%18

Bt K & =

CE S R Ay BA

19964 11 H6H~9H

B A Ty RINPHE £ 4 —

AL 8 4 B H AT SR B EATZE A

(REES 06302002 fRF ME R






r%“

COEHEIT, B 18 MTHRERHRY VR LOEEITEE U TERLESDT
T HHBEENLOHRHINKERL, £0FEMMIELTHRILTHD XY, &
DY VRITLE, 1996411 A6 BNS 11 B 9 BITMIT, 17y 7 KLk
Bty — (BIWRKUE) THME Ui, FHID OB UIEN 70 £ OFF
RE - RFEBRED S &, AFF 18 bOEKBEOHEEIMTIIbIE Ui, 72, B
BOERTHADDY, FIFEESIVHRELI 4 BT

VRV LRRBIIHIZD, KE - SEBREOREBL LUOEABELOHREICD
WT, RERFOKEMRKEREE LT AR EHABBE Ao OBEM%E
FFE U, &7, MRS, 40Ty 7 RIFHEER V7 —DF 2 1T RE B HFFIC
BDE L, CTICHhodTREHOILET,

1996 % 12 A
B\IFKRE NEHEE






BN 25 (FHBA « EAREMEE) oot
Strange Curve @ Hilbert BI%

KBRS JbE (BGACIRAL) v rvvvvrrrrrrrr e e
A generalization of Matijevic-Roberts theorem

DIRE ZoBRT (STATEEATHT) v vvvvvrmrmreeee e e e e e e e e

Reflexive modules as a tool of representation theory

INE i (Wjjﬁ'ﬂ) ......................................................
Almost minimal embeddings of quotient singular points

to rational surfaces

%—“7'( Il (Wij(‘ﬂ) = IEH (PR H) crrrerrre e

Finitely generated algebras associated with rational vector fields

R BB (BHRTET)  ovveevmmonm e ne e eeie et e e
HIREED Rees FCEAEH &2 DAL RIRD Gorenstein HEIZDUNT

HRf SEBD (ERATCTE)  vvvr e e
On the Buchsbaum property of associated graded rings

FE BET (TFZEA EAREIE)  corereerreeeear e
RFEROERE DERD—HAL

UEE BGE (EERIBHIA) - ovvrrroremree st et

Unconditioned strong d-sequences and its applications



TERE PUEE (BHRFHT)  covvvvrvrrnnnnnneaaeneennnn, B R TRRPRRTRPRT
Cohen-Macaulayness in Rees algebras associated to ideals

of minimal multiplicity

EH B (FLUTER) v rrrrrer e e
A[#ER EDBMILRIZONT

PETD BE= (FEHER T cvvvrrrrree e e ettt

Generic hyperplane section of complete intersection of height three

INE) E] (EEIAR HH) cveerrre
Zariski ORFIREIZBE#E U 7ok HDOREIZ DN T

B'Eﬁaﬁ HJ\A (m@j( . ﬁ"é"f%iﬁ) ............................................
X ontcNy FH% HDE X 3O Gorenstein 1 T 7 IVDHEAK,

L B (BHEAC-BE)  «o v vnrene et e
“HELN 4EF SO Frobenius BA&IC & 588t}

FKE BEE (RIUTEK) oo
2 IRJT Jacobian Conjecture [CBAE U TEZ /2 &

LA B (K SAEELE) v oovvrrrrrrrnnree e anee e
3 IRJT Gorenstein Stanley-Reisner 28D Betti D _LRIZDOUWT

B 2 (BRARH) e

Gorenstein algebras of Veronese type



Strange Curve @ Hilbert B%%

B =
WK FERFBE B RFHEDTER

yanagawa@math.sc.niigata-u.ac.jp

FRONEL, & & E. Ballico K (B, Trento K) L DM TH 5. AL, Rathmann
([10])) ST X B BHFDRERDIENMITH AR— 2 EE 2.

FF

K 2K, A= @0 Ai # K LOFRRETS. DF 0, X —F —HIREM X /JHg
’C%O, Ao~ K REELT A THERINTNEET S, :@H#, B ho,...,hs, ho = 1,
hs # 0, WELEL T,

, R T W
izzodlmK AN = A=)

LHiks. ST, didADKull RIETHS. (ho,...,hs) 2 AD h-5IESES. AD
Hilbert B3 DWHE DM KEFERIL S DTH S (T, A &% Cohen-Macaulay DIFH).

A DPERR—EDEE, U Cohen-Macaulay ZRERDEE, Hilbert BIEZI UL h-FIDHREE
13, Macaulay DHHEISEHIC L > TREEICHD > TS (BEICE D &, HRED S BRH
~DEH ¢ N5 Z SNk, ¢ % Hilbert BAUCRFD K 9 75, ZIRERII U U Cohen-Macaulay
BREVFET BS0ENEHET ZFIENES S0 ) ER. [3) 28). #121F, A % Cohen-
Macaulay D35&, €D h-FIDEZBSHIEDEM THS. &2 AHH, A H Cohen-Macaulay 7
REBDHED h-FIDOTEENTONTIE, ZLIFHSNTON (—fED Cohen-Macaulay
BROFHEITHART ML DROHEIFIEZIT 5 EEDIEN, EOBEICHROERMD BL 40
5730, FlZIE, char K = 0 ¥4, Cohen-Macaulay ZREIBD h-Fl (ho, hy, ..., h,) iZ,
EED1<i<s—1I1IZMUTh <h Z2HITEINMSNTINS. ZHiT, BTG
B2 RONTWERTH 5.



DRl EHILUT ORREH/. T, BERHREOMA LIF b EmOEFNTE
¥ Td 5 Barnette D “FIREHE” OT7FnV—%251 T35 ([7] B28).

FE 1 ([11]) charK =0 &L, A 2 K t®D Cohen-Macaulay ZREI, (ho, hy,...,hs)
A2FDRFIETE. OB, $32<i<s-21W{UT, hi<h BSIE, hy=hy=---=
hs_1>hy THB. hy >2715I1E, hey < hy THRUERZEL.

CHDEFMIZ Y7z - TIZ, Bertini DN S, A ZHEMBR C C P, r=h +1, DFK
FEAEERE LTk, 2T, FEMTHOROIIOHARTHS. (11 TR, 2Ihs &5
IZ REEYINT ZEB E 0D REEZENTNS. PT O— OB H & C LORbY
1%, BT degC DS THAD S, TNHEHHIT EDICHDUBSITOEEBFEEBDIIN,
NDOH~P ! OFTOERE, 2F V@B FEHLBHMEEOLERMRICEET A &, ar b
WHEIRRI > THBHEIIK DL, £7, ROAFLZHEMT 5.

EX2 SCP 2HSOBWRESETS. HH/EE T CS,#T <n+1, BNEIC (#T -1)
RILDMRIEZEMERS R (DX 0. B—# BBMILDOE) , S 1 linear general position 1T
HBHEES.

EFE3 S CP" AHASDHERESETS. #T = #T' 55 _DDHIEE T, T'C S D
Hilbert BEEOYE IZ—2 T B K¢, S 1T uniform position IZHBEE .

S DIERAE, DF VBEFEIIEFENTITNE (AR TEET SO, BICZDXIWEE
T % M%), uniform position i linear general position & O HIRNFHTH 5.
J. Harris iI2X % IROFERVDEETH 5.

3 4 ( Uniform Position Lemma). EBEADOFHZE 0 L9 5. B OHWTIER
75 (L., BEEICEENAN) SHEHE C C P, r > 3, O—ROBFEINIL, € DEBF
D H T uniform position IZ&H 5.

R, FE 13, AEBUTBRME L, uniform position 1T3 5 HEADMEERICH UTHIC
BROMD(ZLT, ShERALUTHHATE)BRTHS. L L, BE 41Tid, EEHT
RBIWEET S (BE 1 BHORFIIR DD - THED).



Bl 5 CCP*,n>3 %X, — X, X7, X7 - X, X271 ... DELERX ELTHONS MR
9B ZIZTog>lidp=charK >0 D& L7 C IBEHIM O THS. C D
—fE DB EYINT X T A28 ¢ DBFRHE LD n — 1 RITDOT 7 4 VEMEF UBREIC
5. 0%0, X D qEADET—EADEBD LIZHIEDHNIELL, ¢* AD HT—DODFMIC
FoTHBEDNEETS. 5T, g=2,n=3 DESEHW—DHIH & LT, X id linear
general TY ST,

Z Dk, [11] O, EEKTIIEZ S, BLU, FH 4 RO 2SO HERIET, &
D TRHRITFETHLENMOoN TS (REIUBRSER).
char K > 0 DD h-FIDIREEDS, SRIOWHAENRTH 5.

1 Uniform Position Lemma HVEIL U 7% (VB4 22 phis

B DD © Uniform Position Lemma % &7 X ISR ((EEBOBHEIZDAFTE
T BRI OXDFELUOHHTOEEMDNSD - THIF/ZERS. TOHETIE, Rathmann
[10] ¥k d EE/SMAFTH 5. Rathmann OEIRITDOOTIE, IRETTRRFEL S BNT B3,
COHITIIUT ORROBERNS.

8 6 (Rathmann [10]) BEED DB TIEBIL/ZHEME C C P, r > 4, O—fRDOB
T EIWT A, £ DB DT uniform position 12751341, C i strange curve TH 3,
2% FEOERBRAICBIZERIIBEEIN/c—5 (C ODFILNEFELR) 2@ 5.

5 OhAR C i, FRERE (1,0,...,0) TEIN B H%2H0ET S strange curve TH
5. CCP',r>2 ZEBTEOBHKINDOHWHIIL strange curve & 5. C &2 ZDOHLM
5 P ASHET 5 & BBAOIESMIERYE ISR IS, 5T, BRTEOBE,
DHHITE strange curve |3 IEEMDBEITUNFEE L. ol #0HO DB TIER/L
ISR C C P, r > 3, O— DB FHEYIWTHY linear general position 127X WK, C 1
strange curve T3H BHY, FISHMTRMAKFRR TSNS ([10) BH). &I, OO
kKid, C O— kOB FHEYIM L linear general position 125 25305 (Z i, Uniform
Position Lemma DFETH 3). ZDHEHEL, Castelnuovo NBEICEH L FIAL TV, &



%, ZREDOFHDIZ S TN L7z, Cohen-Macaulay ZFIREEIRD h-FIM, h; > hy 2T
EVIHIEED, ChEAVTRINSEDTHS.

F 7z, JEHFRTT strange curve I3, EAR S 2 OO ZIRERESNTITOWEDIMSNT
U5 (Samuel). D% 9 Uniform Position Lemma (X, r > 4 DOk, IEAAHTH > THIERR
HBRICH U CIRBOLT A0S0 5.

CDENS, hy >3 DI, “A IRIER W) ERELEMTNI, EH 1 ZIERETHEK
MG BENGND. —H, hy =2 OFE (DF D, r =3 OFE) IE, Cohen-Macaulay iR
BHO -FITZ2ITFEA T SN TS (5, 8] BEE LT, RIKIL2 DELEATTIV
& E D ¥ T, Hilbert-Burch DFHENAHN OGN TN 3). ZORERIE, BEITK STV, #E-
T, hy = 2 OBA, T X TEEMTHIELL.

DEZEEDHBE, RERS.

MET EE1LIZANT, “ARIER S0 HEBEEMTSE, COFBOETRIZEERT
HEL D ITD.

U#t p:= charK >0 &3 5.

FIE 8 C C P, r >4, 2B DK CTIERILEH MR T, £ O—R OB mEYIWT o1
uniform position IZ7E WD EF B, C NGFHAIC Cohen—Macaulay ThH L, £ DREIEER
D h-FNE, EED2<i<pITHLTh; > h%EHIT.

LETHRIZE ST r =3 IS LIHET, EE 1 FERM T XA LITK D IIDD
T, R%EM5.

% 9 A % K E®D Cohen-Macaulay ZREER, (ho, h1,...,hs) ZZD h-FIET B, O,
%5 2 S’L S mln{p— 1,3— 2} &:i’#b‘t, hi S h1 f&‘;li, hl = hz == hs—l 2 hs f‘%
3. hy>2751F i =min{p—1,s — 1} DEATHR UkREEL

FI2 8 MEERR T(C) % C D Tangent Varaiety, 2% 0, C DIFFRSICH I S ERL2MED
union AR TH B LTS, 4, C id strange THBE0 5, T(C) iE, C OFy v ZIHAE
T HETHS. IROFENELL.



WE 10 RREEERUETS. FCP % deg(F) < p SABMEET 3. ZOB, F > C
o F O TC) THB.

FHEDIA P % C OIFRAEL, D 2 C D P IiIlHIBERETS. C I strange
curve 7205, D £ C D P ICBIARLAEIZELE p DNTHS (C D v hoDHEEE
Z&). L, FpD 1553,

(CEDDPIEBIZZEH) < (F & DD PITHiF55EH) < deg(F) < p

L1 >TFE. £-T, FOD. #-7T, F>T(C) 2185, O

Lo ZRZDNZ, UTDOZ2IF, ZIZHSNTH A (FE 12 DI, C DR
=R D Cohen-Macaulay PEARINTU ).

ME 11 2ETOi<pilHL,
H°(P",Zc(2)) = H° (P, I7(c)(%)).

WE12 HCP 2 BOBFEHEL, X :=CnH, C:=TC)NH £b{. ZDEx
i < p I} UT Hy(i) = Hor(i). 1BU, Hy i¥ X C P™™ @ Hilbert B &ET 3. Ho b
% | |

T 8 DIEFDIEE i < p IKHLT,

he = Hx()— Hx(i—1)
= Heo(1) — Ho(i — 1) (FERE12 &)
> min{r +:—2,degC'}

FoT,2<i<piTRHUTh <h =r—1%85& degC'<r—-1%%B535. CCH~P!
BEHDODIEBILTH B0 S, degC' =r—1 T, C' C P™' i rational normal curve &7 5
X B %2BI. &2 A, rational normal curve IZE E N 5 SES 14T uniform position
IZHBDT, X CC' C P! iZ uniform position iZFES Z EITH > TFE. ]



2 Trisecant Lemma HVEXIL U %5 UNS3 82 Bh#g

JERTIIH 208 BIRERL S D¥EHFET 5.

d IRXIEREE Sy DB G Y, ¥ d DHEE QIEALTHELETS. Q Dt EDIR
5 {ay,a9,...,a:}, {b1,bsy..., b} ZAEEIT 2 DM o 7c & X, —HEMGINEFEZRE - TH
TG OTHNEETEEX, THbb el = (i =1,2,...,t) 23729 G DT 0 BWEIZIE
HETBEEXG DO ~DERAIEt-BR[E THBEND. !

EENSHOOIEEHIC, Sy BHIZ d BB, 3 Ay 3 d-2EABTHS. 2D
DS, BBATHE VWS EABREMEINSN, ChoDFEEE B42 BaBTLMEL, 3
EaBLU EDOHDICIE SHEENFLET 5.

T, A2 OFRE ED n RITRT MIVEROT 7 1 VR (MIBEER + FITBE)
AGL(n,2) C Sy 1%, 3 BB TH S (M3 ULDOHERELEDT 7 4 VEBEL 2 E0B
TUMEW). 7z, M ¢ OFRE EDOHEERIEALTOSBE G C S41 TH-T,
PSL(2,9) <G < PTL(2,q) 2#7:9 D3 EAIBTHS. BT I EAIBRI, 2
NS IREFEH O (DEIERF) ZEROLTIE, FIRME UHMEE L.

4 BEABU EOBEHATHEOSEBHIE, ABEEZROTHERMEUIFEELZL. My,
My, Myz, Moy DPIDT, Mathieu BEEHBBRINS. My C Sua, Mas C Sy 13 4 EAJH,
My C Si1a, Myy C S 12 5 BEABTH S (S oD SIRE UIcHTERID 3 ERIBE L
T5). BT 6 ER[BEIIFE LS.

HERDSFICRES. C C PT 2 HH CBHN CIERLIS SR ETS. M = {(z,H) €
CxP*|lzecHY #8235 ¥ M - C D7 74— F P! LRBEDT, M I35
ThBEGID. T, bI—HDOHE M - P 13, R d := deg C DFIRGFTTH 5,
Zhitk-> THIEBI SN HEBMEDIEK, m : K(P™*) - K(M) [ $IR¥ d O538ESE
KTh5 (—EOBFEYIMIL, degC BEOHREL LML TH S5 5. Bertini DFEHE).

5T, K(M) i K(P™*) £, DIt f € K(M) THERIATWAS. P(f) =014
3 K(P™) D d REE\ER P 2%Z 5. P ORNAMEKRD K(P™*) LD Galois B

L FABBHIDOLTI [9] ICEEL L. B L, ARBMBOSEOFERUROEL DT BETIRIFRES D
([10] THERINTNS) BEREY, “F 0SB THY EFShich LT3, TR, RERShTH S &K
IR E EOERIL N LR TANNIEERONE/ S &, (Rathmann [10] 1Tk 3 &) A0 ETL D
EOS L. O HA T, [10] 0BEXHY X P ESBELUTHES 2.




Gal(P,K(P"™)) %2, C C P" ® monodromy 8 &£, Go &FLT. bHBAA Ge 1T, f
DY TR ST, Go 1, f OHRBTLEDOESITERBEL LU TIEALTHS. D% D,
Go C Sy LERITALES.

Go &, ZBEIIESE 0 OB, FICERBAROKIZ B ERHKR I N, ZDBEE Go 13 BE
® (?) monodromy B TH Y, C O—fROBFHEHYIMELTHONS d HOSDOESIT &E
BELELUTEALTOAEDY, BERNICEABSNERS.

Harris, Rathmann 512k Y, IROVREN TN 3.
tned 13 52 LDED E9 5. TOR, ZUFAE D L.
(1) char K = 0 O¥:Z Go 13, FREE Sy 1% LU ([6] BH8).
(2) Go DB Ay 2 EDIE, C O—BDOBFEYINTIL uniform position i2d 3 ([6, 10]).

(3) 1<t<rEBEED tIIMLT, Go C Sy W t-Ea]B ThSEDLERSIEHER, C
DO—EOBFEYIWT X IZFNT, EED t DRIt — 1 IRITTONY +IVZERIEE
BETHB. I Go WEIC2EABULTIS 3 ([10).

E’E 14 C C P, r >4, Z8HH DB TIERLGHEMRET 5. C O—EOBFEY]
W& uniform position 12782 SiF, IRD 3 DDEHFD ENdRAIzZn 5.

(1) C D—HED 2 HEFESNERIT C OO EEDIELED b5 —2FHL. 2D, b
W5 Trisecant Lemma ML L TR (G 23 2 2 BB DEF).

(2) C O—RED 3 MHESFEIZ C DHOEEDEL &b b5 —>a (Go 243
ERH D).

(3) degC € {11,12,23,24} TH V, G¢ 1 Mathieu BEDANI ERETH .

(1) ® (2) D&E ( (3) DEHED r BRESARZINI), C O—ROBTFEIIWT I, linear
general position {29 575U, B 5 DR C D ¢ > 2 DFED, FEH 14 D (1) OFIEEZ,
g =2 DEAH (1) TEE (2) ORAEEZ TS (1) TE (2) OBl AAMICIE &
DHIIZFDEITHAS. (1] BR). EiL, Go 1 d AGL(n—1,q) EFRETH 3 ([10] BH). (3)



DEFIIFMSNTNIENE D THS. FFIC, — DB FE YN AN linear general position IZ
I3FE - T, uniform position I8 & 5 EBLIRDHIL, oW TS EITH 5.

Ge 29V LRSS B &, FH 14 D 3 DD/ —ZADW, FEEDHEEITIE, (1) A3
BRAL U T BRSO 5.

FI 15 (Ballico [1]) C C P", r > 5, Z— OB FE YK A uniform position (275U EE
B ORI TIEBL IS SR & 5. X 51T, char K # 2 (char K = 2 O EH 8, %
QIIMMBERULUTNEW) D degC > 24 75 51F, C D— D 2 HERINERIT, C DR
20 EHHHI—D2FEL. 2F D, WA Trisecant Lemma HSFRIL L TURU.

FOREAEENIZE D &, “Uniform Position Lemma % 7z X 78 WO BEFHIAR 1T KIED
34 Trisecant Lemma X X7z LTV EWWVHEICHE S, Jhid “HHTEN=E"]
BHEIZ LWL SV FIOFERBITER LT S.

EIE 16 C C P", r > 3, % Trisecant Lemma % A7z X 78O BRI D) TIERIL IS G5
LT 5. ZDE, C OFREERDERA T 7IVD FIRTLCD BN S5 BNERRZE
EBZAHE, REM p LO/NIORIFTE LA —DULNE0.

SERADIERE C BN DHHIIS DT, £ DX REBEREDERA T 7 IICEENEFRAD
) BREOBEDENHDEIBHNEERNTHS. LT, FRITOAD SIEBR/NEKFRD 5
LIRBOEWADS 2 DHl->TL &, ThSIXERIFIZT.

C &, Trisecant Lemma % A7z U T/{U DT strange curve TH5B. X->T,r =3 O
A, FBITHEL XDELBICR). r >4 O, FETTRY. CC P 2 20005
P! ~EHE U728 C' b Trisecant Lemma 2A 7/ S MORICHER. £/ C ODEHRATT
IWVOBERBNERTR TRED p LDIEOSDBZ DL EHNIL, C' $Z 9 Th S (strange
curve & LT “Huly DSDHELDT). LT, MWEDIRKEICFIET 5. o

ZhiT kD, 8 OARERE, BOIBEHEDOTTE LIHBINBZFIINS.

R17T CCP,r>5 degC > 24, 2—REDOEFEYIW A uniform position 1278 W BE¥IH,
DI TIER(LIE SR ET 5 (C X, HEMIZ Cohen-Macaulay TH B LEITLL). T



D, C DFERMEREBRDERA T 7 VD FIRTLDADOIEBBNERREEZ B &, RE
N p LONINTTIFE 2 =D UMW, KT, 2 <4 < p I UTRDEILT 5.

b (r—:+i) ~ (r—z}j;(—cr)r(c)) > (r-}-i—l) _ (Tji;3>
PEALT 5.
L

FROAMPELEINE ORI >TOETH, FREEMOFOAEESDOEREE ZHhOHFKRER
@ Hilbert BA~DJGAICEE Y 5, Eisenbud fIZ & A #EEHGEE 4] NHTHE T O T, Hk
DH B HIIHEEITIT > TL I,
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A generalization of Matijevic-Roberts theorem
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Intrvoduction

Let A = @,z A be acommutative Z-graded noetherian ring. In [9], J. Matijevic and P. Roberts
proved the following.

