THE TORUS EQUIVARIANT COHOMOLOGY RINGS OF SPRINGER VARIETIES

HIRAKU ABE AND TATSUYA HORIGUCHI

ABSTRACT. The Springer variety of type A associated to a nilpotent operator on \mathbb{C}^n in Jordan canonical form admits a natural action of the ℓ -dimensional torus T^{ℓ} where ℓ is the number of the Jordan blocks. We give a presentation of the T^{ℓ} -equivariant cohomology ring of the Springer variety through an explicit construction of an action of the *n*-th symmetric group on the T^{ℓ} -equivariant cohomology group. The T^{ℓ} -equivariant analogue of so called Tanisaki's ideal will appear in the presentation.

CONTENTS

1.	Introduction	1
2.	Nilpotent Springer varieties and T^{ℓ} -fixed points	2
3.	An action of the symmetric group S_n on $H^*_{T^{\ell}}(S_{\lambda})$	5
4.	Main theorem	7
5.	Proof of the main theorem	8
References		14

1. INTRODUCTION

The Springer variety of type A associated to a nilpotent operator $N : \mathbb{C}^n \to \mathbb{C}^n$ is a closed subvariety of the flag variety of \mathbb{C}^n defined by

$$\{V_{\bullet} \in Flags(\mathbb{C}^n) \mid NV_i \subseteq V_{i-1} \text{ for all } 1 \le i \le n\}.$$

When the operator N is in Jordan canonical form with Jordan blocks of weakly decreasing size $\lambda = (\lambda_1, \dots, \lambda_{\ell})$, we denote the Springer variety by S_{λ} . In 1970's, Springer constructed a representation of the *n*-th symmetric group S_n on the cohomology group $H^*(S_{\lambda}; \mathbb{C})$, and this representation on the top degree part is the irreducible representation of type λ ([7], [8]). DeConcini-Procesi [] used this representation to give a presentation of the cohomology ring $H^*(S_{\lambda}; \mathbb{C})$ as a quotient of a polynomial ring by an ideal. Tanisaki [9] gave another set of generators of this ideal which simplifies their presentation; this ideal is now called Tanisaki's ideal. We remark that his argument in [9] works also over \mathbb{Z} -coefficient. Our goal in this paper is to give an explicit presentation of the T^{ℓ} equivariant cohomology ring $H^*_{T^{\ell}}(S_{\lambda}; \mathbb{Z})$ where we will explain the ℓ -dimensional torus T^{ℓ} below. In more detail, we will give a presentation as the quotient of a polynomial

Date: January 13, 2015.

ring by an ideal whose generators are generalizations of the generators of Tanisaki's ideal given in [9]. Through the forgetful map $H^*_{T^{\ell}}(S_{\lambda};\mathbb{Z}) \to H^*(S_{\lambda};\mathbb{Z})$, our presentation naturally induces the presentation of $H^*(S_{\lambda};\mathbb{Z})$ given in [9].

We organize this paper as follows. In Section 2, we introduce a natural action of the ℓ -dimensional torus T^{ℓ} on the Springer variety S_{λ} for $\lambda = (\lambda_1, \dots, \lambda_{\ell})$ and give the T^{ℓ} -fixed points $S_{\lambda}^{T^{\ell}}$ of the Springer variety S_{λ} where T^{ℓ} is defined by the following diagonal unitary matrices:

$$\left\{ \begin{pmatrix} h_1 E_{\lambda_1} & & \\ & h_2 E_{\lambda_2} & \\ & & \ddots & \\ & & & h_\ell E_{\lambda_\ell} \end{pmatrix} \mid h_i \in \mathbb{C}, |h_i| = 1 \ (1 \le i \le \ell) \right\}.$$

Here, E_i is the identity matrix of size *i*. We construct an S_n -action on the equivariant cohomology group $H^*_{T^{\ell}}(S_{\lambda};\mathbb{Z})$ in Section 3 by using the localization technique which involves the equivariant cohomology of the T^{ℓ} -fixed points. We state the main theorem in Section 4, and prove it in Section 5 by using this S_n -action on $H^*_{T^{\ell}}(S_{\lambda};\mathbb{Z})$. Our method of the proof is the T^{ℓ} -equivariant analogue of [9].

Acknowledgements. The authors thank Professor Toshiyuki Tanisaki for valuable suggestions and kind teachings.

2. Nilpotent Springer varieties and T^{ℓ} -fixed points

We begin with a definition of type A nilpotent Springer varieties. We work with type A through out this paper and hence omit it in the following. We first recall that a flag variety $Flags(\mathbb{C}^n)$ consists of nested subspaces of \mathbb{C}^n :

$$V_{\bullet} = (0 = V_0 \subset V_1 \subset \cdots \subset V_{n-1} \subset V_n = \mathbb{C}^n)$$

where $\dim_{\mathbb{C}} V_i = i$ for all *i*.

Definition. Let $N: \mathbb{C}^n \to \mathbb{C}^n$ be a nilpotent operator. The **(nilpotent) Springer** variety S_N associated to N is the set of flags V_{\bullet} satisfying $NV_i \subseteq V_{i-1}$ for all $1 \leq i \leq n$.

Since $S_{gNg^{-1}}$ is homeomorphic (in fact, isomorphic as algebraic varieties) to S_N for any invertible matrix $g \in GL_n(\mathbb{C})$, we may assume that N is a Jordan canonical form. In this paper, we consider the Springer variety

$$S_{\lambda} := \{ V_{\bullet} \in Flags(\mathbb{C}^n) \mid N_0 V_i \subseteq V_{i-1} \text{ for all } 1 \le i \le n \}$$

where N_0 is in Jordan canonical form with Jordan blocks of weakly decreasing sizes $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell).$

Let T^n be an *n*-dimensional torus consisting of diagonal unitary matrices:

(2.1)
$$T^{n} = \left\{ \begin{pmatrix} g_{1} & & \\ & g_{2} & \\ & & \ddots & \\ & & & g_{n} \end{pmatrix} \mid g_{i} \in \mathbb{C}, |g_{i}| = 1 \ (1 \le i \le n) \right\}.$$

Then the *n*-dimensional torus T^n naturally acts on the flag variety $Flags(\mathbb{C}^n)$, but T^n does not preserve the Springer variety S_{λ} in general. So we introduce the following ℓ -dimensional torus:

(2.2)
$$T^{\ell} = \left\{ \begin{pmatrix} h_1 E_{\lambda_1} & & \\ & h_2 E_{\lambda_2} & \\ & & \ddots & \\ & & & h_{\ell} E_{\lambda_{\ell}} \end{pmatrix} \in T^n \mid h_i \in \mathbb{C}, |h_i| = 1 \ (1 \le i \le \ell) \right\}$$

where E_i is the identity matrix of size i and $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_\ell)$. Then the torus T^ℓ preserves the Springer variety S_{λ} . Our goal in this section is to give the T^{ℓ} -fixed point set $S_{\lambda}^{T^{\ell}}$.

The T^n -fixed point set $Flags(\mathbb{C}^n)^{T^n}$ of the flag variety $Flags(\mathbb{C}^n)$ is given by

$$\{(\langle e_{w(1)}\rangle \subset \langle e_{w(1)}, e_{w(2)}\rangle \subset \cdots \subset \langle e_{w(1)}, e_{w(2)}, \dots, e_{w(n)}\rangle = \mathbb{C}^n) \mid w \in S_n\}$$

where e_1, e_2, \ldots, e_n is the standard basis of \mathbb{C}^n and S_n is the symmetric group on n letters $\{1, 2, \ldots, n\}$, so we may identify $Flags(\mathbb{C}^n)^{T^n}$ with S_n .

