THE TORUS EQUIVARIANT COHOMOLOGY RINGS OF SPRINGER VARIETIES

HIRAKU ABE AND TATSUYA HORIGUCHI

Abstract

The Springer variety of type A associated to a nilpotent operator on \mathbb{C}^{n} in Jordan canonical form admits a natural action of the ℓ-dimensional torus T^{ℓ} where ℓ is the number of the Jordan blocks. We give a presentation of the T^{ℓ}-equivariant cohomology ring of the Springer variety through an explicit construction of an action of the n-th symmetric group on the T^{ℓ}-equivariant cohomology group. The T^{ℓ}-equivariant analogue of so called Tanisaki's ideal will appear in the presentation.

Contents

1. Introduction 1
2. Nilpotent Springer varieties and T^{ℓ}-fixed points 2
3. An action of the symmetric group S_{n} on $H_{T^{\ell}}^{*}\left(\mathcal{S}_{\lambda}\right) \quad 5$
4. Main theorem 7
5. Proof of the main theorem 8

References 14

1. Introduction

The Springer variety of type A associated to a nilpotent operator $N: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is a closed subvariety of the flag variety of \mathbb{C}^{n} defined by

$$
\left\{V_{\bullet} \in \operatorname{Flags}\left(\mathbb{C}^{n}\right) \mid N V_{i} \subseteq V_{i-1} \text { for all } 1 \leq i \leq n\right\}
$$

When the operator N is in Jordan canonical form with Jordan blocks of weakly decreasing size $\lambda=\left(\lambda_{1}, \cdots, \lambda_{\ell}\right)$, we denote the Springer variety by \mathcal{S}_{λ}. In 1970's, Springer constructed a representation of the n-th symmetric group S_{n} on the cohomology group $H^{*}\left(\mathcal{S}_{\lambda} ; \mathbb{C}\right)$, and this representation on the top degree part is the irreducible representation of type $\lambda([7],[8])$. DeConcini-Procesi [] used this representation to give a presentation of the cohomology ring $H^{*}\left(\mathcal{S}_{\lambda} ; \mathbb{C}\right)$ as a quotient of a polynomial ring by an ideal. Tanisaki [9] gave another set of generators of this ideal which simplifies their presentation; this ideal is now called Tanisaki's ideal. We remark that his argument in [9] works also over \mathbb{Z}-coefficient. Our goal in this paper is to give an explicit presentation of the T^{ℓ} equivariant cohomology ring $H_{T^{\ell}}^{*}\left(\mathcal{S}_{\lambda} ; \mathbb{Z}\right)$ where we will explain the ℓ-dimensional torus T^{ℓ} below. In more detail, we will give a presentation as the quotient of a polynomial
ring by an ideal whose generators are generalizations of the generators of Tanisaki's ideal given in [9]. Through the the forgetful map $H_{T^{\ell}}^{*}\left(\mathcal{S}_{\lambda} ; \mathbb{Z}\right) \rightarrow H^{*}\left(\mathcal{S}_{\lambda} ; \mathbb{Z}\right)$, our presentation naturally induces the presentation of $H^{*}\left(\mathcal{S}_{\lambda} ; \mathbb{Z}\right)$ given in [9].

We organize this paper as follows. In Section 2, we introduce a natural action of the ℓ-dimensional torus T^{ℓ} on the Springer variety \mathcal{S}_{λ} for $\lambda=\left(\lambda_{1}, \cdots, \lambda_{\ell}\right)$ and give the $T^{\ell}{ }_{-}$ fixed points $\mathcal{S}_{\lambda}^{T^{\ell}}$ of the Springer variety \mathcal{S}_{λ} where T^{ℓ} is defined by the following diagonal unitary matrices:

$$
\left\{\left(\begin{array}{cccc}
h_{1} E_{\lambda_{1}} & & & \\
& h_{2} E_{\lambda_{2}} & & \\
& & \ddots & \\
& & & h_{\ell} E_{\lambda_{\ell}}
\end{array}\right)\left|h_{i} \in \mathbb{C},\left|h_{i}\right|=1(1 \leq i \leq \ell)\right\} .\right.
$$

Here, E_{i} is the identity matrix of size i. We construct an S_{n}-action on the equivariant cohomology group $H_{T^{\ell}}^{*}\left(\mathcal{S}_{\lambda} ; \mathbb{Z}\right)$ in Section 3 by using the localization technique which involves the equivariant cohomology of the T^{ℓ}-fixed points. We state the main theorem in Section 4 , and prove it in Section 5 by using this $S_{n^{-}}$-action on $H_{T^{\ell}}^{*}\left(\mathcal{S}_{\lambda} ; \mathbb{Z}\right)$. Our method of the proof is the T^{ℓ}-equivariant analogue of [9].
Acknowledgements. The authors thank Professor Toshiyuki Tanisaki for valuable suggestions and kind teachings.

2. Nilpotent Springer varieties and T^{ℓ}-Fixed points

We begin with a definition of type A nilpotent Springer varieties. We work with type A through out this paper and hence omit it in the following. We first recall that a flag variety Flags $\left(\mathbb{C}^{n}\right)$ consists of nested subspaces of \mathbb{C}^{n} :

$$
V_{\bullet}=\left(0=V_{0} \subset V_{1} \subset \cdots \subset V_{n-1} \subset V_{n}=\mathbb{C}^{n}\right)
$$

where $\operatorname{dim}_{\mathbb{C}} V_{i}=i$ for all i.
Definition. Let $N: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be a nilpotent operator. The (nilpotent) Springer variety \mathcal{S}_{N} associated to N is the set of flags V_{\bullet} satisfying $N V_{i} \subseteq V_{i-1}$ for all $1 \leq i \leq n$.

Since $\mathcal{S}_{g N g^{-1}}$ is homeomorphic (in fact, isomorphic as algebraic varieties) to \mathcal{S}_{N} for any invertible matrix $g \in G L_{n}(\mathbb{C})$, we may assume that N is a Jordan canonical form. In this paper, we consider the Springer variety

$$
\mathcal{S}_{\lambda}:=\left\{V_{\bullet} \in \operatorname{Flags}\left(\mathbb{C}^{n}\right) \mid N_{0} V_{i} \subseteq V_{i-1} \text { for all } 1 \leq i \leq n\right\}
$$

where N_{0} is in Jordan canonical form with Jordan blocks of weakly decreasing sizes $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$.

Let T^{n} be an n-dimensional torus consisting of diagonal unitary matrices:

$$
T^{n}=\left\{\left(\begin{array}{cccc}
g_{1} & & & \tag{2.1}\\
& g_{2} & & \\
& & \ddots & \\
& & & g_{n}
\end{array}\right)\left|g_{i} \in \mathbb{C},\left|g_{i}\right|=1(1 \leq i \leq n)\right\}\right.
$$

Then the n-dimensional torus T^{n} naturally acts on the flag variety $\operatorname{Flags}\left(\mathbb{C}^{n}\right)$, but T^{n} does not preserve the Springer variety \mathcal{S}_{λ} in general. So we introduce the following ℓ-dimensional torus:

$$
T^{\ell}=\left\{\left(\begin{array}{cccc}
h_{1} E_{\lambda_{1}} & & & \tag{2.2}\\
& h_{2} E_{\lambda_{2}} & & \\
& & \ddots & \\
& & & h_{\ell} E_{\lambda_{\ell}}
\end{array}\right) \in T^{n}\left|h_{i} \in \mathbb{C},\left|h_{i}\right|=1(1 \leq i \leq \ell)\right\}\right.
$$

where E_{i} is the identity matrix of size i and $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$. Then the torus T^{ℓ} preserves the Springer variety \mathcal{S}_{λ}. Our goal in this section is to give the T^{ℓ}-fixed point set $\mathcal{S}_{\lambda}^{T^{\ell}}$.

The T^{n}-fixed point set $\operatorname{Flags}\left(\mathbb{C}^{n}\right)^{T^{n}}$ of the flag variety $\operatorname{Flags}\left(\mathbb{C}^{n}\right)$ is given by

$$
\left\{\left(\left\langle e_{w(1)}\right\rangle \subset\left\langle e_{w(1)}, e_{w(2)}\right\rangle \subset \cdots \subset\left\langle e_{w(1)}, e_{w(2)}, \ldots, e_{w(n)}\right\rangle=\mathbb{C}^{n}\right) \mid w \in S_{n}\right\}
$$

where $e_{1}, e_{2}, \ldots, e_{n}$ is the standard basis of \mathbb{C}^{n} and S_{n} is the symmetric group on n letters $\{1,2, \ldots, n\}$, so we may identify $\operatorname{Flags}\left(\mathbb{C}^{n}\right)^{T^{n}}$ with S_{n}.

