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Abstract. In this paper, we study the Lq-Lyapunov type inequalities
for quasi-linear elliptic problems with the Robin boundary conditions,
in which the principal part of the equation is p-Laplacian operator. Sim-
ilar problems have been considered by several authors for linear elliptic
problems with the Dirichlet or Neumann boundary conditions. We show
that the critical value of the problem is (N − 1)/(p− 1), where N is the
dimension of the domain. We reveal the relation between this criti-
cal value and the critical exponent p∗ of the trace Sobolev embedding.
W 1,p(Ω) ↪→ Lp∗(∂Ω).

1. Introduction.

The famous Lyapunov inequality in the theory of ordinary differential
equations states the following: For a given function a = a(x) ∈ C([b, c]) on
the interval [b, c] ⊂ R, consider the problem

y′′(x) + a(x)y(x) = 0, x ∈ (b, c), y(b) = y(c) = 0, (1.1)

and put Λ0 = {a ∈ C([b, c]) : (1.1) has a nontrivial solution}. Then it holds
that

inf
a∈Λ0

∫ c

b
|a(x)|dx =

4

c− b

and the infimum is never attained by a function in Λ0; see for example, [1],
[2].

In [3], Cañada, Montero, and Villegas extend the notion of Lyapunov
inequality to partial differential equations. Namely, they consider the fol-
lowing linear elliptic problem

−∆u = a(x)u in Ω, u = 0 on Ω, (1.2)

where Ω ⊂ RN is a smooth bounded domain with N ≥ 2 and the function
a : Ω → R belongs to the set

ΛD = {a ∈ LN/2(Ω) : (1.2) has a nontrivial solution}, if N ≥ 3,

ΛD = {a : a ∈ Lr(Ω) for some r ∈ (1,+∞] and (1.2) has a nontrivial solution},
if N = 2.
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Define

βq(D) := inf
a∈ΛD∩Lq(Ω)

∥a∥Lq(Ω), 1 ≤ q ≤ +∞.

In [3], the authors initiated the qualitative study on the value βq(D) and
proved several results. Later, Timoshin [9] treated the same problem and
provided an additional information to the results in [3]. Their results can
be summarized as follows.

Theorem 1.1. ([3], [9]) The following statements hold true:

(i) If N = 2 and q = 1, or N ≥ 3 and 1 ≤ q < N
2 , then βq(D) = 0 and

βq(D) is not attained.

(ii) If N
2 < q ≤ ∞, then βq(D) is attained.

(iii) If N ≥ 3 and q = N
2 , then βN

2
(D) > 0.

([9]) More precisely, βN
2
(D) = SN , where SN is the best constant

of the Sobolev inequality in RN : SN = πN(N − 2)
[
Γ(N/2)
Γ(N)

]2/N
and

βN
2
(D) is not attained.

In [3], it was left open whether βN
2
(D) is attained or not. The non-

attainability of βN
2
(D) claimed above is first proved in [9].

The authors in [3] treated also the problem with the Neumann boundary
condition

−∆u = a(x)u in Ω,
∂u

∂ν
= 0 on Ω, (1.3)

where Ω ⊂ RN is a smooth bounded domain with N ≥ 2. As before, set

Λ̃ = {a ∈ LN/2(Ω) \ {0} :

∫
Ω
a(x)dx ≥ 0 and (1.3) has a nontrivial solution},

if N ≥ 3,

Λ̃ = {a : a ∈ Lr(Ω) \ {0} for some r ∈ (1,+∞],

∫
Ω
a(x)dx ≥ 0,

and (1.3) has a nontrivial solution}, if N = 2.

Define

β̃q := inf
a∈Λ̃∩Lq(Ω)

∥a∥Lq(Ω), 1 ≤ q ≤ +∞.

Then the authors in [3] proved that the same statements in Theorem 1.1

hold true even for the value β̃q, except for the attainability of β̃N/2 in the
critical case. Recently, the first author of the present paper proves that the
value β̃N/2 is attained for N ≥ 4 [7], which is quite different from the fact
in Theorem 1.1 (iii).