Let w be an element of S_n satisfying the following property:

(2.3) for each $1 \le k \le \ell$, the numbers between $\lambda_1 + \cdots + \lambda_{k-1} + 1$ and $\lambda_1 + \cdots + \lambda_k$ appear in the one-line notation of w as a subsequence in the increasing order.

Here, we write $\lambda_1 + \cdots + \lambda_{k-1} + 1 = 1$ when k = 1.

Example. We consider the case n = 6, $\ell = 3$, and $\lambda = (3, 2, 1)$. Using one-line notation, the following permutations

$$w_1 = 124365, \ w_2 = 416253, \ w_3 = 612435$$

satisfy the condition (2.3). In fact, each of the sequences (1, 2, 3), (4, 5), and (6) appears in the one-line notations as a subsequence in the increasing order.

Lemma 2.1. The T^{ℓ} -fixed points $S_{\lambda}^{T^{\ell}}$ of the Springer variety S_{λ} is the set $\{w \in S_n \mid w \text{ satisfy the condition } (2.3)\}.$

Proof. Let $w = V_{\bullet}$ be a permutation satisfying the condition (2.3). Since w(1) is equal to one of the numbers 1, $\lambda_1 + 1$, $\lambda_1 + \lambda_2 + 1$, ..., $\lambda_1 + \cdots + \lambda_{\ell-1} + 1$, we have $N_0V_1 \subseteq \{0\}$. If $w(1) = \lambda_1 + \cdots + \lambda_{k-1} + 1$, then w(2) is equal to one of the numbers 1, $\lambda_1 + 1$, $\ldots, \lambda_1 + \cdots + \lambda_{k-1} + 2, \ldots, \lambda_1 + \cdots + \lambda_{\ell-1} + 1$. So we also have $N_0V_2 \subseteq V_1$. Continuing this argument, we have $N_0V_i \subseteq V_{i-1}$ for all $1 \leq i \leq n$, and it follows that the w is an element of \mathcal{S}_{λ} . On the other hand, the w is clearly fixed by T^{ℓ} , so the w is an element of $\mathcal{S}_{\lambda}^{T^{\ell}}$.

Conversely, let V_{\bullet} be an element of $S_{\lambda}^{T^{\ell}}$. Let v_1, v_2, \ldots, v_j be generators for V_j where $v_j = (x_1^{(j)}, x_2^{(j)}, \cdots, x_n^{(j)})^t$ in \mathbb{C}^n for all j. Since we have

$$N_0v_1 = (\underbrace{x_2^{(1)}, \cdots, x_{\lambda_1}^{(1)}, 0}_{\lambda_1}, \underbrace{x_{\lambda_1+2}^{(1)}, \cdots, x_{\lambda_1+\lambda_2}^{(1)}, 0}_{\lambda_2}, \cdots, \underbrace{x_{\lambda_1+\dots+\lambda_{\ell-1}+2}^{(1)}, \cdots, x_n^{(1)}, 0}_{\lambda_\ell})^t,$$

the condition $N_0V_1 \subseteq V_0 = \{0\}$ implies that

(2.4)
$$v_1 = (\underbrace{x_1^{(1)}, 0, \cdots, 0}_{\lambda_1}, \underbrace{x_{\lambda_1+1}^{(1)}, 0, \cdots, 0}_{\lambda_2}, \cdots, \underbrace{x_{\lambda_1+\dots+\lambda_{\ell-1}+1}^{(1)}, 0, \cdots, 0}_{\lambda_\ell})^t.$$

It follows that exactly one of $x_i^{(1)}$ $(i = 1, \lambda_1 + 1, \lambda_1 + \lambda_2 + 1, \dots, \lambda_1 + \dots + \lambda_{\ell-1} + 1)$ which appear in (2.4) is nonzero. In fact, V_{\bullet} is fixed by the T^{ℓ} -action and hence we have $\langle h \cdot v_1 \rangle = \langle v_1 \rangle$ for arbitrary $h \in T^{\ell}$ where

$$h \cdot v_1 = (\underbrace{h_1 x_1^{(1)}, 0, \cdots, 0}_{\lambda_1}, \underbrace{h_2 x_{\lambda_1 + 1}^{(1)}, 0, \cdots, 0}_{\lambda_2}, \cdots , \underbrace{h_{\ell} x_{\lambda_1 + \cdots + \lambda_{\ell-1} + 1}^{(1)}, 0, \cdots, 0}_{\lambda_{\ell}})^t.$$

Since each h_i runs over all complex numbers whose absolute values are 1, only one of $x_i^{(1)}$ in (2.4) must be nonzero.

If $x_{\lambda_1+\dots+\lambda_{k-1}+1}^{(1)}$ is nonzero for some $1 \le k \le \ell$, then we may assume that

$$v_1 = (0, \dots, 0, 1, 0, \dots, 0)^{\iota},$$

$$v_j = (x_1^{(j)}, \dots, x_{\lambda_1 + \dots + \lambda_{k-1}}^{(j)}, 0, x_{\lambda_1 + \dots + \lambda_{k-1} + 2}^{(j)}, \dots, x_n^{(j)})^{\iota}$$

for $2 \leq j \leq n$ where the $(\lambda_1 + \cdots + \lambda_{k-1} + 1)$ -th component of v_1 is one. Since we have

$$N_0 v_2 = (\underbrace{x_2^{(2)}, \cdots, x_{\lambda_1}^{(2)}, 0}_{\lambda_1}, \underbrace{x_{\lambda_1+2}^{(2)}, \cdots, x_{\lambda_1+\lambda_2}^{(2)}, 0}_{\lambda_2}, \cdots, \underbrace{x_{\lambda_1+\dots+\lambda_{\ell-1}+2}^{(2)}, \cdots, x_n^{(2)}, 0}_{\lambda_\ell})^t,$$

the condition $N_0V_2 \subseteq V_1$ implies that

(2.5)

$$v_2 = (\underbrace{x_1^{(2)}, 0, \cdots, 0}_{\lambda_1}, \cdots, \underbrace{0, x_{\lambda_1 + \cdots + \lambda_{k-1} + 2}^{(2)}, 0, \cdots, 0}_{\lambda_k}, \cdots, \underbrace{x_{\lambda_1 + \cdots + \lambda_{\ell-1} + 1}^{(2)}, 0, \cdots, 0}_{\lambda_\ell})^t.$$

Therefore, we see that the only one of $x_i^{(2)}$ $(i = 1, \lambda_1 + 1, \dots, \lambda_1 + \dots + \lambda_{k-1} + 2, \dots, \lambda_1 + \dots + \lambda_{\ell-1} + 1)$ which appear in (2.5) is nonzero by an argument similar to that used above. Continuing this procedure, we conclude that $V_{\bullet} = w$ for some $w \in S_n$ satisfying the condition (2.3). In fact, w(1) is equal to one of the numbers $1, \lambda_1 + 1, \lambda_1 + \lambda_2 + 1, \dots, \lambda_1 + \dots + \lambda_{\ell-1} + 1$. If $w(1) = \lambda_1 + \dots + \lambda_{k-1} + 1$, then w(2) is equal to one of the numbers $1, \lambda_1 + 1, \dots, \lambda_1 + \dots + \lambda_{k-1} + 2, \dots, \lambda_1 + \dots + \lambda_{\ell-1} + 1$ and so on. This means that for each $k = 1, \dots, \ell$ the numbers between $\lambda_1 + \dots + \lambda_{k-1} + 1$ and $\lambda_1 + \dots + \lambda_k$ appear in the one-line notation of w as a subsequence in the increasing order.