Theorem 0.1 If A, is Cohen-Macaulay for every graded prime ideal p of A, then A is Cohen-
Macaulay.

This gives an affirmative answer for a problem given by Nagata [13]: If A = @, ., A4, is
a commutative non-negatively graded noetherian ring, and if A, is Cohen-Macaulay for every
graded maximal ideal m of A, then A is Cohen-Macaulay, because any graded prime ideal is
contained in a graded maximal ideal in non-negatively graded case. It was proved by Aoyama-
Goto [1] and Matijevic [8] that the same is true for Gorenstein property.

After a while, S. Goto and K.-i. Watanabe [5] generalized these results as follows.

Theorem 0.2 Let A be a Z"-graded ring and M a finitely generated graded A-module. Let
p € Spec A, and we denote by p* the mazimal graded (prime) ideal contained in p. Then, the
following holds:

1 If Ay« is a regular local ring, then so is A,.

2 If My« is Cohen-Macaulay (resp. Gorenstein), then so is M.

In the theorem above, when we set R := Z, the ring of integers and G := G, p, the split torus
over R of rank n, then the Z™-graded structure of A is nothing but an R-action of G to A, and
the grading of M (resp. p*) is nothing but a G-action on it which is compatible with the A-action.

The purpose of this note is to extend these results to more general G-action. In fact, we have
the following:

Theorem 0.3 Let R be a noetherian commutative ring, G a geometrically integral flat affine R-
group scheme of finite type, and X a locally noetherian R-scheme. Assume that G acts on X (R-
rationally from right). Let x € X. Then, the closure of the image of the action {z} XspecrG — X
is integral, and we denote its generic point by *. Let M be a coherent (G, Ox)-module. Moreover,

we assume that the coordinate ring of G is a union of R-finite projective subcoalgebras. Then,
the following hold:




1 If Ox - is a regular local Ting (resp. a complete intersection), then so is Ox .
2 If My« is Gorenstein (resp. Cohen-Macaulay, free), then so is M,.

For the definition of (quasi-coherent) (G, Ox)-modules, which is a substitute for graded mod-
ules, see section 3. Although the proof is basically a translation of the proof in [5], there is
considerable technical difficulty to overcome. For example, the technique of homogeneous local-
izations is not available in our case: If R is an algebraically closed field and X = B\G, then X is
an R-projective homogeneous space, and it is absurd to expect a purely local (or ring theoretical)
treatment, where B is a Borel subgroup of G.

Geometric integrality assumption is necessary for our statement, see Example 1.3 and Exam-
ple 1.4. However, Kamoi [7] discuss torsion-group graded rings, which is grasped as a diagonal-
izable group-scheme action. He used a remarkable notion of G-prime ideals.

Here the author confess that there was a fatal error in my talk at the symposium, and the
statement of the main theorem has some additional assumption (Remark 3.5) here. I would like
to apologize to all who listened to my talk.

In section 1, we discuss the generality of G-stability of subschemes, which seems to be well-
known as a folklore. In section 2, we review the results on hyperalgebras. The results stated
there should be compared with the results stated in [6]. In section 3, we review some generality
of (G, Ox)-modules. This notion appears in [12] using the ‘linearlizable sheaf’ condition. We
also introduce the notion of (Hyp(G), Ox)-modules, which seems to be new here. Most of the
proofs in section 2 and 3 are omitted, as the technical detail is irrelevant here and it does not fit
into this short proceedings. In section 4, we prove Theorem 0.3.

The author is grateful for Professor Masayoshi Miyanishi, Professor Shiro Goto and Doctor
Yuji Kamoi for valuable advice.

1 Stable subschemes

Throughout this note, R denotes a noetherian commutative ring. For an R-scheme Z, we say that
Z is geometrically integral (resp. reduced, irreducible) when for any field K which is an R-algebra,
K ®r 7 is integral (resp. reduced, irreducible).

In this section, G denotes a geometrically integral flat R-group scheme of finite type, and X
denotes a locally noetherian R-scheme which has a right R-rational G-action. Note that if Y is
an irreducible (resp. reduced) R-scheme, then sois Y ®z G, as G is flat and geometrically integral
over R.

We denote the action (resp. the first projection) X x G — X by a = ax (resp. p = px). The
isomorphism X x G — X X G given by (z,g) — (zg,g) is denoted by hx. Note that it holds
Px © hX =ayx.

For a subscheme Y of X, we say that Y is G-stable when the action Y x G — X ((y,9) — yg)
factors through Y — X. In this case, Y has a unique G-action such that ¥ — X is a G-
morphism (i.e., R-morphism which preserves G-action). We say that z € X is G-stable when
{z} is G-stable.

Lemma 1.1 The following holds.
1 G is R-smooth.

2 Let Y be a closed subscheme of X, and Y* denotes the closure of the image of the action
Y x G — X. Then, Y* is the smallest G-stable closed subscheme containing Y. IfY s
irreducible (resp. reduced), then so is Y*.



2’ For a reduced closed subscheme Y of X, the following are equivalent.

a Y is G-stable
b Any irreducible component (mazimal integral closed subscheme) of Y is G-stable
c X —Y is G-stable.

3 When X = Xy xgr G is a principal G-bundle, then any G-stable open set of X is of the form
V xr G, where V is an open set of Xj.

4 If p: X — X' is a G-morphism of locally of finite type between locally noetherian R-schemes
with G-actions, then the flat locus Flat(p) is a G-stable open subset of X .

5 If the Cohen-Macaulay (resp. Gorenstein, l.c.i., reqular) locus is an open set of X, then it is
G-stable.

Proof. 1 We may assume that R is an algebraically closed field. In this case, G is an algebraic
group variety, and hence is R-smooth.

2 Straightforward. ‘

2’ a=>b Let Y; be an irreducible component of Y. Then, Y; is integral, and we have Y; C Y* C
Y, as Y is G-stable. Hence, we have Y; = Y;* by the maximality of Y;. b=>c If (U;) is an affine
open covering of X, then (ax(U; x G)) is an open covering by G-stable open subsets of X, since
ax is an open map. As a finite intersection of G-stable subschemes is again G-stable and a union
of G-stable open subschemes is again G-stable, we may replace X by ax(U; x G). Hence, we
may assume that X is quasi-compact. As an intersection of finite G-stable open subsets is again
G-stable, it suffices to prove a=>c. We set U := X — Y. As G is universally open over R, the
image W of the action U x G — X is open, and we have U C W. It suffices to prove that U = W.
Assume the contrary. Then, there is an algebraically closed field K which is an R-algebra such
that U(K) — W (K) is not surjective. As G is of finite type over R, we have (UxG)(K) — W (K)
is surjective by Hilbert’s theorem, and clearly we have X (K) = U(K)[]Y(K). This shows that
there exist ¢ € G(K), u € U(K) such that ug € Y(K). As Y is G-stable, this shows that
u=(ug)g~! € Y(K), which is a contradiction. c=a Similarly, we have the image of ¥ X G — X
does not meet U, and hence Y* is set-theoretically contained in Y. As both ¥ and Y™ are
reduced, we have Y = Y*, and Y is G-stable.

3 We denote the projection Xo x G — Xj by p. Let U be a G-stable open set of X = X, x G.
Then, W = pU x G = p~!(pU) is an open set, since p is an open map. The same argument as in
the proof of 2’ shows that U = W'.

4 The flat locus Flat(p) of ¢ is an open subset of X [10, Theorem 24.3]. Let f': 72" — X'
be a flat morphism, Z := Z' xx: X, f : Z — X the second projection, and ¢ : Z — Z'
the first projection. For z € Z, ¢ is flat at z if and only if ¢ is flat at fz. Or equivalently,
Flat(y) = f~!(Flat(p)). We apply this observation to the flat morphisms px: and ay:. Consider
the diagram

XxG_ %, X . PX Xx@G

(pxl(;'i lﬁo lchlG
X'xGox, x' PX' X'x@

Obviously, the right square is a fiber square. As (¢ X 1g) ohx = hx o (¢ X 1g) and hy and hy
are isomorphisms, the left square is also a fiber square. It follows that

Flat(p) x G = py'(Flat(p)) = Flat(p x 1g) = ay'(Flat(p)).



This shows that Flat(y) is G-stable.

5 Let f: X' — X be a smooth morphism, z' € X’ and fz’ = z. Then, Oy, is Cohen-
Macaulay (resp. Gorenstein, l.c.i., regular) if and only if so is Ox,. Or equivalently, when we
denote the Cohen-Macaulay (resp. Gorenstein, l.c.i., regular) locus of X (resp. X') by U(X)
(resp. U(X")), then it holds U(X') = f~}(U(X)). Applying this observation to py : X x G — X
and ay: X x G — X, we have

U(X) x G = p5 (U(X)) = U(G x X) = a5 (U(X)).

This shows that U(X) is G-stable. O
For x € X, we denote the generic point of m* by z*. z is G-stable if and only if z = z*.

Corollary 1.2 Assume that the Cohen-Macaulay (resp. Gorenstein, l.c.i., reqular) locus Uof X
is an open subset of X (e.qg., X is excellent). If U contains all of the G-stable points of X, then
U=X.

Proof. Assume the contrary. Then, Y := X —U with the reduced closed subscheme structure is a
non-empty G-stable closed subscheme of X. It follows that the generic pomt 1 of any irreducible
component of Y is G-stable, but n ¢ U. This is a contradiction. O

Thus, Matijevic-Roberts type theorem is true for excellent X without assuming that G is affine.
In fact, Theorem 0.3 is much easier to prove when we assume that X is excellent.
The following examples show that the integrality assumption is necessary for our theorem.

Example 1.3 Let k be a field, and X, a non Cohen-Macaulay variety over k. We set X :=
Xo [ Xo, and the group G = Z/2Z acts on X via permutation. It is easy to see that there is no
stable point on X. However, X is not Cohen-Macaulay.

Example 1.4 Let k£ be a field of characteristic p > 0. Then, G := Speck[z]/(2?) is a closed
subgroup scheme of G, = Spec k[z] with z primitive (i.e., A(z ) =2®1+1Q®z and e(z) = 0).
We set A := k[z, y] and X := Spec A = A2. G acts on X by w(r):=2®1+1+2and w(y) :=0.
Then, I := (zy,y )4 is a G-ideal of I. Then, G acts on X := Spec A/I and X is non-singular
off the origin, but is not Cohen-Macaulay at the origin. However, the origin (defined by (z,y))
is not G-stable.

2 Hyperalgebra action

In this section, G = Spec H denotes an affine flat R-group scheme of finite type. Let A be a
G-algebra (i.e., an R-algebra with a G-action).

Definition 2.1 We say that M is a (G, A)-module when M is a G-module (i.e., H-comodule)
which is also an A-module, and the A-action A ® M — M is a G-homomorphism (i.e., H-
comodule map). For (G, A)-modules M, N and amap f : M — N, we say that f is (G, A)-linear
when f is a G-homomorphism which is also A-linear.

This definition is in [16] and some important results are proved over arbitrary noetherian R.
We obtain the category ¢ 4M of (G, A)-modules and (G, A)-linear maps. The category ¢ 4M is
abelian with enough injectives and arbitrary inductive limit. However, this category is not closed
under projective limits in general, and we need to extend the category in order to obtain various
homological operations.



Definition 2.2 We define the hyperalgebra of G by
li_n}HomR(H/I”,R) C H* = Homg(H, R)

and denote it by Hyp(G), where I denotes the defining ideal of the unit element {e} — G (the
kernel of the counit map ey : H — R). We say that G is infinitestmally flat if H is normally flat
along 1.

The hyperalgebra Hyp(G) is a subalgebra of the dual algebra H* of H. If R is a field of
characteristic zero, then Hyp(G) is isomorphic to the universal enveloping algebra of the Lie
algebra Lie(G). We set U := Hyp(G). As a G-module M is an H*-module with the action given
by

h*m := Z(h*, my)mg
(m)
(we use the Sweedler’s notation, see [17]), we obtain a functor ® : cM — yM. As ®(M) = M as
an R-module, ® is exact.

If G is infinitesimally flat, then U is R-projective, and a Hopf algebra in a natural way. In this
case, the identity map ®(M Q N) = M @ N = ®M ® ®N is U-linear. If M is R-finite moreover,
then the identity map ®(Hompg(M, N)) = Homg(M, N) = Homg(®M, ®N) is U-linear.

We say that U is universally dense if for any R-module M, the canonical map pp; : M Qg H —
Hompg(U, M) given by pp(m ® h)(u) = (u, h)m is injective.

If U is universally dense and M € yM, then we define the rational part M., of U as 0;,1 (Tm ppg),
where 037 : M — Hompg(U, M) is given by 6(m)(u) = um. It is well-known that M, — M —
Hompg (U, M) factors through M, ®g H — M ®g H — Hompg(U, M), and we have an H-
comodule structure of My, C M. For any H-comodule M, we have (PM).,, = M. Letting this
identification as the unit and letting the inclusion ®(May) = My C M as the counit, (?)rat
is the right adjoint functor of ®. This shows that ® is fully-faithful. A U-module M is called
rational when M., = M. By the remark above, the full subcategory of rational U-modules in
vM is identified with the category of H-comodules M.

The following is a useful criterion for infinitesimally flatness and universal density.

Lemma 2.3 If G is R-smooth, then G 1s infinitesimally flat. If G is infinitesimally flat and
geometrically irreducible, then U is uniwersally dense. If G is geometrically integral, then G 1s
infinitesimally flat, U is uniwversally dense, and H is R-projective.

The projectivity of H is due to Raynaud [14].

From now on, we assume that G is geometrically integral. As ® preserves tensor products,
U acts on A in a natural way. It is easy to verify that a G-module A-module M is a (G, A)-
module if and only if ®M = M is a U-module A-module which satisfy u(am) = 3, (v1a)(uam).
Namely, ® A is a module over the smash product A#U. The smash product A#U 1s A®@rU as
an R-module, and is an R-algebra whose product is given by

(a®@u)(ad ®u') = Z auya’ @ ueu'.
(u)

Thus, we obtain an exact functor ® : g 4M — 4xyM with the right adjoint (?)ra;.

Lemma 2.4 The canonical restriction functor 44uM — sM preserves projectives (resp. injec-
tives).

This is because U is R-projective (resp. flat).



3 Construction of E?X(M, N) and MEX(M, N)

Let G = Spec H be an affine flat geometrically integral R-group scheme of finite type. We define
Gx to be the category of noetherian (G, X )-schemes of finite type. Namely, an object in Gx is a
quasi-compact G-scheme Y together with a G-morphism Y — X locally of finite type. Note that
Y € Gx implies Y is noetherian and of finite type over X. A morphism Y — Y” is a G-morphism
X-morphism. G% denotes the full subcategory of Gx of flat affine X-schemes.

For a category C, a C-valued (G, X )-functor (resp. (G, X )%-functor) is a contravariant functor
from Gx (resp. G%) to C by definition. Note that the category Gx is skeletally small, so the
category of (G, X )-functors with valued in any C is a category with small hom sets.

Definition 3.1 Assume that C has finite projective limits. A C-valued (G, X )-functor F is called
a (G, X)-faisceau if it satisfies the conditions:

1Y =Y[[--]1Y. € Gx is a finite direct product of (G, X)-schemes, then the canonical
maps F(Y) — F(Y;) yield an isomorphism F(Y) = [, F(Y;).

2 IfY — Y'is a morphism in Gx which is faithfully flat, then the map F(Y') — F(Y) is
a difference kernel of two maps F(f,) and F(f;), where f; : Y/ xy Y’ — Y’ is the ith
projection.

(G, X)!-faisceau is defined similarly.

A (G, X)-faisceau is uniquely extended to a sheaf over the category Gx of (G, X)-schemes
locally of finite type over X (with the fppf topology), if C has direct products.

The functor Y — I'(Y,Oy) is a faisceau of commutative rings, which we denote by 0. An
O-module M is said to be quasi-coherent if for any A — B such that Spec B — Spec A is a
Gx-morphism, the canonical B-module map B ® 4 M(A) — M(B) is an isomorphism. M is
called coherent if it is quasi-coherent and M(A) is A-finite for any A with Spec A € Gx. A quasi-
coherent O-module is a faisceau. For a quasi-coherent sheaf (for usual Zariski topology) M on
X, we define a (G, X )-functor of O-modules W (M) by W(M)(A) = I'(Spec A4, f*M) for A € Gx,
‘where f : Spec A — X is the structure map. It is easy to check that W (M) is quasi-coherent.
These definition are done for (G, X)*-functors similarly.

If M is a quasi-coherent (G, X )-faisceau, then, by restriction, we get a (G, X)!-faisceau.

Finally, if M is a (G, X )"-faisceau, then for any noetherian affine open set U = Spec A of X,
A ® H together with the action U x G — X as the structure morphism lies in G%. When we
set QM)(U):=M(A® H)/I(A® H)M(A® H), then by the quasi-coherent condition, we have
M(A® H) is nothing but Q(M)(U) ® H as an R-module. So the faisceau condition on M yields
the usual Zariski sheaf condition on Q(M), and Q(M) is uniquely extended to a quasi-coherent
sheaf, as the set of noetherian affine open subsets of X forms an open basis of X. It is easy
to see that @ is a quasi-inverse of W. Thus, a quasi-coherent (G, X)-faisceau, a quasi-coherent
(G, X)"-faisceau and a quasi-coherent sheaf are one and the same thing.

Definition 3.2 A (G, O)-module (resp. (U, O)-module) (faisceau) M is a collection of data:
1 M is an O-module (faisceau)
2 For A€ Gx, M(A) is a (G, A)-module (resp. A#U-module).

3 For each A — B, the canonical map M(A) — M(B) is a G-homomorphism (resp. U-linear),



where U = Hyp(G) is the hyperalgebra of G. A (G, O)%-module (faisceau) and a (U, O)%-module
(faisceau) are defined similarly.

Note that a quasi-coherent (G, O)%-module is extended to a quasi-coherent (G, ©)-module (in
a natural way), uniquely up to isomorphisms.

We have the abelian categories of (G, O)-modules and (U, O)-modules in an obvious way,
which we denote by g oMP and yoMP, respectively. The category of (G, O)-module faisceaux
and (U, O)-module faisceaux are denoted by ¢ oM and y oM, respectively. There is an obvious
functor @ : g oM — y oM. If M € y oM, then M., defined by My, (A) = M(A),, is a faisceau,
and we obtain a functor (?).a : y,oM — ¢,oM. Note that (7). is a right adjoint of ®.

Lemma 3.3 The category yoMP and yoM have enough injectives.

This is because each category has exact filtered inductive limits, direct products, and a family
of generators (cf. [11, Lemma III.1.3]).

Hence, ¢ oMP and ¢ oM also have enough injectives. For any ¥ € Gx and M € yoMP?, the
Cech cohomology H(Y, M) is defined, and it is a (U, H(Y, O))-module. If M € ¢ oMP, then it
is rational.

The associated faisceau functor a : yoMP — y oM is defined, as well as the direct image and
its adjoint, and the ‘extension by zero’ functors. If M € g oMP?, then a(M) € ¢ oM.

For M, N € yoM, we define Hom, (M, N) by Hom,, (M, N)(Y) := Homoe, (M|y, N
right derived functor of Hom,, (M,?) is denoted by Ext,, (M,?).

As the ‘extension by zero’ functor is exact, we have:

y). The

Lemma 3.4 Let M,N € yoM.
1 For any Y € Gy, we have
Extp, (Mly, Ny) 2 Extl, (M, N)ly.

2 If M is coherent and N 1is quasi-coherent, then for any Spec A € Gx, we have
Exth, (M, N)(4) 2 Ext’y(M(4), N(4))
n a natural way.

3 Assume that for any R-finite G-module V' there exists some R-finite projective G-module W
and a surjective G-homomorphism W — V. Then, for coherent M € ¢ oM and quasi-
coherent N € ¢,oM, we have Ext, (M, N) is rational.

Remark 3.5 The assumption in 3 of the lemma seems to be difficult to check unless the coordi-
nate ring H of G is an inductive limit of finite R-projective subcoalgebras, where we say that an
R-submodule H' is a subcoalgebra of H when H' — H is pure and A(H') C H' ® H'. Note that
this condition is satisfied if R is hereditary. This is proved easily in the line of [16, Proposition 4].
In particular, if G is a split reductive group (over any R), then this condition is satisfied, as any
split reductive group is obtained by a base change of a split reductive group over Z [3, Sect 3.4].

In my talk at the symposium, I erroneously asserted that 3 is always true without this condition
(Theorem A in the abstract distributed there). It seems that this is a fatal gap also for the main
result, and I could not remove the assumption.

The importance of (G, Ox)-module faisceau can be seen by the following lemma.



Lemma 3.6 Let M be a coherent (G, O)-faisceau. Then, M (identified with Q(M)) is a coherent
Ox-module, and the set {x € X | M, is Ox -free} is a G-stable open set of X.

Such a good property can not be expected for (U, O)-faisceaux.

Finally, we mention the construction of the Tor functor. We do this only for quasi-coherent
faisceauz. First, we consider the case X = Spec A is affine. Let M and N be A#U-modules. In
this case, M ®4 N is a A#U-module in a natural way, and we have

Li(M®4?)(N) 2 Li(? ®4 N)(M) = Tor*(M, N),
as a U#A-projective module is A-projective. This defines the A#U-module Tor{*(M, N).

Lemma 3.7 If H is a union of R-finite projective subcoalgebras and M and N are rational, then
s0 is Tor? (M, N) for any i > 0.

Now consider general X and quasi-coherent (G, O)-modules M and N. Then by the lemma,
we obtatin a quasi-coherent (G,O)"-module Tor{* (M, N) for i > 0. By definition, for any
Spec A € G| we have
(3.8) Tor?* (M, N)(A) := Tor(M(A), N(A)).

As was mentioned above, the quasi-coherent (G, O)"-module Tor?* (M, N) is extended to a
quasi-coherent (G, 0)-module in a natural way. However, note that (3.8) is not true for general
Spec A € Gx, as is clear.

The construction of Ext and Tor will be used only for X affine in the next section, as the

general case is reduced to the affine case.

4 Main results

Let G = Spec H be an affine flat R-group scheme of finite type, and X a locally noetherian
G-action.