Let w be an element of S_{n} satisfying the following property:
(2.3) for each $1 \leq k \leq \ell$, the numbers between $\lambda_{1}+\cdots+\lambda_{k-1}+1$ and $\lambda_{1}+\cdots+\lambda_{k}$ appear in the one-line notation of w as a subsequence in the increasing order.
Here, we write $\lambda_{1}+\cdots+\lambda_{k-1}+1=1$ when $k=1$.
Example. We consider the case $n=6, \ell=3$, and $\lambda=(3,2,1)$. Using one-line notation, the following permutations

$$
w_{1}=124365, \quad w_{2}=416253, \quad w_{3}=612435
$$

satisfy the condition (2.3). In fact, each of the sequences $(1,2,3),(4,5)$, and (6) appears in the one-line notations as a subsequence in the increasing order.

Lemma 2.1. The T^{ℓ}-fixed points $\mathcal{S}_{\lambda}^{T^{\ell}}$ of the Springer variety \mathcal{S}_{λ} is the set

$$
\left\{w \in S_{n} \mid w \text { satisfy the condition }(2.3)\right\}
$$

Proof. Let $w=V_{\bullet}$ be a permutation satisfying the condition (2.3). Since $w(1)$ is equal to one of the numbers $1, \lambda_{1}+1, \lambda_{1}+\lambda_{2}+1, \ldots, \lambda_{1}+\cdots+\lambda_{\ell-1}+1$, we have $N_{0} V_{1} \subseteq\{0\}$. If $w(1)=\lambda_{1}+\cdots+\lambda_{k-1}+1$, then $w(2)$ is equal to one of the numbers $1, \lambda_{1}+1$, $\ldots, \lambda_{1}+\cdots+\lambda_{k-1}+2, \ldots, \lambda_{1}+\cdots+\lambda_{\ell-1}+1$. So we also have $N_{0} V_{2} \subseteq V_{1}$. Continuing this argument, we have $N_{0} V_{i} \subseteq V_{i-1}$ for all $1 \leq i \leq n$, and it follows that the w is an element of \mathcal{S}_{λ}. On the other hand, the w is clearly fixed by T^{ℓ}, so the w is an element of $S_{\lambda}^{T^{\ell}}$.

Conversely, let V_{\bullet} be an element of $\mathcal{S}_{\lambda}^{T^{\ell}}$. Let $v_{1}, v_{2}, \ldots, v_{j}$ be generators for V_{j} where $v_{j}=\left(x_{1}^{(j)}, x_{2}^{(j)}, \cdots, x_{n}^{(j)}\right)^{t}$ in \mathbb{C}^{n} for all j. Since we have

$$
N_{0} v_{1}=(\underbrace{x_{2}^{(1)}, \cdots, x_{\lambda_{1}}^{(1)}, 0}_{\lambda_{1}}, \underbrace{x_{\lambda_{1}+2}^{(1)}, \cdots, x_{\lambda_{1}+\lambda_{2}}^{(1)}, 0}_{\lambda_{2}}, \cdots \cdots, \underbrace{x_{\lambda_{1}+\cdots+\lambda_{\ell-1}+2}^{(1)}, \cdots, x_{n}^{(1)}, 0}_{\lambda_{\ell}})^{t}
$$

the condition $N_{0} V_{1} \subseteq V_{0}=\{0\}$ implies that

$$
\begin{equation*}
v_{1}=(\underbrace{\left(x_{1}^{(1)}, 0, \cdots, 0\right.}_{\lambda_{1}}, \underbrace{x_{\lambda_{1}+1}^{(1)}, 0, \cdots, 0}_{\lambda_{2}}, \cdots \cdots, \underbrace{x_{\lambda_{1}+\cdots+\lambda_{\ell-1}+1}^{(1)}, 0, \cdots, 0}_{\lambda_{\ell}})^{t} \tag{2.4}
\end{equation*}
$$

It follows that exactly one of $x_{i}^{(1)}\left(i=1, \lambda_{1}+1, \lambda_{1}+\lambda_{2}+1, \ldots, \lambda_{1}+\cdots+\lambda_{\ell-1}+1\right)$ which appear in (2.4) is nonzero. In fact, V_{\bullet} is fixed by the T^{ℓ}-action and hence we have $\left\langle h \cdot v_{1}\right\rangle=\left\langle v_{1}\right\rangle$ for arbitrary $h \in T^{\ell}$ where

$$
h \cdot v_{1}=(\underbrace{h_{1} x_{1}^{(1)}, 0, \cdots, 0}_{\lambda_{1}}, \underbrace{h_{2} x_{\lambda_{1}+1}^{(1)}, 0, \cdots, 0}_{\lambda_{2}}, \cdots \cdots, \underbrace{h_{\ell} x_{\lambda_{1}+\cdots+\lambda_{\ell-1}+1}^{(1)}, 0, \cdots, 0}_{\lambda_{\ell}})^{t}
$$

Since each h_{i} runs over all complex numbers whose absolute values are 1 , only one of $x_{i}^{(1)}$ in (2.4) must be nonzero.

If $x_{\lambda_{1}+\cdots+\lambda_{k-1}+1}^{(1)}$ is nonzero for some $1 \leq k \leq \ell$, then we may assume that

$$
\begin{aligned}
& v_{1}=(0, \cdots, 0,1,0, \cdots, 0)^{t} \\
& v_{j}=\left(x_{1}^{(j)}, \cdots, x_{\lambda_{1}+\cdots+\lambda_{k-1}}^{(j)}, 0, x_{\lambda_{1}+\cdots+\lambda_{k-1}+2}^{(j)}, \cdots, x_{n}^{(j)}\right)^{t}
\end{aligned}
$$

for $2 \leq j \leq n$ where the $\left(\lambda_{1}+\cdots+\lambda_{k-1}+1\right)$-th component of v_{1} is one. Since we have

$$
N_{0} v_{2}=(\underbrace{\left(x_{2}^{(2)}, \cdots, x_{\lambda_{1}}^{(2)}, 0\right.}_{\lambda_{1}}, \underbrace{x_{\lambda_{1}+2}^{(2)}, \cdots, x_{\lambda_{1}+\lambda_{2}}^{(2)}, 0}_{\lambda_{2}}, \cdots \cdots, \underbrace{x_{\lambda_{1}+\cdots+\lambda_{\ell-1}+2}^{(2)}, \cdots, x_{n}^{(2)}, 0}_{\lambda_{\ell}})^{t}
$$

the condition $N_{0} V_{2} \subseteq V_{1}$ implies that

$$
\begin{equation*}
v_{2}=(\underbrace{x_{1}^{(2)}, 0, \cdots, 0}_{\lambda_{1}}, \cdots, \underbrace{0, x_{\lambda_{1}+\cdots+\lambda_{k-1}+2}^{(2)}, 0, \cdots, 0}_{\lambda_{k}}, \cdots, \underbrace{x_{\lambda_{1}+\cdots+\lambda_{\ell-1}+1}^{(2)}, 0, \cdots, 0}_{\lambda_{\ell}})^{t} \tag{2.5}
\end{equation*}
$$

Therefore, we see that the only one of $x_{i}^{(2)}\left(i=1, \lambda_{1}+1, \ldots, \lambda_{1}+\cdots+\lambda_{k-1}+2, \ldots, \lambda_{1}+\right.$ $\cdots+\lambda_{\ell-1}+1$) which appear in (2.5) is nonzero by an argument similar to that used above. Continuing this procedure, we conclude that $V_{\bullet}=w$ for some $w \in S_{n}$ satisfying the condition (2.3). In fact, $w(1)$ is equal to one of the numbers $1, \lambda_{1}+1, \lambda_{1}+\lambda_{2}+1$, $\ldots, \lambda_{1}+\cdots+\lambda_{\ell-1}+1$. If $w(1)=\lambda_{1}+\cdots+\lambda_{k-1}+1$, then $w(2)$ is equal to one of the numbers $1, \lambda_{1}+1, \ldots, \lambda_{1}+\cdots+\lambda_{k-1}+2, \ldots, \lambda_{1}+\cdots+\lambda_{\ell-1}+1$ and so on. This means that for each $k=1, \ldots, \ell$ the numbers between $\lambda_{1}+\cdots+\lambda_{k-1}+1$ and $\lambda_{1}+\cdots+\lambda_{k}$ appear in the one-line notation of w as a subsequence in the increasing order.

Regarding a product of symmetric groups $S_{\lambda_{1}} \times S_{\lambda_{2}} \times \cdots \times S_{\lambda_{\ell}}$ as a subgroup of the symmetric group S_{n}, it follows from Lemma 2.1 that the T^{ℓ}-fixed points $\mathcal{S}_{\lambda}^{T^{\ell}}$ of the Springer variety \mathcal{S}_{λ} is identified with the right cosets $S_{\lambda_{1}} \times S_{\lambda_{2}} \times \cdots \times S_{\lambda_{\ell}} \backslash S_{n}$ where each $w \in \mathcal{S}_{\lambda}^{T^{\ell}}$ corresponds to the right coset [$\left.w\right]$. In fact, the condition (2.3) provides a unique representative for each right coset.