Regarding a product of symmetric groups $S_{\lambda_1} \times S_{\lambda_2} \times \cdots \times S_{\lambda_\ell}$ as a subgroup of the symmetric group S_n , it follows from Lemma 2.1 that the T^{ℓ} -fixed points $S_{\lambda}^{T^{\ell}}$ of the Springer variety S_{λ} is identified with the right cosets $S_{\lambda_1} \times S_{\lambda_2} \times \cdots \times S_{\lambda_\ell} \setminus S_n$ where each $w \in S_{\lambda}^{T^{\ell}}$ corresponds to the right coset [w]. In fact, the condition (2.3) provides a unique representative for each right coset.

3. An action of the symmetric group S_n on $H^*_{T\ell}(\mathfrak{S}_{\lambda})$

In this section, we introduce an action of the symmetric group S_n on the equivariant cohomology group $H^*_{T^{\ell}}(S_{\lambda})$ over \mathbb{Z} -coefficient by using the localization technique. We will see that the projection map

$$\rho_{\lambda}: H^*_{T^n}(Flags(\mathbb{C}^n)) \to H^*_{T^{\ell}}(\mathcal{S}_{\lambda})$$

induced from the inclusions of S_{λ} into $Flags(\mathbb{C}^n)$ and T^{ℓ} into T^n is an S_n -equivariant map. In particular, we consider the following commutative diagram

$$(3.1) \qquad \begin{array}{c} H_{T^{n}}^{*}(Flags(\mathbb{C}^{n})) & \xrightarrow{\iota_{1}} & H_{T^{n}}^{*}(Flags(\mathbb{C}^{n})^{T^{n}}) = \bigoplus_{w \in S_{n}} H^{*}(BT^{n}) \\ & & & & \\ H_{T^{\ell}}^{*}(\mathbb{S}_{\lambda}) & \xrightarrow{\iota_{2}} & H_{T^{\ell}}^{*}(\mathbb{S}_{\lambda}^{T^{\ell}}) = \bigoplus_{w \in \mathbb{S}_{\lambda}^{T^{\ell}}} H^{*}(BT^{\ell}) \end{array}$$

where all the maps are induced from inclusion maps, and construct S_n -actions on the three modules $H^*_{T^n}(Flags(\mathbb{C}^n))$, $\bigoplus_{w \in S_n} H^*(BT^n)$, and $\bigoplus_{w \in S_\lambda^{T^\ell}} H^*(BT^\ell)$ to construct an S_n -action on $H^*_{T^\ell}(S_\lambda)$. All (equivariant) cohomology rings are assumed to be over \mathbb{Z} -coefficient unless otherwise specified.

First, we introduce the left action of the symmetric group S_n on the cohomology group $H^*(Flags(\mathbb{C}^n))$. To do that, we consider the right S_n -action on the flag variety $Flags(\mathbb{C}^n)$ as follows.

For any $V_{\bullet} \in Flags(\mathbb{C}^n)$, there exists $g \in U(n)$ so that $V_i = \bigoplus_{j=1}^{i} \mathbb{C}g(e_j)$, where $\{e_1, \ldots, e_n\}$ is the standard basis of \mathbb{C}^n . Then the right action of $w \in S_n$ on $Flags(\mathbb{C}^n)$ can be defined by

$$(3.2) V_{\bullet} \cdot w = V_{\bullet}'$$

where $V'_i = \bigoplus_{j=1}^i \mathbb{C}g(e_{w(j)})$.

We recall an explicit presentation of the T^n -equivariant cohomology ring of the flag variety $Flags(\mathbb{C}^n)$. Let E_i be the subbundle of the trivial vector bundle $Flags(\mathbb{C}^n) \times \mathbb{C}^n$ over $Flags(\mathbb{C}^n)$ whose fiber at a flag V_{\bullet} is just V_i . We denote the T^n -equivariant first Chern class of the line bundle E_i/E_{i-1} by $\bar{x}_i \in H^2_{T^n}(Flags(\mathbb{C}^n))$. Let \mathbb{C}_i be the one dimensional representation of T^n through a map $T^n \to S^1$ given by $diag(g_1, \ldots, g_n) \mapsto g_i$. We denote the first Chern class of the line bundle $ET^n \times_{T^n} \mathbb{C}_i$ over BT^n by $t_i \in H^2(BT^n)$. Since t_1, \ldots, t_n generate $H^*(BT^n)$ as a ring and they are algebraically independent, we identify $H^*(BT^n)$ with a polynomial ring;

$$H^*(BT^n) = \mathbb{Z}[t_1, \dots, t_n]$$

Then the equivariant cohomology $H^*_{T^n}(Flags(\mathbb{C}^n))$ is generated by $\bar{x}_1, \ldots, \bar{x}_n, t_1, \ldots, t_n$ as a ring. Defining a surjective ring homomorphism from $\mathbb{Z}[x_1, \ldots, x_n, t_1, \ldots, t_n]$ to $H^*_{T^n}(Flags(\mathbb{C}^n))$ by sending x_i to \bar{x}_i and t_i to t_i , its kernel \tilde{I} is generated as an ideal by $e_i(x_1, \ldots, x_n) - e_i(t_1, \ldots, t_n)$ for all $1 \leq i \leq n$, where e_i is the *i*-th elementary symmetric polynomial. Thus, we have an isomorphism

(3.3)
$$H_{T^n}^*(Flags(\mathbb{C}^n)) \cong \mathbb{Z}[x_1, \dots, x_n, t_1, \dots, t_n]/\tilde{I}.$$

The right action in (3.2) induces the following left action of the symmetric group S_n on $H^*_{T^n}(Flags(\mathbb{C}^n))$:

(3.4)
$$w \cdot \bar{x}_i = \bar{x}_{w(i)}, \ w \cdot t_i = t_i$$

for $w \in S_n$. In fact, the pullback of the line bundle E_i/E_{i-1} under the right action in (3.2) is exactly the line bundle $E_{w(i)}/E_{w(i)-1}$, and the right action in (3.2) is T^n -equivariant.

Second, we define a left action of $v \in S_n$ on the direct sum $\bigoplus_{w \in S_n} \mathbb{Z}[t_1, \ldots, t_n]$ of the polynomial ring as follows:

$$(3.5) (v \cdot f)|_w = f|_{wv}$$

where $w \in S_n$ and $f \in \bigoplus_{w \in S_n} \mathbb{Z}[t_1, \ldots, t_n]$. Observe that the map ι_1 in (3.1) is the following mapping

(3.6)
$$\iota_1(\bar{x}_i)|_w = t_{w(i)}, \ \iota_1(t_i)|_w = t_i.$$

Note that it follows from (3.4), (3.5), and (3.6) that the map ι_1 is S_n -equivariant map, i.e. $w \cdot (\iota_1(f)) = \iota_1(w \cdot f)$ for any $f \in H^*_{T^n}(Flags(\mathbb{C}^n))$ and $w \in S_n$.

To construct an S_n -action on $\bigoplus_{w \in S_{\lambda}^{T^{\ell}}} H^*(BT^{\ell})$, we need some preparations. We identify $H^*(BT^{\ell})$ with a polynomial ring with ℓ variables. That is,

$$H^*(BT^\ell) = \mathbb{Z}[u_1, \dots, u_\ell]$$

where $u_i \in H^2(BT^{\ell})$ is the first Chern class of the line bundle $ET^{\ell} \times_{T^{\ell}} \mathbb{C}_i$ over BT^{ℓ} . Here, \mathbb{C}_i is the one dimensional representation of T^{ℓ} through a map $T^{\ell} \to S^1$ given by $\operatorname{diag}(h_1, \cdots, h_1, h_2, \cdots, h_2, \cdots, h_{\ell}, \cdots, h_{\ell}) \mapsto h_i$.

