
H(2)-UNKNOTTING NUMBER OF A KNOT

TAIZO KANENOBU AND YASUYUKI MIYAZAWA

Abstract. An H(2)-move is a local move of a knot which is performed
by adding a half-twisted band. It is known an H(2)-move is an unknot-
ting operation. We define the H(2)-unknottiing number of a knot K to
be the minimum number of H(2)-moves needed to transform K into a
trivial knot. We give several methods to estimate the H(2)-unknottiing
number of a knot. Then we give tables of H(2)-unknottiing numbers of
knots with up to 9 crossings.

1. Introduction

An H(2)-move is a change in a knot projection as shown in Fig. 1(a); note
that both diagrams are taken to represent single component knots, and so the
strings are connected as shown in dotted arcs. Since we obtain the diagram
by adding a twisted band to each of these knots as shown in Fig. 1(b), it
can be said that each of the knots is obtained from the other by adding a
twisted band. It is easy to see that an H(2)-move is an unknotting operation;
see [9, Theorem 1]. We call the minimum number of H(2)-moves needed to
transform a knot K into another knot K ′ the H(2)-Gordian distance from
K to K ′, denoted by d2(K, K ′). In particular, the H(2)-unknottiing number
of K is the H(2)-Gordian distance from K to a trivial knot, denoted by
u2(K).

(a) (b)

Figure 1. H(2)-move

In this paper, we give several criteria on the H(2)-unknottiing number
and then we give tables of the H(2)-unknottiing numbers of knots with up
to 9 crossings.
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Lickorish [16] was the first to consider an H(2)-unknotting number one
knot; he has given a criterion for the H(2)-unknottiing number one knot
using the linking form on the first homology group of the double cover of
S3 branched along the knot. As an application he showed that the H(2)-
unknottiing number of the figure-eight knot is two, which had been conjec-
tured by Riley. Similarly, he showed that among the knots in the prime knot
table with at most seven crossings 41, 63, 72, 75 and 77 are the only knots
with H(2)-unknottiing number greater than one.

Then, Hoste, Nakanishi and Taniyama [9] have given an inequality es-
timating a lower bound of the H(2)-unknottiing number, which uses the
minimum number of generators of the first homology group of the cyclic
branched covering space of the knot (Theorem 2.1); they studied an H(2)-
move in a more general context. Besides, Yasuhara [36] has given a cri-
terion on an H(2)-unknotting number one knot using the signature and
the Arf invariant as an application of the theorem on a surface in a 4-
dimensional manifold (Theorem 4.5). He mentions that this criterion proves
u2(41), u2(31#31) > 1. We prove Theorem 4.5 from 3-dimensional point of
view using polynomial invariants. This leads to a further criterion for the
H(2)-unknotting number one knot which does not cover Theorem 4.5 (Theo-
rem 5.7); however, it requires that the determinant ≡ 0 (mod 3). The proof
uses some relations among the Jones polynomial, the signature, and the Con-
way polynomial in [21], which is based on the Casson invariant of the double
branched covering space of a knot. Furthermore, using the Jones-Rong value
[10, 32] of the Brandt-Lickorish-Millett-Ho Q polynomial [2, 8] we introduce
another method to calculate the H(2)-unknotting number (Theorem 8.1),
which is motivated by Stoimenow [33], where he calculated the unknotting
number.

On the other hand, Nakajima [26] has listed the H(2)-unknotting numbers
of prime knots with up to 10 crossings. He uses the above-mentioned criteria
due to Hoste et al. and Yasuhara to give a lower bound and a relation with
the usual unknotting number (Theorem 3.1) to give an upper bound. In this
paper, we list the H(2)-unknotting numbers of knots with up to 9 crossings
including composite knots (Tables 4–6), which improves Nakajima’s table.

This paper is organized as follows: In Sec. 2, we review a criterion for
the H(2)-unknotting number using the first homology group of the cyclic
branched covering space, and give the definitions and some properties of
the polynomial invariants and the signature. In Sec. 3, we give a relation
between the H(2)-unknotting number and usual unknotting number due to
Nakajima [26], which gives an upper bound of the H(2)-unknotting number.
In Secs. 4–7, we give several criteria for the H(2)-unknotting number one
knot using the signature, Arf invariant, and some values about the Jones
polynomial, which is summarized in Table 2. In Sec. 8, we give a criterion for
the H(2)-Gordian distance using the Q polynomial. In Sec. 9, we give tables
of the H(2)-unknotting numbers of knots with up to 9 crossings including
composite knots.
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Notation. For knots with up to 10 crossings we use Rolfsen notation [31]
with the correction by Perko [29]; 10161 = 10162.

2. Preliminaries

In this section, first we review a criterion on the H(2)-unknotting number
using the first homology group of the cyclic branched covering space, and
then we give the definitions and some properties of the polynomial invariants
and the signature.

Let Σ(K) be the double branched cover of S3 branched over a knot K and
det(K) the determinant of K. Then in the criterion [16, Theorem 1] on the
H(2)-unknotting number one knot using the linking form on H1(Σ(K);Z)
Lickorish has shown that H1(Σ(K);Z) is cyclic of order det(K). Moreover,
Hoste et al. [9, Theorem 4] have shown:

Theorem 2.1. Let µ(K, r) be the minimum number of generators of the first
integral homology group of the r-fold cyclic branched cover of S3 branched
over a knot K. Then

µ(K, r)/(r − 1) ≤ u2(K). (1)

Next, we review the polynomial invariants. The Conway polynomial
∇L(z) ∈ Z[z] [4], the Jones polynomial V (L; t) ∈ Z[t±1/2] [11], and the
HOMFLYPT polynomial P (L; v, z) ∈ Z[v±1, z±1] [6, 11, 30] are invariants
of the isotopy type of an oriented link L, which are defined by the following
formulas:

∇(U ; z) = 1; (2)

∇(L+; z)−∇(L−; z) = z∇(L0; z); (3)

V (U ; t) = 1; (4)

t−1V (L+; t)− tV (L−; t) =
(
t1/2 − t−1/2

)
V (L0; t); (5)

P (U ; v, z) = 1; (6)

v−1P (L+; v, z)− vP (L−; v, z) = zP (L0; v, z), (7)

where U is the unknot and L+, L−, L0 are three links that are identical
except near one point where they are as in Fig. 2; we call (L+, L−, L0) a
skein triple.

DDD D

CCC

LLL L

L                              L                             L                              L

L+ L− L0

Figure 2. A skein triple.
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By [18, Proposition 22], the HOMFLYPT polynomial of an r-component
link L is of the form

P (L; v, z) =
∑
q≥0

P2q−r+1(L; v)z2q−r+1, (8)

where each P2q−r+1(L; v) ∈ Z[v±1] is called the coefficient polynomial. If
0 ≤ q ≤ r − 2, then

P2q−r+1(L; 1) = 0. (9)

In fact, the Conway polynomial is obtained from the HOMFLYPT polyno-
mial by

∇L(z) = P (L; 1, z), (10)

which is of the form

∇L(z) =
∑
q≥0

a2q+r−1(L)z2q+r−1, (11)

where a2q+r−1(L) = P2q+r−1(L; 1).
In particular, if L+, L− are knots and L0 is a 2-component link, then

Eq. (3) implies

a2(L+)− a2(L−) = lk(L0), (12)

since a1(L0) = lk(L0), the linking number of L0; cf. [14, Proposition 3.12].
Also, the Arf invariant of a knot K, Arf(K) ∈ Z2, is given by

Arf(K) ≡ a2(K) (mod 2). (13)

In addition, the Jones polynomial is obtained from the HOMFLYPT poly-
nomial by

V (L; t) = P (L; t, t1/2 − t−1/2). (14)

Lastly, we give some properties of the signature. We denote the signature
and the nullity of an oriented link L by σ(L) and n(L), respectively. The
following is due to Giller [7]; cf. [25, Theorem 6.4.7]. Note that the signature
of a knot is an even integer.