The aim of this paper is to extend the above results to a more general
situation. Namely, we consider the following quasi-linear elliptic equation
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with the Robin boundary conditions{
−∆pu+ |u|p−2u = 0 in Ω,

|∇u|p−2 ∂u
∂ν = a(x)|u|p−2u on Ω,

(1.4)

where Ω ⊂ RN is a smooth bounded domain with N ≥ 2, a = a(x) is a
given nonnegative function on the boundary ∂Ω, 1 < p ≤ N , and ∆pu =
div(|∇u|p−2∇u) is the p-Laplacian operator. By a term solution, we mean
a weak solution in W 1,p(Ω), that is, a function u ∈ W 1,p(Ω) satisfying the
weak form of (1.4)∫

Ω
(|∇u|p−2∇u · ∇ψ + |u|p−2uψ)dx =

∫
∂Ω
a(x)|u|p−2ψdsx

for any ψ ∈ W 1,p(Ω). We assume that the function a belongs to the set Λ
where

Λ = {a ∈ L
N−1
p−1 (∂Ω) : (1.4) has a nontrivial solution}, if N > p,

Λ = {a : a ∈ Lr(∂Ω) for some r ∈ (1,+∞] and (1.4) has a nontrivial solution},
if N = p.

Note that if a ≡ 0 on ∂Ω, then (1.4) admits u ≡ 0 as the unique weak
solution. This is because the solutions for a ≡ 0 correspond to the critical
points of the convex functional

I(u) =
1

p

∫
Ω
(|∇u|p + |u|p)dx, u ∈W 1,p(Ω),

which has u ≡ 0 as the unique critical point. Thus 0 ̸∈ Λ. As before, we
define the value

βq = inf
a∈Λ∩Lq(∂Ω)

∥a∥Lq(∂Ω), for 1 ≤ q ≤ +∞. (1.5)

Motivated by the former works, we study the qualitative properties of the
value βq, especially, the attainability of it according to the values p and q.
Our main result in this paper reads as follows:

Theorem 1.2. For N ≥ 2 and 1 < p ≤ N , set qc = N−1
p−1 . The following

statements hold true:

(I) If 1 ≤ q < qc when 1 < p < N , or if q = 1 when p = N = 2, then
βq = 0 and βq is not attained.

(II) If qc < q ≤ ∞ (1 < p ≤ N), then βq is attained. More precisely,
βq = Kq if qc < q <∞, and β∞ = λ1, where

Kq = inf


∫
Ω(|∇u|

p + |u|p)dx

(
∫
∂Ω |u|

pq
q−1dsx)

q−1
q

∣∣∣u ∈W 1,p(Ω) \ {0}

 , (1.6)

and λ1 is the first eigenvalue of the eigenvalue problem{
−∆pu+ |u|p−2u = 0 in Ω,

|∇u|p−2 ∂u
∂ν = λ|u|p−2u on ∂Ω.

(1.7)
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Any function a ∈ Λ ∩ Lq(∂Ω) which achieves βq is of the form
(i) a(x) ≡ λ1 if q = ∞.

(ii) a(x) = |u(x)|
p

q−1 if qc < q < ∞, where u is a solution of the
problem{

−∆pu+ |u|p−2u = 0 in Ω,

|∇u|p−2 ∂u
∂ν = |u|

pq
q−1

−2
u on Ω.

(1.8)

(III) If q = qc, then βqc = Sp∗(Ω) where p∗ = (N−1)p
N−p is the critical

exponent and

Sp∗(Ω) = inf

{∫
Ω(|∇u|

p + |u|p)dx
(
∫
∂Ω |u|p∗dsx)

p
p∗

∣∣∣u ∈W 1,p(Ω) \ {0}

}
(1.9)

is the best constant of the trace Sobolev embeddingW 1,p(Ω) ↪→ Lp∗(∂Ω),
respectively.