It is known that $Flags(\mathbb{C}^n)$ and S_{λ} admit a cellular decomposition ([6]), so the odd degree cohomology groups of $Flags(\mathbb{C}^n)$ and S_{λ} vanish. The path-connectedness of $Flags(\mathbb{C}^n)$ and S_{λ} together with this fact implies that the maps ι_1 and ι_2 in (3.1) are injective (cf.[5]) and that the map ρ_{λ} in (3.1) is surjective (cf.[2]). The map π in (3.1) is clearly surjective. Therefore, we obtain the following lemma. Let \bar{y}_i be the image $\rho_{\lambda}(\bar{x}_i)$ of \bar{x}_i for each i.

Lemma 3.1. The T^{ℓ} -equivariant cohomology ring $H^*_{T^{\ell}}(S_{\lambda})$ is generated by $\bar{y}_1, \ldots, \bar{y}_n$, u_1, \ldots, u_{ℓ} as a ring where \bar{y}_i is as above and $H^*(BT^{\ell}) = \mathbb{Z}[u_1, \ldots, u_{\ell}]$.

Let $\phi : [n] \to [\ell] ([n] := \{1, 2, \dots, n\})$ be a map defined by

$$(3.7) \qquad \qquad \phi(i) = k$$

if $\lambda_1 + \cdots + \lambda_{k-1} + 1 \le i \le \lambda_1 + \cdots + \lambda_k$ where $\lambda_1 + \cdots + \lambda_{k-1} = 0$ when k = 1. Observe that the map π in (3.1) is the following mapping

(3.8)
$$\pi(f|_w(t_1,\ldots,t_n)) = f|_w(u_{\phi(1)},\ldots,u_{\phi(n)}),$$

where $f|_w$ denotes w-component of f. It follows from (3.6), (3.8) and the commutative diagram in (3.1) that

(3.9)
$$\iota_2(\bar{y}_i)|_w = u_{\phi(w(i))} \text{ and } \iota_2(u_i)|_w = u_i.$$

Third, we define the left action of $v \in S_n$ on the direct sum $\bigoplus_{w \in S_{\lambda}^{T^{\ell}}} \mathbb{Z}[u_1, \ldots, u_{\ell}]$ of the polynomial ring as follows:

(3.10)
$$(v \cdot f)|_w = f|_{w'}$$

for $w \in S_{\lambda}^{T^{\ell}}$ and $f \in \bigoplus_{w \in S_{\lambda}^{T^{\ell}}} \mathbb{Z}[u_1, \ldots, u_{\ell}]$ where w' is the element of $S_{\lambda}^{T^{\ell}}$ whose right coset agrees with the right coset [wv] of $S_{\lambda_1} \times S_{\lambda_2} \times \cdots \times S_{\lambda_{\ell}} \setminus S_n$. Note that the map π in (3.1) is not S_n -equivariant in general.

Lemma 3.2. For any $v \in S_n$ and $1 \le i \le n$, it follows that

(3.11)
$$v \cdot (\iota_2(\bar{y}_i)) = \iota_2(\bar{y}_{v(i)}) \text{ and } v \cdot (\iota_2(u_i)) = \iota_2(u_i)$$

where the map ι_2 is in (3.1) and \bar{y}_i is the image of \bar{x}_i under the map ρ_{λ} in (3.1).

Proof. From (3.9) and (3.10), we have

$$|(v \cdot (\iota_2(u_i)))|_w = \iota_2(u_i)|_{w'} = u_i = \iota_2(u_i)|_w$$

for all $w \in S_n$. So the second equation holds. From (3.9) and (3.10) again, we have

$$\begin{aligned} (v \cdot (\iota_2(\bar{y}_i)))|_w &= \iota_2(\bar{y}_i)|_{w'} = u_{\phi(w'(i))}, \\ \iota_2(\bar{y}_{v(i)})|_w &= u_{\phi(w(v(i)))}. \end{aligned}$$

Therefore, it is enough to prove $\phi(w'(i)) = \phi(wv(i))$. Since [w'] = [wv] in $S_{\lambda_1} \times S_{\lambda_2} \times \cdots \times S_{\lambda_\ell} \setminus S_n$, we have

$$\lambda_1 + \dots + \lambda_{r-1} + 1 \le w'(i) \le \lambda_1 + \dots + \lambda_r,$$

$$\lambda_1 + \dots + \lambda_{r-1} + 1 \le wv(i) \le \lambda_1 + \dots + \lambda_r$$

for some r. From the definition (3.7) of the map ϕ , we have $\phi(w'(i)) = \phi(wv(i))$, and the first equation holds. We are done.

Since the map ι_2 is injective, we obtain an S_n -action on $H^*_{\mathcal{T}^\ell}(S_\lambda)$ satisfying

(3.12)
$$w \cdot \bar{y}_i = \bar{y}_{w(i)} \text{ and } w \cdot u_i = u_i$$

for $w \in S_n$ from Lemma 3.1 and Lemma 3.2. Moreover, one can see that the map ρ_{λ} in (3.1) is S_n -equivariant homomorphism by (3.4) and (3.12). We summarize the results in this section as follows.

Proposition 3.3. There exists an S_n -action on $H^*_{T^{\ell}}(S_{\lambda})$ such that the map ρ_{λ} in (3.1) is S_n -equivariant homomorphism where the S_n -action on $H^*_{T^n}(Flags(\mathbb{C}^n))$ is given by (3.4).

4. Main theorem

In this section, we state our main theorem. For this purpose, let us clarify our notations. We set $p_{\lambda}(s) := \lambda_{n-s+1} + \lambda_{n-s+2} + \cdots + \lambda_{\ell}$ for $s = 1, \cdots, n$. We denote by $\check{\lambda}$ the transpose of λ . That is, $\check{\lambda} = (\eta_1, \cdots, \eta_k)$ where $k = \lambda_1$ and $\eta_i = |\{j \mid \lambda_j \ge i\}|$ for $1 \le i \le k$. For indeterminates y_1, \cdots, y_s and a_1, a_2, \cdots , let

(4.1)
$$e_d(y_1, \cdots, y_s | a_1, a_2, \cdots) := \sum_{r=0}^d (-1)^{d-r} e_r(y_1, \cdots, y_s) h_{d-r}(a_1, \cdots, a_{s+1-d})$$

for $d \ge 0$ where e_i and h_i denote the *i*-th elementary symmetric polynomial and the *i*-th complete symmetric polynomial, respectively. In fact, this is the factorial Schur function corresponding to the Young diagram consisting of the unique column of length d as shown in the next section (see Lemma 5.1). We also define a map $\phi_{\lambda} : [n] \to [\ell]$ by the condition

$$(4.2) \quad (u_{\phi_{\lambda}(1)}, \cdots, u_{\phi_{\lambda}(n)}) = (\underbrace{u_1, \cdots, u_1}_{\lambda_1 - \lambda_2}, \underbrace{u_1, u_2, \cdots, u_1, u_2}_{2(\lambda_2 - \lambda_3)}, \cdots, \underbrace{u_1, u_2, \cdots, u_\ell}_{\ell(\lambda_\ell - \lambda_{\ell+1})}, \underbrace{u_1, u_2, \cdots, u_\ell}_{\ell(\lambda_\ell - \lambda_{\ell+1})})$$

as ordered sequences where for each $1 \leq r \leq \ell$ the *r*-th sector of the right-hand-side consists of (u_1, u_2, \dots, u_r) repeated $(\lambda_r - \lambda_{r+1})$ -times. Here, we denote $\lambda_{\ell+1} = 0$.