Proposition 2.2. The signature of a knot can be determined by the follow-
ing three axioms.

(i) For the trivial knot U , σ(U) = 0.
(ii) If (L+, L−, L0) is a skein triple with L± knots, then

σ(L−)− 2 ≤ σ(L+) ≤ σ(L−). (15)

(iii) Let signV (K;−1) = V (K;−1)/|V (K;−1)|. Then

(−1)σ(K)/2 = signV (K;−1). (16)

For the signature and nullity, Murasugi has shown the following [23,
Lemma 7.1].
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Proposition 2.3. For a skein triple (L+, L−, L0), we have

|σ(L+)− σ(L0)|+ |n(L+)− n(L0)| = 1. (17)

Murasugi has shown that for a link L, σ(L) + lk(L) is an invariant of an
unoriented link type [24, Theorem 1], which implies the following proposi-
tion.

Proposition 2.4. Let L be an oriented 2-component link and L′ a link
obtained from L by reversing the orientation of one component. Then

σ(L′) = σ(L) + 2lk(L). (18)

3. Relation to the usual unknotting number

Let K be a knot. We denote by u(K) the (usual) unknotting number
of K. Then K has a diagram such that changing u(K) crossings in this
diagram turns K into the trivial knot. Let u+ and u− be the numbers of
positive and negative crossings in these crossings; so u(K) = u+ +u−. Then
Nakajima has proved the following [26, Theorem 3.2.3], which is useful to
decide the H(2)-unknotting number.

Theorem 3.1.

u2(K) ≤ u(K) + 1. (19)

Moreover, if both u+ and u− are even, then

u2(K) ≤ u(K). (20)

Proof. Let K be a knot with diagram as above, and u = u(K), and p = u+,
0 ≤ p ≤ u. Then we may deform it into a diagram having a (u + 1)-string
tangle as shown in Fig. 3 so that K can be unknotted by changing the posi-
tive crossings c1, . . . , cp, and negative crossings cp+1, . . . , cu simultaneously;
cf. [34, Lemma 1]. Then the results follow from Lemma 3.2 below. �

c1 cp cp+1 cu

Figure 3. A (u + 1)-string tangle.

In order to prove this theorem, we consider the five moves as shown in
Fig. 4; the moves M+ and M− are equivalent to the crossing changes.

Then we have:

Lemma 3.2. (i) Each of the moves M+ and M− is realized by two H(2)-
moves.

(ii) Each of the moves M++ and M−− is realized by two H(2)-moves.
(iii) The move M+− is realized by three H(2)-moves.
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M+ M−

M++ M−− M+−

Figure 4. The moves M+, M−, M++, M−−, M+−.

Proof. Fig. 5 shows that a single M+-move is realized by two H(2)-moves;
cf. the proof of Lemma 1 in [9]. Fig. 6 shows that a single M++-move is
realized by two H(2)-moves. Fig. 7 shows that a single M+−-move is realized
by three H(2)-moves. For other moves, we can show similarly. �

Figure 5. The move M+.

Remark 3.1. In [9, Theorem 2], the formulas u2(K) ≤ 2u(K) and u2(K) ≤
cr(K)−2 are given, where cr(K) is the minimum crossing number. However,
Eq. (20) is sharper than these formulas. In fact, u(K) ≤ (cr(K) − 1)/2;
cf. [27, Eq. (0.1)].
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Figure 6. The move M++.

Figure 7. The move M+−.

4. H(2)-unknotting number one knot with signature ≡ 0 (mod 4)

The main purpose of this section is to prove Theorem 4.5, a criterion for
the H(2)-unknotting number one knot using the signature and the Arf in-
variant. This theorem follows from Proposition 5.1 in Yasuhara [36], which is
given as an application of the main theorem on a surface in a 4-dimensional
manifold. However, we prove from 3-dimensional point of view using poly-
nomial invariants, which will continue to further criteria in Secs. 5–7.
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Let L+, L−, L0, L∞ be oriented four links that are identical except within
a ball B where they are as in Fig. 8. We suppose that L+, L− are knots
and L0 is a 2-component link; then L∞ is a knot. Note that outside B the
orientation of one of the strands of L∞ is the reverse of that of the three
links L+, L−, L0. In this situation, we call (L+, L−, L0, L∞) an oriented
skein quadruple.

DDD D

CCC

LLL L

L                              L                             L                              L

L+ L− L0 L∞

Figure 8. An oriented skein quadruple.

Lemma 4.1. If K is an oriented knot with u2(K) = 1, then there exists
an oriented skein quadruple (L+, L−, L0,K) with L− a trivial knot. Hence
u(L+) = 1.

Proof. Since a trivial knot U and K are related by an H(2)-move, we can
assume that K and U are identical except in a ball B where they are as in
Fig. 9; the orientation of one of the strands of U outside B is the reverse of
that of K. Consider an oriented skein quadruple (L+, L−, L0, L∞) which are
obtained by placing each of the tangles shown in Fig. 9 inside B and using
the same configuration as before in S3 \B. Since L− and L∞ are isotopic to
U and K, respectively, this oriented skein quadruple is the desired one. �

U K L+ L− L0 L∞

Figure 9

The following is due to Birman and Kanenobu; see Corollary in [1].

Proposition 4.2. Let (L+, L−, L0, L∞) be an oriented skein quadruple.
Then

V (L+; t)− tV (L−; t) + t3lk(L0)(t− 1)V (L∞; t) = 0. (21)

Lemma 1 in [12] implies the following.
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Proposition 4.3. Let (L+, L−, L0, L∞) be an oriented skein quadruple and
J1, J2 be the components of L0. Then

a2(L∞) = −1
2

(a2(L+) + a2(L−)) + 2 (a2(J1) + a2(J2)) +
1
2
lk(L0)2

(22)

Lemma 4.4. Let (L+, L−, L0, L∞) be an oriented skein quadruple with L−
a trivial knot. Then

σ(L+) = 0 or − 2; (23)

lk(L0) =
1
2

(σ(L∞)− σ(L+)) ; (24)

Arf(L∞) ≡ −1
2

(
lk(L0)− lk(L0)2

)
(mod 2). (25)

Proof. Eq. (23) follows from Proposition 2.2(ii).
Next we prove Eq. (24). Put λ = lk(L0). Let L′0 be an oriented link

obtained from L0 by reversing orientation of one component of L0. Then by
Proposition 2.4 we have

σ(L′0) = σ(L0) + 2λ. (26)

By Proposition 2.3, for two pairs of links (L+, L0) and (L∞, L′0) we have

|σ(L+)− σ(L0)|+ |n(L+)− n(L0)| = 1; (27)

|σ(L∞)− σ(L′0)|+ |n(L∞)− n(L′0)| = 1. (28)

Putting x = σ(L∞)−σ(L′0) and y = σ(L+)−σ(L0), we have |x| ≤ 1, |y| ≤ 1
and x− y = σ(L∞)− σ(L+)− 2λ from (26). We will show x− y = 0. There
are four cases:

(i) σ(L∞) ≡ 0 (mod 4) and λ ≡ 0 (mod 2).
(ii) σ(L∞) ≡ 0 (mod 4) and λ ≡ 1 (mod 2).
(iii) σ(L∞) ≡ 2 (mod 4) and λ ≡ 0 (mod 2).
(iv) σ(L∞) ≡ 2 (mod 4) and λ ≡ 1 (mod 2).

