A CHARACTERIZATION OF DIFFERENTIABILITY FOR THE BEST TRACE SOBOLEV CONSTANT FUNCTION

KAZUYA AKAYAMA1 AND FUTOSHI TAKAHASHI2

Abstract. Let $1 < p < N$ and let Ω be a smooth bounded domain in \mathbb{R}^N. In this paper we show some regularity results for the best constant S_q of the trace Sobolev embedding $W^{1,p}(\Omega) \hookrightarrow L^q(\partial \Omega)$, considering that S_q is a function of q. We prove that S_q is absolutely continuous, thus $S'_q = \frac{d}{dq}S_q$ exists a.e. $q \in [1, p_*]$, $p_* = \frac{p(N-1)}{N-p}$. We give a characterization on a set where S'_q exists. These are natural extensions of the recent work by Ercole for the best constant of the Sobolev embedding $W^{1,p}_0(\Omega) \hookrightarrow L^q(\Omega)$ for $q \in [1, p^*]$, $p^* = \frac{Np}{N-p}$.

Key words: Best trace Sobolev constant, Absolute continuity, Differentiability

2010 Mathematics Subject Classification: 46E35, 35J20, 35J25

1. Introduction

Let $1 < p < N$ be fixed and let Ω be a bounded domain in \mathbb{R}^N with a smooth boundary $\partial \Omega$. The well-known trace Sobolev embedding theorem claims that the continuous inclusion $W^{1,p}(\Omega) \hookrightarrow L^q(\partial \Omega)$ holds true for $1 \leq q \leq p_*$, where $p_* = \frac{p(N-1)}{N-p}$ denotes the trace Sobolev critical exponent. Hence the following trace Sobolev inequality holds true for any $u \in W^{1,p}(\Omega)$:

$$C \left(\int_{\partial \Omega} |u|^q \, dH^{N-1} \right)^{\frac{1}{q}} \leq \int_{\Omega} (|\nabla u|^p + |u|^p) \, dx \quad (1 \leq q \leq p_*) \quad (1.1)$$

1Department of Mathematics, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.
2Department of Mathematics, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.

e-mail:kazuya4876@gmail.com
e-mail:futoshi@sci.osaka-cu.ac.jp

Date: November 12, 2019.
where \(\mathcal{H}^{N-1} \) denotes the \((N-1)\)-dimensional Hausdorff measure on the hypersurface \(\partial \Omega \). The best constant of the trace Sobolev inequality (1.1) (i.e., the largest \(C \) such that the above inequality holds for any \(u \in W^{1,p}(\Omega \setminus W^{1,p}_0(\Omega)) \)) is defined as

\[
S_q = S_q(\Omega) := \inf_{u \in W^{1,p}(\Omega \setminus W^{1,p}_0(\Omega)) \atop \|u\|_{L^q(\partial \Omega)} = 1} \frac{\int_{\Omega} (|\nabla u|^p + |u|^p) \, dx}{\left(\int_{\partial \Omega} |u|^q \, d\mathcal{H}^{N-1} \right)^{\frac{p}{q}}}
\]

(1.2)

It is known that the continuous embedding \(W^{1,p}(\Omega) \hookrightarrow L^q(\partial \Omega) \) for \(1 \leq q \leq p_* \) is actually compact when \(1 \leq q < p_* \), thus a minimizer for \(S_q \) exists for \(1 \leq q < p_* \). A minimizer \(u_q \) for \(S_q \) with the property \(\|u_q\|_{L^q(\partial \Omega)} = 1 \) is a weak solution of the Euler-Lagrange equation

\[
\begin{cases}
\Delta_p u = |u|^{p-2}u & \text{in } \Omega, \\
|\nabla u|^{p-2} \frac{\partial u}{\partial \nu} = S_q |u|^{q-2}u & \text{on } \partial \Omega,
\end{cases}
\]

(1.3)

where \(\nu \) is the outer unit normal of \(\partial \Omega \). Note that by the strong maximum principle [18], a solution \(u \) of (1.3) has a constant sign on \(\Omega \), and we may assume \(u > 0 \) on \(\Omega \). Also regularity results (see e.g., [15], [17]) imply that \(u \in C^{1,\alpha}(\Omega) \cap C^\alpha(\overline{\Omega}) \) for some \(\alpha \in (0,1) \).

For the case \(q = p_* \), the existence of a minimizer becomes a subtle problem because of the lack of compactness. Recently it is proved in [14] that \(S_{p_*} \) is attained on any smooth bounded domain when \(p \in (1, \frac{N+1}{2} + \beta) \), where \(\beta = \beta(\Omega) > 0 \). See [1], [11], [6], [7] for earlier results on the existence of extremals for \(S_{p_*}(\Omega) \) on bounded domains.

This is a striking difference between the best constant for the Sobolev inequality

\[
\tilde{S}_q = \tilde{S}_q(\Omega) := \inf_{u \in \tilde{W}^{1,p}(\Omega) \atop \|u\|_{\tilde{W}^{1,p}(\Omega)} = 1} \frac{\int_{\Omega} |\nabla u|^p \, dx}{\left(\int_{\Omega} |u|^q \, dx \right)^{\frac{p}{q}}}
\]

(1.4)

for \(1 \leq q \leq p = \frac{Np}{N-p} \). Indeed, \(\tilde{S}_{p_*}(\Omega) \) is never attained on any domain \(\Omega \) other than \(\mathbb{R}^N \) and \(\tilde{S}_{p_*}(\Omega) \) does not depend on the domain \(\Omega \) but depends only on \(N \). More precisely, \(\tilde{S}_{p_*}(\Omega) = \tilde{S}_{p_*}(\mathbb{R}^N) \) and the explicit value of \(\tilde{S}_{p_*} \) is known, see [16].

