e. } \quad(n \rightarrow \infty)
\end{aligned}
$$

In addition, since $H^{1}(\Omega) \hookrightarrow L^{2^{*}-1}(\Omega)$ is a compact embedding, we have

$$
\int_{\Omega}\left|u_{n}\right|^{2^{*}-2} u_{n} \rightarrow \int_{\Omega}|u|^{2^{*}-2} u \quad(n \rightarrow \infty)
$$

Furthermore, we may assume that

$$
\begin{aligned}
& \left\|u_{n}\right\|_{2^{*}}=1 \quad(n \in \mathbb{N}) \\
& \left\|\nabla u_{n}\right\|_{2}^{2}=S^{\prime}+o(1) \quad(n \rightarrow \infty)
\end{aligned}
$$

For each u_{n} there exist a constant a_{n} such that

$$
u_{n}-u-a_{n} \in X
$$

We calculate similarly to the proof of Proposition 3.2. We obtain that

$$
a_{n}=o(1) \quad(n \rightarrow \infty) .
$$

Since $\left\|u_{n}\right\|_{2^{*}}^{2^{*}}=1$ for all $n \in \mathbb{N}$ by Brezis-Lieb lemma(see [2]) we have

$$
\left\|u_{n}\right\|_{2^{*}}^{2^{*}}=\|u\|_{2^{*}}^{2^{*}}+\left\|u_{n}-u\right\|_{2^{*}}^{2^{*}}+o(1) \quad(n \rightarrow \infty) .
$$

Thus

$$
1=\left\|u_{n}\right\|_{2^{*}}^{2}=\left(\|u\|_{2^{*}}^{2^{*}}+\left\|u_{n}-u\right\|_{2^{*}}^{2^{*}} \frac{2}{2^{*}}+o(1) \leq\|u\|_{2^{*}}^{2}+\left\|u_{n}-u\right\|_{2^{*}}^{2}+o(1) .\right.
$$

On the other hand, we have

$$
\begin{aligned}
\|u\|_{2^{*}}^{2}+\left(\left\|u_{n}-u-a_{n}\right\|_{2^{*}}+\left\|a_{n}\right\|_{2^{*}}\right)^{2} & \leq \frac{\|\nabla u\|_{2}^{2}}{S^{\prime}}+\frac{\left\|\nabla\left(u_{n}-u\right)\right\|_{2}^{2}}{S^{\prime}}+o(1) \\
& =\frac{\left\|\nabla u_{n}\right\|_{2}^{2}}{S^{\prime}}=1+o(1)
\end{aligned}
$$

and

$$
\|u\|_{2^{*}}^{2}+\left(\left\|u_{n}-u-a_{n}\right\|_{2^{*}}+\left\|a_{n}\right\|_{2^{*}}\right)^{2} \geq\|u\|_{2^{*}}^{2}+\left\|u_{n}-u\right\|_{2^{*}}^{2} .
$$

Thus

$$
\|u\|_{2^{*}}^{2}+\left\|u_{n}-u\right\|_{2^{*}}^{2} \leq 1+o(1) .
$$

Hence there exists a limit and we have the equality.

$$
\lim _{n \rightarrow \infty}\left(\left\|u_{n}-u\right\|_{2^{*}}^{2^{*}}+\|u\|_{2^{*}}^{2^{*}}\right)^{\frac{2}{2^{*}}}=\lim _{n \rightarrow \infty}\left(\|u\|_{2^{*}}^{2}+\left\|u_{n}-u\right\|_{2^{*}}^{2}\right)=1
$$

Above equality holds if and only if $u \equiv 0$ or $u_{n} \rightarrow u$ in $L^{2^{*}}(\Omega)$. Suppose that $u \equiv 0$ a.e. By Cherrier's inequality(see [5][6]) we obtain

$$
\frac{S}{2^{\frac{2}{N}}}\left\|u_{n}\right\|_{2^{*}}^{2} \leq(1+\varepsilon)\left\|\nabla u_{n}\right\|_{2}^{2}+C_{\varepsilon}\left\|u_{n}\right\|_{2}^{2} \quad(\varepsilon>0, n \in \mathbb{N})
$$

Replacing ε by $S /\left(S^{\prime} 2^{(2+N) / N}\right)-1 / 2>0$ and tending n to ∞, taking account to $u_{n} \rightarrow 0$ in $L^{2}(\Omega)$ we obtain

$$
\lim _{n \rightarrow \infty} \frac{S}{2^{\frac{2}{N}}}\left\|u_{n}\right\|_{2^{*}}^{2} \leq \lim _{n \rightarrow \infty}\left(1+\frac{1}{2 S^{\prime}} \frac{S}{2^{\frac{2}{N}}}-\frac{1}{2}\right)\left\|\nabla u_{n}\right\|_{2}^{2}
$$