Furthermore, there exists a constant γ(Ω) > 0 such that if 1 < p <
N+1
2 + γ(Ω), then βqc is attained. The minimizer of βqc is written

by a(x) = |u(x)|p∗−p where u(x) is any solution of{
−∆pu+ |u|p−2u = 0 in Ω,

|∇u|p−2 ∂u
∂ν = |u|p∗−2u on ∂Ω.

(1.10)

Remark 1.3. Here, we make some remarks.

(1) Different from Theorem 1.1:case (iii), in which elliptic problems with
the Dirichlet boundary conditions are considered, βq is attained in

some cases even when q is the critical value qc = N−1
p−1 . Especially,

βqc is always achieved when the equation in (1.4) is linear, i.e., when
p = 2. This difference occurs due to the facts that the best constant
in the Sobolev inequality cannot be attained on bounded domains,
while the best constant in the trace Sobolev inequality is attained
in some cases, see Theorem 4.1.

(2) It is plausible that β1 = 0 and β1 is not attained also for p = N ≥ 3,
but this is left open. One of the way to settle the problem affir-
matively is to establish asymptotic estimates for the least energy
solutions {ur} of the problem

−div(|∇u|N−2∇u) + uN−1 = 0 in Ω ⊂ RN ,

u > 0 in Ω,

|∇u|N−2 ∂u
∂ν = ur on ∂Ω

as r → ∞, see Lemma 2.2.

2. Proof of Theorem 1.2 (I).

In this section, we prove the first part of Theorem 1.2. We divide the
proof into several Lemmas according to the cases in Theorem 1.2 (I).
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Lemma 2.1. If 1 < p < N and 1 ≤ q < qc =
N−1
p−1 , then βq = 0 and βq is

not attained.

Proof. Given a nonnegative weight function V on ∂Ω, V ̸≡ 0, let us consider
the eigenvalue problem{

−∆pu+ |u|p−2u = 0 in Ω,

|∇u|p−2 ∂u
∂ν = λV |u|p−2u on ∂Ω.

(2.1)

For each V ∈ Ls(∂Ω) with s > (N − 1)/(p − 1), it is known that the trace
Sobolev embedding W 1,p(Ω) ↪→ Lp

V (∂Ω) is compact, where

Lp
V (∂Ω) = {u : ∂Ω → R :

∫
∂Ω

|u|pV (x)dsx < +∞}

denotes a weighted Lebesgue space on the boundary. Thus the existence,
simplicity, and the variational characterization of the first eigenvalue λV
of the problem (2.1) is well-known: see for example [6], [5], [4] and the
references therein. Variational characterization of λV leads to the formula

λV = inf

{∫
Ω(|∇u|

p + |u|p)dx∫
∂Ω V |u|pdsx

∣∣∣ u ∈W 1,p(Ω) \ {0}
}
. (2.2)

We recall some notations which are used by Nazarov and Reznikov [8]. A
point x in RN is denoted by x = (x′, xN ) where x′ = (x1, · · · , xN−1) ∈ RN−1.
Put r = |x′| and define a cylinder Qρ :=

{
x ∈ RN : r < ρ, 0 < xN < ρ

}
.

We denote by xε a point xε = (0, · · · , 0,−ε). ωN−1 denotes the surface area
of the unit ball in RN . We use letter C to denote various positive constants.

Now, let us consider the least ball B which contains Ω and take a point of
contact of Ω with B. By this choice, all principal curvatures, and therefore,
the mean curvature H(x0) at x0 is positive. We introduce a local coordinate
system such that x0 is the origin, and in some neighborhood of the origin,
∂Ω is expressed be the graph of a function xN = F (x′). Since ∂Ω is smooth,
we may assume that F is also smooth and F (x′) = (Ax′, x′)+o(r2) as r → 0,
where A is a positive definite matrix since H(x0) > 0. For ε > 0 small we
define a cut-off function