Also, the behaviors of both the constants \(S_q(\Omega) \) and \(\tilde{S}_q(\Omega) \) under the dilations of the domain are different from each other. That is, if we define \(\mu \Omega = \{ \mu x \mid x \in \Omega \} \) for \(\mu > 0 \), we have \(\tilde{S}_q(\mu \Omega) = \mu^{N-p-\frac{p^*}{q}} \tilde{S}_q(\Omega) \).
On the other hand, it is easy to see by using $u_\mu(x) = u(\mu x)$ that

$$S_q(\mu\Omega) = \mu^{N-p(N-1)/q} \inf_{u \in W^{1,p}(\Omega) \setminus W_0^{1,p}(\Omega)} \frac{\int_\Omega (\mu^{-p} |\nabla u_\mu|^p + |u_\mu|^p) \, dx}{(\int_{\partial\Omega} |u_\mu|^q \, dH^{N-1})^{\frac{p}{q}}}.$$

Recently, several regularity properties of \tilde{S}_q as a function of $q \in [1, p^*) = [\frac{Np}{N-p}, \infty)$ are proved by G. Ercole [3], [4]; see also [8] and [2]. In fact, in [3] it is proved that the function $q \mapsto \tilde{S}_q$ is Lipschitz continuous on the interval $[1, p^* - \varepsilon]$ for any $\varepsilon > 0$ small. Also \tilde{S}_q is absolutely continuous on the whole closed interval $[1, p^*)$ and thus its derivative $\frac{d}{dq}\tilde{S}_q = \tilde{S}_q'$ exists almost all $q \in [1, p^*)$. In [4], the author characterizes the point $q \in [1, p^*)$ where \tilde{S}_q is differentiable; \tilde{S}_q' exists if and only if the functional

$$\tilde{I}_q(u) = \int_\Omega |u|^q \log |u| \, dx$$

takes a constant value on the set \tilde{E}_q of the L^q-normalized extremal functions corresponding to \tilde{S}_q:

$$\tilde{E}_q = \{ u \in W_0^{1,p}(\Omega) \mid \|u\|_{L^q(\Omega)} = 1, \text{ and } \int_\Omega |\nabla u|^p \, dx = \tilde{S}_q \}.$$

We say that $\tilde{S}_q(\Omega)$ is simple if the extremal functions associated with \tilde{S}_q are scalar multiple one of the other. This is equivalent to say that $\tilde{E}_q = \{ \pm u_q \}$ for an L^q-normalized extremal $u_q \in W_0^{1,p}(\Omega)$. Recall that there is a long-standing conjecture that $\tilde{S}_q(\Omega)$ is simple if Ω is a bounded smooth convex domain in \mathbb{R}^N and $1 < q < p^*$. Up to now, only several partial results are available for this conjecture, however, the complete solution has not been obtained. Ercole’s result is interesting since we can disprove the conjecture if we find q such that \tilde{S}_q' does not exist.

Main purpose of this paper is, in spite of the differences between \tilde{S}_q and \tilde{S}_q', to obtain similar regularity results and a characterization of differentiability of the function $[1, p^*) \ni q \mapsto S_q$. In what follows, $|A|$ stands for both the N-dimensional Lebesgue measure $\mathcal{L}^N(A)$ when $A \subseteq \Omega$ and the $(N-1)$-dimensional Hausdorff measure $\mathcal{H}^{N-1}(A)$ when $A \subseteq \partial\Omega$. We hope that this abbreviation causes no ambiguity. $\|u\|_{L^q(\Omega)}$ and $\|u\|_{L^q(\partial\Omega)}$ denotes the L^q-norm of a function $u : \Omega \to \mathbb{R}$ and $u : \partial\Omega \to \mathbb{R}$ respectively. χ_A denotes a characteristic function of a set A.

2. Monotonicity and Bounded pointwise variation

In what follows, we fix $1 < p < N$ and put $p_* = \frac{(N-1)p}{N-p}$.
Concerning the monotonicity of $q \mapsto S_q$, first, we prove the following lemma:

Lemma 2.1. The function $q \mapsto |\partial \Omega|^{p/q} S_q$ is monotone decreasing on $[1, p_*]$. In particular, the function $q \in [1, p_*] \mapsto S_q$ is monotone decreasing if $|\partial \Omega| \leq 1$ and strictly monotone decreasing if $|\partial \Omega| < 1$.

Proof. Let $1 \leq q_1 < q_2 \leq p_*$. By Hölder’s inequality, we have

$$|\partial \Omega|^{p/q_2} \left(\int_{\partial \Omega} |u|^{q_2} \, dH^{N-1} \right)^{-p/q_2} \leq |\partial \Omega|^{p/q_1} \left(\int_{\partial \Omega} |u|^{q_1} \, dH^{N-1} \right)^{-p/q_1}.$$