Therefore

$$
\frac{S}{2^{\frac{2}{N}}} \leq\left(\frac{1}{2 S^{\prime}} \frac{S}{2^{\frac{2}{N}}}+\frac{1}{2}\right) \lim _{n \rightarrow \infty}\left\|\nabla u_{n}\right\|_{2}^{2}
$$

Consequently

$$
\frac{S}{2^{\frac{2}{N}}} \leq S^{\prime}
$$

It is contradict $S / 2^{N / 2}>S^{\prime}$. Hence $u \neq 0$ and $u_{n} \rightarrow u$ in $L^{2^{*}}$. Thus u is the minimizer of S^{\prime}.

4. Proof of Main theorem

We prove $\beta_{N / 2}=S^{\prime}$ and attainability of $\beta_{N / 2}$ similar to Cañada, Montero and Villegas (see [4] the supercritical case). Since

$$
X:=\left\{u \in H^{1}(\Omega) \mid \phi(u)=0\right\}, \phi(u):=\int_{\Omega}|u|^{2^{*}-2} u
$$

if $u_{0} \in X \backslash\{0\}$ is any minimizer of S^{\prime}, Lagrange multiplier theorem implies that there is $\lambda \in \mathbb{R}$ such that

$$
F^{\prime}\left(u_{0}\right)=\lambda \phi^{\prime}\left(u_{0}\right)
$$

where $F: H^{1}(\Omega) \rightarrow \mathbb{R}$ is defined by

$$
F(u)=\|\nabla u\|_{2}^{2}-S^{\prime}\|u\|_{2^{*}}^{2}
$$

Also, since $u_{0} \in X$ we have $\left\langle F^{\prime}\left(u_{0}\right), 1\right\rangle=0$. Moreover, $\left\langle F^{\prime}\left(u_{0}\right), v\right\rangle=0, \forall v \in$ $H^{1}(\Omega)$ satisfying $\left\langle\phi^{\prime}\left(u_{0}\right), v\right\rangle=0$. As any $v \in H^{1}(\Omega)$ may be written in the form $v=a+w, a \in \mathbb{R}$, and w satisfying $\left\langle\phi^{\prime}\left(u_{0}\right), w\right\rangle=0$, we conclude $\left\langle F^{\prime}\left(u_{0}\right), v\right\rangle=0, \forall v \in H^{1}(\Omega)$, i.e. $F^{\prime}\left(u_{0}\right) \equiv 0$. Hence u_{0} satisfies

$$
\begin{cases}-\Delta u_{0}=A\left(u_{0}\right)\left|u_{0}\right|^{\frac{4}{N-2}} u_{0} & \text { in } \Omega \tag{5}\\ \frac{\partial u_{0}}{\partial \nu}=0 & \text { on } \partial \Omega\end{cases}
$$

where

$$
A(u)=S^{\prime}\left(\int_{\Omega}|u|^{\frac{2 N}{N-2}}\right)^{-\frac{2}{N}}
$$

If $a \in \Lambda \cap L^{\frac{N}{2}}(\Omega)$ and $u \in H^{1}(\Omega)$ is a nontrivial solution in (1), then for each $k \in \mathbb{R}$ we have

$$
\begin{aligned}
\|\nabla(u+k)\|_{2}^{2} & =\|\nabla u\|_{2}^{2}=\int_{\Omega} a u^{2} \leq \int_{\Omega} a u^{2}+k^{2} \int_{\Omega} a \\
& =\int_{\Omega} a u^{2}+k^{2} \int_{\Omega} a+2 k \int_{\Omega} a u=\int_{\Omega} a(u+k)^{2} \leq\left\|a^{+}\right\|_{\frac{N}{2}}\|u+k\|_{2^{*}}^{2}
\end{aligned}
$$

Since u is a nontrivial solution of (1), u+k is a nontrivial function. Consequently

$$
\left\|a^{+}\right\|_{\frac{N}{2}} \geq \frac{\|\nabla(u+k)\|_{2}^{2}}{\|u+k\|_{2^{*}}^{2}}
$$