3. An action of the symmetric group S_{n} on $H_{T^{\ell}}^{*}\left(\mathcal{S}_{\lambda}\right)$

In this section, we introduce an action of the symmetric group S_{n} on the equivariant cohomology group $H_{T^{\ell}}^{*}\left(\mathcal{S}_{\lambda}\right)$ over \mathbb{Z}-coefficient by using the localization technique. We will see that the projection map

$$
\rho_{\lambda}: H_{T^{n}}^{*}\left(\operatorname{Flags}\left(\mathbb{C}^{n}\right)\right) \rightarrow H_{T^{\ell}}^{*}\left(\mathcal{S}_{\lambda}\right)
$$

induced from the inclusions of \mathcal{S}_{λ} into $\operatorname{Flags}\left(\mathbb{C}^{n}\right)$ and T^{ℓ} into T^{n} is an S_{n}-equivariant map. In particular, we consider the following commutative diagram

$$
\begin{align*}
& H_{T^{n}}^{*}\left(F l a g s\left(\mathbb{C}^{n}\right)\right) \xrightarrow{\iota_{1}} H_{T^{n}}^{*}\left(\operatorname{Flags}\left(\mathbb{C}^{n}\right)^{T^{n}}\right)=\bigoplus_{w \in S_{n}} H^{*}\left(B T^{n}\right) \\
& \rho_{\lambda} \downarrow \tag{3.1}\\
& H_{T^{\ell}}^{*}\left(\mathcal{S}_{\lambda}\right) \xrightarrow{\iota_{2}} \quad H_{T^{\ell}}^{*}\left(\mathcal{S}_{\lambda}^{T^{\ell}}\right)=\bigoplus_{w \in \mathcal{S}_{\lambda}^{T^{\ell}}} H^{*}\left(B T^{\ell}\right)
\end{align*}
$$

where all the maps are induced from inclusion maps, and construct S_{n}-actions on the three modules $H_{T^{n}}^{*}\left(F \operatorname{lags}\left(\mathbb{C}^{n}\right)\right)$, $\bigoplus_{w \in S_{n}} H^{*}\left(B T^{n}\right)$, and $\bigoplus_{w \in \mathcal{S}_{\lambda}^{T^{\ell}}} H^{*}\left(B T^{\ell}\right)$ to construct an $S_{n^{\prime}}$-action on $H_{T^{\ell}}^{*}\left(\mathcal{S}_{\lambda}\right)$. All (equivariant) cohomology rings are assumed to be over \mathbb{Z}-coefficient unless otherwise specified.

First, we introduce the left action of the symmetric group S_{n} on the cohomology group $H^{*}\left(\operatorname{Flags}\left(\mathbb{C}^{n}\right)\right)$. To do that, we consider the right S_{n}-action on the flag variety $\operatorname{Flags}\left(\mathbb{C}^{n}\right)$ as follows.

For any $V_{\bullet} \in \operatorname{Flags}\left(\mathbb{C}^{n}\right)$, there exists $g \in U(n)$ so that $V_{i}=\bigoplus_{j=1}^{i} \mathbb{C} g\left(e_{j}\right)$, where $\left\{e_{1}, \ldots, e_{n}\right\}$ is the standard basis of \mathbb{C}^{n}. Then the right action of $w \in S_{n}$ on $\operatorname{Flags}\left(\mathbb{C}^{n}\right)$ can be defined by

$$
\begin{equation*}
V_{\bullet} \cdot w=V_{\bullet}^{\prime} \tag{3.2}
\end{equation*}
$$

where $V_{i}^{\prime}=\bigoplus_{j=1}^{i} \mathbb{C} g\left(e_{w(j)}\right)$.
We recall an explicit presentation of the T^{n}-equivariant cohomology ring of the flag variety $\operatorname{Flags}\left(\mathbb{C}^{n}\right)$. Let E_{i} be the subbundle of the trivial vector bundle Flags $\left(\mathbb{C}^{n}\right) \times \mathbb{C}^{n}$ over $\operatorname{Flags}\left(\mathbb{C}^{n}\right)$ whose fiber at a flag V_{\bullet} is just V_{i}. We denote the T^{n}-equivariant first Chern class of the line bundle E_{i} / E_{i-1} by $\bar{x}_{i} \in H_{T^{n}}^{2}\left(F \operatorname{lags}\left(\mathbb{C}^{n}\right)\right)$. Let \mathbb{C}_{i} be the one dimensional representation of T^{n} through a map $T^{n} \rightarrow S^{1}$ given by $\operatorname{diag}\left(g_{1}, \ldots, g_{n}\right) \mapsto g_{i}$. We denote the first Chern class of the line bundle $E T^{n} \times T^{n} \mathbb{C}_{i}$ over $B T^{n}$ by $t_{i} \in H^{2}\left(B T^{n}\right)$. Since t_{1}, \ldots, t_{n} generate $H^{*}\left(B T^{n}\right)$ as a ring and they are algebraically independent, we identify $H^{*}\left(B T^{n}\right)$ with a polynomial ring;

$$
H^{*}\left(B T^{n}\right)=\mathbb{Z}\left[t_{1}, \ldots, t_{n}\right]
$$

Then the equivariant cohomology $H_{T^{n}}^{*}\left(F \operatorname{lags}\left(\mathbb{C}^{n}\right)\right)$ is generated by $\bar{x}_{1}, \ldots, \bar{x}_{n}, t_{1}, \ldots, t_{n}$ as a ring. Defining a surjective ring homomorphism from $\mathbb{Z}\left[x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{n}\right]$ to $H_{T^{n}}^{*}\left(F \operatorname{lags}\left(\mathbb{C}^{n}\right)\right)$ by sending x_{i} to \bar{x}_{i} and t_{i} to t_{i}, its kernel \tilde{I} is generated as an ideal by $e_{i}\left(x_{1}, \ldots, x_{n}\right)-e_{i}\left(t_{1}, \ldots, t_{n}\right)$ for all $1 \leq i \leq n$, where e_{i} is the i-th elementary symmetric
polynomial. Thus, we have an isomorphism

$$
\begin{equation*}
H_{T^{n}}^{*}\left(\operatorname{Flags}\left(\mathbb{C}^{n}\right)\right) \cong \mathbb{Z}\left[x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{n}\right] / \tilde{I} \tag{3.3}
\end{equation*}
$$

The right action in (3.2) induces the following left action of the symmetric group S_{n} on $H_{T^{n}}^{*}\left(F \operatorname{lags}\left(\mathbb{C}^{n}\right)\right)$:

$$
\begin{equation*}
w \cdot \bar{x}_{i}=\bar{x}_{w(i)}, w \cdot t_{i}=t_{i} \tag{3.4}
\end{equation*}
$$

for $w \in S_{n}$. In fact, the pullback of the line bundle E_{i} / E_{i-1} under the right action in (3.2) is exactly the line bundle $E_{w(i)} / E_{w(i)-1}$, and the right action in (3.2) is T^{n}-equivariant.

Second, we define a left action of $v \in S_{n}$ on the direct sum $\bigoplus_{w \in S_{n}} \mathbb{Z}\left[t_{1}, \ldots, t_{n}\right]$ of the polynomial ring as follows:

$$
\begin{equation*}
\left.(v \cdot f)\right|_{w}=\left.f\right|_{w v} \tag{3.5}
\end{equation*}
$$

where $w \in S_{n}$ and $f \in \bigoplus_{w \in S_{n}} \mathbb{Z}\left[t_{1}, \ldots, t_{n}\right]$. Observe that the map ι_{1} in (3.1) is the following mapping

$$
\begin{equation*}
\left.\iota_{1}\left(\bar{x}_{i}\right)\right|_{w}=t_{w(i)},\left.\iota_{1}\left(t_{i}\right)\right|_{w}=t_{i} \tag{3.6}
\end{equation*}
$$

Note that it follows from (3.4), (3.5), and (3.6) that the map ι_{1} is S_{n}-equivariant map, i.e. $w \cdot\left(\iota_{1}(f)\right)=\iota_{1}(w \cdot f)$ for any $f \in H_{T^{n}}^{*}\left(\operatorname{Flags}\left(\mathbb{C}^{n}\right)\right)$ and $w \in S_{n}$.

To construct an S_{n}-action on $\bigoplus_{w \in S_{\lambda}^{\text {T }}} H^{*}\left(B T^{\ell}\right)$, we need some preparations. We identify $H^{*}\left(B T^{\ell}\right)$ with a polynomial ring with ℓ variables. That is,

$$
H^{*}\left(B T^{\ell}\right)=\mathbb{Z}\left[u_{1}, \ldots, u_{\ell}\right]
$$

where $u_{i} \in H^{2}\left(B T^{\ell}\right)$ is the first Chern class of the line bundle $E T^{\ell} \times_{T^{\ell}} \mathbb{C}_{i}$ over $B T^{\ell}$. Here, \mathbb{C}_{i} is the one dimensional representation of T^{ℓ} through a map $T^{\ell} \rightarrow S^{1}$ given by $\operatorname{diag}\left(h_{1}, \cdots, h_{1}, h_{2}, \cdots, h_{2}, \cdots \cdots, h_{\ell}, \cdots, h_{\ell}\right) \mapsto h_{i}$.