Multiplying $\int_{\Omega} (|\nabla u|^p + |u|^p) \, dx$ to both sides and taking infimum, we see that $q \in [1, p_*] \mapsto |\partial \Omega|^{p/q} S_q$ is a monotone decreasing function. Thus

$$S_{q_1} \geq |\partial \Omega|^{(1/q_2 - 1/q_1)p} S_{q_2} > S_{q_2}$$

if $|\partial \Omega| < 1$. \qed

In Lemma 2.1, we see that the function $q \mapsto |\partial \Omega|^{p/q} S_q$ is strictly monotone decreasing on $[1, p_*]$ if $|\partial \Omega| < 1$. However, we can say more. In the next lemma, the Rayleigh quotient associated with the trace Sobolev embedding $W^{1,p}(\Omega) \setminus W^{1,p}_0(\Omega) \to \mathbb{R}$ is denoted by

$$R_q(u) = \frac{\int_\Omega (|\nabla u|^p + |u|^p) \, dx}{\left(\int_{\partial \Omega} |u|^q \, dH^{N-1} \right)^{\frac{p}{q}}} = \frac{\|u\|_{W^{1,p}(\Omega)}^p}{\|u\|_{L^q(\partial \Omega)}^q}.$$

Lemma 2.2. Let $u \in (W^{1,p}(\Omega) \setminus W^{1,p}_0(\Omega)) \cap L^\infty(\partial \Omega)$, $u \neq$ constant. Then for each $1 \leq q_1 < q_2 \leq p_*$

$$|\partial \Omega|^{\frac{p}{q_1}} R_{q_1}(u) = |\partial \Omega|^{\frac{p}{q_2}} R_{q_2}(u) \exp \left(p \int_{q_1}^{q_2} \frac{K(t, u)}{t^2} \, dt \right) \quad (2.1)$$

where

$$K(t, u) = \frac{\int_{\partial \Omega} |u|^t \log |u|^t \, dH^{N-1}}{\|u\|_{L^t(\partial \Omega)}^t} + \log \left(\frac{|\partial \Omega|}{\|u\|_{L^t(\partial \Omega)}^t} \right) > 0 \quad (2.2)$$

Before the proof, we remark that the assumption of $u \in L^\infty(\partial \Omega)$ is used to assure the finiteness of the integral $\int_{\partial \Omega} |u|^p \log |u| \, dH^{N-1}$.

Proof. The proof will be done by differentiating $\log \left(\frac{|\partial \Omega|^{\frac{p}{q_1}}}{\|u\|_{L^q(\partial \Omega)}^q} \right)$ with respect to t.

Fix $q_0 < p_*$ and consider $t \in [1, q_0]$. For $u \in W^{1,p}(\Omega) \setminus W^{1,p}_0(\Omega)$, we have an estimate
\[
|u|^t \log |u| = \chi_{|u|\leq 1}|u|^t \log |u| + \chi_{|u|>1}|u|^t \log |u| \\
\leq \chi_{|u|\leq 1}(te)^{-1} + \chi_{|u|>1} \frac{1}{p_* - t} |u|^{p_*} \\
\leq e^{-1} + \frac{1}{p_* - q_0} |u|^{p_*} \in L^1(\partial \Omega),
\]
here we have used $x^t \log x \leq (te)^{-1}$ for $0 < x \leq 1$ and $|\log x| \leq \beta^{-1} x^\beta$ for any $x \geq 1$ and $\beta > 0$. Thus we see $|u|^t \log |u| \in L^1(\partial \Omega)$. Since q_0 can be chosen arbitrarily near to p_*, we may differentiate under the integral symbol to get
\[
\frac{d}{dt} \int_{\partial \Omega} |u|^t \, d\mathcal{H}^{N-1} = \int_{\partial \Omega} |u|^t \log |u| \, d\mathcal{H}^{N-1}
\]
for any $1 \leq t < p_*$ by Lebesgue’s dominated convergence theorem. Thus
\[
\frac{d}{dt} \left(\log \frac{|\partial \Omega|^t}{|u|^t L^1(\partial \Omega)} \right) = \frac{d}{dt} \left(\frac{1}{t} \log |\partial \Omega| \right) - \frac{d}{dt} \left(\frac{1}{t} \log \int_{\partial \Omega} |u|^t \, d\mathcal{H}^{N-1} \right) \\
= -\frac{1}{t^2} \log |\partial \Omega| + \frac{1}{t^2} \log \int_{\partial \Omega} |u|^t \, d\mathcal{H}^{N-1} - \frac{1}{t} \int_{\partial \Omega} |u|^t \log |u| \, d\mathcal{H}^{N-1} \\
= -\frac{K(t, u)}{t^2}.
\]
Integrate the above on $[q_1, q_2]$ with respect to t, we obtain
\[
\frac{|\partial \Omega|^\frac{t}{q_1}}{|u|^{q_1} L^1(\partial \Omega)} = \frac{|\partial \Omega|^\frac{t}{q_2}}{|u|^{q_2} L^1(\partial \Omega)} \exp \int_{q_1}^{q_2} \frac{K(t, u)}{t^2} \, dt
\]
Multiplying $|u|_{W^{1,p}(\Omega)}$, and taking p-th power, we get (2.1).