By choosing $k_{0} \in \mathbb{R}$ such that $u+k_{0} \in X$, we obtain

$$
\beta_{\frac{N}{2}} \geq S^{\prime}
$$

Conversely, if $u_{0} \in X \backslash\{0\}$ is any minimizer of S^{\prime}, then u_{0} satisfies (5). Therefore $A\left(u_{0}\right)\left|u_{0}\right|^{\frac{4}{N-2}} \in \Lambda \cap L^{N / 2}(\Omega)$ and

$$
\left\|A\left(u_{0}\right)\left|u_{0}\right|^{\frac{4}{N-2}}\right\|_{\frac{N}{2}}=S^{\prime}\left(\int_{\Omega}\left|u_{0}\right|^{\frac{2 N}{N-2}}\right)^{-\frac{2}{N}}\left(\int_{\Omega}\left|u_{0}\right|^{\frac{2 N}{N-2}}\right)^{\frac{2}{N}}=S^{\prime}
$$

Hence $\beta_{N / 2}=S^{\prime}$ and $\beta_{N / 2}$ is attained.
On the other hand, let $a \in \Lambda \cap L^{\frac{N}{2}}$ be any minimizer of $\beta_{N / 2}$. Then

$$
\left\|a^{+}\right\|_{\frac{N}{2}}\left\|u+k_{0}\right\|_{2^{*}}^{2}=\left\|\nabla\left(u+k_{0}\right)\right\|_{2}^{2}
$$

Hence $a(x) \equiv M\left|u(x)+k_{0}\right|^{\frac{4}{N-2}}(M>0$: constant). Furthermore, since $a(x)>0$ we have $\int_{\Omega} a(x) \geq 0$. In addition, since

$$
\int_{\Omega} a u^{2}=\int_{\Omega} a\left(u+k_{0}\right)^{2}
$$

we obtain $k_{0} \equiv 0$. Finally, we define $w(x)=M^{\frac{N-2}{4}}|u(x)|$ we have that

$$
|w(x)|^{\frac{4}{N-2}}=M|u(x)|^{\frac{4}{N-2}}=a(x)
$$

Moreover, since $u(x)$ is a solution of (1) and $w(x)$ is multiple of $u(x)$, then $w(x)$ is a solution of (1) and consequently a solution of (3).

5. Corollary

Corollary 5.1. Let Ω be a ball $B:=B(0,1)$ and u be a minimizer for S^{\prime} on B. Then u is foliated Schwarz symmetric, i.e. there exists a unit vector $e \in$ $\mathbb{R}^{N},|e|=1$ such that $u(x)$ only depends on $r=|x|$ and $\theta:=\arccos (x /|x| \cdot e)$, and u is nonincreasing in θ. Moreover, either u does not depend on θ (hence it is a radial function), or $(\partial u / \partial \theta)(r, \theta)<0$ for $0<r \leq 1,0<\theta<\pi$.

Proof. We can prove the Corollary 5.1. similar to Girão-Weth(see [7] Proposition 4.1.)

Acknowledgments.

The author is grateful for Prof. Futoshi Takahashi for introducing him the problem and for helpful discussions.

References

[1] Adimurthi, Mancini G., The Neumann problem for elliptic equations with critical nonlinearity. Nonlinear analysis, 9-25, Sc.Norm. Super. di Pisa Quaderni, Scuola Norm. Sup., Pisa, 1991.
[2] H.Brezis, E.Lieb, A relation between pointwise convergence of functions and convergence of functionals. Proc. Amer. Math. Soc. 88 (1983), no. 3, 486-490.
[3] H.Brezis, L.Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36 (1983), no. 4, 437-477.
[4] A.Cañada, J.A.Montero, S.Villegas, Lyapunov inequalities for partial differential equations. J. Funct. Anal. 237 (2006), no. 1, 176-193.
[5] P.Cherrier, Meilleures constantes dans des inegalites relatives aux espaces de Sobolev. Bull. Sci. Math. (2) 108 (1984), no. 3, 225-262.
[6] P.M.Girão, A sharp inequality for Sobolev functions. C. R. Math. Acad. Sci. Paris 334 (2002), no. 2, 105-108.
[7] P.Girão, T.Weth, The shape of extremal functions for Poincare-Sobolevtype inequalities in a ball. J. Funct. Anal. 237 (2006), no. 1, 194-223.
[8] D.Smets, M.Willem, Partial symmetry and asymptotic behavior for some elliptic variational problems. Calc. Var. Partial Differential Equations 18 (2003), no. 1, 57-75.
[9] T.Bartsch, T.Weth, M.Willem, Partial symmetry of least energy nodal solutions to some variational problems. (English summary) J. Anal. Math. 96 (2005), 1-18.
[10] S.A.Timoshin, Lyapunov inequality for elliptic equations involving limiting nonlinearities. Proc. Japan Acad. Ser. A Math. Sci. 86 (2010), no. 8, 139-142.