It is known that $\operatorname{Flags}\left(\mathbb{C}^{n}\right)$ and δ_{λ} admit a cellular decomposition $([6])$, so the odd degree cohomology groups of Flags $\left(\mathbb{C}^{n}\right)$ and \mathcal{S}_{λ} vanish. The path-connectedness of $\operatorname{Flags}\left(\mathbb{C}^{n}\right)$ and S_{λ} together with this fact implies that the maps ι_{1} and ι_{2} in (3.1) are injective (cf.[5]) and that the map ρ_{λ} in (3.1) is surjective (cf.[2]). The map π in (3.1) is clearly surjective. Therefore, we obtain the following lemma. Let \bar{y}_{i} be the image $\rho_{\lambda}\left(\bar{x}_{i}\right)$ of \bar{x}_{i} for each i.

Lemma 3.1. The T^{ℓ}-equivariant cohomology ring $H_{T^{\ell}}^{*}\left(\mathcal{S}_{\lambda}\right)$ is generated by $\bar{y}_{1}, \ldots, \bar{y}_{n}$, u_{1}, \ldots, u_{ℓ} as a ring where \bar{y}_{i} is as above and $H^{*}\left(B T^{\ell}\right)=\mathbb{Z}\left[u_{1}, \ldots, u_{\ell}\right]$.

Let $\phi:[n] \rightarrow[\ell]([n]:=\{1,2, \ldots, n\})$ be a map defined by

$$
\begin{equation*}
\phi(i)=k \tag{3.7}
\end{equation*}
$$

if $\lambda_{1}+\cdots+\lambda_{k-1}+1 \leq i \leq \lambda_{1}+\cdots+\lambda_{k}$ where $\lambda_{1}+\cdots+\lambda_{k-1}=0$ when $k=1$. Observe that the map π in (3.1) is the following mapping

$$
\begin{equation*}
\pi\left(\left.f\right|_{w}\left(t_{1}, \ldots, t_{n}\right)\right)=\left.f\right|_{w}\left(u_{\phi(1)}, \ldots, u_{\phi(n)}\right), \tag{3.8}
\end{equation*}
$$

where $\left.f\right|_{w}$ denotes w-component of f. It follows from (3.6), (3.8) and the commutative diagram in (3.1) that

$$
\begin{equation*}
\left.\iota_{2}\left(\bar{y}_{i}\right)\right|_{w}=u_{\phi(w(i))} \text { and }\left.\iota_{2}\left(u_{i}\right)\right|_{w}=u_{i} . \tag{3.9}
\end{equation*}
$$

Third, we define the left action of $v \in S_{n}$ on the direct $\operatorname{sum} \bigoplus_{w \in \mathcal{S}_{\lambda}^{T^{\ell}}} \mathbb{Z}\left[u_{1}, \ldots, u_{\ell}\right]$ of the polynomial ring as follows:

$$
\begin{equation*}
\left.(v \cdot f)\right|_{w}=\left.f\right|_{w^{\prime}} \tag{3.10}
\end{equation*}
$$

for $w \in \mathcal{S}_{\lambda}^{T^{\ell}}$ and $f \in \bigoplus_{w \in \mathcal{S}_{\lambda}^{T^{\ell}}} \mathbb{Z}\left[u_{1}, \ldots, u_{\ell}\right]$ where w^{\prime} is the element of $\mathcal{S}_{\lambda}^{T^{\ell}}$ whose right coset agrees with the right coset $[w v]$ of $S_{\lambda_{1}} \times S_{\lambda_{2}} \times \cdots \times S_{\lambda_{\ell}} \backslash S_{n}$. Note that the map π in (3.1) is not S_{n}-equivariant in general.

Lemma 3.2. For any $v \in S_{n}$ and $1 \leq i \leq n$, it follows that

$$
\begin{equation*}
v \cdot\left(\iota_{2}\left(\bar{y}_{i}\right)\right)=\iota_{2}\left(\bar{y}_{v(i)}\right) \text { and } v \cdot\left(\iota_{2}\left(u_{i}\right)\right)=\iota_{2}\left(u_{i}\right) \tag{3.11}
\end{equation*}
$$

where the map ι_{2} is in (3.1) and \bar{y}_{i} is the image of \bar{x}_{i} under the map ρ_{λ} in (3.1).
Proof. From (3.9) and (3.10), we have

$$
\left.\left(v \cdot\left(\iota_{2}\left(u_{i}\right)\right)\right)\right|_{w}=\left.\iota_{2}\left(u_{i}\right)\right|_{w^{\prime}}=u_{i}=\left.\iota_{2}\left(u_{i}\right)\right|_{w}
$$

for all $w \in S_{n}$. So the second equation holds. From (3.9) and (3.10) again, we have

$$
\begin{aligned}
& \left.\left(v \cdot\left(\iota_{2}\left(\bar{y}_{i}\right)\right)\right)\right|_{w}=\left.\iota_{2}\left(\bar{y}_{i}\right)\right|_{w^{\prime}}=u_{\phi\left(w^{\prime}(i)\right)} \\
& \left.\iota_{2}\left(\bar{y}_{v(i)}\right)\right|_{w}=u_{\phi(w(v(i)))}
\end{aligned}
$$

Therefore, it is enough to prove $\phi\left(w^{\prime}(i)\right)=\phi(w v(i))$. Since $\left[w^{\prime}\right]=[w v]$ in $S_{\lambda_{1}} \times S_{\lambda_{2}} \times$ $\cdots \times S_{\lambda_{\ell}} \backslash S_{n}$, we have

$$
\begin{aligned}
& \lambda_{1}+\cdots+\lambda_{r-1}+1 \leq w^{\prime}(i) \leq \lambda_{1}+\cdots+\lambda_{r} \\
& \lambda_{1}+\cdots+\lambda_{r-1}+1 \leq w v(i) \leq \lambda_{1}+\cdots+\lambda_{r}
\end{aligned}
$$

for some r. From the definition (3.7) of the map ϕ, we have $\phi\left(w^{\prime}(i)\right)=\phi(w v(i))$, and the first equation holds. We are done.

Since the map ι_{2} is injective, we obtain an S_{n}-action on $H_{T^{\ell}}^{*}\left(\mathcal{S}_{\lambda}\right)$ satisfying

$$
\begin{equation*}
w \cdot \bar{y}_{i}=\bar{y}_{w(i)} \text { and } w \cdot u_{i}=u_{i} \tag{3.12}
\end{equation*}
$$

for $w \in S_{n}$ from Lemma 3.1 and Lemma 3.2. Moreover, one can see that the map ρ_{λ} in (3.1) is S_{n}-equivariant homomorphism by (3.4) and (3.12). We summarize the results in this section as follows.

Proposition 3.3. There exists an S_{n}-action on $H_{T^{\ell}}^{*}\left(\mathcal{S}_{\lambda}\right)$ such that the map ρ_{λ} in (3.1) is S_{n}-equivariant homomorphism where the $S_{n^{-}}$-action on $H_{T^{n}}^{*}\left(F \operatorname{lags}\left(\mathbb{C}^{n}\right)\right)$ is given by (3.4).

4. Main theorem

In this section, we state our main theorem. For this purpose, let us clarify our notations. We set $p_{\lambda}(s):=\lambda_{n-s+1}+\lambda_{n-s+2}+\cdots+\lambda_{\ell}$ for $s=1, \cdots, n$. We denote by $\check{\lambda}$
the transpose of λ. That is, $\check{\lambda}=\left(\eta_{1}, \cdots, \eta_{k}\right)$ where $k=\lambda_{1}$ and $\eta_{i}=\left|\left\{j \mid \lambda_{j} \geq i\right\}\right|$ for $1 \leq i \leq k$. For indeterminates y_{1}, \cdots, y_{s} and a_{1}, a_{2}, \cdots, let

$$
\begin{equation*}
e_{d}\left(y_{1}, \cdots, y_{s} \mid a_{1}, a_{2}, \cdots\right):=\sum_{r=0}^{d}(-1)^{d-r} e_{r}\left(y_{1}, \cdots, y_{s}\right) h_{d-r}\left(a_{1}, \cdots, a_{s+1-d}\right) \tag{4.1}
\end{equation*}
$$

for $d \geq 0$ where e_{i} and h_{i} denote the i-th elementary symmetric polynomial and the i-th complete symmetric polynomial, respectively. In fact, this is the factorial Schur function corresponding to the Young diagram consisting of the unique column of length d as shown in the next section (see Lemma 5.1). We also define a map $\phi_{\lambda}:[n] \rightarrow[\ell]$ by the condition

$$
\begin{align*}
& \left(u_{\phi_{\lambda}(1)}, \cdots, u_{\phi_{\lambda}(n)}\right) \tag{4.2}\\
& \quad=(\underbrace{u_{1}, \cdots, u_{1}}_{\lambda_{1}-\lambda_{2}}, \underbrace{u_{1}, u_{2}, \cdots, u_{1}, u_{2}}_{2\left(\lambda_{2}-\lambda_{3}\right)}, \cdots \cdots, \underbrace{u_{1}, u_{2}, \cdots, u_{\ell}, \cdots \cdots, u_{1}, u_{2}, \cdots, u_{\ell}}_{\ell\left(\lambda_{\ell}-\lambda_{\ell+1}\right)})
\end{align*}
$$

as ordered sequences where for each $1 \leq r \leq \ell$ the r-th sector of the right-hand-side consists of $\left(u_{1}, u_{2}, \cdots, u_{r}\right)$ repeated $\left(\lambda_{r}-\lambda_{r+1}\right)$-times. Here, we denote $\lambda_{\ell+1}=0$.