We only prove for case (i). From Proposition 2.2(iii), we have

signV (L∞;−1) = (−1)σ(L∞)/2 = 1, (29)

and so V (L∞;−1) ≥ 1. From Proposition 4.2, we obtain

V (L+;−1) = 2(−1)3λV (L∞;−1)− V (L−;−1) = 2V (L∞;−1)− 1,
(30)

and so V (L+;−1) ≥ 1. Again by Proposition 2.2(iii), we have

signV (L+;−1) = (−1)σ(L+)/2 > 0, (31)

and so σ(L+) ≡ 0 (mod 4). Then by Eq. (23), we obtain σ(L+) = 0.
Therefore x − y = σ(L∞) − 2λ ≡ 0 (mod 4). Since |x − y| ≤ |x| + |y| ≤ 2,
we have x− y = 0, completing the proof of Eq. (24).
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Finally, we prove Eq. (25). Since L− is a trivial knot, a2(L−) = 0, and
by Eq. (12) we have a2(L+) = λ. Then using Proposition 4.3, we obtain
Eq. (25). �

The following theorem is the main result in this section.

Theorem 4.5. Let K be a knot with u2(K) = 1. Then
(i) If σ(K) ≡ 0 (mod 8), then Arf(K) = 0.
(ii) If σ(K) ≡ 4 (mod 8), then Arf(K) = 1.

Proof. Since u2(K) = 1, from Lemma 4.1 there exists an oriented skein
quadruple (L+, L−, L0,K) such that L− is a trivial knot.

First we prove (i). Since σ(K) ≡ 0 (mod 8), by Eqs. (23) and (24) in
Lemma 4.4 we obtain

lk(L0) ≡ 0 or 1 (mod 4), (32)

which implies Arf(K) = 0 by Eq. (25) in Lemma 4.4.
Next we prove (ii). Since σ(K) ≡ 4 (mod 8), by Eqs. (23) and (24) in

Lemma 4.4 we obtain

lk(L0) ≡ 2 or 3 (mod 4), (33)

which implies Arf(K) = 1 by Eq. (25) in Lemma 4.4. This completes the
proof. �

5. H(2)-unknotting number one knot with signature ≡ 2 (mod 4)

The main purpose of this section is to prove Theorem 5.7, a criterion for
the H(2)-unknotting number one knot which does not cover Theorem 4.5.
However, it requires that the determinant ≡ 0 (mod 3). First we consider
the value V ′(K;−1), the first derivative of the Jones polynomial of a knot
K at t = −1.

Lemma 5.1. For a knot K,

V ′(K;−1) ≡ 0 (mod 8). (34)

Proof. Jones [11, Proposition 12.5] has shown that

V (K; t) = 1− (1− t)(1− t3)W (K; t) (35)

for some Laurent polynomial W (K; t), from which we have

V ′(K;−1) = 8W (K;−1)− 4W ′(K;−1). (36)

Since it is easy to see that W ′(K;−1) ≡ W ′(K; 1) (mod 2), we have only
to show W ′(K; 1) ≡ 0 (mod 2).

Taking the second and third derivatives at t = 1 of each side of Eq. (35),
we obtain

V (2)(K; 1) = −6W (K; 1); (37)

V (3)(K; 1) = −18
(
W (K; 1) + W ′(K; 1)

)
. (38)
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On the other hand, by [22], and Eq. (2), Lemma 2 in [21] we have

V (2)(K; 1) = −6a2(K); (39)

V (3)(K; 1) =
3
4
P

(3)
0 (K; 1) = 18

(
a2(K)− P ′2(K; 1)

)
, (40)

where P
(3)
0 (K; 1) and P ′2(K; 1) are the third derivative of the coefficient

polynomial P0(K; v) at v = 1 and the first derivative of the coefficient
polynomial P2(K; v) at v = 1, respectively; see (8). Using these formulas,
we obtain

W ′(K; 1) = P ′2(K; 1)− 2a2(K). (41)

Furthermore, since P ′2(K; 1) ≡ a2(K)2 + a2(K)− 2a4(K) (mod 4) from [21,
Proposition 2], we have

P ′2(K; 1) ≡ 0 (mod 2), (42)

and thus W ′(K; 1) ≡ 0 (mod 2), completing the proof. �

Lemma 5.2. Let (L+, L−, L0, L∞) be an oriented skein quadruple with L−
a trivial knot. Suppose that σ(L∞) ≡ 2ε (mod 8), ε = ±1. Then

(i) If Arf(L∞) = 0, then lk(L0) ≡ (ε+1)/2 (mod 4) and σ(L+) = ε−1.
(ii) If Arf(L∞) = 1, then lk(L0) ≡ (−ε + 5)/2 (mod 4) and σ(L+) =

−ε− 1.

Proof. If Arf(L∞) = 0, then by Eq. (25) in Lemma 4.4 we have lk(L0) ≡ 0
or 1 (mod 4). Then since σ(L∞) ≡ 2ε (mod 8), by Eqs. (23) and (24) in
Lemma 4.4 we have:

• If lk(L0) ≡ 0 (mod 4), then ε = −1, σ(L+) = −2.
• If lk(L0) ≡ 1 (mod 4), then ε = 1, σ(L+) = 0.

This proves (i).
Next, if Arf(L∞) = 1, then by Eq. (25) in Lemma 4.4 we have lk(L0) ≡ 2

or 3 (mod 4). Then since σ(L∞) ≡ 2ε (mod 8), by Eqs. (23) and (24) in
Lemma 4.4 we have:

• If lk(L0) ≡ 2 (mod 4), then ε = 1, σ(L+) = −2.
• If lk(L0) ≡ 3 (mod 4), then ε = −1, σ(L+) = 0.

This proves (ii). �

Lemma 5.3. Let (L+, L−, L0, L∞) be an oriented skein quadruple with L−
a trivial knot. Put λ = lk(L0). Then

V ′(L+;−1) = 1− (6λ + 1)(−1)λV (L∞;−1) + 2(−1)λV ′(L∞;−1).
(43)

Proof. Since L− is a trivial knot, by Proposition 4.2 we have

V (L+; t) = t− t3λ(t− 1)V (L∞; t). (44)

Taking the first derivative at t = −1, we obtain Eq. (43). �
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Lemma 5.4. Let K be an unknotting number one knot which can be un-
knotted by changing a positive crossing to a negative crossing, and C be a
surgical knot for Σ(K), the double cover of S3 branched over K. Then we
have

a2(C) = − 1
24

V ′(K;−1) +
1
96

(V (K;−1)− 1)(V (K;−1)− 5).
(45)

Proof. By Proposition 2.2(ii), σ(K) = 0 or −2. By [21, Theorem 6] we have

a2(C) =


− 1

24
V ′(K;−1) +

1
96

(δ − 1)(δ − 5) if σ(K) = 0;

− 1
24

V ′(K;−1) +
1
96

(δ + 1)(δ + 5) if σ(K) = −2,
(46)

where δ = |V (K;−1)| = det(K). If σ(K) = 0, then by Proposition 2.2(iii)
V (K;−1) > 0, and so δ = V (K;−1), which implies Eq. (45). If σ(K) = −2,
then by Proposition 2.2(iii) V (K;−1) < 0, and so δ = −V (K;−1), which
implies Eq. (45). This completes the proof. �

Lemma 5.5. Let (L+, L−, L0, L∞) be an oriented skein quadruple with L−
a trivial knot. Let λ = lk(L0). Then

V ′(L∞;−1) ≡ (−1)λ

2

(
(−1)λV (L∞;−1)− 1

) (
(−1)λV (L∞;−1) + 6λ− 5

)
(mod 24). (47)

Proof. Put α = V (L+;−1). By Lemma 5.4 we have

a2(C) = − 1
24

V ′(L+;−1) +
1
96

(α− 1)(α− 5), (48)

where C is a surgical knot for Σ(L+). On the other hand, by [19, Lemmas 2
and 6] we have

a2(C) ≡ 1
4

(
α− 1

4
+ a2(L+)

)
(mod 2). (49)

Combining Eqs. (48) and (49), we have

V ′(L+;−1) ≡ 1
4
(α− 1)(α− 11)− 6a2(L+) (mod 48). (50)

Putting β = V (L∞;−1), Eq. (44) implies

α = 2(−1)λβ − 1 (51)

Using this and a2(L+) = λ, by Lemma 5.3 we have

2εV ′(L∞;−1) ≡
(
(−1)λβ − 1

) (
(−1)λβ + 6λ− 5

)
(mod 48),

(52)

completing the proof. �
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Since V (K;−1) = ∇(K; 2
√
−1) for a knot K, it is easy to see the follow-

ing.