Let us define a ring homomorphism

(4.3)
$$\psi: \mathbb{Z}[y_1, \cdots, y_n, u_1, \cdots, u_\ell] \to H^*_{T^\ell}(\mathcal{S}_\lambda)$$

by sending y_i to \bar{y}_i and u_i to u_i where $H^*(BT^{\ell}) = \mathbb{Z}[u_1, \cdots, u_{\ell}]$. Recall that \bar{y}_i is the equivariant first Chern class of the tautological line bundle E_i/E_{i-1} over $Flags(\mathbb{C}^n)$ (see Section 3) restricted to S_{λ} . This homomorphism ψ is a surjection by Lemma 3.1.

Theorem 4.1. The map ψ in (4.3) induces a ring isomorphism

$$H^*_{T^{\ell}}(\mathbb{S}_{\lambda}) \cong \mathbb{Z}[y_1, \cdots, y_n, u_1, \cdots, u_{\ell}]/I_{\lambda}$$

where \widetilde{I}_{λ} is the ideal of the polynomial ring $\mathbb{Z}[y_1, \cdots, y_n, u_1, \cdots, u_\ell]$ generated by the polynomials $e_d(y_{i_1}, \cdots, y_{i_s} | u_{\phi_{\lambda}(1)}, \cdots, u_{\phi_{\lambda}(n)})$ defined in (4.1) with ϕ_{λ} described in (4.2) for $1 \leq s \leq n, 1 \leq i_1 < \cdots < i_s \leq n$, and $d \geq s + 1 - p_{\lambda}(s)$.

Remark. The ideal I_{λ} is the T^{ℓ} -equivariant analogue of so-called Tanisaki's ideal (it is written as $K_{\tilde{\lambda}}$ in [9]). Each generator of \tilde{I}_{λ} given above specializes to a generator of Tanisaki's ideal given in [9] after the evaluation $u_i = 0$ for all i.

5. Proof of the main theorem

In this section, we prove Theorem 4.1. Our argument is the T^{ℓ} -equivariant version of [9]. We first show that $e_d(\bar{y}_{i_1}, \dots, \bar{y}_{i_s}|u_{\phi_{\lambda}(1)}, \dots, u_{\phi_{\lambda}(n)}) = 0$ in $H^*_{T^{\ell}}(S_{\lambda})$ for $1 \leq s \leq n$, $1 \leq i_1 < \dots < i_s \leq n$, and $d \geq s + 1 - p_{\tilde{\lambda}}(s)$. By the S_n -action on $H^*_{T^{\ell}}(S_{\lambda})$ constructed in Section 3, we may assume that $i_1 = 1, \dots, i_s = s$.

Let us first consider the cases for s < n, and prove that for $d \ge s + 1 - p_{\tilde{\lambda}}(s)$ we have $e_d(\bar{y}_1, \dots, \bar{y}_s | u_{\phi_{\lambda}(1)}, \dots, u_{\phi_{\lambda}(n)}) = 0$ in $H^*_{T^{\ell}}(S_{\lambda})$. Take a T^n -invariant complete flag U_{\bullet} by refining the flag $(\dots \subset N_0^2 \mathbb{C}^n \subset N_0 \mathbb{C}^n \subset \mathbb{C}^n)$. This is possible since N_0 is in Jordan canonical form. We denote by \bar{w} the element of S_n corresponding to U_{\bullet} , i.e. $U_{\bullet} = \bar{w}F_{\bullet}$ where F_{\bullet} is the standard flag defined by $F_i = \langle e_1, \dots, e_i \rangle$ for all $1 \le i \le n$. For a Young

diagram μ with at most s rows and n-s columns, the Schubert variety corresponding to μ with respect to the reference flag U_{\bullet} is

$$X_{\mu}(U_{\bullet}) = \{ V \in Gr_s(\mathbb{C}^n) \mid \dim(V \cap U_{n-s+i-\mu_i}) \ge i \text{ for all } 1 \le i \le s \}$$

where $Gr_s(\mathbb{C}^n)$ denotes the set of s dimensional complex linear subspaces in \mathbb{C}^n . It is known that $X_{\mu}(\tilde{F}_{\bullet}) \cap X_{\nu}(F_{\bullet}) = \emptyset$ unless $\mu \subset \nu^{\dagger}$ (cf. [1] § 9.4, Lemma 3). Here, $\nu^{\dagger} = (n - s - \nu_s, \dots, n - s - \nu_1)$ and \tilde{F}_{\bullet} is the opposite flag of F_{\bullet} defined by $\tilde{F}_i = \langle e_{n+1-i}, \dots, e_n \rangle$. By multiplying both sides of this equality by \bar{w} , we get

(5.1)
$$X_{\mu}(\bar{w}\bar{F}_{\bullet}) \cap X_{\nu}(U_{\bullet}) = \emptyset \quad \text{unless } \mu \subset \nu^{\dagger}.$$

Since the flag $\bar{w}\tilde{F}_{\bullet}$ is T^n -invariant, the Schubert variety $X_{\mu}(\bar{w}\tilde{F}_{\bullet})$ is a T^n -invariant irreducible subvariety of $Gr_s(\mathbb{C}^n)$. Let $\tilde{S}_{\mu} := [X_{\mu}(\bar{w}\tilde{F}_{\bullet})] \in H^*_{T^n}(Gr_s(\mathbb{C}^n))$ be the associated T^n -equivariant cohomology class.

Let $p: Flags(\mathbb{C}^n) \to Gr_s(\mathbb{C}^n)$ be the projection defined by $p(V_{\bullet}) = V_s$. Then it follows that

$$p(\mathcal{S}_{\lambda}) \subset X_{\mu_0}(U_{\bullet})$$

where $\mu_0 = (n - s, \dots, n - s, 0, \dots, 0)$ with n - s repeated $p_{\tilde{\lambda}}(s)$ -times and 0 repeated $(s - p_{\tilde{\lambda}}(s))$ -times (cf. [9] § 3, Proposition 3). Hence, we obtain the following commutative diagram

(5.2)
$$\begin{array}{ccc} H_{T^n}^*(Flags(\mathbb{C}^n)) & \xleftarrow{p^*} & H_{T^n}^*(Gr_s(\mathbb{C}^n)) \\ & & & & \downarrow_{i^*} \\ & & & & \downarrow_{i^*} \\ & & & H_{T^\ell}^*(\mathbb{S}_{\lambda}) & \xleftarrow{k^*} & H_{T^n}^*(X_{\mu_0}(U_{\bullet})) \end{array}$$

where i^* is the map induced by the inclusion and k is the restriction of the projection map p. Let $\mu_{s,d} = (1, \dots, 1, 0, \dots, 0)$ with 1 repeated d-times and 0 repeated (s - d)-times. This Young diagram has at most s rows and n - s columns since we are assuming that s < n. Recall that the T^n -equivariant Schubert class $\tilde{S}_{\mu} = [X_{\mu}(\bar{w}\tilde{F}_{\bullet})]$ comes from the relative cohomology $H^*_{T^n}(Gr_s(\mathbb{C}^n), Gr_s(\mathbb{C}^n) \setminus X_{\mu}(\bar{w}\tilde{F}_{\bullet}))$. So it follows that $i^*\tilde{S}_{\mu_{s,d}} = 0$ for $d \ge s + 1 - p_{\tilde{\lambda}}(s)$ since $\mu_{s,d} \not\subset \mu_0^{\dagger}$ and (5.1) show that any cycle in $X_{\mu_0}(U_{\bullet})$ does not intersect with $X_{\mu_{s,d}}(\bar{w}\tilde{F}_{\bullet})$. Thus, we obtain $\rho_{\lambda}(p^*\tilde{S}_{\mu_{s,d}}) = 0$ by the commutativity of the diagram (5.2).