Let us define a ring homomorphism

$$
\begin{equation*}
\psi: \mathbb{Z}\left[y_{1}, \cdots, y_{n}, u_{1}, \cdots, u_{\ell}\right] \rightarrow H_{T^{\ell}}^{*}\left(\mathcal{S}_{\lambda}\right) \tag{4.3}
\end{equation*}
$$

by sending y_{i} to \bar{y}_{i} and u_{i} to u_{i} where $H^{*}\left(B T^{\ell}\right)=\mathbb{Z}\left[u_{1}, \cdots, u_{\ell}\right]$. Recall that \bar{y}_{i} is the equivariant first Chern class of the tautological line bundle E_{i} / E_{i-1} over $F \operatorname{lags}\left(\mathbb{C}^{n}\right)$ (see Section 3) restricted to \mathcal{S}_{λ}. This homomorphism ψ is a surjection by Lemma 3.1.

Theorem 4.1. The map ψ in (4.3) induces a ring isomorphism

$$
H_{T^{\ell}}^{*}\left(\mathcal{S}_{\lambda}\right) \cong \mathbb{Z}\left[y_{1}, \cdots, y_{n}, u_{1}, \cdots, u_{\ell}\right] / \widetilde{I}_{\lambda}
$$

where \widetilde{I}_{λ} is the ideal of the polynomial ring $\mathbb{Z}\left[y_{1}, \cdots, y_{n}, u_{1}, \cdots, u_{\ell}\right]$ generated by the polynomials $e_{d}\left(y_{i_{1}}, \cdots, y_{i_{s}} \mid u_{\phi_{\lambda}(1)}, \cdots, u_{\phi_{\lambda}(n)}\right)$ defined in (4.1) with ϕ_{λ} described in (4.2) for $1 \leq s \leq n, 1 \leq i_{1}<\cdots<i_{s} \leq n$, and $d \geq s+1-p_{\check{\lambda}}(s)$.
Remark. The ideal \widetilde{I}_{λ} is the T^{ℓ}-equivariant analogue of so-called Tanisaki's ideal (it is written as $K_{\check{\lambda}}$ in [9]). Each generator of \widetilde{I}_{λ} given above specializes to a generator of Tanisaki's ideal given in [9] after the evaluation $u_{i}=0$ for all i.

5. Proof of the main theorem

In this section, we prove Theorem 4.1. Our argument is the T^{ℓ}-equivariant version of [9]. We first show that $e_{d}\left(\bar{y}_{i_{1}}, \cdots, \bar{y}_{i_{s}} \mid u_{\phi_{\lambda}(1)}, \cdots, u_{\phi_{\lambda}(n)}\right)=0$ in $H_{T^{\ell}}^{*}\left(\mathcal{S}_{\lambda}\right)$ for $1 \leq s \leq n$, $1 \leq i_{1}<\cdots<i_{s} \leq n$, and $d \geq s+1-p_{\check{\lambda}}(s)$. By the S_{n}-action on $H_{T^{\ell}}^{*}\left(\mathcal{S}_{\lambda}\right)$ constructed in Section 3, we may assume that $i_{1}=1, \cdots, i_{s}=s$.

Let us first consider the cases for $s<n$, and prove that for $d \geq s+1-p_{\grave{\lambda}}(s)$ we have $e_{d}\left(\bar{y}_{1}, \cdots, \bar{y}_{s} \mid u_{\phi_{\lambda}(1)}, \cdots, u_{\phi_{\lambda}(n)}\right)=0$ in $H_{T^{\ell}}^{*}\left(\mathcal{S}_{\lambda}\right)$. Take a T^{n}-invariant complete flag U_{\bullet} by refining the flag $\left(\cdots \subset N_{0}^{2} \mathbb{C}^{n} \subset N_{0} \mathbb{C}^{n} \subset \mathbb{C}^{n}\right)$. This is possible since N_{0} is in Jordan canonical form. We denote by \bar{w} the element of S_{n} corresponding to U_{\bullet}, i.e. $U_{\bullet}=\bar{w} F_{\bullet}$ where F_{\bullet} is the standard flag defined by $F_{i}=\left\langle e_{1}, \cdots, e_{i}\right\rangle$ for all $1 \leq i \leq n$. For a Young
diagram μ with at most s rows and $n-s$ columns, the Schubert variety corresponding to μ with respect to the reference flag $U_{\boldsymbol{\bullet}}$ is

$$
X_{\mu}\left(U_{\bullet}\right)=\left\{V \in G r_{s}\left(\mathbb{C}^{n}\right) \mid \operatorname{dim}\left(V \cap U_{n-s+i-\mu_{i}}\right) \geq i \text { for all } 1 \leq i \leq s\right\}
$$

where $G r_{s}\left(\mathbb{C}^{n}\right)$ denotes the set of s dimensional complex linear subspaces in \mathbb{C}^{n}. It is known that $X_{\mu}\left(\tilde{F}_{\bullet}\right) \cap X_{\nu}\left(F_{\bullet}\right)=\emptyset$ unless $\mu \subset \nu^{\dagger}$ (cf. [1] § 9.4, Lemma 3). Here, $\nu^{\dagger}=\left(n-s-\nu_{s}, \cdots, n-s-\nu_{1}\right)$ and \tilde{F}_{\bullet} is the opposite flag of F_{\bullet} defined by $\tilde{F}_{i}=$ $\left\langle e_{n+1-i}, \cdots, e_{n}\right\rangle$. By multiplying both sides of this equality by \bar{w}, we get

$$
\begin{equation*}
X_{\mu}\left(\bar{w} \tilde{F}_{\bullet}\right) \cap X_{\nu}\left(U_{\bullet}\right)=\emptyset \quad \text { unless } \mu \subset \nu^{\dagger} . \tag{5.1}
\end{equation*}
$$

Since the flag $\bar{w} \tilde{F}_{\bullet}$ is T^{n}-invariant, the Schubert variety $X_{\mu}\left(\bar{w} \tilde{F}_{\bullet}\right)$ is a T^{n}-invariant irreducible subvariety of $G r_{s}\left(\mathbb{C}^{n}\right)$. Let $\tilde{S}_{\mu}:=\left[X_{\mu}\left(\bar{w} \tilde{F}_{\bullet}\right)\right] \in H_{T^{n}}^{*}\left(G r_{s}\left(\mathbb{C}^{n}\right)\right)$ be the associated T^{n}-equivariant cohomology class.

Let $p: \operatorname{Flags}\left(\mathbb{C}^{n}\right) \rightarrow G r_{s}\left(\mathbb{C}^{n}\right)$ be the projection defined by $p\left(V_{\bullet}\right)=V_{s}$. Then it follows that

$$
p\left(\mathcal{S}_{\lambda}\right) \subset X_{\mu_{0}}\left(U_{\bullet}\right)
$$

where $\mu_{0}=(n-s, \cdots, n-s, 0, \cdots, 0)$ with $n-s$ repeated $p_{\grave{\lambda}}(s)$-times and 0 repeated $\left(s-p_{\grave{\lambda}}(s)\right)$-times (cf. [9] § 3, Proposition 3). Hence, we obtain the following commutative diagram

where i^{*} is the map induced by the inclusion and k is the restriction of the projection map p. Let $\mu_{s, d}=(1, \cdots, 1,0, \cdots, 0)$ with 1 repeated d-times and 0 repeated $(s-d)$-times. This Young diagram has at most s rows and $n-s$ columns since we are assuming that $s<n$. Recall that the T^{n}-equivariant Schubert class $\tilde{S}_{\mu}=\left[X_{\mu}\left(\bar{w} \tilde{F}_{\bullet}\right)\right]$ comes from the relative cohomology $H_{T^{n}}^{*}\left(G r_{s}\left(\mathbb{C}^{n}\right), G r_{s}\left(\mathbb{C}^{n}\right) \backslash X_{\mu}\left(\bar{w} \tilde{F}_{\bullet}\right)\right)$. So it follows that $i^{*} \tilde{S}_{\mu_{s, d}}=0$ for $d \geq s+1-p_{\grave{\lambda}}(s)$ since $\mu_{s, d} \not \subset \mu_{0}^{\dagger}$ and (5.1) show that any cycle in $X_{\mu_{0}}\left(U_{\bullet}\right)$ does not intersect with $X_{\mu_{s, d}}\left(\bar{w} \tilde{F}_{\bullet}\right)$. Thus, we obtain $\rho_{\lambda}\left(p^{*} \tilde{S}_{\mu_{s, d}}\right)=0$ by the commutativity of the diagram (5.2).