Lemma 5.6. Let K be a knot. Then
(i) Arf(K) = 0 if and only if V (K;−1) ≡ 1 (mod 8).
(ii) Arf(K) = 1 if and only if V (K;−1) ≡ 5 (mod 8).

The following theorem is the main result in this section.

Theorem 5.7. Let K be a knot with u2(K) = 1. Suppose that det(K) ≡ 0
(mod 3) and σ(K) ≡ 2ε (mod 8), ε = ±1. Then

(i) If Arf(K) = 0, then V ′(K;−1) ≡ 8ε (mod 24).
(ii) If Arf(K) = 1, then V ′(K;−1) ≡ −8ε (mod 24).

Proof. Put β = V (K;−1). Using the assumption det(K) = |β| ≡ 0 (mod 3)
and Lemma 5.6, we have

β ≡

{
9 (mod 24) if Arf(K) = 0;
21 (mod 24) if Arf(K) = 1.

(53)

Since u2(K) = 1, from Lemma 4.1 there exists an oriented skein quadruple
(L+, L−, L0,K) such that L− is a trivial knot. Put λ = lk(L0).

We prove (i). By Lemma 5.2(i) λ ≡ (ε+1)/2 (mod 4). Then (−1)λ = −ε,
and so using Eq. (47) in Lemma 5.5, we obtain

V ′(K;−1) ≡ −ε

2
(−εβ − 1) (−εβ + 6λ− 5) (mod 24). (54)

Then using Eq. (53), we obtain V ′(K;−1) ≡ 8ε (mod 24).
Similarly, we may prove (ii), and so the proof is complete. �

Example 5.1. The H(2)-unknotting number of the knot 821 is 2; u2(821) = 2.
In fact, σ(821) = 2, Arf(821) = 0, det(821) = 15 ≡ 0 (mod 3), V (821; t) =
2t−1−2t−2+3t−3−3t−4+2t−5−2t−6+t−7, V (821;−1) = −15 ≡ 9 (mod 24),
V ′(821;−1) = −56 ≡ −8 (mod 24), and thus by the criterion in Theorem 5.7
we have u2(821) > 1. On the other hand, since it is known that u(821) = 1,
by Theorem 3.1 we have u2(821) ≤ 2, obtaining the result.

6. The value of the Jones polynomial at t = eiπ/3

In this section, we add a condition on the value V (K; eiπ/3) to the cri-
terion of Theorem 5.7, giving Corollary 6.3. Also, we give a criterion for
the product of the H(2)-unknotting and usual unknotting numbers (Theo-
rem 6.5).

Let d = dim H1(Σ(K);Z3), where Σ(K) is the double cover of S3 branched
over a knot K. Then Theorem 2.1 implies

d ≤ u2(K). (55)

Lickorish and Millett [17, Theorem 3] have shown:
13



Proposition 6.1.

V (K; eiπ/3) = ±(i
√

3)d. (56)

This value is closely related to V ′(K;−1), the value of the first derivative
of the Jones polynomial at t = −1.

Theorem 6.2.
(i) If d = 0, then V ′(K;−1) ≡ 0 (mod 24), V (K;−1) ≡ ε (mod 3),

and V (K; eiπ/3) = ε, where ε = ±1.
(ii) If d = 1, then V ′(K;−1) ≡ 8ε (mod 24) and V (K; eiπ/3) = iε

√
3,

where ε = ±1.
(iii) If d ≥ 2, then V ′(K;−1) ≡ 0 (mod 24).

Proof. There are polynomials P (t) in Z[t±1] and integers a, b such that

V (K; t) = (t2 − t + 1)P (t) + at + b. (57)

Then we have

V (K; eiπ/3) =
(a

2
+ b

)
+
√

3a

2
i; (58)

V ′(K;−1) ≡ a (mod 3). (59)

If d is even, then from Eqs. (56) and (58) we obtain a = 0, and so by
Eq. (59) and Lemma 5.1 we obtain V ′(K;−1) ≡ 0 (mod 24). Furthermore,
if d = 0 then from Eqs. (57), (58) and (56) we have V (K;−1) ≡ b (mod 3)
and V (K; eiπ/3) = b = ±1.

If d is odd, then from Eqs. (56) and (58) we obtain a = −2b and b =
±3(d−1)/2. Furthermore, if d > 1 then by Eq. (59) and Lemma 5.1 we obtain
V ′(K;−1) ≡ 0 (mod 24). If d = 1, then b = ±1, and so from Eq. (58)
we obtain V (K; eiπ/3) = −bi

√
3 and from Eq. (59) we obtain V ′(K;−1) ≡

−2b ≡ b (mod 3). Using Lemma 5.1 we obtain V ′(K;−1) ≡ −8b (mod 24).
This completes the proof. �

Theorem 5.7 together with Theorem 6.2 imply the following:

Corollary 6.3. Let K be a knot with u2(K) = 1. Suppose that det(K) ≡ 0
(mod 3) and σ(K) ≡ 2ε (mod 8), ε = ±1. Then

(i) If Arf(K) = 0, then V ′(K;−1) ≡ 8ε (mod 24) and V (K; eiπ/3) =
iε
√

3.
(ii) If Arf(K) = 1, then V ′(K;−1) ≡ −8ε (mod 24) and V (K; eiπ/3) =

−iε
√

3.

Proof. For a knot K with u2(K) = 1 and det(K) ≡ 0 (mod 3), from Eq. (55)
we have dim H1(Σ(K);Z3) = 1, and so combining Theorems 5.7 and 6.2(ii),
we obtain the result. �

Example 6.1. In Example 5.1 we have shown u2(821) > 1 using Theorem 5.7,
which is also proved by using the value of the Jones polynomial at t = eiπ/3

14



in Corollary 6.3. In fact, det(821) = 15, σ(821) = 2, Arf(821) = 0, and
V (821; eiπ/3) = −i

√
3.

In Table 1 we list all prime knots K with up to 10 crossings and their
invariants such that we can prove u2(K) > 1 in a similar way; all of them
are eventually known to be of H(2)unknotting number two. For the knots
935, 940, 947, 948 and 1074 we can evaluate using the minimum number of
generators of the first integral homology group of the double cover of S3,
H1(Σ(K);Z) (Theorem 2.1).

Table 1. Invariants of knots with H(2)-unknotting number two

K u(K) σ(K) Arf(K) V (K;−1) V ′(K;−1) V (K; eiπ/3) H1(Σ(K); Z)

(mod 24) (mod 24)

821 1 2 0 9 −8 −i
√

3 Z15

92 1 2 0 9 −8 −i
√

3 Z15

916 3 −6 0 9 −8 −i
√

3 Z39

935 3 2 1 21 0 3 Z3 ⊕Z9

940 2 2 1 21 8 i
√

3 Z5 ⊕Z15

947 2 −2 1 21 0 3 Z3 ⊕Z9

948 2 −2 1 21 0 3 Z3 ⊕Z9

109 1 −2 0 9 8 i
√

3 Z39

1019 2 2 1 21 8 i
√

3 Z51

1036 2 2 1 21 8 i
√

3 Z51

1074 2 2 0 9 0 −3 Z3 ⊕Z21

1077 2 or 3 −2 0 9 8 i
√

3 Z63

1082 1 2 0 9 −8 −i
√

3 Z63

1084 1 −2 0 9 8 i
√

3 Z87

1089 2 2 1 21 8 i
√

3 Z99

10112 2 2 0 9 −8 −i
√

3 Z87

10113 1 −2 0 9 8 i
√

3 Z111

10136 1 −2 0 9 8 i
√

3 Z15

10159 1 2 0 9 −8 −i
√

3 Z39

10164 2 −2 1 21 −8 −i
√

3 Z51

We define the sign of a positive crossing as +1 and that of a negative
crossing as −1.
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Lemma 6.4. Let K be a knot with u(K) = 1 and det(K) ≡ 0 (mod 3). If K

can be unknotted by changing a crossing of sign ε, then V (K; eiπ/3) = iε
√

3.