ϕ ∈ C∞
0 (RN ), ϕ = 1 on Q ε

2
, ϕ = 0 on RN \Qε, |∇ϕ| ≤ C

ε
,

and put Vε := ϕ(x)|x−xε|−(p−1). Note that Vε ∈ L∞(∂Ω) since xε ̸∈ ∂Ω∩Qε.
We claim that there exists a constant C > 0 independent of ε > 0 such

that

λε := λVε ≤ C (2.3)

holds true for any ε > 0 small.
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In fact, test (2.2) with V = Vε by ϕ ∈W 1,p(Ω), we have∫
Ω
|∇ϕ|pdx ≤

∫ ε

0

∫
|x′|<ε

(
C

ε

)p

dx′dxN ≤ CεN−p,∫
Ω
|ϕ|pdx ≤

∫ ε

0

∫
|x′|<ε

dx′dxN = CεN . (2.4)

On the other hand, since

dsx =
√

1 + |∇x′F (x′)|2dx′, |F (x′)| ≤ C|x′|2 if |x′| < ε,

Vε(x) =
1

(|x′|2 + (xN + ε)2)
p−1
2

on Qε/2 ∩ ∂Ω,

we have ∫
∂Ω
Vε|ϕ|pdsx ≥

∫
|x′|< ε

2

√
1 + |∇x′F (x′)|2

(|x′|2 + (F (x′) + ε)2)
p−1
2

dx′

≥ ωN−2

∫ ε
2

0

rN−2

(r2 + (Cr2 + ε)2)
p−1
2

dr

≥ CωN−2(
( ε2)

2 + (C( ε2)
2 + ε)2

) p−1
2

(ε
2

)N−1

=
C

(ε2 + o(1))
p−1
2

εN−1 = CεN−p. (2.5)

The estimates (2.4) and (2.5) yield that

λε ≤
∫
Ω(|∇ϕ|

p + |ϕ|p)dx∫
∂Ω Vε|ϕ|pdsx

≤ C,

where C is independent of ε. This proves the claim.
Next, we prove βq = 0. Indeed, since there exists a nontrivial first eigen-

function of (2.1) with V = Vε and λ = λε, the above claim implies

βqq = inf
a∈Λ∩Lq(∂Ω)

∥a∥qLq(∂Ω)

≤ ∥λεVε∥qLq(∂Ω) = λqε

∫
∂Ω

(
ϕ(x)|x− xε|−(p−1)

)q
dsx

≤ λqε

∫
|x′|<ε

√
1 + |∇x′F (x′)|2

(|x′|2 + (F (x′) + ε)2)
q(p−1)

2

dx′

≤ λpεC

∫
|x′|<ε

1

|x′|q(p−1)
dx′ = λqεC

∫ ε

0

rN−2

rq(p−1)
dr

= λpεCε
N−1−q(p−1) → 0 (ε→ 0),

here we have used the assumption q < N−1
p−1 and the fact that |∇x′F (x′)| ≤

C|x′| for |x′| < ε. Thus we obtain βq = 0 for q < N−1
p−1 and βq is not attained

by nontrivial functions.
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Next, we consider the case when q = 1 and p = N = 2. For this purpose,
we recall some result from [10]. Given r > 1, we define the quantity S2

r (Ω)
by

S2
r (Ω) = inf

{ ∫
Ω(|∇u|

2 + u2)dx

(
∫
∂Ω |u|r+1dsx)

2
r+1

| u ∈W 1,2(Ω) \ {0}

}
.

Since the trace Sobolev embeddingW 1,2(Ω) ↪→ Lr+1(∂Ω) is compact for any
r > 1 if Ω ⊂ R2 is a regular bounded domain, we obtain a positive minimizer

ur for any r > 1 by standard variational methods. Define ur = S
2/(r−1)
r ur,

then ur solves the elliptic problem
−∆u+ u = 0 in Ω ⊂ R2,

u > 0 in Ω,
∂u
∂ν = ur on ∂Ω,

(2.6)

and ur is called a least energy solution. In the sequel, we need the following
estimates for the least energy solutions ur.