To give a polynomial representative of $\rho_{\lambda}\left(p^{*} \tilde{S}_{\mu_{s, d}}\right)$, let us first describe $p^{*} \tilde{S}_{\mu_{s, d}}$ in terms of $\bar{x}_{1}, \cdots, \bar{x}_{n}$ and t_{1}, \cdots, t_{n}. Observe that $w \in S_{n}$ acts on \mathbb{C}^{n} from the left by

$$
w \cdot\left(x_{1}, \cdots, x_{n}\right)=\left(x_{w^{-1}(1)}, \cdots, x_{w^{-1}(n)}\right)
$$

for $\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{C}^{n}$, and this naturally induces S_{n}-action on Flags $\left(\mathbb{C}^{n}\right)$. For each $w \in$ S_{n}, the induced map on $\operatorname{Flags}\left(\mathbb{C}^{n}\right)$ is equivariant with respect to a group homomorphism $\psi_{w}: T^{n} \rightarrow T^{n}$ defined by $\left(g_{1}, \cdots, g_{n}\right) \mapsto\left(g_{w^{-1}(1)}, \cdots, g_{w^{-1}(n)}\right)$. This ψ_{w} induces a ring homomorphism on $H^{*}\left(B T^{n}\right)=\mathbb{Z}\left[t_{1}, \cdots, t_{n}\right]$:

$$
\psi_{w}^{*}: \mathbb{Z}\left[t_{1}, \cdots, t_{n}\right] \rightarrow \mathbb{Z}\left[t_{1}, \cdots, t_{n}\right] \quad ; \quad t_{i} \mapsto t_{w^{-1}(i)}
$$

and the induced map w^{*} on $H_{T^{n}}^{*}\left(F \operatorname{lags}\left(\mathbb{C}^{n}\right)\right)$ is a ring homomorphism satisfying $w^{*}\left(t_{i} \alpha\right)=$ $\psi_{w}^{*}\left(t_{i}\right) w^{*}(\alpha)$ for any $\alpha \in H_{T^{n}}^{*}\left(\operatorname{Flags}\left(\mathbb{C}^{n}\right)\right)$ and $i=1, \cdots, n$ where the products are taken by the cup products via the canonical homomorphism $H^{*}\left(B T^{n}\right) \rightarrow H_{T^{n}}^{*}\left(\operatorname{Flags}\left(\mathbb{C}^{n}\right)\right)$. Similarly, S_{n} acts on $G r_{s}\left(\mathbb{C}^{n}\right)$ from the left, and the projection $p: \operatorname{Flags}\left(\mathbb{C}^{n}\right) \rightarrow G r_{s}\left(\mathbb{C}^{n}\right)$ is S_{n}-equivariant. Observe that $w^{*} \bar{x}_{i}=\bar{x}_{i}$ for any $w \in S_{n}$ since w naturally induces a $\operatorname{map} E_{i} / E_{i-1} \rightarrow E_{i} / E_{i-1}$ which is a fiber-wise isomorphism.

Recall from [3] that the T^{n}-equivariant Schubert class $\left[X_{\mu}\left(F_{\bullet}\right)\right] \in H_{T^{n}}^{*}\left(G r_{s}\left(\mathbb{C}^{n}\right)\right)$ with respect to the standard reference flag F_{\bullet} is represented by the factorial Schur function (see [4]) in the T^{n}-equivariant cohomology of $\operatorname{Flags}\left(\mathbb{C}^{n}\right)$:

$$
p^{*}\left[X_{\mu}\left(F_{\bullet}\right)\right]=s_{\mu}\left(-\bar{x}_{1}, \cdots,-\bar{x}_{s} \mid-t_{n}, \cdots,-t_{1}\right)
$$

For the convenience of the reader, we here recall the definition of factorial Schur functions from [4]: for a Young diagram μ with at most s rows, the factorial Schur function associated to μ is defined to be

$$
s_{\mu}\left(x_{1}, \cdots, x_{s} \mid a_{1}, a_{2}, \cdots\right)=\sum_{T} \prod_{\alpha \in \mu}\left(x_{T(\alpha)}-a_{T(\alpha)+c(\alpha)}\right)
$$

as a polynomial in $\mathbb{Z}\left[x_{1}, \cdots, x_{s}\right] \otimes \mathbb{Z}\left[a_{1}, a_{2}, \cdots\right]$ where T runs over all semistandard tableaux of shape μ with entries in $\{1, \cdots, s\}, T(\alpha)$ is the entry of T in the cell $\alpha \in \mu$, and $c(\alpha)=j-i$ is the content of $\alpha=(i, j)$. This polynomial is symmetric in x-variables.

From the definition, we have that $X_{\mu}\left(\bar{w} \tilde{F}_{\bullet}\right)=\bar{w} w_{0} X_{\mu}\left(F_{\bullet}\right)$ where $w_{0} \in S_{n}$ is the longest element with respect to the Bruhat order. So it follows that

$$
\begin{aligned}
p^{*} \tilde{S}_{\mu} & =p^{*}\left(\left(\bar{w} w_{0}\right)^{-1}\right)^{*}\left[X_{\mu}\left(F_{\bullet}\right)\right]=\left(\left(\bar{w} w_{0}\right)^{-1}\right)^{*} p^{*}\left[X_{\mu}\left(F_{\bullet}\right)\right] \\
& =s_{\mu}\left(-\bar{x}_{1}, \cdots,-\bar{x}_{s} \mid-t_{\bar{w}(1)}, \cdots,-t_{\bar{w}(n)}\right)
\end{aligned}
$$

since the projection $p: \operatorname{Flags}\left(\mathbb{C}^{n}\right) \rightarrow G r_{s}\left(\mathbb{C}^{n}\right)$ is equivariant with respect to the left S_{n}-actions. In particular, the following lemma with the definition (4.1) shows that

$$
\begin{equation*}
p^{*} \tilde{S}_{\mu_{s, d}}=(-1)^{d} e_{d}\left(\bar{x}_{1}, \cdots, \bar{x}_{s} \mid t_{\bar{w}(1)}, \cdots, t_{\bar{w}(n)}\right) \tag{5.3}
\end{equation*}
$$

Lemma 5.1. For indeterminates $x_{1}, \cdots, x_{s}, a_{1}, a_{2}, \cdots$, we have

$$
s_{\mu_{s, k}}\left(x_{1}, \cdots, x_{s} \mid a_{1}, a_{2}, \cdots\right)=\sum_{r=0}^{k}(-1)^{k-r} e_{r}\left(x_{1}, \cdots, x_{s}\right) h_{k-r}\left(a_{1}, \cdots, a_{s+1-k}\right)
$$

for $k \geq 0$ where $\mu_{s, k}=(1, \cdots, 1,0, \cdots, 0)$ with 1 repeated k-times and 0 repeated $(s-k)$ times.

Proof. We first find the coefficient of the monomial $x_{1} \cdots x_{r}$ in $s_{\mu_{s, k}}(x \mid a)$. For each $I=\left(i_{1}, i_{2}, \cdots, i_{k-r}\right)$ satisfying $r+1 \leq i_{1}<i_{2}<\cdots<i_{k-r} \leq s$, there is a summand in $s_{\mu_{s, k}}(x \mid a)$ corresponding to the standard tableau T_{I} of shape $\mu_{s, k}$ whose $(j, 1)$-th entry is

$$
\begin{cases}j & \text { if } 1 \leq j \leq r \\ i_{j-r} & \text { if } r+1 \leq j \leq k\end{cases}
$$

The summand is of the form

$$
\left(x_{1}-a_{1}\right)\left(x_{2}-a_{1}\right) \cdots\left(x_{r}-a_{1}\right)\left(x_{i_{1}}-a_{i_{1}-r}\right)\left(x_{i_{2}}-a_{i_{2}-r-1}\right) \cdots\left(x_{i_{k-r}}-a_{i_{k-r}-k+1}\right)
$$

and the contribution of the monomial $x_{1} \cdots x_{r}$ from this polynomial is

$$
(-1)^{k-r}\left(a_{i_{1}-r} a_{i_{2}-r-1} \cdots a_{i_{k-r}-k+1}\right) x_{1} \cdots x_{r}
$$