Proof. Since u(K) = 1, H1(Σ(K);Z) is cyclic; cf. [15, Theorem 11.5.2].
Thus since det(K) ≡ 0 (mod 3), we have dim H1(Σ(K);Z3) = 1, and so by
Proposition 6.1 we have V (K; eiπ/3) = ±i

√
3.

Suppose that K can be unknotted by changing a positive crossing. Then
there is an oriented skein quadruple (L+, L−, L0, L∞), where L+ is isotopic
to K and L− is trivial. Then by Proposition 4.2 we have

V (K; t)− t + t3lk(L0)(t− 1)V (L∞; t) = 0, (60)

from which, we have

V (K;−1) + 1− 2(−1)lk(L0)V (L∞;−1) = 0. (61)

Then since V (K;−1) ≡ det(K) ≡ 0 (mod 3), V (L∞;−1) 6≡ 0 (mod 3), and
so dim H1(Σ(L∞);Z3) = 0. Then by Proposition 6.1 we have V (L∞; eiπ/3) =
±1. Putting V (L∞; eiπ/3) = θ, from Eq. (60) we have

V (K; eiπ/3) = eiπ/3 − (−1)lk(L0)(eiπ/3 − 1)θ

=
1
2

(
1 + (−1)lk(L0)θ

)
+ i

√
3

2

(
1− (−1)lk(L0)θ

)
,

(62)

and therefore V (K; eiπ/3) = i
√

3.
The other case can be proved similarly, and the proof is complete. �

The following theorem enables us to show u2(K) = 2 knowing u(K) = 1
without calculating the values V ′(K;−1) or V (K; eiπ/3).

Theorem 6.5. Suppose that K is a knot satisfying |σ(K)| = 2, Arf(K) = 0,
and det(K) ≡ 0 (mod 3). Then u(K)u2(K) > 1. Furthermore, if u(K) = 1,
then u2(K) = 2.

Proof. Suppose that u(K) = u2(K) = 1. Let σ(K) = 2ε, where ε = ±1.
Then by Proposition 2.2(ii) K can be unknotted by switching a crossing of
sign −ε. Then by Lemma 6.4 we have V (K; eiπ/3) = −iε

√
3. On the other

hand, by Corollary 6.3 we have V (K; eiπ/3) = iε
√

3; a contradiction.
Furthermore, if u(K) = 1, then u2(K) ≥ 2 and also by Theorem 3.1

u2(K) ≤ 2, and so we obtain u2(K) = 2. �

Remark 6.1. Lemma 6.4 follows from Theorem 3.1 in Traczyk [35], which
is, however, incorrectly stated. Let K = 1067. Using this theorem, Traczyk
shows that u(K) = 2 [35, Example 4.8]. We can prove u(K) = 2 using
Theorem 6.5 without calculating the value V (K; eiπ/3). In fact, |σ(K)| = 2,
Arf(K) = 0 and det(K) = 63, and so Theorem 6.5 implies u(K)u2(K) > 1.
Also we know u2(K) = 1 [26] and u(K) ≤ 2, we conclude that u(K) = 2.
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7. Discussion for an H(2)-unknotting number one knot

In Secs. 4–6, we have given several criteria for an H(2)-unknotting num-
ber one knot. The situation is quite complicated, and so we summarize
in Table 2, where all the possible cases of the following values of an H(2)-
unknotting number one knot are given; the signature (mod 8), Arf invariant,
Jones polynomial at t = −1 (mod 24), first derivative of the Jones polyno-
mial at t = −1 (mod 24), Jones polynomial at t = eπi/3. In addition, we
give a criterion for an amphicheiral knot with H(2)-unknotting number one
using only the determinant (Corollary 7.2).

In order to complete Table 2 we need the following Theorem, which gives
a further necessary condition for an H(2)-unknotting number one knot with
signature ≡ 0 (mod 4) and determinant ≡ 0 (mod 3).

Theorem 7.1. Let K be a knot with u2(K) = 1 and det(K) ≡ 0 (mod 3).
If either σ(K) ≡ 0 or 4 (mod 8), then V ′(K;−1) ≡ ±8 (mod 24).

Proof. Since u2(K) = 1, from Lemma 4.1 there exists an oriented skein
quadruple (L+, L−, L0,K) such that L− is a trivial knot. Suppose that
σ(K) ≡ 0 (mod 8). Then by Theorem 4.5 we have Arf(K) = 0. Then
by Lemma 5.6 V (K;−1) ≡ 1 (mod 8), and since det(K) = |V (K;−1)| ≡
0 (mod 3), we obtain V (K;−1) ≡ 9 (mod 24). On the other hand, by
Eqs. (23) and (24) in Lemma 4.4 we have lk(L0) ≡ 0 or 1 (mod 4). Then
by Lemma 5.5 we obtain the result.

Similarly, if σ(K) ≡ 4 (mod 8), then we have Arf(K) = 1, V (K;−1) ≡ 21
(mod 24) and lk(L0) ≡ 2 or 3 (mod 4), and then we obtain the result,
completing the proof. �

Remark 7.1. Let K be a knot satisfying either
(i) σ(K) ≡ 0 (mod 8) and Arf(K) = 0; or
(ii) σ(K) ≡ 4 (mod 8) and Arf(K) = 1.

Then we can not deduce u2(K) > 1 only by Theorem 4.5. If further
det(K) ≡ 0 (mod 3) and V ′(K;−1) 6≡ ±8 (mod 24), then by Theorem 7.1,
we obtain u2(K) > 1. However, this also follows from Theorem 2.1. In fact,
using Theorem 6.2, we have dim H1(Σ(K);Z3) ≥ 2.

For example, let K = 946. Then σ(K) = 0 and Arf(K) = 0. From
V (K; t) = 2 − t−1 + t−2 − 2t−3 + t−4 − t−5 + t−6, we have V (K;−1) = 9
and V ′(K;−1) = 24 ≡ 0 (mod 24). By Theorem 7.1, we obtain u2(K) > 1.
On the other hand, since H1(Σ(K);Z3) = Z3 ⊕ Z3, by Theorem 2.1 or
Eq. (55) we have u2(K) > 1. Since K can be unknotted by applying two
H(2)-moves, K has H(2)-unknotting number 2; see Sec. 9.2.

Now we can complete Table 2 summarizing the previous results: Theo-
rem 4.5, Lemma 5.6, Theorem 5.7, Lemma 5.1, Theorem 6.2, Corollary 6.3,
Theorem 7.1. Note that if a knot K satisfies the conditions in Case (Xn)
(X=A, B, C; n=1, 2, 3), then its mirror image K! satisfies the conditions in
Case (Xn!) except for (A1), (A2), (B1), (B2).

17



Table 2. A knot K with u2(K) = 1.