Lemma 4.1 Let Y be a closed integral subscheme of X with the generic point n. Then, the
following hold:

1 Oy~ is a regular local ring

2 Let M be a coherent (G, Oy~+)-module and N a coherent (G, Ox)-module. Assume that H is a
union of.R-ﬁnite projective subcoalgebras. Then, for anyi > 0, the modules Tor?x"’(M,,, Ny)
and Exty (M, N,) are Oy~ ,-free. In particular, so is M,.

Proof. We take an affine open neighborhood V' = Spec A of in X. We set W := V NY™*. Note
that W = Spec A/P is a dense open neighborhood of 7 in Y, where P is some prime ideal in A.
Consider the morphism ¢ : W x G — Y* defined by (w, g) — wg. Then, Flat(y) is a G-stable
open subset of W x G, and is of the form F x G for some open subset F' of W. As ¢ is dominating
and both W x G and Y™* are integral, we have that n € F. Hence, the composite morphism

¢ : Speck(n) x G = W x G L v~

is flat, as the first arrow is a localization and is flat. As Speck(n) x G is k(n)-smooth and the
unit element Specx(n) x {e} is mapped to n € ¥™* by 1, the local ring Oy, is a regular local
ring, and 1 is proved.



To prove 2, we may replace X by V x G and Y by W X {e}, by the previous paragraph, as
the freeness of a finitely generated module can be checked after a faithfully flat extension. So we
may assume that X = Spec B is affine, Y = Spec B/P and Y* = Spec B/P*. Then, Tor?(M, N)
and Exty (M, N) are (G, B/P*)-modules, as M has a (G, B)-resolution F with each term B-finite
projective. As the free locus of a (G, B/ P*)-module is a G-stable open subset of Y™* and is clearly
non-empty, it must contain 7. O

Now we start the proof of the main theorem. We set Y := {z}. We set B := Ox,, B/P =
Oy« z, and M := M,. We know the following:

1 B/P is a regular local ring (Lemma 4.1, 1).

2 B is normally flat along P, as the defining ideal sheaf P of Y* is a (G, O)-module and we have
(P™/Prtl), = P*/P"*! (sce Lemma 4.1 2). Similarly, M is normally flat along P (i.e.,
Grp M is B/P-flat). :

3 By the same reason, we have that Torf(B/P, B/P) is B/ P-free for i > 0.
4 Bp is a regular local ring (resp. l.c.i.) by the assumption of the theorem.
5 Extz(B/P, M) is B/P-free for i > 0.
6 Mp is Cohen-Macaulay (resp. Gorenstein, free) by assumption.

The first part of the main theorem is reduced to the following lemma.

Lemma 4.2 Let (B,n) be a local ring, P a prime ideal of B. Assume that B 1is normally flat
along P. Then, we have dim B = dim Bp +dim B/P. If B/P is regular, then the following hold:

1 B is regular if and only if Bp is regular.

2 B is a Lci. if and only if Bp is a lLc.i. and Tor2(B/P,B/P) is B/P-free. If so, then
Tor?(B/P, B/ P) is B/P-free for anyi > 0. -

Proof. We take by, ..., bg € nso that their image in n/P forms a system of parameters of B/P,
where d = dim B/P. As B is normally flat along P, we have

dlIIlB/(J-{- P) ®B/P GI‘pB = dlmK(P) ®B/p GI‘pB = dimGI‘pBP BP = dim Bp.

This shows that there exists some ci,...,c, € n (h := dim Bp) such that
by,...,ba,in(cy), ..., in(cp)
form a system of parameters of Grp B. It is easy to see that B/(by,...,bg,c1,...,cs) is artinian.

As it is obvious that d + A < dim B, we have d + h = dim B and by, ..., bg4,c1,..., ¢y is a system
of parameters of B. This proves the first part.

Now we assume that B/P is regular. In this case, we can take by,...,bq so that they form a
* regular system of parameters of B/P. We set J := (by,...,ba). Note that by,...,bg Is Grp B-
regular, and hence is B-regular. Note that dim B/J = h.

Consider a finite free B-resolution F of B/P. We set G := F®pF. Then, as b is B/P-regular,
we have that F' := B/J ®pF is a finite B/J-resolution of B/n. As H;(G) = Tor?(B/P,B/P)
and H;(B/J ®pG) = H;(F ®B/J F)= Tor?/J(B/n,B/n), we have a spectral sequence

B B B/J
E? , = Tor,/(B/J, Tor, (B/P, B/ P)) = Tor /7(B/n, B/n).



As we have Torg (B/P, B/P) = B/P and Tor?(B/P, B/P) = P/P? are B/P-free and hence are
Tor-independent of B/J, we have that

B/n®gyp Tor?(B/P,B/P) = E2, = E = E; = Tor;'’(B/n, B/n)
for ¢ < 2. In particular, we have

emdim B/J = 827 (B/n) = pp(Tor?(B/P, B/ P))
= rankpg/p(Tor{ (B/P, B/P)) = B (k(P)) = emdim Bp.

Hence, if Bp is regular, then so is B/J. In this case, B is also regular, because J is generated
by a B-sequence. This proves 1, because the converse is well-known.
We prove 2. B is a l.c.i. if and only if so is B/J. On the other hand, B/J is l.c.i. if and only if

>/!(B/n) = dimp,, Tory’” (B/n, B/n) = (;) +e—h.

On the other hand, we have
2/ (B/n) = ppyp Torf (B/P, B/P) > dimp) Torf* (s(P), k(P))
=P 2 () +eh
The first inequality is an equality if and only if Tory (B/P, B/P) is B/P-free, and the second
inequality is an equality if and only if Bp is a l.c.i. This proves the equivalence of 2.
Now we prove that Tor?(B/P,B/P) is B/P free for any i > 0 by induction on i, assuming
that B is l.c.i.

By induction assumption, we have that Equ =0 for p > 0 and ¢ < ¢ in the spectral sequence
above. Hence, we have

B/n®g,p Tor?(B/P, B/P) = Tor?’ (B/n, B/n).

As the Betti numbers of the residue field of a l.c.i. is completely determined by the dimension
and the embedding dimension [2], we have 8PP (k(P)) = 827 (B/n). Hence, Tor?(B/P,B/P) is
B/ P-free, as desired. O

Remark 4.3 A similar argument shows the following. Let (B,n) be a noetherian local ring, and
P € Spec B. Assume the following:

1 B is normally flat along P.

2 emdim B = emdim Bp + emdim B/P.

3 Tor?(B/P,B/P) is B/P-free.

4 B/P is a complete intersection.

Then, B is a complete intersection if and only if so 1s Bp. This statement is also sufficient to
prove the main theorem, because 2 and 4 are satisfied if B/ P is regular.

The second assertion of the main theorem is reduced to the folloWing lemma.



Lemma 4.4 Let (B,n) be a noetherian local ring, M a finite B-module. Let P be a prime ideal
of B. Assume that M is normally flat along P. Then, the following hold:

1 We have dim M = dim Mp + dim B/P.
2 Assume that B is normally flat along P. Then, M s B-free if and only if Mp is Bp-free.
3 If Tor?(B/P, M) is B/P-free for i > 0, then we have
BE(M) = B;7% (Mp)
for i > 0. In particular, we have proj.dimg M = proj.dimpg, Mp in this case.
If Extg(B/P, M) is B/P-free for i > 0 moreover, then, the following hold:
4 We have depth M = depth Mp + depth B/P. In particular, M 1s Cohen-Macaulay if and only
if so are Mp and B/P. If M is Cohen-Macaulay, then
type M = type Mp - type B/P,
where type denotes the Cohen-Macaulay type. In particular, M is Gorenstein if and only
if so are Mp and B/P.

5 Assume that B/P 1s Gorenstein. Then, we have ,ui;dimB/P(M) = Wy, (Mp), where ji* denotes

the Bass number.

Proof. 1 is proved as in Lemma 4.2. We prove 2. If M is B-free, then Mp is Bp-free. We
prove the converse. Assume that Mp is Bp-free. Note that Grp M is a graded Grp B-module
generated by degree zero component. If my,...,m, are elements of M such that their image
in M/PM is a B/P-basis, then my,...,m, generates Grp M over Grp B. Moreover, we have
T = dimn(p) ]V[P/P]\fp = rankBP A[p As we have (Gl‘p AI)P = GrPBp ]\/[P = (GI‘}JBP Bp)r, we
have

rankp,p P"M/P""'M = dimy(py P"Mp/P™"*' Mp
= rdim,p) P"Bp/P""' Bp = rrankg,p P"/P"*.
This simply shows that the canonical surjective map (Grp B)" — Grp M is an isomorphism.

Now, a standard argument shows that B" — M is an isomorphism, and M is B-free.
3 This has nothing to do with normal flatness, and is proved easily using the spectral sequence

— B/P B y B y
E? = Tor2/"(B/n, Tor?(B/P,M)) = Tor?, (B/n, M).

pt+q

4 Consider the spectral sequence

E}? = Extly ,(B/n, Exty(B/P, M)) = Ext}"(B/n, M).

As ExtL(B/P,M) is B/P-free by assumption, we have EY? = 0 if ¢ < depthMp or p <
depth B/P. Moreover, we have

Extly ™ (B/n, M) = B = E2 = Ext} ,(B/n,Extg(B/P,M)) # 0,

Po,90
where pp = depth B/P and gy = depth Mp. This shows that depth M = py + go. The equality
for the Cohen-Macaulay type also follows, and 4 is proved. 5 is proved easily using the same
spectral sequence. O

Note, not only that the result on regularity is fairly well-known, but also that all, but the
statements on complete intersection, of the lemmas on normal flatness above are already proved
or essentially proved and used in [5]. Note also that some of the argument in our proof is much
due to [15].
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In this article, we shall state some results in [2].

0 Introduction

Let k be an algebraically closed field of characteristic zero. Let X be a normal
algebraic surface with only one quotient singular point P. Let f : X — X be
a minimal resolution of X and let D = ¥°%, D; be the reduced exceptional
divisor with respect to f. We define the rational numbers d;, ... ,d, by the
condition .

=1

and put D# = ¥ | d;D; and Bk (D) = D — D*,

Definition 0.1 (cf. Miyanishi-Tsunoda [4, p. 226]). The above pair (X,D)
is called almost minimal if, for every irreducible curve C on X , either (D# +
Kx -C) > 0 or the intersection matrix of C' 4 Bk (D) is not negative definite.
And we say that the singular point P is almost minimal in X if the pair
(X, D) is almost minimal.

By virtue of [4, 1.11], we can construct the almost minimal singular points
from any quotient singular points which might be changed from the original



singularities. We shall classify the above pair (X, D) when the logarithmic
Kodaira dimension ®(X — D) <1 and X is a rational surface.

1 The case ®(X — D)= —o0

Let (X, D) be the same pair as in the introduction. In this section, we
assume that (X — D) = —oco and (X, D) is almost minimal. Since Ky is
not numerically effective, there exists an extremal rational curve £ on X. Let
£ be the proper transform of Z on X. Then, by [4, Lemma 2.7], one of the
following two cases takes place:

(A) The intersection matrix of £ + Bk (D) is negative semidefinite, but not
negative definite. Furthermore, (Z°) = 0.

(B) The Picard number p(X) equals to 1, and —Kx is ample.

In the subsequent arguments, we consider the case (A) only, leaving the
case (B) to a forthcoming paper.

Since X is a normal projective surface at worst (only one) quotient sin-
gular point, there exists an integer N > 0 such that, for every Weil divisor
G on X, NG is a Cartier divisor on X. By [4, Lemma 2.8], for a sufficiently
large n, the linear system |nNV f*(Z)| is composed of an irreducible pencil, free
from base points, whose general members are isomorphic to P!. Then we
have the following result:

Theorem 1.1 Let the notations and the assumptions be the same as above.
Then the following assertions hold:

(1) Let h be the P'-fibration of X over a curve C defined by the linear system
[nNf*(€)|. Then Supp (D) is contained in Supp Fy, where Fy is a fiber h~(a)
for some a € C. Furthermore, there ezists a unique (—1)-curve E on X such
that Supp (E + D) coincides with Supp (Fo)-

(2) The weighted dual graph of E+ D 1s one of the following:
(i) Case: Supp D is a linear chain.



—1,E

M2l —(ms+2) ~(mac1+2) Mt ~(ma+1)
O 'e B C '6 K C O O ..... ce.
—-my —2 =2 -2 -2 -2 -2 =2 -2
—(ma+2) ™1
......... o—o—%. 0 (a: even)
—2 —2 -2
1o F
moa—1 —(m3+2) —(ma—l+2). mg—1—1 _ T
— —— —(ma+1)
C Qe C o ..... C Qe O O —Q - - -
-my —2 =2 -2 =2 -2 =2 -2 =2
—(m mi1—1
......... 0;20100 (a: Odd)
-2 -2 =2
where my > 2 and m; > 1 for2 <i<a.
(i1) Case: Supp D is not a linear chain.
(Type D)
o —2
\ g
O——O——O— -t —0——0
~2 =2 -2 -1
o—2



o
“2\ A2 (et D) —(macs +2) T‘(’”““’
o SR UUG D G Oevvnn O—
-2 =2 -2 =2 =2
-2 /~(m1+1)
o
Mg—1—1 mi1—1
ool manty) o (mat?) T (a: even)
-2 =2 -2 -2 -2 =2

o Ey -1
-2 ma—1 Ma—1—1 _ 1
e — (M3 + 2)  —(Ma—2 + 2) —— (ma +1)

O—-C0:" - [0 g SR —0 O-n-- O

-2 =2 -2 =2 -2

-2 /—(mi+1)

o

Mmae—1 m1—1

_Oo__(’mg)-l_Hc))_— ....... _Olmzo-‘io ..... o (a: Odd)

-2 =2 -2 -2 -2 =2

where my > 2 and m; > 1 for 2 <i<a.
(Type Es)
E o —3

Remark. (1) In the above Theorem 1.1, we may not assume that X is
rational.

(2) Let (X, P) (or (X, D)) be the same pair as in the introduction. Suppose
that the case (B) occurs. If P is a rational double or triple singular point,



then such pairs have been classified completely. See Miyanishi-Zhang [5] and
Zhang [9].

Corollary 1.2 Assume that D is irreducible and ®(X — D) = —oo. Then
X is a Hirzebruch surface F, of degree n (n > 2) and D is the minimal
section M,, of X.

2 The case ’(X —D)>0

Let (X, D) be the same pair as in the introduction. Then we can easily show
the following lemma:

Lemma 2.1 Suppose that €(X — D) > 0 and every irreducible component
of D is a (—2)-curve. Then, x(X) > 0.

In the subsequent arguments, we assume that X is a nonsingular rational
surface and ®(X — D) > 0. Furthermore, we assume that (X,D) is an
almost minimal pair. Then, by [4, Theorem 2.1], it follows that D# + Ky is
numerically effective.

Lemma 2.2 Suppose that ®(X — D) > 0. Then we have
(K%) < -1

In the subsequent arguments, we assume that (X — D) = 0 or 1. We
will give the configuration of such a divisor D.

Since X is a rational surface and the dual graph of D is a tree, we have
|D + K| =0 (cf. [3, Lemma 2.1.3]). Hence, by [8, Proposition 2.2], we have
the following result:

Theorem 2.3 Let (X, D) be as above. Suppose that ®(X — D) = 0. Then
we have D+ 2K ~ 0 and h°(2(D + K)) = 1. Furthermore, the configuration
of D is one of the following where 0 < n < 8:




We consider the case ®(X — D) = 1. Then |j(D* + K)| gives rise to
an irreducible pencil of elliptic curves or rational curves h : X — P! for a
sufficientry large j by taking, if necessary, the Stein factorization of ®; p# 4 k)|
(cf. Kawamata [1, Theorem 2.3]). More precisely, the following assertion

holds:

Lemma 2.4 h is an elliptic fibration. Furthermore, Supp (D) is contained
in some fiber Fy of h.

In order to state the folloing theorem, we define linear chains A,, and
Aum (@ >1, m > 0) as follows:

X E
An: oo ’
-2 -2 -2 -1
m ma—1 ma—1
A . /—A—_(ml.'.])/—’\q_(m?"’z) —(ma-1+2) °
a,m * o ..... C O O ..... C O— ..... —O—O———O ..... o—
-2 =2 -2 =2 -2 -2 =2
E, —(ma+1) 2—21"("111—1 +2) ,_ZL__I_\
—0 O— O---- O O—eenn —O—— - o (a . even)
-1 -2 =2 —(mz+2) —2 =2
— —(m1+1) z—ma‘_; —(m2+2)  —(ma—z+2) Tei!
O vvre e O vvne e O—vvns —O—0—0:--- o—
-2 =2 -2 =2 -2 -2 =2
—(ma+1) Eq ,_m_:\—lq —(ma-1+2) ,—mlA_lq
—0 Q-+t O——O— v e [ e UMM fe) (a. Odd)

O O—
-1 -2 =2 —(m2+2) —2 =2

where m; > 1 for 1 <: < a.

Theorem 2.5 Let (X, D) be as above. Suppose that ®(X — D) = 1. Then
the following assertions hold: '



(1) Let h be as in Lemma 2.4. And let Fy be the fiber of h which contains
D. Then there exists a unique (—1)-curve Ey such that Supp (D + Ey) =
Supp (Fo). Furthermore, all the fibers of h except for Fy contain no (—1)-

Curves.

(2) The configuration or the weighted dual graph of D + Eq is one of the
following:

(a) Cases B, and Bj

-2 -5 -3 -3
@ Eo EO
E N *
(b) Case A}
-5 —-2-m =2 —5—m

(c) Case Al (n>2)



By [7], we have the following:

Corollary 2.6 With the notations as above, suppose that (X, D) is almost
minimal and D is irreducible. Then the following assertions hold:

(1) ®(X — D) =0 if and only if n = 4 and D+2K is linearly equivalent to
zero. Furthermore, if E is any (—1)-curve, the linear system |D + 2E)|
is an irreducible pencil of elliptic curves. We have also a birational
morphism f : X — P? such that f(D) is a sextic with ten double
points (possibly including infinitely near points).

(2) ®(X —D) =1 if and only if n =4 and |D + 3K| # 0. There ezists a
unique (—1)-curve Eq such that (Ey - D) = 2. Furthermore, the linear
system |D + 2Eq| ts an irreducible pencil of elliptic curves. There also
ezists a birational morphism f : X — P? such that f(D) is a curve
of degree 3m, m > 3 with nine m-tuple points and one double point
(possibly including infinitely near points).
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0 Introduction

Let k be an algebraically closed field of characteristic zero and R a polynomial ring in n variables
over k. A normal k-subalgebra S of R which is finitely generated over k is called cofinite if R is
integral over S. It is one of central problems in affine algebraic geometry to consider the structures
of cofinite normal k-subalgebras of R. If n = 2, it is known (cf. [2]) that Spec S is isomorphic to the
quotient of the affine plane A2 modulo a finite subgroup G of GL(2, k) acting linearly on AZ. In the
case n > 3, nothing essential is known. In the present article, we propose one concrete method to
construct a k-subalgebra of R.
For R = k[z1,- . .,Zs), we consider a rational vector field

1 0 1 0

= fom T foa

where fi,..., fn are homogeneous polynomials of degree m, ..., m,, respectively, such that the set
{f1,---,fa} is a system of parameters of the maximal ideal (zy,...,z,) of R. If n = 2 this is
equivalent to saying that ged(fi, f2) = 1. Let A be the k-subalgebra of R which is generated by all
elements ¢ of R such that 6(¢) € R, that is,

A=klp € R|6(p) €R]

In the present paper, we consider when A is finitely generated over k. Since most results will be
stated in the case n = 2, we denote, for the sake of simplifying the notations, two variables z;, z2 by
z,y, f1, f2 by f, g and my, my by m,n, respectively.

Our main results are the following:

Theorem 1.10 Let A be the integral closure of A in its quotient field. Then the following conditions
are equivalent:

(1) A is finitely generated algebra over k.

@) f,g€A.
(3) A= klz,y].



Theorem 3.1 Let Ay = k[f'g* | i > 2,7 > 2]. Assume that ANEk[f,¢] 2 Ap and that deg f Jdegg
and deg g Jdeg f. If A is finitely generated over k then fM € A or gV € A for some positive integers
M,N > 2.

For polynomials ¢, of R, we write ¢ ~ 1 if 9 = cp with a nonzero element ¢ of k. In order
to indicate that a polynomial ¢ is the zero polynomial we denote ¢ = 0 and distinguish it from the
equation ¢ = 0. For relevant results on regular vector fields on A% = Spec k[z, y|, we refer to [3].

1 The integral closure A of A

Note that the hypothesis that the set {fi,..., fo} is a system of parameters of (zi,...,z,) implies
that any two of the f; have no common irreducible factors. We shall begin with the following result.

Lemma 1.1 For an element ¢ of R, ¢ belongs to A if and only if f; | wr, for every1 <1 < m,
where @, = Op/0x;.

Proof. If p € A, we write (1/f1)@z, + - -+ (1/ fu) @z, = h with h € R. Then we have
n v '
fao fopm, = 1 (fz---fnh—Zfz--- fi -~fn%,.) .
=2

Since ged(f1, f2--- fa) = 1, we obtain f; | ¢,. Similarly, f; | ¢, for 2 < ¢ < n. It is clear that ¢
belongs to A if f; | ¢z, for every 1 <i <n. Q.E.D.

Lemma 1.2 (1) A is a graded ring.
(2) If n=2 the quotient field Q(A) of A is k(z,y).

Proof. (1) For ¢ € A, we write ¢ as ¢ = Y7, ¢, Where @, is the r-th homogeneous part of ¢.
Then f; | ¢q, if and only if f; | (¢r)s; for any ¢, where 1 <7 < n. Hence ¢ € A if and only if ¢, € A
for any r. So A is a graded ring.
(2) Write f = £ f;,g = £g,, where £, are linear polynomials, ged(¥, f;)
=1 and ged(¢,91) = 1. Since ged(f,g) = 1, it follows that k¢ + k¢’ = kz + ky as k-vector spaces.
Let
wij = Lfil7g3 with i>a+1 and j>8+1.

Then it is straightforward to see that ¢;; is an element of A. Since
L= gini/py and €=ijn/ey,

it follows that Q(A) = k(z,y). Q.E.D.
The following result gives a sufficient condition that A be a finitely generated k-algebra.