Next, we claim $K(t, u) > 0$. Define $h : [0, \infty) \to \mathbb{R}$ as
\[
h(\xi) = \begin{cases}
\xi \log \xi & (\xi > 0) \\
0 & (\xi = 0).
\end{cases}
\]
Then \(h \) is convex, and Jensen’s inequality implies
\[
\frac{1}{|\partial \Omega|} \int_{\partial \Omega} |u|^t \, d\mathcal{H}^{N-1} \leq \frac{1}{|\partial \Omega|} \int_{\partial \Omega} h(|u|^t) \, d\mathcal{H}^{N-1}
\]
\[
\Leftrightarrow |\partial \Omega|^{-1} \left(\int_{\partial \Omega} |u|^t \, d\mathcal{H}^{N-1} \right) \log \left(\int_{\partial \Omega} |u|^t \, d\mathcal{H}^{N-1} \right)
\]
\[
\leq |\partial \Omega|^{-1} \int_{\partial \Omega} |u|^t \log |u|^t \, d\mathcal{H}^{N-1}
\]
\[
\Leftrightarrow \int_{\partial \Omega} |u|^t \log |u|^t \, d\mathcal{H}^{N-1} \leq \log \left(\frac{|\partial \Omega|}{\|u\|_{L^t(\partial \Omega)}^t} \right) \geq 0
\]

By the equality cases for Jensen’s inequality (see [12]), if the equality holds for the above inequality, then \(|u|^t \) must be a constant, which is excluded. Thus the equalities do not hold and \(K(t, u) > 0 \).

\[\square\]

From Lemma 2.2, we easily see the next corollary:

Corollary 2.3. The function \(q \in [1, p_\ast] \mapsto |\partial \Omega|^{p/q} S_q \) is strictly monotone decreasing. In particular, The function \(q \in [1, p_\ast] \mapsto S_q \) is strictly monotone decreasing if \(|\partial \Omega| \leq 1 \).

Proof. Let \(1 \leq q_1 < q_2 \leq p_\ast \) and let \(u_{q_1} \in W^{1, p}(\Omega) \setminus W^{1, p}_0(\Omega) \) denote an extremal function for \(S_{q_1} \). Then the regularity theorem assures that \(u_{q_1} \in C^\alpha(\overline{\Omega}) \) and \(u_{q_1} \) must not be a constant. It follows from Lemma 2.2 that
\[
|\partial \Omega|^{p/q_1} S_{q_1} = |\partial \Omega|^{p/q_2} R_{q_2}(u_{q_1}) \exp \left(p \int_{q_1}^{q_2} \frac{K(t, u_{q_1})}{t^2} \, dt \right)
\]
\[
> |\partial \Omega|^{p/q_2} R_{q_2}(u_{q_1})
\]
\[
\geq |\partial \Omega|^{p/q_2} S_{q_2}.
\]

The latter claim is trivial. \[\square\]

Let \(I \subset \mathbb{R} \) be an interval. In what follows, a finite set \(P = \{x_0, \cdots, x_n\} \subset I, x_0 < x_1 < \cdots < x_n \), is called a partition of \(I \). Following [10] Chapter 2, we say that a function \(f : I \to \mathbb{R} \) has bounded pointwise variation if
\[
\sup \left\{ \sum_{i=1}^{n} |f(x_i) - f(x_{i-1})| \right\} < \infty
\]
where the supremum is taken over all partitions \(P = \{x_0, \cdots, x_n\} \) of \(I, n \in \mathbb{N} \). The space of all functions \(f : I \to \mathbb{R} \) with bounded pointwise variation is denoted by \(BPV(I) \).

Corollary 2.4. The function \(q \mapsto S_q \) is in \(BPV(I) \) where \(I = [1, p_\ast] \).
Proof. Since a bounded monotone function on I is in $BPV(I)$ ([10] Proposition 2.10), and the product of a bounded function and a function in $BPV(I)$ is again in $BPV(I)$, we have $S_q = (|\partial \Omega|^{|p/q}S_q)|\partial \Omega|^{-p/q}$ is in $BPV(I)$.

3. SOME ESTIMATES FOR THE EXTREMALS

First by utilizing level set techniques, we derive some pointwise estimates for any positive solution to (1.3).

Lemma 3.1. Let u be a positive weak solution to (1.3) with $1 \leq q < p_*$. Then for any $\sigma \geq 1$, it holds
\begin{equation}
\left(\frac{1}{2}\right)^{\sigma+N-1} C_q \|u\|_{L^\infty(\partial\Omega)}^{-(N-1)(p-q)+(p-1)\sigma} \leq \|u\|^{\sigma}_{L^p(\partial\Omega)}
\end{equation}
where
\[C_q = \left(\frac{S_{p_*}}{S_q}\right)^{\frac{N-p}{p-1}} N^{-\frac{N-1}{p-1}}. \]

Proof. As $u > 0$ solves (1.3) weakly, it holds
\begin{equation}
- \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla \phi dx + S_q \int_{\partial\Omega} u^{p-1} \phi \, dH^{N-1} = \int_{\Omega} u^{p-1} \phi dx
\end{equation}
for all $\phi \in W^{1,p}(\Omega)$.

By a regularity theory (see [15], [17]), we may assume $u \in C^\alpha(\bar{\Omega})$ for some $0 < \alpha < 1$. Fix $t \in \mathbb{R}$ such that $0 < t < \|u\|_{L^\infty(\partial\Omega)}$. Put
\[A_t = \{ x \in \Omega \mid u(x) > t \}, \quad a_t = \{ x \in \partial\Omega \mid u(x) > t \}. \]
We take the function
\[\phi = (u - t)^+ \in W^{1,p}(\Omega), \quad \phi = \begin{cases} u - t & \text{in } A_t \cup a_t, \\ 0 & \text{otherwise} \end{cases} \]
in (3.2), then we have
\begin{equation}
- \int_{A_t} |\nabla u|^p dx + S_q \int_{a_t} u^{p-1}(u - t) \, dH^{N-1} = \int_{A_t} u^{p-1}(u - t) dx.
\end{equation}
Rewriting this, we have
\begin{equation}
\int_{A_t} (|\nabla u|^p + u^{p-1}(u - t)) \, dx = S_q \int_{a_t} u^{p-1}(u - t) \, dH^{N-1}
\leq S_q \|u\|_{L^\infty(\partial\Omega)}^{\sigma-1}(\|u\|_{L^\infty(\partial\Omega)} - t)|a_t|.
\end{equation}
Now, put
\[g(t) = \int_{\partial\Omega} (u - t)^+ \, dH^{N-1} = \int_{a_t} (u - t) \, dH^{N-1}. \]
and recall the layer cake representation: Let \(v \geq 0 \) be a \(\mathcal{H}^{N-1} \)-measurable function on \(\partial \Omega \). Then for any \(\sigma \geq 1 \), it holds