Case σ(K) Arf(K) V (K;−1) V ′(K;−1) V (K; eπi/3)

(mod 8) (mod 24) (mod 24)

A1 0 0 1 0 1

A2 0 0 17 0 −1

A3 0 0 9 8 i
√

3

A3! 0 0 9 −8 −i
√

3

B1 4 1 5 0 −1

B2 4 1 13 0 1

B3 4 1 21 8 i
√

3

B3! 4 1 21 −8 −i
√

3

C1 2 0 1 0 1

C2 2 0 17 0 −1

C3 2 0 9 8 i
√

3

D1 2 1 5 0 −1

D2 2 1 13 0 1

D3 2 1 21 −8 −i
√

3

C1! −2 0 1 0 1

C2! −2 0 17 0 −1

C3! −2 0 9 −8 −i
√

3

D1! −2 1 5 0 −1

D2! −2 1 13 0 1

D3! −2 1 21 8 i
√

3

Example 7.1. Let Tm be the torus knot of type (2, 2m + 1) having (2m + 1)
negative crossings if m > 0 and (−2m−1) positive crossings if m < 0. Then
it is easy to see u2(Tm) = 1 if m 6= 0, −1. We have:

Arf(Tm) = m(m + 1)/2 (mod 2); (63)

σ(Tm) =

{
2m if m > 0;
2m + 2 if m < 0;

(64)
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cf. [13, Eq. (10)], [25, Theorem 7.5.1]. Also using Proposition 11.9 in [11],
we have

V (Tm; t) = t−3m−1

(
t2m +

t2m+2 − 1
t + 1

)
, (65)

which yields:

V (Tm;−1) = (−1)m(2m + 1); (66)

V ′(Tm;−1) ≡

{
−8(−1)k (mod 24) if m = 3k + 1;
0 (mod 24) otherwise;

(67)

V (Tm; eiπ/3) =


(−1)m if m ≡ 0 (mod 3);
i(−1)m

√
3 if m ≡ 1 (mod 3);

(−1)m+1 if m ≡ 2 (mod 3).
(68)

Thus each Tm satisfies the conditions in Table 2 as shown in Table 3, from
which we see that each case in Table 2 can occur.

Table 3. 2-braid torus knot Tm.

2m + 1(> 0) (mod 24) Case 2m + 1(< 0) (mod 24) Case

1 A1 −1 A1

3 D3 −3 D3!

5 B1 −5 B1

7 C2! −7 C2

9 A3 −9 A3!

11 D2 −11 D2!

13 B2 −13 D2

15 C3! −15 C3

17 A2 −17 A2

19 D1 −19 D1!

21 B3 −21 B3!

23 C1! −23 C1

As a corollary of Theorem 7.1, we have the following, which gives a con-
dition for the determinant of an amphicheiral knot with H(2)-unknotting
number one.

Corollary 7.2. Let K be an amphicheiral knot. If det(K) ≡ 5, 9, 13, or
21 (mod 24), then u2(K) > 1.
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Proof. Let K be an amphicheiral knot with u2(K) = 1. Then σ(K) = 0,
and so by Theorem 4.5 and Lemma 5.6, V (K;−1) ≡ 1 (mod 8). Thus if
det(K) ≡ 5, 13, or 21; or det(K) ≡ 9 and V (K;−1) ≡ 15 (mod 24), then
u2(K) > 1.

Suppose that V (K;−1) ≡ 9 (mod 24), then since K is amphicheiral, we
have V (K; t) = V (K; t−1) and thus V ′(K;−1) = 0. Therefore, by Theo-
rem 7.1 we obtain u2(K) > 1. �

Example 7.2. Among all prime amphicheiral knots with up to 10 crossings,
using Corollary 7.2, we may conclude each of the following knots has H(2)-
unknotting number > 1:

41, 63, 817, 818, 1037, 1079, 1081, 1088, 1099, 10109, 10115.

8. The Q polynomial

The Q polynomial Q(L; z) ∈ Z[z±1] [2, 8] is an invariant of the isotopy
type of an unoriented link L, which is defined by the following formulas:

Q(U ; z) = 1; (69)

Q(L+; z) + Q(L−; z) = z (Q(L0; z) + Q(L∞; z)) . (70)

where U is the unknot and L+, L−, L0, L∞ are four unoriented links that
are identical except near one point where they are as in Fig. 10. We call
(L+, L−, L0, L∞) an unoriented skein quadruple.

DDD D

CCC

LLL L

L                              L                             L                              L

L+ L− L0 L∞

Figure 10. An unoriented skein quadruple.

Let ρ(K) = Q
(
K; (

√
5− 1)/2)

)
. Then Jones [10] has shown:

ρ(K) = ±
√

5
r
, (71)

where r = dim H1(Σ(K);Z5) with Σ(K) the double cover of S3 branched
over K. His proof uses the Birman-Wenzel algebra. Furthermore, Rong [32]
has given a topological proof, from which he deduced some information on
the values ρ(L−)/ρ(L∞), ρ(L0)/ρ(L∞), ρ(L+)/ρ(L∞), where (L+, L−, L0, L∞)
is an unoriented skein quadruple. Using these values, Stoimenow [33, The-
orem 4.1] has given some criterion on the unknotting number of a knot.
Similarly, we can obtain a criterion on the H(2)-Gordian distance and H(2)-
unknotting number.

Theorem 8.1. For knots K and K ′, if d2(K, K ′) = n, then

ρ(K)/ρ(K ′) ∈
{
±
√

5
k
,
√

5
±n ∣∣ k = 0,±1, . . . ,±(n− 1)

}
. (72)
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Proof. We prove by induction on n. Suppose that K and K ′ are related
by a single H(2)-move; d2(K, K ′) = 1. Then there exist two links L+, L−
such that (L+, L−;K, K ′) is an unoriented skein quadruple. So we have
ρ(L+) + ρ(L−) = ((

√
5 − 1)/2) (ρ(K) + ρ(K ′)). Then from the proof of

Theorem 2 in [32], we have ρ(K)/ρ(K ′) ∈
{
±1,

√
5
±1

}
.

Next, assume that Eq. (72) holds for knots K, K ′ with d2(K, K ′) ≤ n.
Let K0, K1 be knots with d2(K0,K1) = n+1. Then there is a knot K2 with
d2(K0,K2) = n and d2(K1,K2) = 1, and so

ρ(K0)/ρ(K2) ∈
{
±
√

5
k
,
√

5
±n ∣∣ k = 0,±1, . . . ,±(n− 1)

}
;

(73)

ρ(K2)/ρ(K1) ∈
{
±1,

√
5
±1

}
, (74)

which imply

ρ(K0)/ρ(K1) ∈
{
±
√

5
k
,
√

5
±(n+1) ∣∣ k = 0,±1, . . . ,±(n− 1), ±n

}
,
(75)

completing the proof. �

Theorem 2.1 implies that if ρ(K) = ±
√

5
n
, then u2(K) ≥ n. Furthermore,

we obtain the following immediately from Theorem 8.1.

Corollary 8.2. For a knot K, if ρ(K) = −
√

5
n
, then u2(K) ≥ n + 1.

Example 8.1. The H(2)-unknotting number of each of the knots 89 and 821

is 2; u2(89) = u2(821) = 2. In fact, since Q(89; z) = −7 + 4z + 16z2− 10z3−
16z4+4z5+8z6+2z7, Q(821; z) = −7+8z+6z2−12z3−2z4+6z5+2z6, we have
ρ(89) = ρ(821) = −

√
5, and so by Corollary 8.2 we have u2(89), u2(821) > 1.

Since it is known that u(89) = u(821) = 1, by Theorem 3.1 we have u2(89),
u2(821) ≤ 2, and so we obtain the results. Note that since σ(89) = 0,
Arf(89) = 0, for the knot 89 we can not use the criterion in Theorem 4.5,
however for the knot 821 we can use Corollary 6.3 (Examples 5.1 and 6.1).

For each of the following 15 knots, Nakajima [26] has shown that the H(2)-
unknotting number is ≤ 2, and the value of the ρ-invariant is −

√
5, and so

from Corollary 8.2 we can conclude that each of them has H(2)-unknotting
number 2:

89, 821, 92, 912, 939, 1018, 1033, 1058, 1059, 10129, 10136,

10137, 10138, 10156, 10163 (with determinant 35).