Lemma 1.3 The following assertions hold:



(1) There are some positive integers s; > 2 (1 < i < n) with f;* € A if and only if, after a change
of indices {1,2,...,n} which allows us to assume my < my < --- < my,, the f; are written in
the following forms:

h~ ™
fary 33;"1“021(171,332) + czy?

1
fa~ 2051 (31, T2, 73) + 252 035(22, T3) + 3252

1
fn ~ IL'T1+10',,1 (l‘l, . .1. ,Il.',,) + l‘;"z-" 0',,2(1‘2, ‘. ,l‘n)
NI g:ﬂ"'jl‘” Onn-1(Tn_1,Tn) + CoZ™ ,

where ¢; € k* and the 0,j(z},...,z;) are the homogeneous polynomials of degree m; — (m; + 1)
satisfying the conditions derived from the conditions

Ji | (fi)z; for all pairs (i,5) with 1<j<i, 2<i<n.
(2) If the f; are written in the above forms in (1), then A is a finitely generated k-algebra.

Proof. (1) Suppose f;* € A with s; > 2 for all 1 < 4 < n. Then, by Lemma 1.1, f; | (fi);
whenever i # j because ged(f;, f;) = 1. This implies that m; < m; — 1 provided (fi)z; # 0. If the
indices {1,...,n} are changed so that m; < my < --- < my,, this gives rise to the condition that
(fi)z; = 0 whenever j >i. Namely, f; is a polynomial in z,,...,z;. So, fi ~ z1". Since f, | (f2)z,
we have
f2 = /bfT‘P(Il,l‘z)dxl + czy?
~ $;n1+1021($1,$2) + Czl‘;nz .

Suppose f; 1 is written as
S
m; mi_
fia~ Yz o (T, mia) F Gz
=1

Since fi_1 | (fi)z;_,, We can write

fir~ Z$Tj+10'ij(fcly ey Zi) + 05T, - -, T2, T)
=1

where we may assume that the following condition is satisfied:

(%)

03 does not contain monomial terms whose z;-exponent
is greater than or equal to my + 1 for any k£ with 1 < k < j.

We show by induction on j that o,']“(:rl, ...,T;) is in fact a polynomial in zj,...,z;. It is easy to see
that the condition z1"* | (f;)s, implies

i—1
:len1 I (Z m;"lj+1(aij)11 + (Uii)xl) -

=2



Since 0i;(z1,...,27:) (2 < j < t) contains no monomial terms whose zj-exponent is greater than or
equal to my + 1, it follows that (0;j);, = 0 for 2 < j < 4. Suppose 0, ...,04 are polynomials in
Tk,...,z; for 1 < k < j. Write

_o+1
(F)ayr ~ TN 00) 2,y + - -+ 25957 (045-2) ;.

—{—J:mJ ot ((m, 1+ 1)0';] 1+ I](O't,] 1)”.1 1
+ Zk—g I;,"k+1(0¢k)zj_1 + (Uu)zj—l

Note that f;_1 | (fi)z;_,- Write (fi)z;_, = fj—1h with h € R. In both sides of this equation, we
equate, by making use of the condition (), the terms divisible by z{"** first, the terms divisible
by z72*! next in the remaining terms, and continue this way untill the terms divisible by z77; 2+

Looking at the remaining terms, we then know that

zm: 1 (szk+1 U;k)z_,, .+ (0’,,)1.J 1) .

k=j

It then follows by virtue of the condition (*) that oyj,..., 0y are polynomials in zj, ..., z;.
We show that ¢; € k*. Indeed, if ¢; = 0 then (fi,..., fi) C (21,-..,Zi 1), which is impossible
because {f1, .., fa} is a system of parameters of the ideal (z,,...,z,). Hence ¢; € k*.

Conversely, if fi,..., fa are written in the above forms and satisfy the condition that f; | (fi)s;
for 1 <j <iand 2 <1 < n, one can readily show that f2,..., f2 € A.

(2) With the expressions of f, ..., fn in (1) above, define a k-subalgebra B of A by

B=k[f}, 13, f2]

Let B be the integral closure of B in k(zy,...,z,) and let B = k[zy, fa, ..., fa]. Then B D B and
B is integral over B. Furthermore, it is easy to show that z,,...,z, are mtegral over B because
¢ € k* for 2 <1 < n. Hence z4,...,z, are integral over B and B R. Note that B is a finitely
generated B-module and B contams A as a B-submodule. Since B is a Noetherian ring, A is a
finitely generated B-module. Hence A is a finitely generated k-algebra. Q.E.D.

We define a k-subalgebra Ag of A by
Ao =Kl fr | ;2 2,1<5<n].

In conection with Lemma 1.3, we wish to show that f;* € A for some positive integer s; > 2 (1 <
1 < n) provided A contains Ay and A is a finitely generated k-algebra.
Modifying the settings a bit, we consider the following problem.

PROBLEM 1.4 Let p;,...,p. be homogeneous polynomials of R of respective degrees my,...,m,
such that {p1, . ..,pn}is a system of parameters of the ideal (z1,...,z,). Let C be a finitely generated
graded k-subalgebra of R which contains the following subalgebra

Co = klpps ---p | 4521,1<j<n].
Then, does it follow that p;* € C for some positive integers s; ,1 <1< n?

With the notations of Lemma 1.3, if we take C = A and p; = f2(1 <i<mn) thenAD
klp---p» | i > 1,1 < j < n]. If we can answer Problem 1.4 affirmatively, we obtain
7 € A and the converse of the assertion (2) of Lemma 1.3 will hold. Furtheremore, we note

that tr.deg xk(f1,.-., fn) =n since {f1,..., fa}is a system of parameters of (zi,...,z,).



Theorem 1.5 Let C be the integral closure of C in its qoutient field Q(C’) Then we havep,...,p, €
C provided C Nk(ps,...,pn) is finitely generated over k.

Note that the condition in Theorem 1.5 is satisfied when n = 2 (cf. [4]). In order to prove
Theorem 1.5, we may and shall replace, if necessary, pi,...,p, by their powers p}*,...,ps and
assume m; = --- = my,. Our proof consists of several lemmas. The following result is well-known.
(See, for example, Gurjar [1, Lemma 3] for a geometric proof in the case n = 2.)

Lemma 1.6 R = k[z1,...,z,)] is integral over k|py,. .., pn)-

Proof. Set S = k[p1,...,pn]- By the hypothesis that {fi,..., fa} is a system of parameters of

(z1,---,%a), R/(P1,---,Pn)R is a finite-dimensional k-vector space. Let {¢1,...,¢n} be a set of

elements of R such that the set {@,, . ..,®,} of the residue classes of ¢y, ..., p, modulo (pi,...,p.)R

is a k-basis of R/(p1,..-,pn)R. We shall show that R is generated by ¢, ..., s as an S-module.
Let ¢ be a homogeneous polynomial of degree, say r, in R. Then one can write

N n
V=3 aipi+ Y piv,
=1 =1

where a; € k (1 < ¢ < N) and the ¢; (1 < j < n) are homogeneous polynomials of degree less than
T = deg®. By induction on r, every v; is written as

N
Y= hjeps, where hj€S.
=1

Then we have
N n
Y= Z {az + ijhjt} Pe -
=1 7=1
Hence R is a finite S-module generated by ¢, ..., p,. So, R is integral over S. Q.E.D.

Lemma 1.7 Let p,1 be homogeneous polynomials of R such that ged(p, )
=1 in R. Then ged(p(p1,---,Pn),¥(P1,---,Pn)) =1 in R.

Proof. Write ¢(p) = ¢(p1,---,P) and ¥(p) = ¥(p1,...,Pn). Suppose to the contrary that
ged(e(p),¥(p)) # 1. Then there exists a prime ideal P of height 1 of R such that ¢(p) € P
and Y(p) € P. Let p= PN S, where S = k[p1,...,pa]- Since R is integral over S by Lemma 1.6,
the going-down theorem implies that p is a prime ideal of height 1. Furthermore, p contains ¢’ and
', which are the copies of ¢ and 1, respectively, and considered as elements of S. This contradicts
the hypothesis that ged(yp, ) = 1. Q.E.D.

Lemma 1. 8 The following assertions hold:
1) énk(pla"'ap‘n):6nk[p17'--,pn]'
(2) Cﬂk(pl,...,pn):an[pl,...,pn].



Proof. We shall prove only the assertion (2). The assertion (1) can be proved in a similar fashion.
Note first that CNk(py, . . ., pa) is a graded ring since C is a graded ring. In fact, let £ be any element
of CNk(p1,-..,pa) and let

E=batbopnt---+& with el

be the homogeneous decomposition. Then we have £ = ¥ (p)/¢(p), where ¢(p),%(p) € k[ps, ..., Ppal.
Let the homogeneous decompositions of ¢(p) and 9 (p) be as follows:

Y(p) = Ye(p) + Yer1(p) + - - + Ya(p)
(P(p) Soe(p)+¢e+l(p)+"'+<pf(p)

Since
(ot nrr -+ &) (pe+ o1+ -+ 9p) = Yot Yo+ + Ya,

we obtain the following relations:

€npe = Ve, Eng1Pe + EnPetr = Vi1, - ya0r = v

Then it follows that &, = Ye/@e, bnt1 = (Yer19e — YePet1)/ @2, - - -, & = Ya/pys. They are elements
of CNk(p1,...,pn). Hence C N k(p1,-..,pn) is a graded ring.

We shall show the assertion (2). Let £ = 9(p)/¢(p) be any homogeneous elelment of C N
k(p1,...,Pn), Where p,9 are homogeneous polynomials in k[py,...,ps) such that ged(p,) = 1.
Since £ is an element of k[zy,...,z,] and ged(e(p),¥(p)) = 1 in k[z4,...,z,] by Lemma 1.7, ¢(p)
must be a constant. Hence £ is an element of C N k[py,...,pn]. Q.E.D.

Note that tr.deg xk(p1, .. .,Pa) = n. Now we assume that CNk(py,...,pn) is a finitely generated
k-algebra. If n = 2, a theorem of Zariski [4] then says that C' N k(p,,p,) is finitely generated over k.
We replace C by C Nk(p,-..,ps) and assume that

Eklpy,...,pa) DC D Co = k[ph---pi» | i;>0,1<j<n].
On the other hand, it is clear that
Q(klpy, - - ., pn]) = Q(Co) = k(py, - - -, Pa)-
Then, in order to prove Theorem 1.5, it suffices to show the following result.
Lemma 1.9 C =k[py,...,pa).

Proof. Since C is finitely generated over k, let ¢, - - -, ¢, be homogeneous polynomials of degree
d; which generate C over k. We need the following auxiliary result.

Claim. /(¢1(p),.-.,%r(P))R = (z1,...,%n).

Proof. Let P be a prime divisor of (¢1(p),-..,¢-(p))R and let p= PN.S, where S = k[p1,. .., pn)-
Then ¢1(p), ..., ¢r(p) € p. We have only to show that py,...,p, € p. In fact, p has then height n
and P has therefore height n because R is integral over S. Let (O,m) be a discrete valuation ring




of the quotient field k(ps, ..., pa) such that (O, m) dominates (Sp, pSy), and let v be the associated
valuation. Then v(1(p)) > 0,...,v(p-(p)) > 0. Since pYps - - - pn is an element of Cp, we can write

P]1VP2"'Pn = q’N(‘Pl(p)a""(Pr(p))
= > ap®™ o)™

ardy+--tardr=M

where ® is a weighted homogeneous polynomial of degree M. If N tends to the infinity, at least
one of ay, . . ., &, should tend to the infinity. Hence v(pYp, - - - pn) tends to the infinity as N tends to
the infinity. This implies that v(p:) > 0. Hence p; € p. Similarly, pa,...,pn € p- Q.ED.

Now let us return to the proof of Lemma 1.9. By the above claim, we know that R/(¢1(p), - - -, ¢r(p))1
is a finite-dimensional k-algebra. Since C is a graded subalgebra of k[zy,...,z,), we conclude by
the same argument as in the proof of Lemma 1.6 that k[z:, ..., z,] is a finitely generated C-module.
Since k[Z1,...,Za] D k[p1,--.,Pa] D C, k[z1,. . .,Tn] contains k[p;,...,pa] as a C-submodule. Since
C is a Neotherian ring, k[py, ..., pn] is a finitely generated C-module. Hence k[py, .. .,p,] is integral
over C. Since Q(k[py, . - -,Pa]) = Q(C), we have C = klpy, .- .,pn). This implies that py, . ..,p, € C,
and Theorem 1.5 is thus proved.

Now we shall state and prove one of main results of the present paper.

Theorem 1.10 Suppose n = 2. With the same notations and assumptions as in the introduction,
let A be the integral closure of A in its quotient field. Then the following conditions are equivalent:

(1) A is finitely generated over k.
(2) f,9€A
(3) A= klz,y).

Proof. The condition (1) implies the condition (2) by Theorem 1.5. Suppose that f,g € A. Note
that the condition ged(py, pz) = 1 is the only condition which is necessary in the proof of Lemma
1.6. Hence the hypothesis ged(f,g) = 1 implies that k|z,y] is integral over k[f, g]. Hence k[z,y] is
integral over A. In view of Lemma 1.2, this implies that A = k|z,y]. Conversely, if A= klz,y] it is
clear that f,g € A. Thus the conditions (2) and (3) are equivalent. We shall show that the condition
(2) implies the condition (1). Let

o(z) =2+ M1+ -+ ey +en =0

U(y) =y +diyV '+ +dyy+dy =0

be the integral relations of  and y over A, where cy, ..., cp, dy, ..., dy € A. Let C = klcy, ..., cp, da,
...,dy]. Then k[z,y] is a finitely generated C-module and A is its C-submodule. Hence A is a finitely
generated k-algebra. Q.E.D.

Problem 1.4 itself has the following counter-example in dimension 2.

Proposition 1.11 Let C be a subalgebra of k[z,y] defined as C = k[z + y,z*y’ | Vi > 0,Vj > 0].
Then C has the following properties,

(1) CD>Cy:=k[z'y |1>0,5>0].



(2) C is finitely generated over k.

(3) C does not contain z*,y* for every s > 0 and every t > 0.

Proof. (1) It is clear.

(2) Define a subalgebra C; of C as Cy = k[z + y, zy, z2y]. We shall show that C = C;. First
we prove z"y € C; by induction on n. If n = 1,2, this holds clearly. Suppose that this holds for z'y
with ¢ < n —1, that is, z"1y,z" 2y, ---,zy € C;. Since z"y = " y(z + y) — zy - 2" %y, we then
have z"y € C}, where n > 3. Suppose n > r > 2. Since

(zy)" n=r
@)y n>r

we have z"y” € C; by induction on r. Finally, when n < r, we suppose that z"y” € C; for 7' with
n <7 < r. Since z"y" = "y (z + y) — z"*y""! € C), we have z"y" € C; by induction on r.
Hence C = (.

(3) Note that C is a graded subring of k[z,y]. If z° € C, we may write

=au@+y)+ Y aas(z+y)*(zy) (2P,
a+20+3y=s
>0 OT 7>0

where azp0 # 0. Then we have
aso0y’ = zp with p € k[z,y].
This is a contradiction. Similarly, if y* € C, write

V=an(@+y)'+ Y aapy(@+y)* (@) (@)
a+26+3y=t
>0 Or v>0

where aigp # 0. Then we have
aor’ = y0 with 0 € k[z,y).

This is a contradiction as well. Q.E.D.

2 Criteria for the finite generation of A

In this section, we treat the case n = 2 and consider whether or not A is finitely generated over k for
some specific pairs of f,g. These results will be used in the next section. Here we write A as A(f, g)
whenever it is necessary to recall the vector field § = 1/ f0/0z + 1/g0/0dy. We shall begin with the
following result.

Lemma 2.1 (1) For positive integers m,n, we have
A(™,y™) = k[z™ g™ | 1<i<m+1,1<j<n+1]

Hence A(z™,y") is finitely generated over k.



(2) We have o
Aly,z) =klz*y’ | i21,521]

Then A is not finitely generated over k.

Proof. (1) A homogeneous polynomial ¢ belongs to A if and only if 2™ | ¢, and y" | ¢,. So, p € A
if and only if ¢ is a sum of monomials az*y* with a € k such that s=0ors>m+1aswellast =0
or t >n+ 1. Then it is easy to see that A is generated by the z™** and the y™+7 with 1 <4 <m+1
and1<j<n+1.

(2) 1t is straightforward to show that A is generated by the elements z'y’ with 2 > 1 and j > 1.
Then A is not finitely generated because A contains z'y with i > 0. Q.E.D.

In the following two lemmas, we shall consider the case where f and g are linear homogeneous
polynomials.

Lemma 2. 2 The following assertions hold true:
(1) Let f =y and g =y — az with a € k*. Then we have
Ay,y — az) = k[u*? (1> 1,5 >2),u" —nu" v (n > 2)],
where u =y and v =y — az. The subalgebra A is not finitely generated over k.
(2) Let f =z and g =y — az with a € k*. Then we have |
A(z,y — az) = k[u"? (i > 2,5 > 2),v" + now™ ! (n > 3),u"” (n>2)],
where u = = and v = y — az. The subalgebra A is then finitely generated over k.
(3) Let f =y — az and g = z. Then we have
Ay — az, 1) = k[uv? (i > 2,5 > 1),v" —nuw™! (n > 2)],
where u = y — az and v = z. The subalgebra A is not finitely generated over k.
(4) Let f =y — az and g =y. Then we have
Ay — az,y) = klu*? (1> 2,5 > 2),u" —nu™ v (n > 3),0" (n>2)),
where u = y — az and v =y. The subalgebra A is finitely generated over k.

Proof. We prove the assertions (1) and (2). The assertions (3) and (4) are verified in the same
fashion as for (1) and (2), respectively.
(1) By the change of variables v = y,v = y — az, the vector field § is written as

_18 u—av 0

6_;£+ w v

Let ¢ € R := k|z,y| = k[u,v] be a homogeneous polynomial of degree n and write it as

=Y ajur.

itj=n



Then we have 1
5(p) = w {(nano + an_1,1)u"™ + vv9) — naagev"},

where 9 is a homogeneous polynomial of degree n—2. Hence §(¢) € R if and only if nagn+aa-1,1 =0
and ag, = 0. Namely, p = ag(u? — 2uv) if n = 2 and

-1 i g -1
© = Qpo(u" — nu™ ") + z a;juv’ + ay pquv™
itj=n
1,j>2

if n > 3. Hence A is generated by the elements as in the statement. Since A contains uv’ (j > 0),
the subalgebra A is not finitely generated over k.
(2) By the change of variables u = z and v = y — az, the vector field § is written as

10 uwd
T udu w Oov

6
So, if ¢ = ¥, j—n aiju*v? is a homogeneous polynomial of degree n, §(¢) is computed as

1
5(p) = w0 {an_12" + vy + (a1,n_1 — naagn)v"™},

where 1 is a homogeneous polynomial of degree n —2. Hence 6(¢) € R if and only if a, 11 = 0 and
01,n—1 — Naag, = 0. The last condition implies that the subalgebra A is generated by the elements
as given in the statement. In order to prove that the subalgebra A is finitely generated over k, we
first show that u, v are integral over A. It is clear that u is integral over A. The element v is integral
over A since there is the following integral relation with coefficients in A:

v’ — (v 4 3aur?)v? — (v* + dour®)v® + (V7 + Taur®) = 0.

Then R is a finite B-module, where B = k[u?, 13+ 3auv?, v*+4ouv?, v" —7ouv®] which is a subalgebra
of A. Then A is a finite B-module, and A is therefore finitely generated over k. Q.E.D.

The following result will complement Lemma 2.2.
Lemma 2.3 Let f=y—az andg=1y— Pz with a, € k* and a # B. Then we have

Aly — az,y — Bz) = k| u2 - 2uv + ?—,vz,u" —nu™ ly, v — gnv"_lu (n>3),
u? (i > 2,5 > 2)],

where v =y — az and v =y — Bz. The subalgebra A is then finitely generated over k.
Proof. By the change of variables, the vector field 6 is written as
u—av\ 0 u—pPv\ 0
6= — — | =
( uv ) ou + ( uwv ) ov

Let ¢ = ¥, a;ju*v’ be a homogeneous polynomial of degree n > 2 in R := klz,y] = k[u,v]. We
then compute

1
5(p) = p- {(nano + an_11)u"™ + vy — (aayn_1 + nfagn)v"},



where 1) is a homogeneous polynomial of degree n—2. Hence () € R if and only if na,g+a,-11 =0
and aayn_1 + nPagm = 0. The last condition implies that the subalgebra A is generated by the
elements as given in the statement. The element v is integral over A since there is a monic relation
in v with coefficients in A:

ot — (’u5 — Efu“u) % — <v6 — 6—'q'u5u) v° + (vu — iﬂvmu) =0.
a a a

Then the element u is integral over Afv], hence over A because there is a monic relation
2 & 2 2 @ 2
u” —2vu+ —v° — (U —2uv+ —v° | = 0.
p ( p )

Then it follows that A is finitely generated over k. Q.E.D.

Lemma 2.3 implies that the polynomial ring contains a one-parameter family of two-dimensional
subalgebras {A: }1cx such that A, is finitely generated over k for each value of t # 0, 8 and Ay is not
finitely generated over k, where [ is some fixed element of k. In fact, we have only to take A; to be
A(y — tz,y — Bz). Then the assertion will follow from Lemmas 2.2 and 2.3.

In the section 3, we need the following result which is a variant of Lemma 2.2.

Lemma 2.4 The algebra A = A(f,qg) is finitely generated over k in each of the following cases,
where s > 2 and t > 2 are integers:

(1) f=z° and g = (y — az)* with a € k*.
2) f=(@y—oax) and g =y with a € k*.
(3) f=(y—az)® and g = (y — Bz)t with a,B € k* and o # .

Proof. We prove only the case (3), as the other cases can be treated similarly. Let v = y —az and
v = y — Bz. The vector field ¢ is then written as

u* —ovt) 0 u® — puvt\ 0
6_< usyt )%4_( usvt )%

A computation as in the proof of Lemma 2.2 shows that the following elements are contained in A:

(P(m) — um—t {ut _ mClut—l,U + ngut_2v2 4ot (_l)tmct,vt}

wm) = v {0 = O (£) 0wt nGo (§) 20 4 4 (<1)%405 (8) w)

where ,,C; and ,Cj are the binomial coefficients and m,n > s+t 4 2. In order to show that A is
finitely generated over k, it suffices to find two elements ¢(m) and (n) which are prime to each
other. Since ¢(m) and v (n) are homogeneous in u, v, it suffices to show that there are no elements
¢ in k satisfying the equations

& — O 4 G2+ (1) G =0

1= G (8) € +aCe (B) € 4+ (1)%C (8) & =0



provided m and n are sufficiently large and mutually independent. This assertion can be easily
verified. Q.E.D.