\[
\int_{\partial \Omega} v^\sigma \, d\mathcal{H}^{N-1} = \sigma \int_0^\infty s^{\sigma-1} \mathcal{H}^{N-1}(\{ x \in \partial \Omega \mid v(x) > s \}) \, ds.
\]

Thus, we see

\[
g(t) = \int_0^\infty \mathcal{H}^{N-1}(\{ x \in \partial \Omega \mid (u + t)^+ > s \}) \, ds = \int_t^\infty |a_s| \, ds,
\]

here the last equality follows from a change of variables \(t + s \mapsto s \). This implies \(g'(t) = -|a_t| \). By Hölder’s inequality, (1.1) and (3.3), we have

\[
g(t)^p = \left(\int_{\partial \Omega} (u + t)^+ \, d\mathcal{H}^{N-1} \right)^p \\
\leq \left(\int_{\partial \Omega} \{(u + t)^+\}^{p*} \, d\mathcal{H}^{N-1} \right)^{\frac{p}{p*}} |a_t|^{p(1 - \frac{1}{p})} \\
\leq \frac{1}{S_{p*}} |a_t|^{p(1 - \frac{1}{p})} \int_{A_u} (|\nabla (u + t)^+|^p + \{(u + t)^+\}^p) \, dx \\
= \frac{1}{S_{p*}} |a_t|^{p(1 - \frac{1}{p})} \int_{A_u} (|\nabla u|^p + (u + t)^{p-1}(u - t)) \, dx \\
\leq \frac{1}{S_{p*}} |a_t|^{p(1 - \frac{1}{p})} \int_{A_u} (|\nabla u|^p + u^{p-1}(u - t)) \, dx \\
\leq \frac{S_q}{S_{p*}} \|u\|_{L^\infty(\partial \Omega)}^{-1} \|u\|_{L^\infty(\partial \Omega)} (\|u\|_{L^\infty(\partial \Omega)} - t) |a_t|^{p(1 - \frac{1}{p})+1} \\
= \frac{S_q}{S_{p*}} \|u\|_{L^\infty(\partial \Omega)}^{-1} \|u\|_{L^\infty(\partial \Omega)} (\|u\|_{L^\infty(\partial \Omega)} - t) (-g'(t)) \frac{N-1}{p-1},
\]

which results in

\[
\left[\frac{S_q}{S_{p*}} \|u\|_{L^\infty(\partial \Omega)}^{-1} (\|u\|_{L^\infty(\partial \Omega)} - t) \right]^{-\frac{N-1}{p-1}} \leq -g(t) \frac{N-1}{p-1} g'(t). \tag{3.4}
\]

Changing a variable from \(t \) to \(s \), and integrating the both sides of (3.4) on \([t, \|u\|_{L^\infty(\partial \Omega)}] \), we get

\[
C_q \|u\|_{L^\infty(\partial \Omega)}^{-\frac{(N-1)(q-1)}{p-1}} (\|u\|_{L^\infty(\partial \Omega)} - t)^N \leq g(t). \tag{3.5}
\]

Since \(g(t) \leq (\|u\|_{L^\infty(\partial \Omega)} - t) |a_t| \), we have from (3.5) that

\[
C_q \|u\|_{L^\infty(\partial \Omega)}^{-\frac{(N-1)(q-1)}{p-1}} (\|u\|_{L^\infty(\partial \Omega)} - t)^{N-1} \leq |a_t|. \tag{3.6}
\]
We multiply $\sigma t^{\sigma-1}$ to the both sides of (3.6) and integrate them on $[0, \|u\|_{L^\infty(\partial\Omega)}]$. Then the right hand side becomes $\|u\|_{L^p(\partial\Omega)}$ by layer cake representation. By changing variables $t \mapsto \|u\|_{L^\infty(\partial\Omega)},$ we observe

$$(LHS) = C_q \|u\|_{L^\infty(\partial\Omega)}^{\frac{(N-1)(q-1)}{p-1}} \sigma \int_0^{\|u\|_{L^\infty(\partial\Omega)}} t^{\sigma-1}(\|u\|_{L^\infty(\partial\Omega)} - t)^{N-1}dt$$

$$= C_q \|u\|_{L^\infty(\partial\Omega)}^{\frac{(N-1)(q-1)}{p-1}} \sigma \int_0^1 s^{\sigma-1}(1-s)^N ds$$

$$\geq C_q \|u\|_{L^\infty(\partial\Omega)}^{\frac{(N-1)(q-1)}{p-1}} \sigma \int_0^\frac{1}{2} s^{\sigma-1} 2^{-(N-1)} ds$$

$$= \left(\frac{1}{2}\right)^{\sigma+N-1} C_q \|u\|_{L^\infty(\partial\Omega)}^{\frac{(N-1)(q-1)}{p-1}}.$$

Thus we get the conclusion. \hfill \Box

By the Lemma 3.1, we have the uniform boundedness of the extremizers for the subcritical range.