To give a polynomial representative of $\rho_{\lambda}(p^*S_{\mu_{s,d}})$, let us first describe $p^*S_{\mu_{s,d}}$ in terms of $\bar{x}_1, \dots, \bar{x}_n$ and t_1, \dots, t_n . Observe that $w \in S_n$ acts on \mathbb{C}^n from the left by

$$w \cdot (x_1, \cdots, x_n) = (x_{w^{-1}(1)}, \cdots, x_{w^{-1}(n)})$$

for $(x_1, \dots, x_n) \in \mathbb{C}^n$, and this naturally induces S_n -action on $Flags(\mathbb{C}^n)$. For each $w \in S_n$, the induced map on $Flags(\mathbb{C}^n)$ is equivariant with respect to a group homomorphism $\psi_w : T^n \to T^n$ defined by $(g_1, \dots, g_n) \mapsto (g_{w^{-1}(1)}, \dots, g_{w^{-1}(n)})$. This ψ_w induces a ring homomorphism on $H^*(BT^n) = \mathbb{Z}[t_1, \dots, t_n]$:

$$\psi_w^*: \mathbb{Z}[t_1, \cdots, t_n] \to \mathbb{Z}[t_1, \cdots, t_n] \quad ; \quad t_i \mapsto t_{w^{-1}(i)},$$

and the induced map w^* on $H^*_{T^n}(Flags(\mathbb{C}^n))$ is a ring homomorphism satisfying $w^*(t_i\alpha) = \psi^*_w(t_i)w^*(\alpha)$ for any $\alpha \in H^*_{T^n}(Flags(\mathbb{C}^n))$ and $i = 1, \dots, n$ where the products are taken by the cup products via the canonical homomorphism $H^*(BT^n) \to H^*_{T^n}(Flags(\mathbb{C}^n))$. Similarly, S_n acts on $Gr_s(\mathbb{C}^n)$ from the left, and the projection $p : Flags(\mathbb{C}^n) \to Gr_s(\mathbb{C}^n)$ is S_n -equivariant. Observe that $w^*\bar{x}_i = \bar{x}_i$ for any $w \in S_n$ since w naturally induces a map $E_i/E_{i-1} \to E_i/E_{i-1}$ which is a fiber-wise isomorphism.

Recall from [3] that the T^n -equivariant Schubert class $[X_{\mu}(F_{\bullet})] \in H^*_{T^n}(Gr_s(\mathbb{C}^n))$ with respect to the standard reference flag F_{\bullet} is represented by the factorial Schur function (see [4]) in the T^n -equivariant cohomology of $Flags(\mathbb{C}^n)$:

$$p^*[X_{\mu}(F_{\bullet})] = s_{\mu}(-\bar{x}_1, \cdots, -\bar{x}_s | -t_n, \cdots, -t_1).$$

For the convenience of the reader, we here recall the definition of factorial Schur functions from [4]: for a Young diagram μ with at most s rows, the factorial Schur function associated to μ is defined to be

$$s_{\mu}(x_1,\cdots,x_s|a_1,a_2,\cdots) = \sum_T \prod_{\alpha\in\mu} (x_{T(\alpha)} - a_{T(\alpha)+c(\alpha)})$$

as a polynomial in $\mathbb{Z}[x_1, \dots, x_s] \otimes \mathbb{Z}[a_1, a_2, \dots]$ where T runs over all semistandard tableaux of shape μ with entries in $\{1, \dots, s\}$, $T(\alpha)$ is the entry of T in the cell $\alpha \in \mu$, and $c(\alpha) = j - i$ is the content of $\alpha = (i, j)$. This polynomial is symmetric in x-variables.

From the definition, we have that $X_{\mu}(\bar{w}F_{\bullet}) = \bar{w}w_0X_{\mu}(F_{\bullet})$ where $w_0 \in S_n$ is the longest element with respect to the Bruhat order. So it follows that

$$p^* \tilde{S}_{\mu} = p^* ((\bar{w}w_0)^{-1})^* [X_{\mu}(F_{\bullet})] = ((\bar{w}w_0)^{-1})^* p^* [X_{\mu}(F_{\bullet})]$$

= $s_{\mu}(-\bar{x}_1, \cdots, -\bar{x}_s| - t_{\bar{w}(1)}, \cdots, -t_{\bar{w}(n)})$

since the projection $p: Flags(\mathbb{C}^n) \to Gr_s(\mathbb{C}^n)$ is equivariant with respect to the left S_n -actions. In particular, the following lemma with the definition (4.1) shows that

(5.3)
$$p^* S_{\mu_{s,d}} = (-1)^d e_d(\bar{x}_1, \cdots, \bar{x}_s | t_{\bar{w}(1)}, \cdots, t_{\bar{w}(n)}).$$

Lemma 5.1. For indeterminates $x_1, \dots, x_s, a_1, a_2, \dots$, we have

$$s_{\mu_{s,k}}(x_1,\cdots,x_s|a_1,a_2,\cdots) = \sum_{r=0}^k (-1)^{k-r} e_r(x_1,\cdots,x_s) h_{k-r}(a_1,\cdots,a_{s+1-k})$$

for $k \ge 0$ where $\mu_{s,k} = (1, \dots, 1, 0, \dots, 0)$ with 1 repeated k-times and 0 repeated (s-k)-times.

Proof. We first find the coefficient of the monomial $x_1 \cdots x_r$ in $s_{\mu_{s,k}}(x|a)$. For each $I = (i_1, i_2, \cdots, i_{k-r})$ satisfying $r+1 \leq i_1 < i_2 < \cdots < i_{k-r} \leq s$, there is a summand in $s_{\mu_{s,k}}(x|a)$ corresponding to the standard tableau T_I of shape $\mu_{s,k}$ whose (j, 1)-th entry is

$$\begin{cases} j & \text{if } 1 \le j \le r, \\ i_{j-r} & \text{if } r+1 \le j \le k \end{cases}$$

The summand is of the form

 $(x_1 - a_1)(x_2 - a_1) \cdots (x_r - a_1)(x_{i_1} - a_{i_1 - r})(x_{i_2} - a_{i_2 - r - 1}) \cdots (x_{i_{k - r}} - a_{i_{k - r} - k + 1}),$

and the contribution of the monomial $x_1 \cdots x_r$ from this polynomial is

 $(-1)^{k-r}(a_{i_1-r}a_{i_2-r-1}\cdots a_{i_{k-r}-k+1})x_1\cdots x_r.$

Since the condition on ${\cal I}$ is equivalent to

$$1 \le i_1 - r \le i_2 - r - 1 \le \dots \le i_{k-r} - k + 1 \le s - k + 1,$$

we see that the coefficient of $x_1 \cdots x_r$ in $s_{\mu_{s,k}}(x_1, \cdots, x_s | a_1, a_2, \cdots)$ is

$$(-1)^{k-r}h_{k-r}(a_1,\cdots,a_{s-k+1}).$$

Recalling that $s_{\mu_{s,k}}(x_1, \cdots, x_s | a_1, a_2, \cdots)$ is symmetric in *x*-variables, we conclude that the coefficient of $x_{j_1} \cdots x_{j_r}$ is $(-1)^{k-r} h_{k-r}(a_1, \cdots, a_{s-k+1})$ for any $1 \leq j_1 < \cdots < j_r \leq s$. Thus, the polynomial

$$(-1)^{k-r}e_r(x_1,\cdots,x_s)h_{k-r}(a_1,\cdots,a_{s-k+1})$$

gives the summand in $s_{\mu_{s,k}}(x_1, \cdots, x_s | a_1, a_2, \cdots)$ whose degree in x-variables is r. \Box