Lemma 2.2. ([10]) For the least energy solutions {ur} to (2.6) obtained as
above,

lim
r→∞

r

∫
∂Ω
ur+1
r dsx = lim

r→∞
r

∫
Ω
(|∇ur|2 + u2r)dx = 2πe

holds true.

Now, we prove the following:

Lemma 2.3. If p = N = 2, then β1 = 0 and β1 is not attained.

Proof. Since there exist least energy solutions ur to (2.6) for any r > 1 large,
we have

β1 = inf
a∈Λ∩L1(∂Ω)

∥a∥L1(∂Ω) ≤ ∥ur−1
r ∥L1(∂Ω)

=

∫
∂Ω
ur−1
r dsx ≤

(∫
∂Ω
ur+1
r dsx

) r−1
r+1

|∂Ω|
2

r+1

≤
(
2πe

r
+ o(1)

) r−1
r+1

|∂Ω|
2

r+1 → 0 as r → ∞,

which proves Lemma 2.3.

3. Proof of Theorem 1.2 (II).

In this section, we prove the second part of Theorem 1.2.
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Proof. Assume that (1.4) admits a nontrivial solution u ∈ W 1,p(Ω). Multi-
plying (1.4) by u and integrating by parts, we have

0 =

∫
Ω
{(−∆pu)u+ |u|p} dx =

∫
Ω
(|∇u|p + |u|p) dx−

∫
∂Ω

|∇u|p−2∂u

∂ν
udsx

=

∫
Ω
(|∇u|p + |u|p) dx−

∫
∂Ω
a(x)|u|pdsx.

First, we treat the case N−1
p−1 < q < ∞. By using the Hölder inequality,

we have∫
Ω
(|∇u|p + |u|p) dx =

∫
∂Ω
a|u|pdsx ≤

(∫
∂Ω

|a|qdsx
) 1

q
(∫

∂Ω
|u|

pq
q−1dsx

) q−1
q

.

(3.1)
Thus

∥a∥Lq(∂Ω) ≥
∫
Ω(|∇u|

p + |u|p)dx

(
∫
∂Ω |u|

pq
q−1dsx)

q−1
q

≥ inf
u∈W 1,p(Ω)\{0}

∫
Ω(|∇u|

p + up)dx(∫
∂Ω |u|

pq
q−1dsx

) q−1
q

= Kq.

Hence βq ≥ Kq.
On the othe hand, let {un} ∈ W 1,p(Ω) be a minimizing sequence for Kq.

We can assume without loss of generality that∫
∂Ω

|un|
pq
q−1dsx = 1, and

∫
Ω
(|∇un|p + |un|p)dx→ Kq,

as n→ ∞. Thus {un} becomes a bounded sequence in W 1,p(Ω). Now, since
we assume q > qc =

N−1
p−1 , we see

p <
pq

q − 1
<

pqc
qc − 1

=
(N − 1)p

N − p
= p∗.

Thus we can choose a subsequence (denoted again by the same symbol {un})
and a function u0 ∈ W 1,p(Ω) such that un ⇀ u0 in W 1,p(Ω) and un → u0
strongly in Lpq/(q−1)(∂Ω). The strong convergence in Lpq/(q−1)(∂Ω) gives us∫

∂Ω
|u0|

pq
q−1 = 1.

Also the weak convergence in W 1,p(Ω) implies∫
Ω(|∇u0|

p + |u0|p)dx(∫
∂Ω |u0|

pq
q−1dsx

) q−1
q

≤ lim inf
n→∞

∫
Ω(|∇un|

p + |un|p)dx

(
∫
∂Ω |un|

pq
q−1dsx)

q−1
q

= Kq.

Hence u0 ∈ W 1,p(Ω), u0 ̸≡ 0 is a minimizer of Kq. It is easy to see that u0
is a weak solution to{

−∆pu0 + |u0|p−2u0 = 0 in Ω,

|∇u0|p−2 ∂u0
∂ν = Aq(u0)|u0|

p
q−1

+p−2
u0 on ∂Ω.