Lemma 3.2. Let $\varepsilon > 0$ sufficiently small and let u_ε be a positive $L^q(\partial\Omega)$-normalized extremal for S_q where $1 \leq q \leq p_* - \varepsilon$. Then we have

$$|\partial\Omega|^{-1/q} \leq \|u_\varepsilon\|_{L^\infty(\partial\Omega)} \leq C_\varepsilon$$

where $C_\varepsilon > 0$ is a constant which depends only on $\varepsilon > 0$.

Proof. Hölder’s inequality and the fact $\|u_\varepsilon\|_{L^q(\partial\Omega)} = 1$ yield the first inequality.

Next, suppose $1 \leq q \leq p$. Taking $\sigma = 1$ in (3.1), we have

$$\left(\frac{1}{2}\right)^N C_q \|u\|_{L^\infty(\partial\Omega)}^{\frac{(N-1)(q-1)+(p-1)}{p-1}} \leq \|u\|_{L^1(\partial\Omega)} \leq |\partial\Omega|^{1-1/q} \|u_\varepsilon\|_{L^q(\partial\Omega)} = |\partial\Omega|^{1-1/q}.$$

Thus

$$\|u_\varepsilon\|_{L^\infty(\partial\Omega)} \leq \max_{1 \leq q \leq p} \left(\frac{2^N |\partial\Omega|^{1-1/q}}{C_q} \right)^{\frac{p-1}{(N-1)(q-1)+(p-1)}} =: A.$$

If $p \leq q \leq p_* - \varepsilon$, then take $\sigma = q$ in (3.1) to obtain

$$\left(\frac{1}{2}\right)^{q+N-1} C_q \|u\|_{L^\infty(\partial\Omega)}^{\frac{(N-1)(q-1)+(p-1)q}{p-1}} \leq \|u\|_{L^q(\partial\Omega)}^q = 1.$$

Thus

$$\|u_\varepsilon\|_{L^\infty(\partial\Omega)} \leq \max_{p \leq q \leq p_* - \varepsilon} \left(\frac{2^{q+N}+1}{C_q} \right)^{\frac{(N-1)(q-1)+(p-1)q}{(p-1)}} =: B_\varepsilon.$$
since \((N-1)(p-q) + (p-1)q = (N-p)(p_* - q)\). Put \(C_\varepsilon = \max\{A, B_\varepsilon\}\).

By combining Lemma 3.2 and Proposition 2.7 in [7], we have the following fact:

Proposition 3.3. (Bonder-Rossi [7] Proposition 2.8.) The function \(q \in [1, p_*] \mapsto S_q\) is continuous.

For the proof, we refer the readers to [7].

4. Local Lipschitz and absolute continuity

In this section, by combining the arguments in [3] and [2], we prove the local Lipschitz continuity of \(S_q\) on \((1, p_*)\) and the absolute continuity of \(S_q\) on the whole closed interval \([1, p_*]\).

Theorem 4.1. The function \(q \mapsto S_q\) is locally Lipschitz continuous on the interval \((1, p_*)\).

Proof. Fix \(u \in W^{1,p}(\Omega) \setminus W_0^{1,p}(\Omega)\). Since \(x^t(\log |x|)^2 \leq (te)^{-2}\) for \(0 < x \leq 1\) and \(t > 0\), we see for \(1 \leq t \leq q_0 < p_*\),

\[
|u|^t (\log |u|)^2 = (\chi_{|u| \leq 1} + \chi_{|u| > 1}) |u|^t \log |u|^2 \\
= \chi_{|u| \leq 1} |u|^t \log |u|^2 + \chi_{|u| > 1} |u|^t \log |u|^2 \\
\leq \chi_{|u| \leq 1} (te)^{-2} + \chi_{|u| > 1} \frac{1}{p_* - t} |u|^{p_*} \\
\leq e^{-2} + \frac{1}{p_* - q_0} |u|^{p_*} \in L^1(\partial \Omega).
\]

Since \(q_0\) can be chosen arbitrarily close to \(p_*\), we have \(\|u\|_{L^q(\partial \Omega)}^q\) is at least twice differentiable and

\[
\frac{d^2}{dq^2}\|u\|_{L^q(\partial \Omega)}^q = \int_\Omega |u|^q (\log |u|)^2 \, dx \geq 0
\]

for any \(q \in (1, p_*)\) by dominated convergence theorem. Thus \(q \in (1, p_*) \mapsto \|u\|_{L^q(\partial \Omega)}^q\) is a convex function. Now, set

\[S = \{ u \in W^{1,p}(\Omega) \setminus W_0^{1,p}(\Omega) \mid \|u\|_{W^{1,p}(\Omega)} = 1 \}\]

and define

\[h(q) = \sup_{u \in S} \|u\|_{L^q(\partial \Omega)}^q.\]

Since \(h\) is a supremum of convex functions \(\|u\|_{L^q(\partial \Omega)}^q\), it is also convex and locally Lipschitz continuous on \((1, p_*)\) (see [5] pp.236), which yields
that \(|h(q)| < \infty\) and \(|h'(q)| < \infty\) a.e. in \(q \in (1, p_*)\). Note that \(S_q = h(q)^{-\frac{1}{q}} = e^{-\frac{1}{q} \log h(q)}\), so

\[
S'_q = S_q \left(-\frac{1}{q} \log h(q)\right).
\]

It is easy to see that \(h(q)\) is bounded from above and below by a positive constant on \(q \in (1, p_*)\). Thus

\[
|S'_q| = S_q \left|\left(\frac{1}{q} \log h(q)\right)\right|
\leq S_q \left(\frac{1}{q^2} |\log h(q)| + \frac{1}{q} \left|\frac{h'(q)}{h(q)}\right|\right) < \infty \quad \text{a.e. in } (1, p_*)
\]

From this, we have the conclusion.