From now on, we take a specific choice of \bar{w} as follows, and we study the image of the Schubert classes $p^* \tilde{S}_{\mu}$ under ρ_{λ} . We choose \bar{w} so that its one-line notation is given by

$$\bar{w} = J_1 \cdots J_\ell$$

where each sector J_r is a sequence of subsectors

$$J_r = j_r^{(1)} \cdots j_r^{(\lambda_r - \lambda_{r+1})}$$

consisted by sequences of the form

$$j_r^{(m)} = (\lambda_1 - \lambda_r) + m , \ (\lambda_1 - \lambda_r) + \lambda_2 + m , \ \dots , \ (\lambda_1 - \lambda_r) + \lambda_2 + \dots + \lambda_r + m.$$

Note that $j_r^{(m)}$ is a sequence of length r, and J_r is a sequence of length $r(\lambda_r - \lambda_{r+1})$. We define J_r to be the empty sequence if $\lambda_r = \lambda_{r+1}$. Writing down J_r for some small r, the reader can see how the complete flag $\bar{w}F_{\bullet}$ refines the flag $(\dots \subset N_0^2 \mathbb{C}^n \subset N_0 \mathbb{C}^n \subset \mathbb{C}^n)$.

Example. If n = 16 and $\lambda = (7, 5, 2, 2)$, then $\bar{w} = 1\ 2\ 3\ 8\ 4\ 9\ 5\ 10\ 6\ 11\ 13\ 15\ 7\ 12\ 14\ 16$

where $J_1 = j_1^{(1)} j_1^{(2)} = 1$ 2, $J_2 = j_2^{(1)} j_2^{(2)} j_2^{(3)} = 3$ 8 4 9 5 10, J_3 is the empty sequence, and $J_4 = j_4^{(1)} j_4^{(2)} = 6$ 11 13 15 7 12 14 16. The reader should check that $\bar{w}F_{\bullet}$ refines the flag $(\dots \subset N_0^2 \mathbb{C}^n \subset N_0 \mathbb{C}^n \subset \mathbb{C}^n)$.

The map $\phi : [n] \to [\ell]$ defined in (3.7) takes each sequence $j_r^{(m)}$ to the sequence $1, \dots, r$ since k-th number of $j_r^{(m)}$ satisfies

$$\lambda_1 + \dots + \lambda_{k-1} + 1 \le (\lambda_1 - \lambda_r) + \lambda_2 + \dots + \lambda_k + m \le \lambda_1 + \dots + \lambda_k.$$

This shows that $\phi \circ \bar{w}$ coincides with the map ϕ_{λ} defined in (4.2). Applying ρ_{λ} to (5.3), we obtain

$$\rho_{\lambda} \circ p^*(\tilde{S}_{\mu_{s,d}}) = (-1)^d e_d(\bar{y}_1, \cdots, \bar{y}_s | u_{\phi_{\lambda}(1)}, \cdots, u_{\phi_{\lambda}(n)})$$

in $H^*_{T^{\ell}}(S_{\lambda})$. Since $i^*(S_{\mu_{s,j}}) = 0$, the commutative diagram (5.2) shows that the left-handside of this equality vanishes. That is, we proved that $e_d(\bar{y}_1, \dots, \bar{y}_s | u_{\phi_{\lambda}(1)}, \dots, u_{\phi_{\lambda}(n)}) = 0$ for the cases s < n.

We are left with the case s = n. In this case, we have that $d \ge n + 1 - p_{\tilde{\lambda}}(n) = 1$. Observe that in $H^*_{T^n}(Flags(\mathbb{C}^n))$ we have

$$e_d(\bar{x}_1, \cdots, \bar{x}_n | t_1, \cdots, t_n)$$

= $\sum_{r=0}^d (-1)^{d-r} e_r(\bar{x}_1, \cdots, \bar{x}_n) h_{d-r}(t_1, \cdots, t_{n+1-d})$
= $\sum_{r=0}^d (-1)^{d-r} e_r(t_1, \cdots, t_n) h_{d-r}(t_1, \cdots, t_{n+1-d})$

by the presentation given in (3.3). It is straightforward to check that this is equal to $e_d(t_{n+2-d}, \dots, t_n)$ (which is zero since the number of variables is greater than d) by considering the generating functions with a formal variable z for elementary and complete symmetric polynomials :

$$\prod_{i=1}^{n} (1 - t_i z) = \sum_{r=0}^{n} (-1)^r e_r(t_1, \cdots, t_n) z^r$$
$$\prod_{i=1}^{n} \frac{1}{1 - t_i z} = \sum_{r \ge 0} h_r(t_1, \cdots, t_n) z^r.$$

That is, the polynomial $e_d(\bar{x}_1, \cdots, \bar{x}_n | t_1, \cdots, t_n)$ vanishes in $H^*_{T^n}(Flags(\mathbb{C}^n))$, and hence we see that $e_d(\bar{y}_1, \cdots, \bar{y}_n | u_{\phi_{\lambda}(1)}, \cdots, u_{\phi_{\lambda}(n)}) = 0.$

Now, the homomorphism (4.3) induces a surjective ring homomorphism

$$\bar{\psi}: \mathbb{Z}[y_1, \cdots, y_n, u_1, \cdots u_\ell] / I_\lambda \longrightarrow H^*_{T^\ell}(\mathcal{S}_\lambda).$$

In what follows, we prove that this is an isomorphism by thinking of both sides as $\mathbb{Z}[u_1, \cdots u_\ell]$ -algebras. Namely, the ring on the left-hand-side admits the obvious multiplication by u_1, \cdots, u_n , and the ring on the right-hand-side has the canonical ring homomorphism $H^*(BT^{\ell}) \to H^*_{T^{\ell}}(S_{\lambda})$ with the identification $H^*(BT^{\ell}) = \mathbb{Z}[u_1, \cdots u_{\ell}]$.

Recall that S_{λ} admits a cellular decomposition by even dimensional cells constructed by [6] (c.f. [2]). So the spectral sequence for the fiber bundle $ET^{\ell} \times_{T^{\ell}} S_{\lambda} \to BT^{\ell}$ shows that $H^*_{T^{\ell}}(S_{\lambda})$ is a free $\mathbb{Z}[u_1, \cdots, u_{\ell}]$ -module and that its rank over $\mathbb{Z}[u_1, \cdots, u_{\ell}]$ coincides with the rank of the non-equivariant cohomology:

$$\operatorname{rank}_{\mathbb{Z}[u_1,\cdots,u_\ell]}H^*_{T^\ell}(\mathcal{S}_{\lambda}) = \operatorname{rank}_{\mathbb{Z}}H^*(\mathcal{S}_{\lambda}) = \frac{n!}{\lambda_1!\lambda_2!\cdots\lambda_\ell!} =: \binom{n}{\lambda}.$$

Hence, to prove that the map $\bar{\psi}$ is an isomorphism, it is sufficient to show that the module $\mathbb{Z}[y_1, \dots, y_n, u_1, \dots u_\ell]/\tilde{I}_{\lambda}$ is generated by $\binom{n}{\lambda}$ elements as a $\mathbb{Z}[u_1, \dots, u_\ell]$ -module. To do that, let us consider a graded ring¹ $\mathbb{Z}[y_1, \dots, y_n]/I_{\lambda}$ where I_{λ} is Tanisaki's ideal, namely this is generated by $e_d(y_{i_1}, \dots, y_{i_s})$ for $1 \leq s \leq n, 1 \leq i_1 < \dots < i_s \leq n$, and $d \geq s + 1 - p_{\tilde{\lambda}}(s)$. In [9], it is shown that this is a free \mathbb{Z} -module of rank $\binom{n}{\lambda}$.