(3.2)
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where

Aq(u0) = Kq

(∫
∂Ω

|u0|
pq
q−1dsx

)− 1
q

.

Let uq ∈ W 1,p(Ω) be any nontrivial minimizer of Kq, whose existence has

been just proved above. Then uq satisfies (3.2), thus Aq(uq)|uq|p/(q−1) ∈ Λ,
which implies

βqq ≤ ∥|Aq(uq)|uq|p/(q−1)∥qLq(∂Ω) = Aq(uq)
q

∫
∂Ω

|uq|
pq
q−1dsx = Kq

q .

Hence βq = Kq and βq is attained by a function aq(x) = Aq(uq)|uq|p/(q−1) ∈
Λ.

Conversely, let a ∈ Λ∩Lq(∂Ω) be any minimizer of βq such that ∥a∥Lq(∂Ω) =
βq. Then all inequalities in (3.1) become the equality. Thus by the equality
condition for the Hölder inequality, we see there exists C > 0 such that
a(x) ≡ C|u(x)|p/(q−1). Finally, if we define w(x) = C(q−1)/pu(x), then we

have |w(x)|p/(q−1) = C|u(x)|p/(q−1) = a(x). Since u is any nontrivial solu-
tion of (1.4) and w is a constant multiple of u, w is also a solution of (1.4).
Thus w satisfies (1.8) and we have proved the whole claim of Theorem 1.2
(2) when q = ∞.

Next, we consider the case q = ∞. For any a ∈ L∞(∂Ω) and any nontrivial
solution u ∈W 1,p(Ω) to (1.4), we have∫

Ω
(|∇u|p + |u|p)dx =

∫
∂Ω
a(x)|u|pdsx ≤ ∥a∥L∞(∂Ω)

∫
∂Ω

|u|pdsx.

Therefore

∥a∥L∞(∂Ω) ≥
∫
Ω(|∇u|

p + |u|p)dx∫
∂Ω |u|pdsx

≥ inf
u∈W 1,p(Ω)

∫
Ω(|∇u|

p + |u|p)dx∫
∂Ω |u|pdsx

= λ1,

where λ1 denotes the first eigenvalue of the problem (1.7). Hence β∞ ≥ λ1.
On the other hand, for the constant function a(x) ≡ λ1, there exists a
nontrivial solution to (1.4), i.e., the first eigenfunction of (1.7) associated
with λ1, hence λ1 ∈ Λ ∩ L∞(∂Ω) and we conclude β∞ = λ1.

4. Proof of Theorem 1.2 (III).

In this final section, we prove the last part of Theorem 1.2 by invoking
the recent result proved by Nazarov and Reznikov [8].

Theorem 4.1. ([8]:Theorem 1.) Let N ≥ 2. There exists a constant γ(Ω) >
0 such that if 1 < p < N+1

2 + γ(Ω), then Sp∗(Ω) defined in (1.9) is attained.

Note that pqc
qc−1 = p∗ = (N−1)p

N−p for qc = N−1
p−1 . Thus we are aware of the

relation Sp∗(Ω) = Kqc where Kq is defined in (1.6). Since βq = Kq for
qc < q < ∞ by Theorem 1.2 (II), the continuity of Kq with respect to q
implies that βqc = Kqc = Sp∗(Ω).
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Now, the proof of the third part of Theorem 1.2 can be carried just as in
the former section. In fact, though the trace Sobolev embeddingW 1,p(Ω) ↪→
Lp∗(∂Ω) is not compact, Theorem 4.1 assures the existence of the minimizer
for

Kqc = Sp∗(Ω) = inf
u∈W 1,p(Ω)\{0}

∥∇u∥pLp(Ω) + ∥u∥pLp(Ω)

∥u∥pLp∗ (∂Ω)

when 1 < p < N+1
2 + γ(Ω). The rest of the proof is identical to that of

Theorem 1.2 (II).
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