Theorem 4.2. The function \(q \mapsto S_q\) is absolutely continuous on the whole interval \([1, p_*]\).

Proof. Since we know that \(S_q\) is of bounded pointwise variation on \([1, p_*]\) by Corollary 2.4, we have

\[
S_q = S_1 = \int_1^q S'_t \, dt + S_C(q) + S_J(q)
\]

where \(S_C\) is the Cantor part of \(S_q\) and \(S_J\) is the jump part of \(S_q\), see [10] Theorem 3.73. Then the claim that \(S_q\) is absolutely continuous on \([1, p_*]\) is equivalent to \(S_C \equiv S_J \equiv 0\). Since \(S_q\) is continuous on \([1, p_*]\) by Proposition 3.3, we see that the discontinuous part \(S_J \equiv 0\). The Cantor part of \(S_q\), that is \(S_C\), is continuous, differentiable a.e., and \(S'_C(q) = 0\) a.e. \(q \in [1, p_*]\). Since \(S_q\) is Lipschitz continuous on any interval of the form \([1, p_* - \varepsilon]\), \(\varepsilon > 0\), it is absolutely continuous on the same interval, thus the support of \(S_C\) must be concentrated on \(\{p_*\}\). Therefore \(S_C \equiv 0\) since \(S_C\) is continuous at \(p_*\).

5. A characterization of differentiability

Let us define the functional \(I_q : (W^{1,p}(\Omega) \setminus W^{1,p}_0(\Omega)) \to \mathbb{R}\) as

\[
I_q(u) = \int_{\partial \Omega} |u|^q \log |u| \, dH^{N-1}
\]

and the set of \(L^q(\partial \Omega)\)-normalized extremal functions

\[
E_q = \{u \in W^{1,p}(\Omega) \setminus W^{1,p}_0(\Omega) \mid \|u\|_{L^q(\partial \Omega)} = 1, \|u\|^p_{W^{1,p}(\Omega)} = S_q\}
\]

for \(q \in [1, p_*]\).
Theorem 5.1. For each \(q \in [1, p_*) \) let \(u_q \) be arbitrarily chosen in \(E_q \). Then we have
\[
\limsup_{t \to q^+0} \frac{S_q - S_t}{q - t} \leq -\frac{p}{q} I_q(u_q) S_q \leq \liminf_{t \to q^-0} \frac{S_q - S_t}{q - t}.
\]
Therefore for \(q \in (1, p_*) \) on which \(S'_q \) exists, it holds
\[
S'_q + \frac{p}{q} I_q(u_q) S_q = 0.
\]
(5.1)

Proof. Take \(q \in (1, p_*) \) and let \(u_q \) an extremal for \(S_q \) in \(E_q \). Put
\[
J(t) = \int_{\partial \Omega} |u_q|^t \, d\mathcal{H}^{N-1}.
\]
Then we see \(J(q) = 1 \) and \(J'(t) \bigg|_{t=q} = \int_{\partial \Omega} |u_q|^q \log |u_q| \, d\mathcal{H}^{N-1} = I_q(u_q) \).
Since
\[
(J(t)^{p/t})' = J(t)^{p/t} \left(-\frac{p}{t^2} \log J(t) + \frac{p}{t} \frac{J'(t)}{J(t)} \right),
\]
we see
\[
\frac{d}{dt} \bigg|_{t=q} (J(t)^{p/t}) = \frac{p}{q} J'(t) \bigg|_{t=q} = \frac{p}{q} I_q(u_q).
\]
Also testing \(S_t \) by \(u_q \), we see
\[
S_q = \|u_q\|_{W^{1,p} (\Omega)}^{p} \geq S_t \left(\int_{\partial \Omega} |u_q|^t \, d\mathcal{H}^{N-1} \right)^{p/t} = S_t J(t)^{p/t}.
\]
Thus L’Hopital’s rule and the continuity of \(S_q \) imply that
\[
\limsup_{t \to q^+0} \frac{S_q - S_t}{q - t} \leq \limsup_{t \to q^+0} S_t \frac{J(t)^{p/t} - 1}{q - t}
= -S_q \lim_{t \to q^-0} \frac{d}{dt} \bigg|_{t=q} (J(t)^{p/t})
= -\frac{p}{q} I_q(u_q) S_q.
\]
The similar argument yields
\[
\liminf_{t \to q^-0} \frac{S_q - S_t}{q - t} \geq -\frac{p}{q} I_q(u_q) S_q.
\]

If \(S'_q \) exists for \(q \), the value \(S'_q \) is independent of the choice of \(u_q \in E_q \). Therefore, the above theorem implies that the value \(I_q(u_q) \) is also independent of the choice of \(u_q \in E_q \), which proves the next corollary. Indeed, \(I_q(u_q) = -\frac{q}{p} S'_q \) for any choice of \(u_q \) in \(E_q \).
Corollary 5.2. Let \(q \in (1, p_*) \) be such that \(S'_q \) exists. Then the functional \(I_q \) takes a constant value on \(E_q \); \(I_q(u_1) = I_q(u_2) \) for any \(u_1, u_2 \in E_q \).