Since the condition on I is equivalent to

$$
1 \leq i_{1}-r \leq i_{2}-r-1 \leq \cdots \leq i_{k-r}-k+1 \leq s-k+1
$$

we see that the coefficient of $x_{1} \cdots x_{r}$ in $s_{\mu_{s, k}}\left(x_{1}, \cdots, x_{s} \mid a_{1}, a_{2}, \cdots\right)$ is

$$
(-1)^{k-r} h_{k-r}\left(a_{1}, \cdots, a_{s-k+1}\right)
$$

Recalling that $s_{\mu_{s, k}}\left(x_{1}, \cdots, x_{s} \mid a_{1}, a_{2}, \cdots\right)$ is symmetric in x-variables, we conclude that the coefficient of $x_{j_{1}} \cdots x_{j_{r}}$ is $(-1)^{k-r} h_{k-r}\left(a_{1}, \cdots, a_{s-k+1}\right)$ for any $1 \leq j_{1}<\cdots<j_{r} \leq s$. Thus, the polynomial

$$
(-1)^{k-r} e_{r}\left(x_{1}, \cdots, x_{s}\right) h_{k-r}\left(a_{1}, \cdots, a_{s-k+1}\right)
$$

gives the summand in $s_{\mu_{s, k}}\left(x_{1}, \cdots, x_{s} \mid a_{1}, a_{2}, \cdots\right)$ whose degree in x-variables is r.
From now on, we take a specific choice of \bar{w} as follows, and we study the image of the Schubert classes $p^{*} \tilde{S}_{\mu}$ under ρ_{λ}. We choose \bar{w} so that its one-line notation is given by

$$
\bar{w}=J_{1} \cdots J_{\ell}
$$

where each sector J_{r} is a sequence of subsectors

$$
J_{r}=j_{r}^{(1)} \cdots j_{r}^{\left(\lambda_{r}-\lambda_{r+1}\right)}
$$

consisted by sequences of the form

$$
j_{r}^{(m)}=\left(\lambda_{1}-\lambda_{r}\right)+m,\left(\lambda_{1}-\lambda_{r}\right)+\lambda_{2}+m, \ldots \ldots,\left(\lambda_{1}-\lambda_{r}\right)+\lambda_{2}+\cdots+\lambda_{r}+m
$$

Note that $j_{r}^{(m)}$ is a sequence of length r, and J_{r} is a sequence of length $r\left(\lambda_{r}-\lambda_{r+1}\right)$. We define J_{r} to be the empty sequence if $\lambda_{r}=\lambda_{r+1}$. Writing down J_{r} for some small r, the reader can see how the complete flag $\bar{w} F_{\bullet}$ refines the flag $\left(\cdots \subset N_{0}^{2} \mathbb{C}^{n} \subset N_{0} \mathbb{C}^{n} \subset \mathbb{C}^{n}\right)$.

Example. If $n=16$ and $\lambda=(7,5,2,2)$, then

$$
\bar{w}=12384951061113157121416
$$

where $J_{1}=j_{1}^{(1)} j_{1}^{(2)}=12, J_{2}=j_{2}^{(1)} j_{2}^{(2)} j_{2}^{(3)}=3849510, J_{3}$ is the empty sequence, and $J_{4}=j_{4}^{(1)} j_{4}^{(2)}=61113157121416$. The reader should check that $\bar{w} F$. refines the flag $\left(\cdots \subset N_{0}^{2} \mathbb{C}^{n} \subset N_{0} \mathbb{C}^{n} \subset \mathbb{C}^{n}\right)$.

The $\operatorname{map} \phi:[n] \rightarrow[\ell]$ defined in (3.7) takes each sequence $j_{r}^{(m)}$ to the sequence $1, \cdots, r$ since k-th number of $j_{r}^{(m)}$ satisfies

$$
\lambda_{1}+\cdots+\lambda_{k-1}+1 \leq\left(\lambda_{1}-\lambda_{r}\right)+\lambda_{2}+\cdots+\lambda_{k}+m \leq \lambda_{1}+\cdots+\lambda_{k}
$$

This shows that $\phi \circ \bar{w}$ coincides with the map ϕ_{λ} defined in (4.2). Applying ρ_{λ} to (5.3), we obtain

$$
\rho_{\lambda} \circ p^{*}\left(\tilde{S}_{\mu_{s, d}}\right)=(-1)^{d} e_{d}\left(\bar{y}_{1}, \cdots, \bar{y}_{s} \mid u_{\phi_{\lambda}(1)}, \cdots, u_{\phi_{\lambda}(n)}\right)
$$

in $H_{T^{\ell}}^{*}\left(\mathcal{S}_{\lambda}\right)$. Since $i^{*}\left(\tilde{S}_{\mu_{s, j}}\right)=0$, the commutative diagram (5.2) shows that the left-handside of this equality vanishes. That is, we proved that $e_{d}\left(\bar{y}_{1}, \cdots, \bar{y}_{s} \mid u_{\phi_{\lambda}(1)}, \cdots, u_{\phi_{\lambda}(n)}\right)=$ 0 for the cases $s<n$.

We are left with the case $s=n$. In this case, we have that $d \geq n+1-p_{\check{\lambda}}(n)=1$. Observe that in $H_{T^{n}}^{*}\left(F \operatorname{lags}\left(\mathbb{C}^{n}\right)\right)$ we have

$$
\begin{aligned}
& e_{d}\left(\bar{x}_{1}, \cdots, \bar{x}_{n} \mid t_{1}, \cdots, t_{n}\right) \\
& \quad=\sum_{r=0}^{d}(-1)^{d-r} e_{r}\left(\bar{x}_{1}, \cdots, \bar{x}_{n}\right) h_{d-r}\left(t_{1}, \cdots, t_{n+1-d}\right) \\
& \quad=\sum_{r=0}^{d}(-1)^{d-r} e_{r}\left(t_{1}, \cdots, t_{n}\right) h_{d-r}\left(t_{1}, \cdots, t_{n+1-d}\right)
\end{aligned}
$$

by the presentation given in (3.3). It is straightforward to check that this is equal to $e_{d}\left(t_{n+2-d}, \cdots, t_{n}\right)$ (which is zero since the number of variables is greater than d) by considering the generating functions with a formal variable z for elementary and complete symmetric polynomials :

$$
\begin{aligned}
& \prod_{i=1}^{n}\left(1-t_{i} z\right)=\sum_{r=0}^{n}(-1)^{r} e_{r}\left(t_{1}, \cdots, t_{n}\right) z^{r} \\
& \prod_{i=1}^{n} \frac{1}{1-t_{i} z}=\sum_{r \geq 0} h_{r}\left(t_{1}, \cdots, t_{n}\right) z^{r}
\end{aligned}
$$

That is, the polynomial $e_{d}\left(\bar{x}_{1}, \cdots, \bar{x}_{n} \mid t_{1}, \cdots, t_{n}\right)$ vanishes in $H_{T^{n}}^{*}\left(\operatorname{Flags}\left(\mathbb{C}^{n}\right)\right)$, and hence we see that $e_{d}\left(\bar{y}_{1}, \cdots, \bar{y}_{n} \mid u_{\phi_{\lambda}(1)}, \cdots, u_{\phi_{\lambda}(n)}\right)=0$.

Now, the homomorphism (4.3) induces a surjective ring homomorphism

$$
\bar{\psi}: \mathbb{Z}\left[y_{1}, \cdots, y_{n}, u_{1}, \cdots u_{\ell}\right] / \widetilde{I}_{\lambda} \longrightarrow H_{T^{\ell}}^{*}\left(\mathcal{S}_{\lambda}\right)
$$

In what follows, we prove that this is an isomorphism by thinking of both sides as $\mathbb{Z}\left[u_{1}, \cdots u_{\ell}\right]$-algebras. Namely, the ring on the left-hand-side admits the obvious multiplication by u_{1}, \cdots, u_{n}, and the ring on the right-hand-side has the canonical ring homomorphism $H^{*}\left(B T^{\ell}\right) \rightarrow H_{T^{\ell}}^{*}\left(\mathcal{S}_{\lambda}\right)$ with the identification $H^{*}\left(B T^{\ell}\right)=\mathbb{Z}\left[u_{1}, \cdots u_{\ell}\right]$.