Similarly, for the following two knots, Nakajima [26] has shown that the
H(2)-unknotting number is ≤ 3 , and the value of the ρ-invariant is −5,
and so from Corollary 8.2 we can conclude that each of them has H(2)-
unknotting number 3:

949, 10103.
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9. Tables of H(2)-unknotting numbers of knots with up to 9
crossings

In this section, we give tables of H(2)-unknotting numbers of knots with
up to 9 crossings. This improves Nakajima’s table [26], which lists the H(2)-
unknotting numbers of prime knots with up to 10 crossings containing the
result of Lickorish. He uses Theorem 2.1 with r = 2 and Theorem 4.5 to
give lower bounds, and Theorem 3.1 to give upper bounds. He also gives
several diagrams of knots with twisted bands to show upper bounds.

9.1. Prime knots with up to 8 crossings. Table 4 lists the H(2)-unknotting
numbers of prime knots with up to 8 crossings together with the abso-
lute values of the signatures, Arf invariants, unknotting numbers, and the
method to decide the H(2)-unknotting number. The signatures, Arf in-
variants (≡ a2(K) (mod 2)), and unknotting numbers are taken from the
tables in [5, Appendices B and C]. We use the following methods to decide
the lower bound of the H(2)-unknotting number of the knots in Table 4.

(In) If the minimum number of generators of H1(Σ(K);Z) is n, then
u2(K) ≥ n.

(II) If σ(K) = 0, Arf(K) = 1, then u2(K) > 1.
(II′) In addition, if u(K) = 1, then we can conclude u2(K) = 2.
(III) If σ(K) = ±4, Arf(K) = 0, then u2(K) > 1.
(III′) In addition, if u(K) = 2, then we can conclude u2(K) = 2.
(IV) Suppose that σ(K) ≡ 2ε (mod 8), Arf(K) = 0, and det(K) ≡ 0

(mod 3). If either V ′(K;−1) 6≡ 8ε (mod 24) or V (K; eiπ/3) 6= εi
√

3,
then u2(K) > 1.

(IV′) In addition, if u(K) = 1, then we can conclude u2(K) = 2.
(Vn) If ρ(K) = −

√
5

n−1
, then u2(K) ≥ n.

(V′n) In addition, if u(K) = n− 1, then we can conclude u2(K) = n.

Method In follows from Theorem 2.1. For H1(Σ(K);Z), we use Table 1
in Appendix C of [3]. Methods II and III follow from Theorem 4.5. Method
IV follows from Corollary 6.3. Method Vn follows from Corollary 8.2; see
Example 8.1 for 89, 821. Methods II′, III′ (Propositions 3.2.11 and 3.2.12
in [26]), and Methods IV′n, V′n follow from Theorem 3.1. Notice that if
u(K) = 2 and σ(K) = ±4, then either u+ = 2 or u− = 2.

For the H(2)-unknotting number one knots except the 2-braid torus knots
(31, 51, 71), we show diagrams with twisted bands that change to the unknot
in Fig. 11; 52, 61, 62, 73, 74, 76 are due to Lickorish, 83–86, 88, 819, 820 are
due to Nakajima [26]. For u2(82), u2(812) ≤ 2, we show in Fig. 12; adding
twisted bands shown there, 82, 812 becomes 31, 76, respectively, both of
which are of H(2)-unknotting number one.

Remark 9.1. For the knots with up to 7 crossings we can decide the H(2)-
unkotting number only by using Lickorish’s method [16]. In fact, he men-
tions that among prime knots with up to 7 crossings 41, 63, 72, 74, 75 and
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Table 4. H(2)-unknotting numbers of prime knots with up
to 8 crossings

K u2(K) |σ| Arf u(K) Method K u2(K) |σ| Arf u(K) Method

31 1 2 1 1 85 1 4 1 2

41 2 0 1 1 II′ or V′
2 86 1 2 0 2

51 1 4 1 2 87 1 2 0 1

52 1 2 0 1 88 1 0 0 2

61 1 0 0 1 89 2 0 0 1 V′
2

62 1 2 1 1 810 1 2 1 2

63 2 0 1 1 II′ 811 1 2 1 1

71 1 6 0 3 812 2 0 1 2 II

72 1 2 1 1 813 2 0 1 1 II′

73 1 4 1 2 814 1 2 0 1

74 1 2 0 2 815 2 4 0 2 III′

75 2 4 0 2 III′ 816 1 2 1 2

76 1 2 1 1 817 2 0 1 1 II′

77 2 0 1 1 II′ 818 2 or 3 0 1 2 I2 or II

81 2 0 1 1 II′ 819 1 6 1 3

82 2 4 0 2 III 820 1 0 0 1

83 1 0 0 2 821 2 2 0 1 IV′ or V′
2

84 1 2 1 2

77 are of H(2)-unknottiing number greater than one and others are of H(2)-
unknottiing number one. However, soon after the publication of the article
[16], he informed of a corrected table for the H(2)-unknottiing numbers of
knots with up to 7 crossings, that is, he shows u2(74) = 1, together with
u2(31#41) = 1 as Scharlemann’s example. Moreover, as is shown in Fig. 11,
u2(72) = 1.

9.2. Prime knots with 9 crossings. Table 5 lists the H(2)-unknotting
numbers of prime knots with 9 crossings in a similar way to Table 4; the
unknotting numbers of 910, 913 935 938 have been determined in [28].

For the H(2)-unknotting number one knots except the (2, 9)-torus knot
91, we show diagrams with twisted bands that change to the unknot in
Fig. 13; 94, 95, 915, 919, 922, 943, 944 are due to Nakajima [26]. For knots
with H(2)-unknotting number ≤ 2, we show diagrams with twisted bands
that change to H(2)-unknotting number one knots listed there in Fig. 14;
for example, the knot 910 is transformed into 52, whose H(2)-unknotting
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9_16=>6_2!

5_2 6_1 6_2 7_2 7_3

7_4 7_6

8_7

8_3 8_4 8_5

8_6 8_8 8_10 8_11

8_14 8_16 8_19 8_20

52 61 62 72 73

9_16=>6_2!

5_2 6_1 6_2 7_2 7_3

7_4 7_6

8_7

8_3 8_4 8_5

8_6 8_8 8_10 8_11

8_14 8_16 8_19 8_20

74 76 83 84 85

9_16=>6_2!

5_2 6_1 6_2 7_2 7_3

7_4 7_6

8_7

8_3 8_4 8_5

8_6 8_8 8_10 8_11

8_14 8_16 8_19 8_20

86 87 88 810 811

9_16=>6_2!

5_2 6_1 6_2 7_2 7_3

7_4 7_6

8_7

8_3 8_4 8_5

8_6 8_8 8_10 8_11

8_14 8_16 8_19 8_20814 816 819 820

Figure 11. H(2)-unknotting number one prime knots with
up to 8 crossings.

9_3 9_4 9_5 9_6 9_7

9_8 9_9

9_22

9_13 9_15 9_17

9_19
9_27 9_36 9_42

9_43
9_44

9_16=>6_2!