Lemma 5.2. Let $\Phi_1(y), \dots, \Phi_k(y)$ be homogeneous polynomials in $\mathbb{Z}[y_1, \dots, y_n]$ which give an additive basis of $\mathbb{Z}[y_1, \dots, y_n]/I_{\lambda}$ where $k = \binom{n}{\lambda}$. If we think of $\Phi_1(y), \dots, \Phi_k(y)$ as elements of $\mathbb{Z}[y_1, \dots, y_n, u_1, \dots, u_\ell]/\tilde{I}_{\lambda}$, then they generate $\mathbb{Z}[y_1, \dots, y_n, u_1, \dots, u_\ell]/\tilde{I}_{\lambda}$ as a $\mathbb{Z}[u_1, \dots, u_\ell]$ -module.

Proof. It suffices to show that any monomial m of y_1, \dots, y_n in $\mathbb{Z}[y_1, \dots, y_n, u_1, \dots, u_\ell]/\tilde{I}_\lambda$ can be written as a $\mathbb{Z}[u_1, \dots, u_\ell]$ -linear combination of $\Phi_1(y), \dots, \Phi_k(y)$. We prove this by induction on the degree d of m. The base case d = 0 is clear, i.e. $\Phi_i(y) = 1$ for some i. We assume that $d \ge 1$ and the claim holds for d-1. Let θ be a homomorphism from $\mathbb{Z}[y_1, \dots, y_n, u_1, \dots, u_\ell]/\tilde{I}_\lambda$ to $\mathbb{Z}[y_1, \dots, y_n]/I_\lambda$ sending y_i to y_i and u_i to 0. This is well-defined since each generator $e_d(\bar{y}_1, \dots, \bar{y}_s | u_{\phi_\lambda(1)}, \dots, u_{\phi_\lambda(n)})$ of \tilde{I}_λ is mapped to the corresponding generator $e_d(y_{i_1}, \dots, y_{i_s})$ of I_λ . By the assumption, $\theta(m)$ can be written as a \mathbb{Z} -linear combination of $\Phi_1(y), \dots, \Phi_k(y)$, that is, we have

$$m - \sum_{i} a_i \Phi_i(y) \in \ker \theta$$

for some $a_i \in \mathbb{Z}$. Here, ker θ is the ideal of $\mathbb{Z}[y_1, \dots, y_n, u_1, \dots, u_\ell]/\tilde{I}_{\lambda}$ generated by u_1, \dots, u_ℓ . In fact, it follows that the image of I_{λ} in $\mathbb{Z}[y_1, \dots, y_n, u_1, \dots, u_\ell]/\tilde{I}_{\lambda}$ is included in the ideal (u_1, \dots, u_ℓ) of $\mathbb{Z}[y_1, \dots, y_n, u_1, \dots, u_\ell]/\tilde{I}_{\lambda}$ from the following equation in $\mathbb{Z}[y_1, \dots, y_n, u_1, \dots, u_\ell]/\tilde{I}_{\lambda}$:

$$e_d(y_{i_1}, \cdots, y_{i_s}) = -\sum_{0 \le r < d} (-1)^{d-r} e_r(y_{i_1}, \cdots, y_{i_s}) h_{d-r}(u_{\phi_\lambda(1)}, \cdots, u_{\phi_\lambda(s+1-d)}).$$

Therefore, the monomial m can be written as

(5.4)
$$m = \sum_{i} a_i \Phi_i(y) + \sum_{j=1}^{\ell} f_j(y, u) u_j$$

for some polynomials $f_1(y, u), \dots, f_\ell(y, u)$. Since *m* has degree *d*, we can replace the polynomials in the right-hand-side by their homogeneous components of degree *d*. Namely, we can assume that deg $\Phi_i(y) = \deg f_j(y, u) + 1 = d$. Now, the induction assumption shows that each $f_j(y, u)$ is written as a $\mathbb{Z}[u_1, \dots, u_\ell]$ -linear combination of $\Phi_1(y), \dots, \Phi_k(y)$ since the degree of each monomial in *y* contained in $f_j(y, u)$ is less than *d*. Hence, the element *m* is written by a $\mathbb{Z}[u_1, \dots, u_\ell]$ -linear combination of $\Phi_1(y), \dots, \Phi_k(y)$ in $\mathbb{Z}[y_1, \dots, y_n, u_1, \dots, u_\ell]/\tilde{I}_{\lambda}$, as desired.

From Lemma 5.2, the surjection $\bar{\psi}$ has to be an isomorphism as discussed above.

¹The argument in [9] to give a presentation of the ring $H^*(S_{\lambda};\mathbb{C})$ works also over \mathbb{Z} -coefficient, and in that sense this ring is the presentation given in [9].

HIRAKU ABE AND TATSUYA HORIGUCHI

References

- W. Fulton, Young Tableaux: With Applications to Representation Theory and Geometry, London Math. Soc. Student Texts 35, Cambridge Univ. Press, 1997.
- [2] R. Hotta and T.A. Springer, A specialization theorem for certain Weyl group representations and an application to Green polynomials of unitary groups, Invent. Math. 41 (1977), 113-127.
- [3] A. Knutson and T. Tao, Puzzles and (equivariant) cohomology of Grassmannians, Duke Math. J. 119 (2) (2003), 221-260.
- [4] A. I. Molev and B. E. Sagan, A Littlewood-Richardson rule for factorial Schur functions, Trans. Amer. Math. Soc. 351 (1999), 4429-4443.
- [5] M. Mimura and H. Toda Topology of Lie Groups. I, II. Translated from the 1978 Japanese edition by the authors. Translations of Mathematical Monographs, 91. American Mathematical Society, Providence, RI, 1991.
- [6] N. Spaltenstein, The fixed point set of a unipotent transformation on the flag manifold, Nederl. Akad. Wetensch. Proc. Ser. A 79 (1976), 452-456.
- [7] T. A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math. 36 (1976), 173-207.
- [8] T. A. Springer, A construction of representations of Weyl groups, Invent. Math. 44 (1978) 279-293.
- [9] T. Tanisaki, Defining ideals of the closures of the conjugacy classes and representations of the Weyl groups, Tôhoku Math. J. 34 (1982), 575-585.

OSAKA CITY UNIVERSITY ADVANCED MATHEMATICAL INSTITUTE, 3-3-138 SUGIMOTO, SUMIYOSHI-KU, OSAKA 558-8585 JAPAN

E-mail address: hirakuabe@globe.ocn.ne.jp

DEPARTMENT OF MATHEMATICS, OSAKA CITY UNIVERSITY, 3-3-138 SUMIYOSHI-KU, OSAKA 558-8585, JAPAN

E-mail address: d13saR0z06@st.osaka-cu.ac.jp