Recall that \mathcal{S}_{λ} admits a cellular decomposition by even dimensional cells constructed by [6] (c.f. [2]). So the spectral sequence for the fiber bundle $E T^{\ell} \times_{T^{\ell}} \mathcal{S}_{\lambda} \rightarrow B T^{\ell}$ shows that $H_{T^{\ell}}^{*}\left(\mathcal{S}_{\lambda}\right)$ is a free $\mathbb{Z}\left[u_{1}, \cdots, u_{\ell}\right]$-module and that its rank over $\mathbb{Z}\left[u_{1}, \cdots, u_{\ell}\right]$ coincides with the rank of the non-equivariant cohomology:

$$
\operatorname{rank}_{\mathbb{Z}\left[u_{1}, \cdots, u_{\ell}\right]} H_{T^{\ell}}^{*}\left(\mathcal{S}_{\lambda}\right)=\operatorname{rank}_{\mathbb{Z}} H^{*}\left(\mathcal{S}_{\lambda}\right)=\frac{n!}{\lambda_{1}!\lambda_{2}!\cdots \lambda_{\ell}!}=:\binom{n}{\lambda}
$$

Hence, to prove that the map $\bar{\psi}$ is an isomorphism, it is sufficient to show that the module $\mathbb{Z}\left[y_{1}, \cdots, y_{n}, u_{1}, \cdots u_{\ell}\right] / \widetilde{I}_{\lambda}$ is generated by $\binom{n}{\lambda}$ elements as a $\mathbb{Z}\left[u_{1}, \cdots, u_{\ell}\right]$-module. To do that, let us consider a graded $\operatorname{ring}^{1} \mathbb{Z}\left[y_{1}, \cdots, y_{n}\right] / I_{\lambda}$ where I_{λ} is Tanisaki's ideal, namely this is generated by $e_{d}\left(y_{i_{1}}, \cdots, y_{i_{s}}\right)$ for $1 \leq s \leq n, 1 \leq i_{1}<\cdots<i_{s} \leq n$, and $d \geq s+1-p_{\grave{\lambda}}(s)$. In [9], it is shown that this is a free \mathbb{Z}-module of rank $\binom{n}{\lambda}$.
Lemma 5.2. Let $\Phi_{1}(y), \cdots, \Phi_{k}(y)$ be homogeneous polynomials in $\mathbb{Z}\left[y_{1}, \cdots, y_{n}\right]$ which give an additive basis of $\mathbb{Z}\left[y_{1}, \cdots, y_{n}\right] / I_{\lambda}$ where $k=\binom{n}{\lambda}$. If we think of $\Phi_{1}(y), \cdots, \Phi_{k}(y)$ as elements of $\mathbb{Z}\left[y_{1}, \cdots, y_{n}, u_{1}, \cdots, u_{\ell}\right] / \tilde{I}_{\lambda}$, then they generate $\mathbb{Z}\left[y_{1}, \cdots, y_{n}, u_{1}, \cdots, u_{\ell}\right] / \tilde{I}_{\lambda}$ as a $\mathbb{Z}\left[u_{1}, \cdots, u_{\ell}\right]$-module.
Proof. It suffices to show that any monomial m of y_{1}, \cdots, y_{n} in $\mathbb{Z}\left[y_{1}, \cdots, y_{n}, u_{1}, \cdots, u_{\ell}\right] / \tilde{I}_{\lambda}$ can be written as a $\mathbb{Z}\left[u_{1}, \cdots, u_{\ell}\right]$-linear combination of $\Phi_{1}(y), \cdots, \Phi_{k}(y)$. We prove this by induction on the degree d of m. The base case $d=0$ is clear, i.e. $\Phi_{i}(y)=1$ for some i. We assume that $d \geq 1$ and the claim holds for $d-1$. Let θ be a homomorphism from $\mathbb{Z}\left[y_{1}, \cdots, y_{n}, u_{1}, \cdots, u_{\ell}\right] / \tilde{I}_{\lambda}$ to $\mathbb{Z}\left[y_{1}, \cdots, y_{n}\right] / I_{\lambda}$ sending y_{i} to y_{i} and u_{i} to 0 . This is well-defined since each generator $e_{d}\left(\bar{y}_{1}, \cdots, \bar{y}_{s} \mid u_{\phi_{\lambda}(1)}, \cdots, u_{\phi_{\lambda}(n)}\right)$ of \tilde{I}_{λ} is mapped to the corresponding generator $e_{d}\left(y_{i_{1}}, \cdots, y_{i_{s}}\right)$ of I_{λ}. By the assumption, $\theta(m)$ can be written as a \mathbb{Z}-linear combination of $\Phi_{1}(y), \cdots, \Phi_{k}(y)$, that is, we have

$$
m-\sum_{i} a_{i} \Phi_{i}(y) \in \operatorname{ker} \theta
$$

for some $a_{i} \in \mathbb{Z}$. Here, $\operatorname{ker} \theta$ is the ideal of $\mathbb{Z}\left[y_{1}, \cdots, y_{n}, u_{1}, \cdots, u_{\ell}\right] / \tilde{I}_{\lambda}$ generated by u_{1}, \cdots, u_{ℓ}. In fact, it follows that the image of I_{λ} in $\mathbb{Z}\left[y_{1}, \cdots, y_{n}, u_{1}, \cdots, u_{\ell}\right] / \tilde{I}_{\lambda}$ is included in the ideal $\left(u_{1}, \cdots, u_{\ell}\right)$ of $\mathbb{Z}\left[y_{1}, \cdots, y_{n}, u_{1}, \cdots, u_{\ell}\right] / \tilde{I}_{\lambda}$ from the following equation in $\mathbb{Z}\left[y_{1}, \cdots, y_{n}, u_{1}, \cdots, u_{\ell}\right] / \tilde{I}_{\lambda}$:

$$
e_{d}\left(y_{i_{1}}, \cdots, y_{i_{s}}\right)=-\sum_{0 \leq r<d}(-1)^{d-r} e_{r}\left(y_{i_{1}}, \cdots, y_{i_{s}}\right) h_{d-r}\left(u_{\phi_{\lambda}(1)}, \cdots, u_{\phi_{\lambda}(s+1-d)}\right)
$$

Therefore, the monomial m can be written as

$$
\begin{equation*}
m=\sum_{i} a_{i} \Phi_{i}(y)+\sum_{j=1}^{\ell} f_{j}(y, u) u_{j} \tag{5.4}
\end{equation*}
$$

for some polynomials $f_{1}(y, u), \cdots, f_{\ell}(y, u)$. Since m has degree d, we can replace the polynomials in the right-hand-side by their homogeneous components of degree d. Namely, we can assume that $\operatorname{deg} \Phi_{i}(y)=\operatorname{deg} f_{j}(y, u)+1=d$. Now, the induction assumption shows that each $f_{j}(y, u)$ is written as a $\mathbb{Z}\left[u_{1}, \cdots, u_{\ell}\right]$-linear combination of $\Phi_{1}(y), \cdots, \Phi_{k}(y)$ since the degree of each monomial in y contained in $f_{j}(y, u)$ is less than d. Hence, the element m is written by a $\mathbb{Z}\left[u_{1}, \cdots, u_{\ell}\right]$-linear combination of $\Phi_{1}(y), \cdots, \Phi_{k}(y)$ in $\mathbb{Z}\left[y_{1}, \cdots, y_{n}, u_{1}, \cdots, u_{\ell}\right] / \tilde{I}_{\lambda}$, as desired.

From Lemma 5.2, the surjection $\bar{\psi}$ has to be an isomorphism as discussed above.

[^0]
References

[1] W. Fulton, Young Tableaux: With Applications to Representation Theory and Geometry, London Math. Soc. Student Texts 35, Cambridge Univ. Press, 1997.
[2] R. Hotta and T.A. Springer, A specialization theorem for certain Weyl group representations and an application to Green polynomials of unitary groups, Invent. Math. 41 (1977), 113-127.
[3] A. Knutson and T. Tao, Puzzles and (equivariant) cohomology of Grassmannians, Duke Math. J. 119 (2) (2003), 221-260.
[4] A. I. Molev and B. E. Sagan, A Littlewood-Richardson rule for factorial Schur functions, Trans. Amer. Math. Soc. 351 (1999), 4429-4443.
[5] M. Mimura and H. Toda Topology of Lie Groups. I, II. Translated from the 1978 Japanese edition by the authors. Translations of Mathematical Monographs, 91. American Mathematical Society, Providence, RI, 1991.
[6] N. Spaltenstein, The fixed point set of a unipotent transformation on the flag manifold, Nederl. Akad. Wetensch. Proc. Ser. A 79 (1976), 452-456.
[7] T. A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math. 36 (1976), 173-207.
[8] T. A. Springer, A construction of representations of Weyl groups, Invent. Math. 44 (1978) 279-293.
[9] T. Tanisaki, Defining ideals of the closures of the conjugacy classes and representations of the Weyl groups, Tôhoku Math. J. 34 (1982), 575-585.

Osaka City University Advanced Mathematical Institute, 3-3-138 Sugimoto, SumiyoshiKU, Osaka 558-8585 JAPAN

E-mail address: hirakuabe@globe.ocn.ne.jp
Department of Mathematics, Osaka City University, 3-3-138 Sumiyoshi-ku, Osaka 5588585, JAPAN

E-mail address: d13saROz06@st.osaka-cu.ac.jp

[^0]: ${ }^{1}$ The argument in [9] to give a presentation of the ring $H^{*}\left(\mathcal{S}_{\lambda} ; \mathbb{C}\right)$ works also over \mathbb{Z}-coefficient, and in that sense this ring is the presentation given in [9].