82 → 31 812 → 76

Figure 12. u2(82), u2(812) ≤ 2.

number is one, by adding the twisted band shown in the diagram. The
twisted bands for the knots 910, 946 are due to Nakajima [26], where he also
shows u2(937) ≤ 2 using Eq. (20) in Theorem 3.1. For u2(949) ≤ 3, Fig. 15
gives the twisted band that changes to 41, whose H(2)-unknotting number
is two.
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Table 5. H(2)-unknotting numbers of prime knots with up
to 9 crossings

K u2(K) |σ| Arf u(K) Method K u2(K) |σ| Arf u(K) Method

91 1 8 0 4 926 1 or 2 2 0 1

92 2 2 0 1 V’2 927 1 2 0 1

93 1 6 1 3 928 1 or 2 2 1 1

94 1 4 1 2 929 1 2 1 2

95 1 2 0 2 930 2 0 1 1 II2

96 1 6 1 3 931 1 or 2 2 0 2

97 1 4 1 2 932 1 or 2 2 1 2

98 1 2 0 2 933 2 0 1 1 II′

99 1 6 0 3 934 2 0 1 1 II′

910 2 4 0 3 III 935 2 2 1 3 I2

911 2 4 0 2 III′ 936 1 4 1 2

912 2 2 1 1 V′
2 937 2 0 1 2 II

913 1 4 1 3 938 2 4 0 3 III

914 2 0 1 1 II′ 939 2 2 0 1 V′
2

915 1 2 0 2 940 2 2 1 2

916 2 6 0 3 IV 941 2 0 0 2

917 1 2 0 2 942 1 2 0 1

918 2 4 0 2 III′ 943 1 4 1 2

919 1 0 0 1 944 1 0 0 1

920 2 4 0 2 III′ 945 1 or 2 2 0 1

921 1 or 2 2 1 1 946 2 0 0 2 I2

922 1 2 1 1 947 2 2 1 2 I2

923 1 or 2 4 1 2 948 2 2 1 2 I2

924 2 0 1 1 II′ 949 3 4 0 3 V3

925 1 2 0 2

9.3. Composite knots with up to 9 crossings. Table 6 lists the H(2)-
unknotting numbers of composite knots with up to 9 crossings in a similar
way to Tabtle 4; the unknotting numbers are taken from the table in [33];
u(31!#51) 6= 2 has not yet been proved.

To evaluate the upper bound we use the following trivail formula:

u2(K#K ′) ≤ u2(K) + u2(K ′), (76)
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9_3 9_4 9_5 9_6 9_7

9_8 9_9

9_22

9_13 9_15 9_17

9_19
9_27 9_36 9_42

9_43
9_44

9_16=>6_2!

93 94 95 96 97

9_3 9_4 9_5 9_6 9_7

9_8 9_9

9_22 9_25

9_13 9_15 9_17

9_19 9_27 9_29

9_36 9_42 9_43
9_44

9_16=>6_2!

98 99 913 915 917

9_3 9_4 9_5 9_6 9_7

9_8 9_9

9_22 9_25

9_13 9_15 9_17

9_19 9_27 9_29

9_36 9_42 9_43
9_44

9_16=>6_2!

919 922 925 927 929

9_3 9_4 9_5 9_6 9_7

9_8 9_9

9_22 9_25

9_13 9_15 9_17

9_19 9_27 9_29

9_36 9_42 9_43
9_44

9_16=>6_2!

936 942 943 944

Figure 13. H(2)-unknotting number one prime knots with
9 crossings.

where K, K ′ are knots. For the H(2)-unknotting number one composite
knots, we show diagrams with twisted bands that change to the unknot in
Fig. 16; 31#41 was given by Lickorish’s handwritten table as Scharlemann’s
example. This example is generalized in [9, Fig. 5]; the compositions of two
twisted knots with H(2)-unknotting number one are constructed, which was
given by Hosokawa. The composite knot 41#52 is one of such examples.

The factor knots of composite knots with up to 9 crossings are of H(2)-
unknotting number one except u2(41) = u2(63) = 2. For u2(31#63), u2(41#41) ≤
2, we show in Fig. 17; adding twisted bands shown there, they become 62!,
51, respectively, which are of H(2)-unknotting number one.

These examples are generalized as follows:

Theorem 9.1. For any 2-bridge knot K, there exists a 2-bridge knot K ′

such that u2(K#K ′) = 1.

Proof. We can present a 2-bridge knot K as a 4-plat as shown in Fig. 18(a),
where β is a pure 3-braid; cf. [15, Exercise 2.1.14], [3, Sec. 12.B]. Construct
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9_10=>5_2
9_23=>7_6!

9_31=>8_14 9_32=>3_1!

9_35=>7_4! 9_37=>8_10

9_47=>3_1!

9_38=>7_7! 9_40=>8_16 9_41=>8_16!

9_46=>3_1! 9_48=>6_1

9_49＝＞4＿1

9_16=>6_2!

910 → 52 916 → 62! 923 → 76! 931 → 814 932 → 31!

9_10=>5_2
9_23=>7_6!

9_31=>8_14 9_32=>3_1!

9_35=>7_4! 9_37=>8_10

9_47=>3_1!

9_38=>7_7! 9_40=>8_16 9_41=>8_16!

9_46=>3_1! 9_48=>6_1

9_49＝＞4＿1

9_16=>6_2!

935 → 74! 937 → 810 938 → 77! 940 → 816 941 → 816!

9_10=>5_2
9_23=>7_6!

9_31=>8_14 9_32=>3_1!

9_35=>7_4! 9_37=>8_10

9_47=>3_1!

9_38=>7_7! 9_40=>8_16 9_41=>8_16!

9_46=>3_1! 9_48=>6_1 9_49＝＞4＿1

9_16=>6_2!

946 → 31! 947 → 31! 948 → 61

Figure 14. 9 crossing prime knots with H(2)-unknotting
number ≤ 2.

9_10=>5_2
9_23=>7_6!

9_31=>8_14 9_32=>3_1!

9_35=>7_4! 9_37=>8_10

9_47=>3_1!

9_38=>7_7! 9_40=>8_16 9_41=>8_16!

9_46=>3_1! 9_48=>6_1 9_49＝＞4＿1

9_16=>6_2!

949 → 41

Figure 15. u2(949) ≤ 3.

31#41 31#52

31#62 41#52

Figure 16. H(2)-unknotting number one composite knots.
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31#63 → 62! 41#41 → 51

Figure 17. H(2)-unknotting number two composite knots.

Table 6. H(2)-unknotting numbers of composite knots with
up to 9 crossings.

K u2(K) u(K) Method

31#31 2 2 (I2) H1(Σ(K); Z) = Z3 ⊕Z3.

31!#31 2 2 (I2) H1(Σ(K); Z) = Z3 ⊕Z3.

31#41 1 2

31#51 2 2 (IV) σ(K) = 6, Arf(K) = 0, V (K;−1) = −15,

V ′(K;−1) ≡ 8 (mod 24), V (K; eiπ/3) = i
√

3;

or (V2) ρ(K) = −
√

5.

31!#51 2 3? (IV) σ(K) = 2, Arf(K) = 0, V (K;−1) = −15,

V ′(K;−1) ≡ −8 (mod 24), V (K; eiπ/3) = −i
√

3;

or (V2) ρ(K) = −
√

5.

31#52 1 2

31!#52 2 2 (II) σ(K) = 0, Arf(K) = 1

41#41 2 2 (I2) H1(Σ(K); Z) = Z5 ⊕Z5.

31#31#31 3 3 (I3) H1(Σ(K); Z) = Z3 ⊕Z3 ⊕Z3.

31!#31#31 3 3 (I3) H1(Σ(K); Z) = Z3 ⊕Z3 ⊕Z3.

31#61 2 2 (I2) H1(Σ(K); Z) = Z3 ⊕Z9.

31!#61 2 2 (I2) H1(Σ(K); Z) = Z3 ⊕Z9.

31#62 2 2 (III) σ(K) = 4, Arf(K) = 0

31!#62 1 2

31#63 2 2 (IV) σ(K) = 2, Arf(K) = 0, V (K;−1) = −39,

V ′(K;−1) ≡ −8 (mod 24), V (K; eiπ/3) = −i
√

3.

41#51 3 3 (V3) ρ(K) = −5

41#52 1 2

the connected sum of two 2-bridge knot K#K ′ as shown in Fig. 18(b), where
β−1 is the inverse of β as an element of the 3-braid group. Then it can be
changed to the unknot by adding the twisted band shown there. �
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β β β−1

(a) (b)

Figure 18. (a) A 2-bridge knot K. (b) K#K ′.
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