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Introduction

It is a quite interesting problem in geometry to study Lagrangian
submanifolds L of various Kähler manifolds (M,ω, g, J). From about
2005, I am working on Lagrangian submanifolds of complex hyper-
quadrics obtained as the Gauss images of isoparametric hypersurfaces
jointly with Professor Hui Ma of Tsinghua University in Beijing. I am
reporting on progress of our joint work at this meeting every time. In
this note we shall mention recent results on Lagrangian intersection of
the Gauss images of isoparametric hypersurfaces in my new joint work
with Hiroshi Iriyeh, Hui Ma and Reiko Miyaoka.

1. Gauss images of isoparametric hypersurfaces

Let Qn(C) be a complex hyperquadrics of CP n+1 defined by the

homogeneous quadratic equation z20+z21+· · ·+z2n+1 = 0. Let G̃r2(Rn+2)
be the real Grassmann manifold of all oriented 2-dimensional vector
subspaces of Rn+2 and Gr2(Rn+2) the real Grassmann manifold of all 2-
dimensional vector subspaces of Rn+2. Then we have the identification

Qn(C) ∋ [a+
√
−1b]←→ [W ] = a ∧ b ∈ G̃r2(Rn+2),

where {a,b} denotes an orthonormal basis of W compatible with the
orientation of [W ].

Let Nn be an oriented hypersurface of the unit standard hypersphere
Sn+1(1) ⊂ Rn+2. Denote by x(p) the position vector of a point p ∈ Nn
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and by n(p) the unit normal vector at a point p ∈ Nn to Nn in Sn+1(1)
compatible to the orientation. The Gauss map G : Nn → Qn(C) of Nn

is defined by

G : Nn ∋ p −→ [x(p)+
√
−1n(p)] = x(p)∧n(p) ∈ Qn(C) ∼= G̃r2(Rn+2).

Then we know that

Proposition 1.1. The Gauss map G : Nn → Qn(C) is always a La-
grangian immersion.

Suppose that Nn is an oriented hypersurface with constant principal
curvatures in Sn+1(1), the so-called isoparametric hypersurface. From
Palmer’s results ([23]) we see that

Proposition 1.2. The Gauss map G : Nn → Qn(C) is a minimal
Lagrangian immersion.

The fundamental structures of isoparametric hypersurfaces were first
investigated by E.Cartan and Münzner ([14]). Denote by g the number
of distinct principal curvatures of Nn. It is known that their multiplic-
ities satisfy m1 = m3 = · · · = m2i−1 = · · · and m2 = m4 = · · · = m2i =

· · · . Thus 2n

g
must be an integer given as

2n

g
=

{
m1 +m2 if g is even,

2m1 if g is odd.

The famous and surprising Münzner’s result ([15]) is that g must be
1, 2, 3, 4 or 6. The cohomology groups of isoparametric hypersurfaces
Nn and their focal manifolds N± were determined by Münzner (II [15]).

The Lagrangian immersion G and the Gauss image G(Nn) of an
isoparametric hypersurface have the following properties ([9], [19], [11]):

Proposition 1.3. (1) The Gauss image Ln = G(Nn) is a compact
smooth minimal Lagrangian submanifold embedded in Qn(C).

(2) The Gauss map G gives a covering map G : Nn → G(Nn) over
the Gauss image with the deck transformation group Zg. Note
that the Zg-action does not preserve the induced metric on Nn

from Sn+1(1) if g ≥ 3.
(3) G(Nn) is invariant under the deck transformation group Z2 of

the universal covering Qn(C) = G̃r2(Rn+2)→ Gr2(Rn+2).

(4)
2n

g
is even (resp. odd) if and only if G(Nn) is orientable (resp. non-

orientable).
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(5) Ln = G(Nn) is a monotone and cyclic Lagrangian submanifold

in Qn(C) with minimal Maslov number ΣL equal to
2n

g
.

We observe that L = G(N) has minimal Maslov number ΣL = 2 if
and only if N is one of the following examples:
g = 1: m1 = 1, n = 1 N1 is a great or small circle of S2.
g = 2: m1 = m2 = 1, n = 2 N2 is a Clifford torus of S3.
g = 3: m1 = m2 = 1, n = 3 N3 ∼= SO(3)/(Z2 ⊕ Z2) ⊂ S4.
g = 4: m1 = m2 = 1, n = 4 N4 ∼= (SO(2)× SO(3))/Z2 ⊂ S5.
g = 6: m1 = m2 = 1, n = 6 N6 ∼= SO(4)/(Z2 ⊕ Z2) ⊂ S7.

Hence we see that the Lagrangian intersection Floer cohomology
for the Gauss images of isoparametric hypersurfaces is well-defined by
Y.G.Oh’s works ([16], [17], [18]).

By taking the quotient space of Nn by Zg the topology can be dras-
tically changed. We should notice that

Theorem 1.1 (IMMO [8]). The Gauss image L = G(Nn) of each
isoparametric hypersurface of g = 3, i.e. Cartan hypersurface, is a Z2-
homology sphere.