Suppose that f = f1f, with deg fi > 0,deg fo > 0 and ged(f1,fz) = 1. Then it is easy to

verify that A(f1,9) N A(f2,9) = A(f,g). Similarly, A(f,g19:) = A(f, 1) N A(f,92) if g = g1g> with
deg g1 > 0,degg> > 0 and ged(g1, g2) = 1. This easy remark entails the following result.

Lemma 2.5 Suppose that eithery | f or x| g. Then A= A(f,g) is not finitely generated over k.

Proof. Suppose, to the contrary, that A is finitely generated over k. Then the integral closure A
of A in its quotient field is finitely generated and contains f,g by Theorem 1.10. Hence k|z,y] is
integral over A since k|z,y] is integral over k[f,g] by Lemma 1.6. Suppose y | f. Then we have

A C A(y,y — al') C k[xa y]7

where y — az is a linear factor of g and hence a € k*. Hence A(y,y — az) is finitely generated over
k. This is, however, a contradiction because A(y,y — az) is not finitely generated over k by Lemma
2.2, (1). The case z | g is proved in a similar way. Q.E.D.

This lemma has immediate applications.
Corollary 2.6 For positive integers m,n, the following assertions hold true:
(1) A(y™,z™) is not finitely generated over k.
(2) A(y™,y"™ + az™) is not finitely generated over k, where a € k*.

(3) A(y™+ bz™,z™) is not finitely generated over k, where b € k*.
In connection with these observations, we pose the following problem.

PROBLEM 2.7 Let f,g be as above. Suppose f = f1fo with deg f; > 0 and deg fo > 0. Suppose,
furthermore, that A(f1,9) and A(f2,g) are finitely generated over k. Is A(f,g) then finitely generated

over k ?

3 A sufficient condition for powers of f and g are contained
in A

Let f,g be as above and let Ay be the k-subalgebra defined by all elements fig? with ¢ > 2 and
g > 2. Namely, o
Ao =k[f*g" |22, >2]

Our objective is to prove the following result.

Theorem 3.1 Let Ag = k[fig’ | i >2,j > 2]. Assume that ANk[f,g] 2 Ap and thatdeg f Jdegg
and deg g Jdeg f. Then if A is finitely generated over k then fM € A or g¥ € A for some positive
tntegers M, N > 2.



The proof will be given in this section.

In what follows, we assume that A is finitely generated, A N k[f, g] 2 Apand m Jfn and n Jm,
where m = deg f and n = degg. Furthermore, we assume that fM ¢ A and gV ¢ A for all M > 2
and all N > 2. We shall show that this assumption leads to a contradiction. Write m = m’d and
n = n/d with d = ged(m, n). Then the hypothesis ANk[f, g] 2 Ay implies that A contains a nonzero
homogeneous element F' of the form

F =af*+bffg+cfg" +dg° " (1)

where a,b,c,d € k and «, 83,7, 6 are positive integers.
The following two lemmas will finish the proof of Theorem 3.1.

Lemma 3.2 With the above notations and assumptions, F is not of the form F ~ f* F ~ fPg, F ~
fg" or F ~ gb.

Proof. By the hypotesis, it is clear that F' is not of the form F ~ f® or F ~ g°. Assume that
F ~ fPg. Then we have

Fz”ﬂfﬂ—lfmg+fﬁgz and Fy”ﬂfﬂ—lfyg+fﬂgy

and g | F, implies g | gy. Hence g, =0. So g ~ z™. Then A is not finitely generated by Lemma 2.5.
Similarly, the case F' ~ fg7 is excluded. Q.E.D.

Lemma 3. 3 With the above notations and assumptions, F' does not contain two or more terms
among f°, f°g, fg" and g".

Proof. Our proof proceeds by the comparison of the degrees of these terms, which are given as

follows:
deg f* = ma = dm'a, deg fPg = mpB+n=d(m'B+n), )
deg fg" = m+ ny = d(m' +n'y), degg® =né = dn's.

In view of the assumption that m Jn and n }m, it follows that m’ > 1 and n’ > 1. First we
assume that a # 0.

(i) Suppose ab # 0. Note that F' is a homogeneous polynomial. By comparison of degrees in (2),
we have m'a = m/+ n/, which yields m/(a — ) = n’. Since ged(m’,n’) = 1, this is a contradiction.
Hence b = 0 if a # 0. By exchanging the roles of a and d, we conclude that cd = 0, where we do not
have to assume a # 0.

i Suppose ac # 0. By compa.rison of de ees, we have m'a = m’ + n”y. Hence a = n'{ 41 and
gr
Y= m/{ for some integer £ > 0. Then we can write

F ~ fP 4 cfg™t with ce k.
If £=0then F ~ f and f € A. This case is excluded by the hypothesis. So £ > 0. Then we have
Fp~ (W24 1) [ fo+ cfog™ + cmtf g™ g, .
Since f | F; (cf Lemma 1.1), we have f | fz. So f; = 0 and f ~ y™. This is impossible by Lemma
2.5.



(iii) Suppose ad # 0. By comparison of degrees, we have m’a = n'6. Hence we may write a = n'f
and & = m/¢ for some positive integer £. Then F' is written as

F ~ fY"t 4+ dg™* with dek* (3)

which gives rise to
Fy ~ ’Il'ff"ll_lfg 4 dm'lfg’"’l’lg,,,

Fy ~ n’ff"ll_lfy + dm'fg"u—lgy ,

where f | F; implies f | g5, and g | F, implies g | f,. If g, # 0 and f, # 0, the comparison of degrees
gives m <n—1and n < m— 1. This is a contradiction. So, f, = 0or g = 0. If f, =0 then f ~ z™
and f2 € A, which contradicts the assumption. Similarly, g> € A if g, = 0, which is a contradiction.

By (i) ~ (iii) above, we conclude that a = 0. By exchanging the roles of f and g, we conclude
also that d = 0. It then remains to consider the following case.

(iv) Suppose bc # 0. The comparison of degrees implies m’ + n' = m' + n’y, which yields
m'(B — 1) = n'(y —1). Since ged(m’,n’) = 1, we can write 8 = n’£+ 1 and v = m'f + 1 for some
integer £ > 0. Then we have

F ~ fY8g 4 cfg™é1 with ce€k*,

F:: ~ (n/£+ 1)f",tfg:g + fn’£+lgz + Cf;,gmll+1 + c(mle_'_ l)fg""eg, .

If £ = 0 then F' ~ fg, and this is impossible by Lemma 3.2. So, £ > 0. Then f | F, implies f | f,.
Hence f; =0 and f ~ y™. This is impossible by Lemma 2.5. Q.E.D.

Thus we have proved Theorem 3.1.

REMARK 3.4 (1) The assumption that deg f Jdegg and degg ) deg f cannot be dropped in the
assertion (1) of Theorem 3.1. Indeed, let f =y — oz and g =y — Bz witho,B € k* and a # B as
in Lemma 2.3. Then ANEk[f,g] 2 Ag, and fM ¢ A and gV & A for any M, N > 2.

(2) Notwithstanding the above remark, the arguments in the proof of Lemma 3.3 work also in
the cases where (a) m' > 1 andn’ =1, (b)) m' =1 andn’ > 1 and (¢) m' = n' = 1 except for
the following point. Namely, one cannot conclude that the k-subalgebra A is not finitely generated if
f~y™+ag™™ or g ~ ™+ bf™™ with a,b € k*. We do not know, however, whether or not A is
finitely generated if f ~ y™ + ag™™ or g ~ ™ + bf™™ with a,b € k*.

References

(1] R. V. Gurjar, Graded subrings of C[X,Y], Proc. Indian Acad. Sci. (Nath. Sci.) 99 (1989), 209~
215.

[2] M. Miyanishi, Normal affine subalgebras of a polynomial ring, Algebraic and Topological Theories
— to the memory of Dr. Takehiko Miyata, Kinokuniya, Tokyo, 1985, pp. 37-51.

[3] M. Miyanishi, Vector fields on factorial schemes, J. Algebra 173 (1995), 144-165.

[4] M. Nagata, On the fourteenth problem of Hilbert, Lecture Notes at Tata Institute of Fundamental
Research, Bombay, 1965.



HIRE D Rees RBANDIFRLEEDRTERATROD

Gorenstein HICDOWT

MAK-BL FEH KK

1 LIS
LT GREuHBE NOFRBLEL, THREBE A CNHNLROACHE L LTEFRALTWS L
RET %0

AC - (acA|g(a)=a, "geG )

LBE A OREBHBEV Y. A OBRBEs MM AS KRERE B L LI MR,
BHA PO AAZBTIA2MBETHY(H, N B ZEEEIZDH S & D2
Cohen-Macaulay M & 2w Gorenstein &V ) L) ZREBEIZOWVTH
Hochster-Eagon [HE] % [W1, W2)]., %% [61, 62):FIZXoT, WER
HEENIEIZELNTWVWEEIATHE, ZhiZxtl., Rees RBOREHFTROMEEIC
MLTRARWOZTRAI RS ALLT, MONDZEIHIIVDOTRZVIERDNRL,
ABOBMWIE., BT TAMERELZH T2 o0, # CGOEAEZR A £ED Rees A%
NEWEL, TOREBHBIZDOWVWTEIZ Gorenstein HOMIT 2T, bl
bIORFBREDIIERAD I EIZDH B,

KEBOEFEELZRRZIZEZ, = ORFLARELXEBATILENH S, LT B =
Alt] 12EoT A Lt FAETETHA2EHAREE T, A AODATFTTVIT ( +A)
23 LT

R(I) = A[Tt] c Alt],

R(1) = A[Tt, t 1] c A[L 1,

G(I) = R'(1)/t ' R'(1)

EED. TNLEEFNREFNRATTNL I ® Rees K. ik Rees R, MEXRKER



1 (A Eo Laurent S EABTHL) <. T3

vy, B2 C = A, t
EHG OB A~NOERR
g(t) =t, Vo € G
LEDDIZEWXN LI TR CANDFERHICBRIZIKRSENE, COLE, R ET HAT
T A G-RE (Thbb o(l) cl,Voe G) Thhi, B R(I) & R'() &
HBGCGoORCADFRAIZHMLTEELLZY, B GOR R(I) BLXU R'(I) ~0EH
NHEEEND, B G ORC~DEA0EDFLL e (NS tzznc, # G
HEEEAME G(1) =R (1)/C 1R (1) ~bfEAT2. UFABAT G-RER A7
FTUL HEEZOREHEICER G OB R(I), R(1) BLU G(1) ~0EHIE LR

DbDEEZ D,
ROBREIEABRATITDODNIBMOERE LT ERTH 5,

F®(2.4) A X Cohen-Macaulay BFAIREL I (# A) R A © G-EE= A

FrTrEL, #GOMBENIBRARNCTAETHILERET S, 2Dk &

he, [ 21 (resp. htAl >2) THhhIFTROEH(I)ER)REVIZCEETH %,

(1) §R(I)G i¥ Cohen-Macaulay (resp. Gorenstein) IRT&» 5,

(2) ®(1)°
G G

a(@(I)") < 0 (resp. a(G(I)") =-2) &% >oTwn3,

i Cohen-Macaulay (resp. Gorenstein) R Tdh o TH D

CITREBRD a-F"EEDEHRETF A TBI ), —#&IZC Noether WXRER

R =@ Rp #5260

nez
(i) Ry = (0) (n < 0)
(ii) Rg RBFRTH 5
EV)ZEBEMTERET 2. TOEE R R RNICEREATFTTVTEKZ S O HHE
—&EINhTVDIOTINE M THRY, COL EHMWAERKE R-M E ioxt LTix.
20 i XBWaseov— Hi(D) o n x#F5x85 [HL(E)], & n 2 +5 k%5 L
EHXMBRT 20T, % ieZ 128 LT

aj(E) = sup{nez I[I*I,{,,(B)]11 # 0]}
EEDH . ZhE EO i R a-FAER/EV) o HIZ dimpgE =s 0L &2k, a(E) =
a(E) tB&, INEHIZE O a-FEBEFL([GW, (3.1.4)]).



FoEm(2.4)1k R(HC OBMEAS (B G OMAEXRKE (1) ~OEMLEHL
<) (1S DBRMBEL 2D a- FERE Lo THRESND S LARET B0 Th o
T, Rees R HOARERROEAERMLE AR ENLIREFERTHLEEL LN,

Z)ETHLL R A AILEEHE G-EEATTUPEELTVWT, Thb T
ThRHIMLEI ET B ILEHELLTBRILEIADSPVETTHELEBEDbNRSE D, 4
FTNV I P G-AREZRXTERERTVIHER, RVIE I BHFR A ROoBKA
FTNVTHDE) RBAEICIE, #f GOFALEDL THBEMGHIMIES 2 Rees REI
WEIZLWHE, SITHHFILKHEBOBAIIMELT, AEHHHRD Gorenstein
BIZOWTERBLTH#EDDZZ EIZ LV,

BT A BEAAFTT7L m x> Cohen-Macaulay BB ThoT d =
dim A 22 %2b0tL. # GONKE NIBAATTHTHLERETS. SO
LEAODOBRAT7TLY miZ G-RETHBNDT

R =R(m), B =G(m)

EBE, B GAEWMAKATTNV m @ Rees /0% R CHIEREE B ER S5,
CEITHRRAMBEIIT A DROIODRER BT ERS
(i) =

GHREAOHKRK K =A/m ZEBHIZERT S,

(ii) ]| B ¥ Gorenstein Th 3, ‘

Zo(i), (II)DREOTIZ, G DR B ~DFERIZL-oTH G Ofk k Lo g
ﬁﬁ%u—oﬁi%(Eﬁ%ﬁt@x)@ﬁ:n&xQ%tg(:tu?nu\%ﬂ
(24O ROERENBHNBESHIZEL I ENTES,

EI(3.4) RO=ZFEMHEEEL L) .

(1) EHG i Gorenstein WTH 3,

(2) 8% 1t Gorenstein BThoT a(8%) =-2 T 5.,

(3) Xg g =1 ThoT a(B) =-2 Tha,

InEE (1) e (2) & (3) #%IELC, bL a(B) = -2 ThHaHX it B 1%
ERBTHoThroBIEA B/8C 4 divisorially unramified Th ni. ki
DEHXEBFEFTRXTEVIRMTH 3,

COEBMBAYDRELTROZODHERPBORIZIEXTHFLTBE VW,



F%*(3.5) Rees % R 4 Gorenstein RTHNIETRO LB ITEVICRAMBETH 2.
(1) R"EMH R SRG i Gorenstein RTH 3,
(2) xG % = 1 ’6&60

HGCOBA~OERAPLHEHEENS K-~ hVEM V =m/m?2 FTHOEH %
p:G o> GL(V) IzkoTH ET+,

G

%(3.6) A XEAITH S EIRE® L, ZDEEHR R A Gorenstein TH 270

DLE+TZHFEMAIE dim A =2 Tho T2 p(G) cSL(V) ¢3¢ Ths,

BWMIZAD-OAROMBEEFHBAL TBL, FH(2.4) OFEBIIE2HTIT I o SE4F
Cohen-Macaulay BIRO A 77 VIEIZHiE T2 Rees B W EMIL AL HE -7
H[GN]JIR Lo TRAENTVE, RADEM(2.4) b [GN]DOHERIZEZF LTEHEHE L
50 ER(3.4)DFERIZITIE He 5 4E XG'% DI PARTRTHHH, FRIBEOER
ERE[CI]IC L > TT TRMELERTVEIOT, AWTIXEL(3.4) £ Z2DF(3.5),
(3.0)DERACLELESOH 2 M LB T 2I2LEDVEES, £HW(3.4) &
ZDFK(3.5), (3.6)DFPITEIMTIT ). HAMITIER(2.4) £ (3.4) 2w AEKk
BlZWMST2DIZETFETDH 3,

BPFEBIZBVY T, GIIUBE N oFRBLYEL, THRE A LTEBOBEHR
BELTHALTVWADERET 5. B = Alt], C=Alt, t 1] &85 o(t) =t,
Voe GLEDODTHEGCORA~NOEMALYHR B, C~OFERIZHERLTB L,

2 TEBELEEDIEHA
BTIT 2R A DO G-RERATTIVET B,
R =R(I), R' =R'(1), G(I) = &
EBE HGER R R, 6 TN ZPhBROBCAME LTHERASES, & i€Z 12

#LF =1 G G

! LEv B E, B A DAFTVIEF = [F}, o, PROMEE
ROZLABHIMPODLIENTES,

N A



WEQJ)(nFi=A9vsso

(2) FiFj c Fi+j’ Vi, j € Z.

FITIDAFTTUE F = {1 A AG}iEZ x LT

i G
R(F) =5, Ft! ¢ BG - AG[¢],
i G

Fitl C C

= AG[t, t'1

R(F) =%, ]
rewnienen., n(F) k& AS[ o, % (F) kAS[r, ol oxu AC-ms
o s, BiC

®(F) 1= R'(F)/t 1 (F)

EBE T KT KRB EM IR,

KOFERIEERNTH 2,

em2.2) (1) k3 AS-me e vC -n(F) oo 0'C
(2) B G OMB N 7B A NTTETHIE, KB AC-RBOBKRZAD

6C = @(9)

=§R'(GJ7) "6&50

HPELNB,

G

0 (1) 8% =%t n AC[] thoTc R0 - n AS[, vl Tz bicsed,

(2) N A ATHBETHLNOT, R-MFOET L5

. 1 ¢
0o N'(1) »N'" > -0
(RL o EINTHE) »oBrnD RO-IMIEOF

1 (P|,,.(;

0 »mnG1)-n6 5650
HeRhELThd (£ x € R IEHLT x* = x mod t 1R tEwae
x* € 80 DL B, x* D g LLBREELTR (1/N)S_cgolx) #8RA S
n3) o fto<T(1) %M TR

66 =00/ 1nC - @(9)



W (2.3) (1) Bk A/AS HETHZ, £oTHSR
dim A =dim AG

FEONB, bL A BBFRTHNIE AC VRFRTH 5,

(2) A i¥ Cohen-Macaulay BAIRTHoTH G O N T, A ATHHETH

HERER L, ZOL EHEK

N ILD,

B (1) & acA KH LTI (1) =T__o(t- o(a)) &dni, f_(1) e BY
=AS[t] ThoT f (a) =0 Thr, Lo TRIER A/AC BETH Y %R

dim A = dim AS ([AM, (5.11)]) % #> . BEO EH/IZOWT B £ Z[AM,
(5.8)1% B X

(2) Hochster-Eagon [HE, Proposition 13] & D AG

T B U
Cohen-Macaulay BT 2, —H, A 77NV 1 X G-ZETHHH»5, B G IR

A/ CHROBACRABELTHERATAY, N2 ARNTTHETHLN T, BALZRARE

(A/1)S = AS/1C p@Eonz, wiz(1) k0
G

dim A =dim A,

dim A/l =dim (A/1)C = dim AG/1C

G

BRI, TTTR A L AT 2EBL6L Cohen-Macaulay RFFRTH 25 6 %%

dim A =dim A/I + htAI,

G G G

dim AS = dim AG/1C + ht ¥

A
PHRILTAZEIZEETLE, EbIiZ

htAI =ht GI
A

G

PELNLD,

ETARATIDNZEMOBME 2T ROEREZERL LS



EIM(2.4) A I Cohen-Macaulay BFAIRE L I (= A) IR A O G-REL2 A
FTrEL, GO NBAATTAEATHS LRET S 2NOLE he, 1 21
(rwp.hulzz)T&hd%@%#(”t(ﬂuﬁmuﬁﬁfééo

(1) ®(N°

(2) ®(1)S ¥ Cohen-Macaulay (resp. Gorenstein) BT# o T o
G

{¥ Cohen-Macaulay (resp. Gorenstein) I T & % ,

a(8(1)%) < 0 (resp. a(68(1)F) =-2) tnoTwn,

G iz Cohen-Macaulay 3

LB [HE, Proposition 13]&(2.3)(1)ixXxh A

BRTH-T, (2.3)(2)K L% he,l =ht 16
A

. o G

ht, I =1 (resp. ht, 1 22) z6@%¥ ht 1921 (resp. ht GIG >2) T

s, —HTF, OEEIL) F = 16 <%, #to<T[BN, Part 11, (1.2),

(1.4)1 &b htAI > 1 (resp. htAI 2 2) ok &, R OR(F)

BRILD, £oT

Cohen-Macaulay (resp. Gorenstein) TH 20D LE+45&M4E G(F)
2% Cohen-Macaulay (resp. Gorenstein) TH o T»2 a(G(F)) < O
(resp. a(®(F)) =-2) ThHHZLHNEIND, RADOKRFTIX R(F) = 1O
ThotT B(F) 2 8 THIIEN(2.2) Lo THIHEABLAT LD OT, LI

[GN]2» 5 EH(2.4) DD o

3 I =nmn DIFE - EXEEFEICLDIRBREL
FTEREROERETDOEAMUELBRDIILELLHDZ, LTLESL OM (&
B(3.3)¥T) R=0 _,Ry & Noether WAHRTH o TRO=FKMhEWLT
bDOELIRET 5,

(i) R i Gorenstein IRTH o T, Rn =(0) (n < 0). RO =k 3&THB,
(ii) &4 O G 13 R IZ K-RBOBCRBELTLALAIRBERELTO R OXH
FHFERL2EIEZERALTNS,

(iii) N k mT O "“73:\/\0

_wt%TWiﬁ‘iﬂR WIRE(iii)iZ Lo T Cohen-Macaulay ([HE]) T4 3%,
g7 RO { RO Loz EREMHVELT R R k-BHRKEE T, £
LTRIELK R/RG e LTHRTH S ([HI, NI, (2.3)(1) 2 Hw3), #ZT
LK C oRBMAERMBE (M0, Ch. VII]) %

mRn}

K ko TERhERL R &R

R RG



gy izt nid, R R-In#Eo R

KR = I-IomRG(R,KRG)
/6N D ([, (1.10)]) LEORE(I)IZEoT
Krp = R(a)
(a=dmj)fhé#B\RWH¥L=}mdeR,KRd WAH -a 0dbs—MH
DFERTLE Lo THERENLZEIZRE, —FT R-MMBEE L 121k

o(f) = foc™! (e G, fel)
KIoT#(§ﬁ§%KWﬁT%°::Tﬁﬁﬁ)“ﬁ)ttlhR0=k?$oTL
PO G A KIZEARIZFALTVwIZLIEERTAE, T el  ~DGO
ERIZEoTH GOk k FToigi VoR P~ PBbhaZ b
c(&) =wQme (o € G).