Now, let us define \(f \) as

\[
 f(q) := \begin{cases}
 \frac{p}{q} I_q(u_q) & \text{when } S'_q \text{ exists,} \\
 0 & \text{when } S'_q \text{ does not exist.}
 \end{cases} \tag{5.2}
\]

\(f \) is well-defined on \([1, p_*]\) by Corollary 5.2 and \(f(q) = \frac{S'_q}{S_q} \) when \(S'_q \) exists by (5.1).

We have a representation formula for \(S_q \) by using \(f \) in (5.2).

Theorem 5.3. It holds

\[
 S_q = S_1 \exp \left(- \int_1^q f(t) \, dt \right) \tag{5.3}
\]

for \(1 \leq q \leq p_* \).

Proof. Since the function \(q \mapsto S_q \) is absolutely continuous on \([1, p_*]\) by Theorem 4.2, we have also the function \([1, p_*] \ni q \mapsto \log S_q \) is absolutely continuous. Thus by (5.1),

\[
 \log S_q - \log S_1 = \int_1^q \left(\frac{d}{dt} \log S_t \right) dt = \int_1^q \frac{S'_t}{S_t} dt = - \int_1^q f(t) dt
\]

for all \(q \in [1, p_*] \), which yields the result. \(\square \)

Theorem 5.3 implies also

\[
 S_q = S_1 \exp \left(- \int_1^{p_*} f(t) dt + \int_q^{p_*} f(t) dt \right) \\
 = S_1 \exp \left(- \int_1^{p_*} f(t) dt \right) \exp \left(\int_q^{p_*} f(t) dt \right) = S_{p_*} \exp \left(\int_q^{p_*} f(t) dt \right).
\]

As an immediate corollary of Theorem 5.3, we have the following:

Corollary 5.4. Let \(q \in [1, p_*) \) be a point of continuity of \(f \). Then \(\frac{d}{dq} S_q \) exists and

\[
 S'_q = -S_q f(q)
\]

holds.

Proposition 5.5. Suppose \(I_q \) is constant on \(E_q \) for some \(q \in [1, p_*) \). Then \(f \) is continuous on such \(q \). Especially \(f \) is continuous on \(q \) where \(S'_q \) exists.
Proof. Take $q \in [1, p_*)$ and a sequence $q_n \to q$ as $n \to \infty$. Since $q \mapsto S_q$ is continuous, we see $S_{q_n} \to S_q$. Also by elliptic regularity and the fact that $\|u_{q_n}\|_{L^\infty(\Omega)}$ is uniformly bounded in n, we have a subsequence (again denoted by q_n) and $u \in E_q$ such that $u_{q_n} \to u$ in $C^1(\overline{\Omega})$ and $\|u\|_{L^q(\partial\Omega)} = 1$. Therefore, we have

$$f(q_n) = \frac{p}{q_n} \int_{\partial\Omega} |u_{q_n}|^{q_n} \log |u_{q_n}| \, d\mathcal{H}^{N-1} \to \frac{p}{q} \int_{\partial\Omega} |u|^q \log |u| \, d\mathcal{H}^{N-1}$$

$$= \frac{p}{q} I_q(u) = \frac{p}{q} I_q(u_{q_n}) = f(q),$$

since $I_q(u) = I_q(u_{q_n})$ for $u, u_{q_n} \in E_q$. \hfill \Box

Now, we obtain a characterization of the differentiability of the function $q \mapsto S_q$.

Theorem 5.6. The following 3 assertions on a point $q \in [1, p_*)$ are equivalent:

(i) S_q' exists.

(ii) I_q is constant on E_q.

(iii) The function $t \in [1, p_*] \mapsto I_t(u_t)$ is continuous at $t = q$.

Proof. (i) \implies (ii): Corollary 5.2.

(ii) \implies (iii): Since the continuity of $f(t)$ at $t = q$ is equivalent to the continuity of $t \mapsto I_t(u_t)$ is continuous at $t = q$, the proof follows from Proposition 5.5.

(iii) \implies (i): Corollary 5.4. \hfill \Box

It is known that S_q is simple when $q = p$ and $E_p = \{ \pm u_p \}$ for some $u_p \in E_p$ ([13]). Thus we see $S_q' = \frac{d}{dq} S_q|_{q=p}$ exists and $t \mapsto I_t(u_t)$ is continuous at $t = p$. Also if Ω is a ball with sufficiently small radius and $p = 2$, then S_q is simple for any $1 \leq q < 2_* = \frac{2(N-1)}{N-2}$ and the unique normalized extremizer for S_q is radial (see [6] Theorem 2.1). Thus $q \mapsto S_q$ is differentiable on $1 \leq q < 2_*$ on small balls. Moreover the abstract approach using a variational principle in [9] could be applied to obtain the uniqueness of the positive solution of

$$\begin{cases}
\Delta_p u = |u|^{p-2} u & \text{in } \Omega, \\
|\nabla u|^{p-2} \frac{\partial u}{\partial \nu} = \lambda |u|^q u & \text{on } \partial\Omega,
\end{cases}$$

where $\lambda > 0$, $1 < p < N$ and $1 \leq q < p$. If this is the case, then we see that the function $q \mapsto S_q$ is differentiable for $1 \leq q < p$ on any bounded domain. However, the simplicity of S_q for $p < q < p_*$ on a general bounded smooth domain is unknown.
Acknowledgments.

This work was supported by the Research Institute of Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University, and partly by Osaka City University Advanced Mathematical Institute (MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics).

The second author (F.T.) was supported by JSPS Grant-in-Aid for Scientific Research (B), No.19H01800.

References