A submanifold of a Riemannian manifold is said to be homogeneous
if it is obtained as an orbit of a connected Lie subgroup of its isometry
group. In the classification theory of isoparametric hypersurfaces, it is
well-known that any homogeneous isoparametric hypersurface in the
standard sphere is obtained as a principal orbit of the isotropy repre-
sentation of a Riemannian symmetric pair (U,K) of rank 2 (Hsiang-
Lawson [5], Takagi-Takahashi [24]). By Elie Cartan, Dorfmeister-Nehr
and R. Miyaoka ([13]), it is known that for g = 1, 2, 3, 6 isoparamet-
ric hypersurfaces are homogeneous. Non-homogeneous isoparametric
hypersurfaces appear only in the case of g = 4. The Clifford system
construction of non-homogeneous isoparametric hypersurfaces was dis-
covered first by Ozeki-Takeuchi ([21], [22]) and generalized by Ferus-
Karcher-Münzner ([4]). Isoparametric hypersurfaces with g = 4 were
classified except for the case (m1,m2) = (7, 8) by Cecil - Q. S. Chi -
Jensen [1], Immervoll [6], Q. S. Chi [2], [3].

Note that g = 1 or 2 if and only if G(Nn) is a totally geodesic La-
grangian submanifold of Qn(C), that is, a real form (real hyperquadric)
of a complex hyperquadric.

In the joint works of the author and Hui Ma, we have done

(1) Classification of all compact homogeneous Lagrangian subman-
ifolds in complex hyperquadrics ([9]).
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(2) Determination of Hamiltonian stability, Hamiltonian rigidity
and strict Hamiltonian stability for the Guass images of all ho-
mogeneous isoparametric hypersurfaces:
(a) g = 1, 2, 3 ([9]).
(b) g = 4, (U,K) is of classical type ([11]).
(c) g = 6 and g = 4, (U,K) is of exceptional type ([12]).

(3) Lower bound of the number of transversal intersection points of
Guass images of isoparametric hypersurfaces (under holomor-
phic isometries) ([20]).

2. Hamiltonian non-displaceability of Lagrangian
submanifolds in symplectic manifolds

Let (M,ω) be a symplectic manifold. A diffeomorphism ϕ : M →M
is called a Hamiltonian diffeomorphism of (M,ω) if there are time-
dependent Hamiltonians {Ht} and diffeomorphisms {ϕt} of ϕ0 = IdM

and ϕ1 = ϕ satisfying

∂ϕt(x)

∂t
= (XHt)ϕt(x) (∀x ∈M),

where XHt is the Hamiltonian vector field corresponding to the Hamil-
tonian Ht defined by

dHt = ω(XHt , · ).
We know that ϕ∗

tω = ω, that is, ϕt is a symplectic diffeomorphism of
(M,ω) for each t.

Let Ham(M,ω) be the set of all Hamiltonian diffeomorphisms of
(M,ω). Then we know that Hamil(M,ω) is a group. A Lagrangian
submanifold L of a symplectic manifold (M,ω) is called Hamiltoni-
anly non-displaceable if L ∩ ϕ(L) ̸= ∅ for each ϕ ∈ Ham(M,ω). By
definition of Lagrangian intersection Floer homology HF (L), if L is
Hamiltonianly displaceable, then we have HF (L) = {0}. Equivalently,
if HF (L) ̸= {0}, then L is Hamiltonianly non-displaceable.

Not so many examples of Hamiltonianly non-displaceable Lagrangian
submanifolds are known now.

3. Hamiltonian non-displaceability of Gauss images of
isoparametric hypersurfaces

At RIMS Joint Research in June, 2014, we have obtained

Theorem 3.1 (IMMO[8]). Assume that Nn is an isoparametric hy-
persurface of Sn+1(1) with g = 3 and m = m1 = m2 = 2, 4, or 8.
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Then the Lagrangian intersection Floer homology of the Gauss image
Ln = G(Nn) is non-zero, that is,

HF (L; Λ) ̸= {0}
where Λ = Z2[T, T

−1]. Hence L is Hamiltonian non-displaceable in
Qn(C).

More recently, by Research-In-Team at TSIMF in December, 2014,
we had progress as follows:

Theorem 3.2 (IMMO[8]). Suppose that Nn is an isoparametric hy-
persurface of Sn+1(1) except for the cases of (g, (m1,m2)) = (3, (1, 1)),
(4, (1, k)) (k ≥ 1), (6, (1, 1)). Then the Gauss image Ln = G(Nn) is
Hamiltonian non-displaceable in Qn(C),

Remark. The cases of g = 1 or 2 are already well-investigated by [7].
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256 (1981), 215–232.

[16] Y. G. Oh, Floer cohomology of Lagrangian intersections and pseudo-
holomorphic disks, I, Comm. Pure Appl. Math. 46 (1993), 949–994. Ad-
dendum to “Floer cohomology of Lagrangian intersections and pseudo-
holomorphic disks, I”, Comm. Pure Appl. Math. 48 (1995), 1299–1302.

[17] Y. G. Oh, Floer cohomology of Lagrangian intersections and pseudo-
holomorphic disks, II : (CPn,RPn), Comm. Pure Appl. Math. 46 (1993),
995–1012.

[18] Y. G. Oh, Floer cohomology of Lagrangian intersections and pseudo-
holomorphic disks, III : Arnold-Givental Conjecture, The Floer Memorial
Volume, H. Hofer, C. H. Taubes, A. Weinstein, E. Zehnder, ed., Progress in
Mathematics 133, 555–573, Basel-Boston-Berlin, Birkhäuser, 1995.
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