:@%HWGRtuLMﬁl,@Emﬁ?%%&Lﬂwﬂbﬁuu%m%uﬁiéof

EBEINEH G O( R ~NOERIZHETS) FEMIGELIESR,
ERER AR KOV TRROHERIERNGTH 2,

@E(3.2) ([63, (3.3), (3.5)]) a=a(R)EBC. ok xkMRO-mBe L<

K = R (a)
RC XG.R

<t55 (EL R ={feR|o(f) =xny(c)f, Vo e G}) .,

1G R v G,R
Fh. RHBE L.
(1) a> a(RS) ©a2,
(2) 1o =1ThsrvolE+s&hir%sR a(RC) = a smroc tcss.,
DL X RGti Gorenstein B& 2 5, _
(MO<11eZ&LfeIRGMtiRQIM&ﬁETéocmt@ifﬂR-E
MThdhHoThoH

*G,R/FR ~ XG,R

DAL DO,



@E(3.3) ([63, (3.6)]) R =k[X1, Xoy oo ,Xd] (d21) BZEARTH 2
EIRET D, TOLEH G ORR ~NOFEAE k-BoZEM V=R1=
El<isdei_I:Kfﬁllﬁﬂl,'(??r&h%a"iiﬁ& p : G - GL(V) ¢+ hniFEX

1 R0 = 1/det (p(c)) (o€ G)

HRIL D,

XTULOFEREFPAVRDSLER(3.4)ETORIERAET X,

BT A KA F7NV m > Cohen-Macaulay BF&ER:EL d=dim A >
2 %530kl B GH A CROACRAUELTHEALEOMNBE NI A AT
HTHDERET %0

R =R(m), B =E(m)

EBE ROZEBLEZRET 2,
() BHEGIE AODHAMEK K =A/m CEBBRIZERAT S,

(ii) B ¥ Gorenstein WTH 3,
COLEEIA(2.HDRXELY)TROEL(3.4)RNOEH(1)E(2Q)OREBFELIZHEDS
ns,

FHE(3.4) RO=Z£MHEEZ L ¢
(1) ®°
(2) SBG it Gorenstein IWTH > T a(?BG) =-2 Tdhbd,

i Gorenstein BRTH» %,

(3) Xggg =1 TH>T a(B) =-2 Th s,

CntE (1) @ (2)  (3) PEIZELLC, bL a(B) = -2 THH2H7»XiE B &
EHBTHo- THhOBILK %/%Gfﬁ divisorially unramified Tdhif, L&
DEZEMFRITRTEVZRAMBETH 3,

G i Gorenstein WT» o

B (3) > (2) Xg g = 1 THRE(3.2)(2) 1) B
< a(8%) —a(B) HELo. WE(3) I EoT a(B) =-2 Tharbbbsai
a(8%) =-2 TH 2,

KiZ a(B) € -2 ThoT(3.NMOEH(2)HHEERTVE ERELED . T5

2(3.2)(1) k) a(B) > a(B8C) ThHarb. %X a(B) =a(BC) = -2 #HEw,



(3.2)(2)iI2&o T XG B = 1 B oNnd, MIZ(3.4)ADEG(3)HiMi-ashs, [
iz, 8 PTERRTRILK %/%G #* divisorially unramified Td o> THh 2
(3.4) O &M (2) MM SnTwar b, B B 0 Gorenstein #1h X5 g
=1»HE»,2h ([W2]H D Theorem 2 OEMEESHBE L) | (3.2)(2) L h %R
a(®) =a(8%) = -2 #H3,

%(3.5) Rees 4 ® %% Gorenstein RTHANIEROZELHFFEVIZCRAETH 5,
(1) "EMHR SRG i Gorenstein RThH 5,

(2) XG’%‘ =1 T»5,

SFBl M 2% Gorenstein BTHa 056 [I, (3.6)]i2&h (B X Gorenstein
BThoT) a(B) =-2 Lhd, ot RC sGorenstein BTH B2 0L
E+H&EMfR, EE(3.4)0 (1) (3)VDRMEHE LD, XGSB =1 12 622w,

WGCOBA~DEMIPLEFESNS k-2 P VEM V = m/m2 EToRE*%
p:G o5 GL(V) I2koTHET,

%(3.6) A HEERITH 2 LEEw Lo 2ot x| RO 2 Gorenstein T 57
OLE+DELEIET dim A =2 THoTH22. p(G) c SL(V) bz bThHas,

SEBH A FEHRBAETHONIE B =@(m) @k k=A/m £ d (=dim A) oD
ZHEHABRTHL2 6, %X a(B) =-d< -2 k> ([6W, (3.1.6)]) - (3.4)

i, ®C

#% Gorenstein BTH27-0OLE|THEMHIT d =2 Tho
XQ%=1ﬁ&joztﬁﬁéo&%®%#®¢TXQ%=1®%ﬁd\G3HU:

D&M p(V) ¢ SL(V) ERIETH 2,

4 HlEEH

BF k @& L R =K[X;, X5, ... , X ] (n21)KkoTk £E'n ZHDOFH

1’ n
XBREET, G UEMUE N OFRETH-oT,. BR IHLTRBERELTO R OX

BEMR2EIL2 K-REOBACABELTHERALTVWAREREY L (3B HA R IZIF



Ro=k T deg X; =1 RAERBHEZEZTWVS) . B GONE N E#h k AT O
ThWERET S, ETa(#R) IR DERAFPTNVNTHoT G-RELZDBDOET
o R* =R/a LBEM G 2 RER R* LHRICHFAEES, $§2L M =[R*],
EBHEAFTTV M G-EETHBNDT

| c(a’/s) =c(a)/o(s) (ae R, se R\ M, oe G)
KEoTH G RBAR A =R*gp KHFAT 2, 2OLE m =MR* gy EBLXK
PR EWBEZHIZHEI»PDOLN S,

WHEM.1) (1) B G AoHMANRK k = A/m BB ECHERT 2.
(2) B AFAM R* = @(M) = G(m) I G OERMLET/R Cho TREBRO AR
R*C = @(m)©

BELND,

Zo(4. 1)L hEL(2.4) T LREORHAR (A = R*SD?,’ m = mR*SD%) AT
LEMHPFENCROFBERIELONS,

@ (4.2) R* #* Cohen-Macaulay ZRT&H o T dim R* =d ThhiZRDOEK
HIE L,

(1) d>1 2. R(m)C (resp. ®(m)) # Cohen-Macaulay BTh 5 7
WOBE+S&E a(R*C) < 0 (resp. a(R*) < 0) %3IZETh5b,

(2) d22 €%, R(m)S (resp. R(m)) # Gorenstein BT & 5 7= Ok
w4t R*C (resp. R*) #5 Gorenstein BTh o T %% a(R*C) = -2

(resp. a(R*) =-2) PRIALDZTETH D,

3 BA R*G #* Cohen-Macaulay T&% 22 & ([HE, Proposition 13]) & A
it Cohen-Macaulay BHi8 TH o T he,m =d ThaZ L IZERT LI,
R(m)C 1M+ 2 ERA(2.4) & (4.1)(2) 121E> o R*
IZMT A ERE[GCS, (1.1), (L.2)]xHEd,

n

B(m) THADT R(m)

N1
o

COHGE42)FTHAVWTUTZ, Zof %Mt LTAL



f1(a.3) G =& (n Xxt#fE) &L 1<€eZ L¥5, Ak OFEEIT 0L
RELT G £ HHEAERR = k[Xl, Xoy ooy Xn] CEBOBRE LTERHEES

G(Xi)=X )(GEG,lsisn).

o(i
czef =X fex, e e x feprasfREvr. ¥ fe R TH
5#64?7»»auCL£ifhéoR*=IUakL,A=R*w(@L2m=

[R*T,), m =MR* o, EF B LRHIEL WV,
+

m
EHE(4.4) (1)) n 22 t¥32, TDLE

(a) R(m) o Cohen-Macaulay ;RTH» 5 o € < n.

(b) ®(m)C # Cohen-Macaulay BTh5 o € < n(n+1)/2.
(2) n 23 &tHL, ZODL &

(a) R(m) #% Gorenstein RTH2 & € =n - 2.

(b) SR(m)G ¥ Gorenstein RTH»5 o € ={n(n+1)-4}/2.

FEBl R* X Cohen-Macaulay ®T&>7T dim R* =n - 1, a(R*) =¢ - n
([6W, (3.1.6) 1) <43, —5< R*% = RO/FRC Ttz remst a(rR+C) =
a(RS) + ¢ #%5. k-fe# RO HAANHRCERS N n ZHOSARE L AR
<H B b, R*O

a(RS) =

i Gorenstein WRThHhH, BIZHFU[6W, (3.1.6)]iI2& o<T
“Sicicql =-(n(n + 1))/2 #BORIAEEROER a(R*C) -
a(RO) + ¢ e

a(rR*C

2185, LEE D (4.2) AT (4.4) D xR (a), (b)»HS,

) = €-n(n +1)/2

(4. 4) itk EHiIZn =¢ 22 EE&niF, R(m) i Cohen-Macaulay ]| T

v ®(m)C

i Cohen-Macaulay RThhHh, /- n23 &LT¢-=
fn(n+1)-4}/2 £ ¥hid R(m) I ERiEH Cohen-Macaulay B TIixZ% v

R(m)C i Gorenstein REALZRIE ALM G OFRMNSZFINIIBOND,

fl(4.5) k=C, n=23 &LLR= k[Xl, Xos eons Xn] BEZEARET S, %
10Kl n-2 FRE K-HLBDH 6 : R > R %



G(Xi) = CXi

_ -1
c’(Xn) = L Xy
EoTEDDL, G % clZLkoTHERINE Auth OREEHyFELE L, CDL &

f=zKKnM“Q‘aLa=fRas<aanimfiawzw4?7wf@uﬁ

% (m)C

(1 <i<sn-1),

Iz Gorenstein &7 5%,

St R* & Gorenstein T dim R* =n - 1, a(R*) =-2 ThHdr, L o<T

GCenarnrs

(4.2)(2) £ D& R(m) & Gorenstein Tha, —HT f e R
(3.2)(3)izxh G R* =XG R *85%5, TZTo % V =Elsisnkxi 12l R L
TELNDE V OBMIEERY 1 3 2E det 1 =1TH20256(3.3)kD XG R =
1 THAZ DA, Lo T XGR*=IE&U\3¥G0)1’FFH%’§NO’C R* =
B(m) THA((4.1)(2))nT, (3.5 &h SR(m)G A% Gorenstein IRTHAHZ &t

Bt o

Fl(4.6) —A&IZ A X Noether BFAIRT dim A 22 obnE T2, ¥ NO
HRBE G HBR A CROBCABE LTHEAL, NI A WTHETHD LRES L,
ORI AG #% Gorenstein WTHhiL, BAR AG ODEFZRO—HE 2Tk
3%% ab #koT 1 =(a,b)A tsgwae R(1)C &% Gorenstein BT
5o

S itk A/AC i CcH 20T ([HE, Proposition 130 EM]). 1| A AC
] st xTiez kowTREo (BL ] = (ab)AS) , fto<

RS = m(J) = AS[X,Y]/(aX - bY)
(EL ASX,Y]l it ASL 2 ZmosmEAmEET) tah RO e

Gorenstein RT»H 2,
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THE BUCHSBAUM PROPERTY OF
ASSOCIATED GRADED RINGS

TRES
SRR SL R

1. FX

(A,m) % Neother RFTER, I % A DATT7NVEL$ 5. I ® associated graded ring
G(I) £i2, G(I) = @psol™/I™ TEES A REOZLETE. M % G(I) O
graded 72HBRA 77NV ET 5. AR T, RFTR G(I)y @ Buchsbaum 2OV Tk
REWER S ETHEOIC Buchsbaum ROEBREZEE T2 L bihd 3.

EZ (1.1) ([SV; Ch. I]). d REDRFTR A X, ROFERMEOWVTNH—2%TH
729 & &, Buchsbaum B L FHIENH 5.
(1) RELEHEDE L4(A/q) —eq(A) B3 A DTG AT —AFT TV q DY FIT
I oFIT—RE.
(2) FEED s.0.p. a1,as,...,aq4 B weak- 5l Z72F, Thbb,

(a1,a2,...,a;—1)A : a; = (a1,az,...,a;—1)A :m

B, FTRTO 1 <4 < d IxF L TR
(3) EED s.0.p. a1,0a2,...,ag ? d-F 2%, Tbb

(a1,0a2,...,a;_1)A : aja; = (a1,az,...,a;-1)A : a;
B, FRTD1<1<j<d TRt LTREL

A 7 Buchsbaum IRThhiT, FLC 2F->TEY (ie, /HFT cohomology MEE
H: (A) i <d=dim A TRIFMR), #-TI(A4) = E::ol (d ; 1) L4(HE (A)) &
BROBENPEED. HiL, LTBRAERSLEHEDOEIZNDIA) LELLZ2-TEY,
Z % Buchsbaum AZEELFES ([SV; Ch. I, (2.6)]).

G(I)m @ Buchsbaum #iZOWTESE TICHB S hiz Z L1, Cohen-Macaulay T
HOHERERTITENITZEL TR, RO 3 OBRKR L LTEWY Lifoh 3.

(1) ([G1; (1.1)]) A ?° Buchsbaum R T, maximal embedding dimension %
DL E (ZDOERMHIT Afm PERERDL, HEINRTAF—ATTN q LT
m?Z=mq £EFBZ L LFME), G(m)y 1% Buchsbaum RTH 5.

(2) ([G2; (1.2)]) A % Buchsbaum 8, q & XFAF—A TTNETEHLE, G(q)u
i¥ Buchsbaum T 5.

(3) ([G3]) A #* Cohen-Macaulay 38T, I % minimal multiplicity % -2 m- #35&
ATFTNDEED, G(I)y @ Buchsbaum HEDEHE-SIT.

The author is partially supported by Grant-in-Aid for Co-operative Research.



ZZTHRIZ (1), (2) CEBLTHS. EMEIR A 1X Buchsbaum, [ X m- #HEA 57
WERELT, HBRFAF—ATTN qit&V, I? = qI LEHTEDZTWHEAIC
G(I)p 1 Buchsbaum TH 59 L FHRTBZ c‘:li ENEFAERTRVWERS. EE,
A 7% Cohen-Macaulay Thiuif [VV; (3.1)] £V G(I) » Cohen-Macaulay & 729,
ELWZ EZBNTWS. LALRBL, BIZE~ZH (2.2), (2.5) 2#EICLY ZOHE
FIELLS 722V, Tz, EORED G L T, M4 G(I)y P Buchsbaum M #8517}
TS0 > T %, £5 LTAONERERBPROEETHS.

B (1.2). (A,m) iX d- &It Buchsbaum RFTERT, A/m i3ERAE, T 13 m- HEEA
TTNT, HBINRFAZ—ALTTIV q= (a1,a2,...,a40) AICE>T 2 =ql LE TS
DETD. fi=a} € G(I) % a; D initial form £33, ZDLERITFE.
(1) G(I)m % Buchsbaum %&.
(2) f1,f2,.-, fa & USD (unconditioned strong d-31). Fiebb, EEDOEK
N1, Mg,y .y g > 0 K LT, f, 32, .., f7¢ BBEFRIEFT d-F1%727F.
(3) (a2,a,...,a2)NI" = (a2,d2,...,a2)[""2 for all 3 <n < d+ 1.

ZDrx, G(I) DREFT cohomology DHEINT-IX
iy (G(D)) = [y (GU)]s + [Hyy (GU)aes for cachi < d

&£72Y, a-invariant 1% a(G(I)) < 1—d, Buchsbaum RERIZI(G(I)y) =1(A) &7
5.

DLz OEBTOVTHETS. (3) D&M (2) 24 FTVOSECELE bR
2, (2) & (3) FEMEMZRTDIZH A S Buchsbaum T I2 = g OEHEIIBETH 5.
E72, O &2V (3) BERILTHIE, $_XTD n € Z T (a},...,a2)NI" = (a?, ..., a2) "2
DERIIRILTS. (1) = (2) FEZPLHED. ZOEEO—FEELINI (2) =
(1) DEHTHD. FOEHED—DL LT, —fRIZ USD 2R3 1F A F—A FT LD
FEIXER D JHFT cohomology MBEDFRREE LA b7z b 72\ (Zhi Buchsbaum X Y 7>
ROFNEE) REBETONETHSS.

EH (1.2) 12X 2T G(I)y @ Buchsbaum HDOHMSITBELNDITER, [GL;
(1.1)] ®° [G2; (1.2)] P#k72 Buchsbaum D +5%E2 52 2HE LR LV HDOTH
5. ENEBRNTCHDOBROZRTHS.

% (1.3). A, I BEY q = (a1,a2,...,a0)4 1, EHE (1.2) ObDET5H. b1,
ID Zz_l(al, Yy ag)A a; 2DIE, G(I)M i% Buchsbaum. Z®D L&, G(I) ®
JRET cohomology DM 1% H}W(G(I)) = [H (G(I))]1—i for eachi < d &725.

ZORRDOEITICH T - T, FIIARFORBIUER LN DIREROYFLEE E L.
Z O, THREK, BREMEZR, WERABR?L bE OS2 EEE L. BT
T, ThEBEHOREE SETHE S AVWET.

2. %l

UTHRIZE G2V IRY , (A, m) i d- k5T Buchsbaum BT A/m IXERE, T 1E m-
®RAT TN, q=(a1,...,aq)A 1L I ® minimal reduction &3 3. T/ i(al, ey G4)
Y% (a1, diy ey 0d)A : a; ODTEOALFTAET S, k12 ERELT 5. 93, R
(1.3) @RI 261L LT,



il (2.1). d=2 £¥5. I =3 (a1, a2) KA LT, G(I)y 1% Buchsbaum TH5.

TR T2 = qI ZEEPHIE (1.3) PHELIELND. I? =q] PO DL, £
BRUCEHRE L TH LWL, H72i, R EROHEE TAX Ky (17 7 /VL) #° Buchsbaum
725, 5°(9)% = qX2(q)) ZAWVTHEW (cf. [Y; (15.1), (15.5)]).

WoOHNE, dim A = 2 20 I? = qI B&TLH G(I)y @ Buchsbaum tEZEH7R
WEEZZoTWNS.

Bl (2.2). A = k[[t,st,s?, s3] BRAEEIR ks, t]] OBIRETDE, A 1T 2- KRt
Buchsbaum B|& %25, A F7NV I = (t,5%,83)A & %L I 1% minimal reduction
q=(t,s>)A Zbb I =ql #W7=d. L2 L G(I)um & Buchsbaum T2\,

ZOFEIE s2At = (s%,53)A & tA:s? = (L, st)A ICEE LT, ROMELEAT
HZLTHRLND.

R (2.3). G(I)m ?° Buchsbaum 725, KIZFME.

(1) I 2 Z(al,az,...,ad)
(2) I 2 (a1,...,dj,...,aq) : aj for some j.

T, Uay, ..oy ai) = (@, ..., a:)A : aipy B (cf. (1.1)(2)). REH 3 OHFAIIR
DOERH 5.

Bl (2.4). dimA =3 &L, I = U(ay) + Ulaz) + Ulag) &£B<. 5 Gy 13
Buchsbaum Z&.

ZOBNZOWT I?2 = qI L7237 13, EBOFHEAT (2.1) 2H2HL2OLRLH
ETFzy s TED, 2L, Z2OALF7N I IR LTIEER (1.3) 2B@AT 30T
VAT, BE (1.2)(3) DEMBEADLZLICRD. ZORE (3) OFFLIX P n
(a2,02,a3)A = (a2,a2,a2)] & I*N(a?,a3,al)A = (a?,a},a3) ] ZBEDPDDZLTH
3. 2 BHHOERIIEZROEN, 1 BEHOEFNIIFBELV~ATHY, EETTHER,?
LEDOHEEHE L TRE, ZOF%BIICET.

PLATFTNVERELTHD.

%l (2.5). dimA =3 &L I=U(as,az)+ Ulas) LB, ZOLERIIFMETHS.
(1) Gy #* Buchsbaum .
(2) HL(A4) = (0).

“ R, H2(4) = (0) DEHEMD Ular,az) = Ulay) + Ulay) B850, %<
(2.4) ZHEHAL, (2) = (1) B3, #i, (2.3) ZAVDIHEIZLY U(az,a3) =
Ulag) + Ulas) B3, 21t H(A) = (0) BBRLTHY, Lo (1) = (2) B
na.

AP 3REULEDES, T = Y.(q) KxLT, RIC I? = q BFEPD LT
% (1.3) ZFAWT G(I)y ® Buchsbaum HAEBIZHED DA, WREKROHEE [Y;
(15.1), (15.5)] & R1 & =5, —ih e LTEREFRICHS. LALEAD 4 &L
T, LB EDARY R\ Buchsbaum BR%# - T T, EBERT TOHBHERT
3.

%l (2.6). (B,n) i& d- k5t Cohen-Macaulay RFTER, E % d- k5t Buchsbaum B-
EELT5. A=BxE (ATT7ME) &L, m=n@E &B & (4,m) T d K
Buchsbaum B&742%. £ZT B @ s.0.p. a1,a9,...,aq = X, ZThid A @ s.o.p.



ERL, ANTOLFTN =S (a1,....aq;A) 2L 5. T5& G(I)y ¥ Buchsbaum
BTh5.

AT ERT 5. BBICEERO L Z0HEHTTZOHiERDYIZT 2.

Bl (2.7). A IZIEZBHD excellent IEAIRFTER DUERBER CTEARE, d > 3, A/m IR
BEARTHZ DL L, RTAFT—AT TNV q=(a1,...,04)A 1%, & a; ?* test element
THHLOETSH. [ =q* % tight closure & & 5. +5 &, [AHS; (3.1)] &V, I2=ql
WYL, [K; (35)] &Y, (q) CIHnxd. LoTEHIZbL A 2 Buchsbaum
Thiuf % (1.3) &Y Gy 1T Buchsbaum B &725.

3. EHE DA

ZOHETIX BHE (1.2) L % (1.3) OEFHOEREZLR~S. LT, (A,m) it d- KT
Buchsbaum TR T A/m IXERME, [ 1T m- ERA T TV, q = (a1,a2,...,a0)A X T D
minimal reduction T I? = gI 2z Tb0E 35, <K aj,as,...,a0 1T A ED
USD #7%%. I ® Rees % R(I) £EL. ZZ T Rees RIIZERR Alt]. OFHER
LhipTlld s, fi=ait € R(I) £BL. G(I) X R(I) DFIRER R(I)/IR(]) &
F—#RTE, f; ® G(I) TOBY af THSD. f1, f2,..., fa 1T G(I) ® graded 72 s.o.p.
7. 0D R=R(I),G=G() £E. M % R @ &K% greded 1 77V
DZLLTH.

R (1.2) DIEF. (2) <> (3) AWK, (2) AEELT (1) 28< . d ICHET 3 R,
M @ﬁiﬁﬁ;ﬁ M = (51,62,...,£k)R %, Lo d ﬂE £i1)£i2>“',£id %) GM D 8.0.p. &7:!:
5851085 (1<11<12<...<1g<k). &=z, +bit DBELTVWHLESTRW
(m €eEm,b; € I) TDLE, TTOM &y &gy iy » Gy EOUSD ichksdz %

BRI DD. BHEOED 11 =1, .., ig=d B, £k g =bit LBL.
Step 1. d=1 T (1) BAELV.

EoT,d>1 L, d—1 THELOEEETS. 45T (b, ba, .., ba) A 13 BIE
#J1Z I @ minimal reduction & 725 D7ZH S biZ,

Step 2. 1'2 = (bl,bz,...,bd)I T&)D, 91,92, ---,9d X G ET USD %7‘&—;—

ZDZEND [GY; (25)] & [VV; (11)] &9, G/94G = G(I/bgA) B35 . G =
G/gaG 8L, RMEDRELY Gy ¥ Buchsbaum ThH5. &<IT &, ..., &1 X
Gy LD USD Lied. —/HT

Step 3. G 1% quasi-Buchsbaum, i.e., i < d \Z%L M - H:,(G) = (0).
ERIALL TEL. 5L,
1(51952’ "',gd—h gd; GM) = 1(51,527 [EX3) Ed—l;GM)

=1(Gpy)
=1(Gu).
LY, €, €4 1,94 12 Gy £D USD LRBZEBHED (f. [T; (2.1)], [GY;

(6.18)]). ZZT a = (y1,Y2,-Ya) & R B DRFAI—ATFTTNVETDHLE,
I(a; B) =£¢g(B/a) — eq(B) LEZ L.



Step 4. &4-H},(G/(&1,..,€a-1)G) = (0) 7.

IOEENE AT, USD ORMASTOVEDTHIMIE: £1,6,...,80 35 Gy k
?» USD <= &1 -Hiy (G/ (€1, -, €5)G) = (0) for all 1 + j < d ([GY; (6.18)]) &V
T, 1,65, ...,&q B USD L7235 Z EBREW (TTIZ &4, ..,€d-1,94 28 USD THHZ L
IZHEE), G (X Buchsbaum &72%.

ZOLSICEEDIER O 2T E 8, EEOGEA T, £ED Step 4 #FEI D
BOIXBRPRDTINASAT, ZOEYOEFIN L ODROMESLEL Y | GEROKYE
B ZTEREINS.

% (1.8) OFEHA. Y (q) C I %D T [K; Theorem 6 in Appendix| &Y, a1,az,...,aq %
I £ USD #759. #5T [GY; (6.18)] £ f1, o, fa 1 Gq(I) ET?D USD &
%5, 22T Ge(I) 13 Gq(I) = ®n>0q™I/q" I DFE % L7z graded G(q)- MBED Z &
ThD. 4 I12=q]l ZBOTGy(I)=G4+(1) TH3. T2 0G4 -G - A/I—0
PHELIZROATHRIAEEZLD.

H(f;G4) —— H(f;G) —— H(£;4/])

.| b

Hj(G) —— Hy(G) —— Hiy(4/D).

[T; (3.4)] £V, Vi <dIZXL o; Z2HFTHD. BT Vi < d IZHL B; BEHRLHF
G [T; (3.4)] £9, fu, fay o, fa 1 G LD USD ERBDTERERED. i >0 BB
Hi (A/I) = (0) L7V, B; 1325 E%3. i =0 DHEE BRI, f-HY(G) = (0) BF
2T, HY(G) = H(f;G) &7V fo DEFHEBREIND. £oT fi, f2,.., fa 1T G E
» USD. E# (1.2) &Y Gy ¥ Buchsbaum &72%.
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BFTROEEE DG O—KRIL

TEKRFZKFPE B AR ZH AR
FEH F_

1 F

A X maximal ideal m % %2 d RIt® Noether FFFER & L I 1X A ® m-primary ideal
ET5, BLXALNTWVWAHRIZE K e, 61, -, 64 ZER

d d—1
lengthAA/I"“:eO(nZ >+el<n2_1 >+"'+6d

B> 0 IR LTHICRY IOMC—BHICEND, KT e 13T IZBT 25 A DERE”
EFINZEERAERET, IBRRRICBIT 2FLHRMAET <D0 L2 THD, ZOH
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UNCONDITIONED STRONG
D-SEQUENCES AND ITS APPLICATIONS

KIKUMICHI YAMAGISHI

This note shall be devoted to discussing a few results on unconditioned strong d-
sequences, which will soon appear as an appendix of the paper by Kazuhiko Kurano (Tokyo
Metropolitan University) and the author [KY].

In 1985 Shiro Goto (Meiji University) and the author introduced a very useful notion
of the sequence property, say an unconditioned strong d-sequence, and they studied its
behaviours, especially, concerning local cohomology of the Rees modules and the associated
graded modules with respect to ideals generated by them [GY]. This note contains a part
of recent developments on unconditioned strong d-sequences after their works.

§1. MAIN RESULTS

Let A be a commutative ring, and E an A-module. A sequence a3, az,...,a, (s > 0)
of elements in A is said to be a d-sequence on E, see [H], if the equality

9i-1E :aia; =qi1E : qj

holds for 1 £ ¢ £ j £ s, here put q;_1 = (a1,4a3,...,a;—1) and qo = (0), and moreover it
is said to be an unconditioned d-sequence on E if it is still a d-sequence on E in any order.

Basic Definition [GY]. We will say that a;,as,... ,a, form an unconditioned strong d-
sequence (abbrev. a u.s.d-sequence) on FE if al',a3?,... ,a? form a d-sequence on E in
any order for every integer ni,ns,...,n, > 0.

Our definition of a u.s.d-sequence apparently seems very strong, because of it requestes
al',ay?,...,a? form an unconditioned d-sequence for all positive integers ny,ng, ... ,n,.
Concerning this, however, we mention that this requirement can be made a much weaker
one than the above, see §5.

For each p € Z, the p-th local cohomology functor over A with respect to the system
b=1"b1,bs,...,b; is given as follows:

Hg(*) = l—iLan(bln’ vy b %),

n

The author was supported by the Grant-in-Aid of Himeji Dokkyo University for Domestic study aboards
in Meiji University from October 1996 to March 1997.
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where H?(b,",. .., b,™;*) denotes the p-th cohomology functor of the Koszul (co-)complex
generated by b,",b,",... ,b," over an A-module *. When we set I = (by,b2,...,b)A, it is
denoted by HY(x) for the sake of convenience.

Let R = @,,>¢ R, be a graded ring. Notice that if b;,b,,... , b, is a sequence of homoge-
neous elements in R, then the local cohomology functors H} (%), p € Z, are regarded as func-
tors from the category of graded R-modules into itself. As usual, we put Ry = @, >, Rn.
Let W = ®nezW, be a graded R-module. The homogeneous component of W of degree n
is sometimes denoted by [W], instead of W,. We say that W is finitely graded if W,, = (0)
for all n except finitely many.

Let I be an ideal of A. The Rees module and the associated graded module of E with
respect to I, writing R;(E) and Gj(E), are defined as follows:

Ri(E):=I"E, GuE):=IE/I""E.

n20 n20

In the case E = A, we use R(I) instead of R;(A), if no confusion can be expected, and
notice that both graded modules R;(E) and G(E) are regared as modules over R(I) as
usual.

We denote by [7, j] the set of integers n such that : £ n < j. Of course, [i,5] = 0 when
1> 7.

With these notations, our first result is stated as follows.
Theorem 1. Suppose that there exist a sequence ay,as, ... ,as (s > 0) of elements in A
and an integer r > 0 such that (i) I D (ay,as,... ,a,), (i) I"*! = (a1, a2,... ,a,)I", and
(iii) ay, a3, . .. ,a, is a u.s.d-sequence on I"E. Let N = IR(I) + R(I);. Then HY(R/(E))
(resp. HY(G(E))) is finitely graded for every 0 S p < s (resp. 0 S p < s).

When we can take r = 1 in Theorem 1, we have more explicit computations of them. To
describe it, we need one more notation. For a system of elements in A, say a;,a,,... ,a,,
we define an A-submodule L(ay,... ,a,; E) of E as follows:

S
Y(a1,...,as; E) :=E (a1,...,&,... ,as)E : a;],
i=1

where the hat“on a; means to omit this element a; from the system a;, as, ... ,a,. With
this notation we have the following main result.

Theorem 2. Let I be a finitely generated ideal of A. Suppose that there exists a se-
quence of elements in A, say ai,as,...,a,, which satisfles the following five conditions:
(i) s 2 2; (i) ay,as,...,a, is a u.s.d-sequence on E; (iii) I D (aj,as,...,a,); (iv)
I? = (ay,as,...,a,)I; and (v) IE D £(ay,... ,a,; E). Let Mt = IR(I) + R(I)4. Then one
has the following statements.

(1) Foreach0 < p < s,
HY}E) (p=0,n=0,1)
H}(E) (P=1, n=0)
H7(E) 4SpsSs,nel3—p,-1])
©  (else),

[HRR1(E))]a =



and [Hi}'(R1(E))]n = (0) for all n 2 0. In particular, Hy(R1(E)) = (0), and also
H3(Ri(E)) = (0) when s 2 3.
(2) Foreach0Sp<s,

H(E) (n=1-p)
(0)  (else),

moreover [H§(G(E))], = (0) foralln > 1 — s and

[H,(G1(E))] = {

[H(G1(E))i—s = IE/%(ay, ... ,a,; E).

§2. PRELIMINARIES

In this section we shall prepare several basic facts, which are needed later. Let A still
be a commutative ring and E an A-module, and moreover let ay,a,,... ,a, be a sequence
of elements in A of length s > 0. We set q = (a1, az, ... ,as).

In 1964, C. Lech [L] introduced a very useful notion concerning sequence properties.
Namely, a sequence ay, ... ,a, is said to be independent in A if i(al, ...,as) C q, by our
notation. He mentioned also that it is equivalent to saying q/q? is a free A/g-module in
which ay, ... ,a, represents a basis. Here we also investigate the same situation.

Lemma 3. Let F' be an A-submodule of E. Then the following two conditions are equiv-
alent.

(1) $(ay,...,as;E) C F.
(2) The A-linear map (E/F)* — qE/qF induced by (e1,... ,€5) — Y. i_, ai€; is an
isomorphism.
When this is the case, one also has q;_1E : a; = qi1 F F a; for every 1 £ i1 < s, in
particular £(ay,... ,a,; E) = Yo, [(as,--. , &, ... ,a,)Fl:pa,-] =3¥(ay,...,a,; F).
Now we shall discuss how an u.s.d-sequence behaves on submodules. We begin with the
following.

Lemma 4. Let ay,ay,...,a, be a u.s.d-sequence on E. Then
£(a,™,...,a,™; E) C £(a,™,... ,a,"; E)

for any integers m; S n; (1< i < s).

Proposition 5. Let ay,a,,...,a, be a u.s.d-sequence on E and let F' be an A-submodule
of E. Suppose that ¥(ay,...,as; E) C F. Then ay,a,,...,a, is a u.s.d-sequence on F
too.

To consider the converse of Proposition 5, we need more finiteness conditions at this
moment.



Theorem 6. Let (A, m) be a Noetherian local ring, E a finitely generated A-module of
positive dimension s, F an A-submodule of E and ay,az,... ,a, a system of parameters
for E. Suppose that ay,as,...,a, is a u.s.d-sequence on E and l4(E/F) < co. Then the
following statements are equivalent.

(1) %(ay,...,a;E)C F.

(2) lA(qE/qF) =s-1a(E/F).
(8) ai,... ,a, is a u.s.d-sequence on F and H (E) C F.

Let R = @,30Rx still be a graded ring and W = @nezWh, a graded R-module. For an
integer r, we denote by W (r) the graded R-module defined by [W(r)], = Wyip for n € Z.

We also 1ntroduce the following notations:

Wiz, =@ Wa, Wl =P Wa.

a2r n<r
Then we find an exact sequence of graded R-modules as follows:
(1) 0 — Wiy, —m W — W, —0.
Considering the exact sequence (i), this implies the next.

Proposition 7. Let i = fi,---, fu (resp. ¢ = g1,...,9,) be a system of homogeneous
elements in R of positive degree (resp. of degree 0). Then, there exists an isomorphism
HY (W|<r) 2 HE(W|<r) of graded R-modules, and one also has the following statements.

(1) For any integer p,
H’,i(Wn) (n<r)
(0) (n2r).

(2) Suppose that W, = (0) for all n small enough. Then HY (W|<,) is finitely graded
for every p. Therefore, H (W) is finitely graded for every p if and only if so is

[HE,Q(W|<T)]n = {

§3 OUTLINE OF THE PROOF OF MAIN THEOREMS
Assume that I D g. Then there are canonical inclusions as follows:
R(q) — R(I) — A[t].

Hence any graded R(I)-module is regarded as a graded module over R(q) via the graded
A-algebra map R(q) — R(I).

Let us further assume there exists an integer r > 0 such that I"t! = qI”. Then it is
clear that I"*"E = q"I"E for all n 2 0. This implies

Ri(E)ly, = Re(I"B)(=r),  Gi(E)ly, = Go(I"E)(1)

as graded R(q)-modules. This observation and the exact sequence (i) lead us to the fol-
lowing new exact sequences of graded R(q)-modules:



Proposition 8. Suppose that I D q and there exists an integer r > 0 such that I"™t! =
qI". Then there are two exact sequences of graded R(q)-modules:

(i) 0 — Rq(I"E)(-r) — R1(E) — R1(E)|<r — 0;

@) 00— Gy(I"E)(=r) — Gi(E) — Gi(B)l<r — 0.
Let M = IR(I) + R(I)4+. As is well-known, there exist isomorphisms

HI(o) 2 HE(x),  Hiy(x) = HE,  (+)

at,a

for every p, as connected sequences of covariant functors over A and graded covariant
functors over R(I) (hence over R(q) too), respectively. Therefore, to show our theorems

we enou calculate I an I 1n terms o s.
ghly calcul H&’E(R (E)) and HL’E(G (E)) i fH‘:,’(E)’

Now we are ready to describe an outline of the proof of our theorems.

Proof of Theorem 1. Look at the exact sequence (ii) above. By Proposition 7, we have
HY, «(R1(E)|<r) is finitely graded for all 0 < p < s. By Theorem (4.1) of [GY], we know
Hfl’_t,a(Rq(I "E)) is also finitely graded. So we obtain the first half of the assertion. Using
the exact sequence (iii), the second half of our assertion is also shown in the same way.

Proof of Theorem 2. At first, our assumptions (it) and (v) imply that a1, as,...,as is a
u.s.d-sequence on IE too, by Proposition 5. We have with the following claim.

Claim 9. H{(IE) = Hi(E) for all p # 1.
Note that IR(E) = Rq(IE). Hence there are exact sequences

(vi) 0 — G4(IE)(-1) — G[(E) — E/IE — 0;
(vii) 0 — Rq({E) — Ri(E) — G(E) — 0;
(viii) 0 — R4(IE)(-1) — Ri(E) — E — 0.

of graded R(q)-modules, cf. the exact sequences (ii), (iii). Then we claim also the next.

Claim 10.
(1) Hyyo(G1(E)) = Hy(E)(-1).

at,a

(2) Har,o(GI(E)) = Hay o(R1(E)) = Hy(E).

Now we finish our proof of Theorem 2. To (2): By Claim 10, we enoughly deal with
the case p 2 2. Considering the exact sequence (vi),

Hita(Gr(E)) = Hyy o (Ga(TE))(-1)

—80—




for all p 2 2. Therefore, by Theorem (4.2) of [GY], all the rest of the assertion (2) follow
immediately, in particular we get by Lemma 3 that

[H3(Gr(E)))i—s = IE/ Z (a1, @, a)IE : ai] = IE/¥(ay,... a4 E).

To (1): By Claim 10, it is enough to discuss the case p 2 2. The exact sequence (viii)

leads us

[H;,E(RI(E))],, = [Hf; o(Rq(IE))]n—1 for all n # 0.

On the other hand, in the assertion (2) we have already shown [H}, ,(G1(E))]» = (0) for
all n > 1 — p, hence it yields from the exact sequence (vii) that

[H&,E(RI(E))],1 = [H&E(Rq(IE))],, =(0) foralln 20,

because of p 2 2. Comparing these observations and Theorem (4.1) of [GY], see also Claim
9 above, we finally get all the requirements.

Example 11. Here we check Theorem 2 once more, assuming that (4, m) is a complete
Buchsbaum ring of dimension s 2 2, E = A, and I is an m-primary ideal. In this
case, Theorem 2 requires that I? = qf and I D f)(al, ... ,a,) for some parameter ideal
q=(a1,...,a,) of A.

In the case I = i(al, ... ,as), we can completely state the condition to I? = qI. Let K
denote the canonical module of 4, i.e., K := Hom4(H3,(A), Ea(A/m)), where E4(A/m) is
the injective envelope of the residue field A/m. Then, by Theorem (3.3) of [Y], it follows
that I? = qI if and only if IK = qK. (Notice that the ideal (as,... ,a,) appeared in [Y]
coincides with f](al, ... ,as), because of s 2 2.)

Therefore, if the idealization A x K is a Buchsbaum ring, then any m-primary ideal
I = i(al, ... ,a4), where ay,as,...,a, is a system of parameters for A, satisfies all the
requirements in Theorem 2.

To close this section, we describe the relations between the length s of a given se-
quence a;,as,...,as and the reduction numeber r suth that I™t! = qI", where q =

(a1,0a2,...,a,).

Reamrk 12. Let (A, m) be a Noetherian local ring of dimension s 2 2 and depth A > 0.
Let I be an m-primary ideal of A and q = (ay,as,...,a,) a minimal reduction of I, i.e.,
I™1 = gqI" for some r > 0. Assume that a;,a,,... ,a, form a u.s.d-sequence on the ideal
I", here I" is regarded as an A-module. Then the reduction number r of I with respect to
q must be one.

In fact, if a;,as,... ,a, form a u.s.d-sequence on I", then by Theorem 6 we have I" D
f)(al, ... ,0s) D q. Since ¢ is a minimal reduction of I it implies that r = 1.

§4. THE CASE s = 1

In this section we shall deal with the case s = 1. Through this section, let an element
a € A be a d-sequence on E.



Since 0: a™ = 0: a for any n > 0, we see that this element a is also a u.s.d-sequence on
E. Let F be an A-submodule of E. Then, we have 0 H a?=[0:a®INF=[0:aNF=0 5 a

thus the element a is a (u.s.)d-sequence on F' too (with no other assumptions).
Let I be an finitely generated ideal of A and let further assume that a € I and I"™! = aI"
for some integer r > 0. Then we have

Lemma 13. Let M = IR(I) + R(I)4. Under the situation as above, the following state-
ments are true. HYE)NI"E (0<n<n)
) BRECED = { of e,
moreover [Hy(R1(E))|n = (0) foralln & [1,r—1] and [H%(R[(E))]n = (0) foralln 2 r—1.
(HYE)+ I"E):a" "+ I"ME/I"ME (0Sn<r-2)
(2) MHRGHE).=<{ HYE)NI"E)+ "' E/I"1E (n=r-1,r)
(0) (n>r)
moreover [HY(Gr(E))]. = (0) for alln >r — 1 and
[Ho(GH(E)))s—1 =I"E/([0: a)NI"E) 4+ aI"E
If we can take r = 1 as Theorem 2, we have more explicit results as follws.

Proposition 14. Let I be a finitely generated ideal of A. Suppose that there exists an
element in A, say a, which satisfies the following four conditions: (i) a is a d-sequence on
E; (ii) a € I; (iii) I? = al; and (iv) IE D 0: a. Let = IR(I)+ R(I)+. Then one has

the following statements.
0 RN = { 1 O

0 (els),
A

moreover [H2(R;(E))], = (0) for all n 2 0.
H}(E) (n=1)

@) R EN = { o o)
moreover [Hi(Gr(E))]» = (0) for all n > 0 and
[H5(Gr(E))o = IE/[0: a] + aE
Finally, for the case s =1 we give an example as follows.

Example 15. Let k[[X,Y, Z]] be a formal power series ring over a field k and let r 2 2
be an integer. Put

A= k[[X)Yv Z]]/(Xr+1aXrY) = k[[$7y’z]]v I= (:B, y)'
Then it is easy to see that
(1) It =yIT and Im 2yl
(2) 0:y=0:y? -(:c')CI'
This implies the element y is a d-sequence on I" for every n 2 0.




§5. *-SEQUENCES

In this section we discuss another sequence property. Let us still keep the following
situations: A is a commutative ring, E is an A-module, and moreover ay,as,... ,a, is a
sequence of elements in A of length s > 0. We set q = (a1, az,...,a,).

We begin with the following definition of a new notion on the sequence property.

Definition 16. A sequence a;,ay,... ,a, is called a *-sequence on E if the equality
q,«_lE : a? = q,-_lE L a;

holds for all 1 £ 7 £ s. We use the terminologies "unconditioned” and ”strong” in the
same meaning as above, an unconditioned *-sequence, an unconditioned strong *-sequence
etc..

Using this definition we can describe some characterization concerning so called Goto’s
Lemma, see [SV] §4 of Chapter II.
Proposition 17. The following statements are equivalent.

(1) a1,azs,...,a, is an unconditioned strong *-sequence on E.
(2) af*,a3?,...,a} form an unconditioned *-sequence on E for alln; =1,2 (1 <: <
s

(3) a1,as,...,a, satisfy Goto’s Lemma; namely the equality

(a2 |la€A)E:a} =Y af [(as|a€D)E: ag]
Ir'cA

hO.ldS fOI' a‘l‘l A ;Ct [17‘9]’ :B ¢ A’ Na > 0 (a € A), Where we put a%_l = H a,:"_l 1f

~er
F#@anda%—l =1.
As an consequence of this lemma we get the following.
Theorem 18. Letay,as,...,a, be an unconditioned d-sequence on E. Then the following
statements are equivalent.
(1) ai,as,...,a, is a u.s.d-sequence on E.
(2) ai,asz,...,as is an unconditioned strong *-sequence on E.
(3) ay*,a3?,...,ay* form an unconditioned d-sequence on E for alln; =1,2 (1 <: <
s).
(4) ai*,a3?,...,a% form an unconditioned *-sequence on E for alln; =1,2 (1 <: <
s).
(5) ai,as,...,a, satisfy Goto’s Lemma.

Proof. By Lemma, (2.11) of [GY], we already get the equivalence (1) <=> (2). Combining
Proposition 17 and this observation we obtain our theorem at once.
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COHEN-MACAULAYNESS IN REES ALGEBRAS
ASSOCIATED TO IDEALS OF MINIMAL MULTIPLICITY

SHIRO GoTo!

1. INTRODUCTION.

In this paper we are going to develop a theory of Cohen-Macaulayness in Rees algebras
and graded rings associated to a certain class of ideals in Cohen-Macaulay rings.

Let A be a Cohen-Macaulay local ring with maximal ideal m and d = dim A4 > 1.
Assume the field A/m is infinite. Let ¢ be an indeterminate over A. For an ideal I (# A)
in A we define

R(I) = A[It] € A[t],
R'(I) = A[It,t7'] C At,t7!], and
G(I) = R'(I)/t~'R'(I)

which we call the Rees algebra, the extended Rees algebra, and the associated graded ring
of I. As is well-known, the canonical morphism ProjR(I) — Spec A4, that is the blowing-
up of A with center I plays a very important role in the analysis of singularities. In this
paper we will also explore the Cohen-Macaulayness of ProjR(I), but our main interests
are located mostly in the analysis of properties of the algebra R(I).

Let I be an m-primary ideal in A and let @ be a minimal reduction of I. Hence Q
is generated by d elements and Q C I with I"*! = QI™ ([NR]). Let e;(A) denote the
multiplicity of A with respect to I. Then we have the inequality

pa(l) <er(A)+d —L4(A/T)

(here for a given A-module E, ps(E) and £4(E) denote the number of elements in a
minimal system of generators for E and the length of E, respectively), in which the equality
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is attained to if and only if mI = mQ, or equivalently mI C @ ((2.1)). We say that the
ideal I has minimal multiplicity if the equality pa(I) = ef(A) + d — £4(A/I) holds true.
Therefore a Cohen-Macaulay local ring A possesses maximal embedding dimension in the
sense of Sally [S] if and only if the maximal ideal m of A has mimimal multiplicity in our
sense.

In this paper firstly we shall explore the Cohen-Macaulay and Gorenstein properties of
graded algebras R(I) and G(I) associated to m-primary ideals I of minimal multiplicity,
which we will perform in Section 2. Here let us summerize our main results on the Cohen-

Macaulayness in R([) into the following

Theorem (2.9). Supposed = dim A > 2 and let I be an m-primary ideal in A possessing
minimal multiplicity. Let Q be a minimal reduction of I. Then the following conditions
are equivalent.

(1) R(I) is a Cohen-Macaulay ring.

(2) G(I) is a Cohen-Macaulay ring.

(3) The fibre cone S(I) = A/m® 4 R(I) is a Cohen-Macaulay ring possessing maximal

embedding dimension. :

(4) I’ =QI.

When this is the case, for all integers n > 0 we have the equalities

a_ (d+n-—1 d+n-—-2
"A(I)_( d—1 )+m( d-1 ) and

where £ = £4(A/I) and m = £4(I/Q) = pa(I) —d.

As is suggested by Korb and Nakamura in [KN], at least in the case where dim A
is small, the negativity of the invariants a;(R(I))’s of R(I) gives some influence on the
Cohen-Macaulayness in R(I). Secondly, in Section 3 we shall explore this phenomenon in .
our context. So, let us briefly recall the definition of a-invariant below.

For a moment let R = @®,ezR, be a Noetherian graded ring and assume that R con-
tains a unique graded maximal ideal, say M. We denote by Hi,(*) (i € Z) the & local
cohomology functor of R relative to M. For a given graded R-module E and n € Z,
let [H4;(E)]n denote the homogeneous component of the graded R-module Hi,(E) with
degree n. Then if R, = (0) for n < 0 and E is a finitely generated graded R-module, we
have [Hi,(E)], = (0) for all n >> 0 and i € Z; so we define

ai(E) = sup{n € Z | [Hy(E)]n # (0)}



and call it the it a-invariant of E. When dimg E = s, we denote a,(E) simply by a(E)
and call it the a-invariant of E (cf. [GW, (3.1.4)]).

With the notation introduced above, among the others we will prove in Section 3 the
following result, in which r(A4) = £4(Ext%(A/m, A)) denotes the Cohen-Macaulay type of
A.

Corollary (3.8). Let I be an m-primary ideal in A possessing minimal multiplicity. Sup-
pose dim A = 3 and r(A) < 3. Then R(I) is a Cohen-Macaulay ring if and only if ProjR(I)
is a Cohen-Macaulay scheme and a;(R(I)) < 0 for all i € Z.

In Section 4 we will explore an example (4.1), which shows the hypothesis in (3.8) that
r(A) < 3 is not superfluous. The example provides also the main conjecture of Korb and
Nakamura [KN] with a counterexample; they asked if the ring R(I) is Cohen-Macaulay,
once ProjR(I) is a Cohen-Macaulay scheme and a;(R(I) < 0 for all 1 € Z.

In what follows, let A denote a Cohen-Macaulay local ring with maximal ideal m and
d = dimA > 1. We assume the field A/m is infinite. Let Hi (%) (i € Z) stand for
the it local cohomology functor of A with respect to m. Otherwise specified, for a given
Noetherian graded ring R = ®,¢z R, with a unique graded maximal ideal M and a finitely
generated graded R-module E, we shall simply denote dimg,, Ey and depthp, Ep by
dimpg E and depthg E, respectively.

2. COHEN-MACAULAYNESS AND GORENSTEINNESS IN R(I).

Let I be an m-primary ideal in A and let @ = (a;, as,...,a4) be a minimal reduction of I.
Let R = R(I),R' =R'(I),G = G(I),and § = A/m®4/mR. Hence dim R = dim R' = d+1
and dimG = dimS = d. Let M denote the unique graded maximal ideal in R and let
fi = a;t for 1 < ¢ < d. The purpose of this section is to explore the Cohen-Macaulayness
and Gorensteinness in R and G.

We begin with the following. This is known by Chuai [C] but let us give a brief proof

for completeness.

Lemma (2.1) ([C]). The following assertions hold true.
(1) paD) < ex(A) +d— La(A/D)
(2) pa(l) =er(A)+d —£a(A/I) if and only if mI = mQ.

Proof. Recall that er(A) = eq(A) = £4(A/Q) and that mINQ = mQ ([NR]). Let E = I/Q.
Then by the standard exact sequence 0 — Q/m@Q — I/mI — E/mE — 0 we have
pa(I) = d+ pa(E). Hence pa(I) < ef(A)+d —La(A/I), because pa(E) < £4(E) and



(4(E) = £4(A/@)—LA(A/T) = e1(A)—La(A/T). The equality pa(T) = er(A)+d—La(A/T)
holds if and only if pa(E) = £4(E), that is mI C @, or equivalently mI = mQ.
Assume that the ideal I has minimal multiplicity. Then mI = m@Q by (2.1) and so we

have mI™ = mQ™ for all n € Z. Hence mR = mR(Q). Let C = R/R(Q) (hence C,, = (0) if
n < 0). Then as mC = (0), we get a commutative diagram

0 — RQ) — R —— C > 0
= R
O—— P -~ S - C 0

with exact rows, in which P = A/m® 4 R(Q) and the vertical maps are canonical epimor-
phisms. Recall that P is a polynomial ring in d variables over the field A/m and that S
is a module-finite extension of P. Then by a theorem of Hochster [Ho] the bottom row in
(2.2) is split, so that we have

(2.3) S=PaC

as graded P-modules.

Let N be the unique graded maximal ideal in R(Q). Then as P is a polynomial ring,
by (2.3) we get Hi,(S) = HY/(C) for i < d — 1 and H4,(S) & H%(P) ® H%(C). On the
other hand, since R(Q) is a Cohen-Macaulay ring of dimR(Q) = d + 1, from the top
row in (2.2) the isomorphisms Hi,(R) & Hi/(C) for i < d — 1 and the exact sequence
0 — Hi,(R) - H%(C) —» HY ' (R(Q)) follow. Because a(R(Q)) = —1 and a(P) = —d (cf.
[GN, Part II, (3.3)] and [GW, (3.1.6)]), summarizing these observations, we have

Proposition (2.4). (1) [Hi;(R)]. 2 [Hy(C)]n = [Hif(S)]n foralli <d—1and n € Z.
(2) a;i(R) = a;(C) = a,'(S) fi<d-1.
(3) a(S) = max{aq(C),—d}.
(4) 2u(R) < 24(C) < max{aq(R), -1},

Lemma (2.5). (1) Let I # Q. Then dimp C = d and min{depthp C, depth S} > 1.

(2) G is a Cohen-Macaulay ring if and only if I> = QI. When this is the case, a(G) =
1-dif I#Q and a(G)=-dif I = Q.
(3) depthR =depthG+1ifd > 2.

Proof. (1) We have C # (0) since I # Q. As H3,(R) = (0), by (2.4)(1) we get HY(C) =
HS,(S) = (0), whence min{depthp C, depthS} > 1. The element f; is actually C-regular.



(In fact, let = € I"™ with n > 1 and assume f; - 2t" € R(Q). Then a4z € a4AN Q™1 =
a4Q™ whence z € Q™.) To see that dimpC = d, it suffices to check dimpC > d. This
is clear for d = 1. Let d > 2 and assume that our assertion is true for d — 1. Let
A= AlagA, ™ =m/agA, T = I]azA, and Q = Q/azA. Then Q is a reduction of T with
W] = mQ. Hence the ideal T has minimal multiplicity so that from the hypothesis on d
we see dimp C(T) > d — 1, where C(T) = R(I)/R(Q) and P = A/M @z R(Q). As C(T) is
naturally a homomorphic image of C/fsC, we get dimpC/faC > d — 1. Thus dimpC > d
since fq is C-regular. ‘

(2) The if partis due to [VV, (3.1)]. Let G be a Cohen-Macaulay ring. Then QNI™ = QI™~!
for all n € Z by [VV, (2.7)], while I? C Q as I? C mI = mQ. Hence I? = QI. The last
assertion now follows from the equality a(G) = a(G/(f1, f2, ..., f1)G) —d (cf. [GW, (3.1.6)]),
because a(G/(f1, f2, -, fa)G) = 1 (vesp. a(G/(f1, f2,---, fa)G) =0) if I # Q (resp. I = Q).
(3) If G is Cohen-Macaulay, then I? = QI by (2) so that the ring R is Cohen-Macaulay
(cf. [GS, (3.10)]). The equality depth R = depthG + 1 is due to [HM] in the case where G

is not Cohen-Macaulay.

If the ring S is not Cohen-Macaulay, then I # @ and depthR = depth S = depth C by
(2.4)(1). As d > 2 by (2.5)(1), by (2.5)(2) we get depthR = depth G + 1. Hence

Corollary (2.6). Suppose S is not a Cohen-Macaulay ring. Then depthR = depthS =
depthC = depth G + 1.

Let ro(I) = min{n > 0 | I"*! = QI™} and call it the reduction number of I with
respect to Q.

Proposition (2.7). The following four conditions are equivalent.
(1) S is a Cohen-Macaulay ring.
(2) depthR > d.
(3) depthG >d—1.
(4) C is P-free.
When this is the case, a(S) =rq(I) —d.

Proof. (1)<=> (2) <= (4) See (2.4)(1).

(2) <= (3) This follows from (2.5)(3).

To check the last equality, note a(S) = a(S/(f1, f2, ..., fa)S) — d (cf. [GW, (3.1.6)]). Then
as a(S/(f1, f2y-- f2)S) = max{n > 0 | I" € QI"~! + mI"}, via Nakayama’s lemma we
get a(S/(f1, f2,..., fa)S) = 10Q(I). Thus a(S) =ro(I) —d.



Corollary (2.8). G is a Cohen-Macaulay ring if and only if S is a Cohen-Macaulay ring
and a(S) <1-—d.

Proof. See (2.5)(2) and (2.7).
When d = 1, R is a Cohen-Macaulay ring if and only if I = Q (cf. [GS, (3.10)]). As for

the case where d > 2 we note the following

Theorem (2.9). Suppose d > 2. Then the following four conditions are equivalent.

(1) R is a Cohen-Macaulay ring.
(2) G is a Cohen-Macaulay ring.
(3) S is a Cohen-Macaulay ring possessing maximal embedding dimension.
(4) I? = QI
When this is the case, for all n > 0 we have the equalities

ay_ [(d+n—-1 d+n—-2
pall )-( d_1 )+m( do1 ) and
=) (1),

where £ = L4(A/I) and m = L4(I/Q) = pa(I) —d.

Proof. (1) <= (2) <= (4) This follows from (2.5)(2) and (3).

(2) < (3) By (2.7) we may assume S is Cohen-Macaulay. Let 9 = S;. Then S
has maximal embedding dimension if and only if M? = (fi, f2, ..., fa)MN, and the latter
condition is equivalent to saying that a(S/(f1, f2,...,fa)S) < 1. So the equivalence (2)
<= (3) follows from (2.8), since a(S/(f1, fa2, .-, f1)S) = a(S) +d.

Let us check the last equalities. Let H(G,)\) = Y oo £4(Gn)A" be the Hilbert series
of G. Note [G/(f1, f2y- fa)G)1 = I/Q and [G/(f1, f2,..., fa)G)]n = (0) for all n > 2,
as I? = QI. Then we get H(G,\) = (£4 mA)/(1 — \)? (recall the sequence fi, fa,...,

fa is G-regular). Hence £4(I'/I't!) = Z(d+z -1 m(d-*-2 —2) for i > 0 so that

d—1 d—1
Ca(A/ TV = T 0(TH /T = e(d z ”) + m(d+ " 1) if n > 0. Since H(S,\) =
(14+mA)/(1 = X)?, we have pa(I™) = (dji_i; 1) (d:fIz) for n > 0.

Corollary (2.10). Suppose A is a Gorenstein ring. Then G is a Cohen-Macaulay ring. If
d > 2, R is a Cohen-Macaulay ring too.

Proof. We may assume I # . Then]I = Q : m,since @ CIC Q:mand £4((Q:m)/Q) =
1. We will show I? = QI. Let a,b € I and write ab = ELI a;c; with ¢; € A. Then for



each z € m we get zab € Q? (since mI? = mQ? C Q?). Therefore ZLI a; - zc; € Q? and
soxc; € Q for all 1 <i < d. Hence ¢; € Q@ : m = I so that I* = QI. The last assertion
follows from (2.5)(2) and (2.9).

Let us add a few remarks on the Gorenstein property of R and G. For a given Cohen-
Macaulay local ring (B, n) of dim B = n we put r(B) = £g(Extp(B/n,B)). If B is not
necessarily local, we put r(B) = sup,egpec g I(Bp) and call it the Cohen-Macaulay type of
B.

Proposition (2.11). Suppose I? = QI. Then the Cohen-Macaulay type t(G) of G is
given by the following formula

(A/D)+pa) —d i I#m,
x(G) = { ua(l)—d I=m#Q,
1 ifI=m=Q.

Proof. Recall 1(G) = r(Gm) (cf. [AG]) where 9 is the graded maximal ideal in G. On
the other hand, since the sequence f;, fa,..., fa is G-regular (cf. [VV, (2.1)]), we have
r(Gm) = 1(G/(f1, f2, .-, fa)G) and the isomorphism G/(f1, f2,..., fa)G = G(I/Q) as well.
Thus r(G) = r(G(I/Q)). Let V denote the socle of G(I/Q) = A/I®I/Q. Then V =(I:
m)/IGI/QifI#m V=I/Qif I=m#Q,and V = A/mif ] = m = Q, from which the
formula follows because £4(I/Q) = pa(I) —d.

Corollary (2.12). G is a Gorenstein ring if and only if either (1) I = Q and A is a
Gorenastein ring or (2) I = m and pa(m) =d + 1.

Proof. The assertion follows from (2.11). Note A is a Gorenstein ring if so is G.

Theorem (2.13). R is a Gorenstein ring if and only if either (1)d < 2,1 =@, and A is
a Gorenstein ring or (2) d =3, I = m, and pa(m) = 4.

Proof. We may assume d > 2 (recall that I = Q if d = 1 and if R is a Cohen-Macaulay
ring). Then thanks to Ikeda’s theorem [I, (3.7)] R is a Gorenstein ring if and only if G is
a Gorenstein ring of a(G) = —2, so that the assertion follows from (2.5)(2) and (2.12).

We close this section with the following examples. Let k be an infinite field.

Example (2.14). Let A = k[[X*, X3Y,X2Y?% XY? Y*]] be the subring of the formal
power series ring k[[X, Y]] over k in two variables X and Y. Let I = (X*, X3Y, XY3 Y*)A
and Q = (X*,Y*)A. Then I® = QI?, mI = mQ, and depthG = 0. Hence depthR =
depth S = depthC = 1, so that the ring S cannot be Cohen-Macaulay.




Proof. Tt is routine to check that I3 = QI? and mI C Q. As(X*t,Y*)- X2Y2 C ¢t~ 1R/, we
see depthG = 0. Hence by (2.7) S is not a Cohen-Macaulay ring and by (2.6) depthR =
depth S = depthC = 1.

Example (2.15). Let A = k[[X?2,Y?,22,XY,YZ,ZX]] in the formal power series ring
k[[X,Y,Z]). Let I =(X2,Y?% Z%, XY,YZ)A and Q = (X?,Y?,Z2)A. Then I3 = QI? and
mI = mQ. The ring S is Cohen-Macaulay and depth R = depthG + 1 = 3. Hence R is
not Cohen-Macaulay. The scheme ProjR is not Cohen-Macaulay, since H2,(G) is not a
finitely generated G-module.

Proof. It is routine to check that I® = QI? and mI C Q. We will show that X?¢, Z%¢
form a G-regular sequence. It is enough to see (XZ%,Z2%)N I* = (X?2,22)I"7? for all
n > 2 (cf. [VV, (2.7)]). Note I? = (X%,Z%)I + Y’m. Then we have (X%2,Z2)N I? =
(X2,Z)I + (X2%,Z2%) N Y?m, whence (X2,Z22)NI? = (X%,ZY) as (X%,Z%)NY?%m C
YZ%(X?,2%). Let n > 3 and assume that our equality holds true for n—1. Then I"™ = QI™!
so that (X2,Z?)NI" = (X%, ZH)I" ! + (X2, Z22)n Y2 " As (X2,Z22)nY?I" ! =
Y?[(X?,Z2?)NI""1], from the hypothesis on n we see (X2, 22)NY2I"~! = Y(X?2, Z22)I2.
Thus (X2,2%) N I = (X?,Z%)I"? so that depthG > 2. Hence by (2.7) § is a Cohen-
Macaulay ring. As XY2Z € I?> but XZ ¢ I, Y%t is a zerodivisor in G. Therefore
depthG = 2 and depthR = 3 by (2.5)(3). If H%,(G) were a finitely generated G-module,
every subsystem f, g of homogeneous parameters for G must be a G-regular sequence
([STC, (2.5) and (2.11)]), which is impossible because Yt is a zerodivisor in G. Since the
finite generation of H%,(G) is equivalent to the Cohen-Macaulayness of Proj g ([STC, (2.5)],
(2.11), and (3.8); recall that I is m-primary), we have ProjG cannot be Cohen-Macaulay.
Hence Proj R is not Cohen-Macaulay as well.

Example (2.16). Let n > d > 2 be integers and let R = k[X;, X2, ..., X4] be the polyno-

mial ring in d variables over k. Let S = R(™ denote the Veronesean subring of R with order

n. We put 9t = S} and A = Son. Let Q@ = (X7, X%2,..,X])A and I = Q + WA, where
W = Sa—y = Rp(a—1)- Then I? = QI and mI = mQ. The ring R is Cohen-Macaulay,

d=dim A, and ps(I) =d+ (Z:i)

Proof. The ring S is Cohen-Macaulay with dim S = d and a(S) = —1 (cf. [GW, (3.1.1))).

Hence [S/(X], X7, ..., X])Sla-1 # (0) but [S/(X],X7F,..., X})S)i = (0) for i > d. There-

fore I? = QI and mI C Q so that by (2.9) R is a Cohen-Macaulay ring. We get pa(I) = d+
-1 )

1) becanuse a(1) = d-+ pa(1/Q) an sa(1/Q) = dimlS/(XF, XF0 XJ)Sacs =

dlmk[R/(X{l)X?v '-"-X;)R]n(d—l)'



The typical example satisfying condition (2) in (2.13) is as follows.

Example (2.17). Let R = k[[X,Y,Z,W]] be the formal power series ring and A =
R/(XY — ZW). Let z, y, z, and w denote respectively, the reductions of X,Y, Z, and W
mod (XY — ZW). Then dim A = 3 and m? = (z,y,2z — w)m. Hence the maximal ideal m
in A has minimal multiplicity with p4(m) = 4, so that R(m) is a Gorenstein ring.

3. COHEN-MACAULAYNESS IN ProjR(I) AND THE NEGATIVITY OF a;(R(I))’s.

As is explored in [KN], at least in the case where dim A is small, the negativity of a;(R(I))’s
gives some influence on the Cohen-Macaulayness in R(I). We shall also discuss this phe-
nomenon in our context. Let I be an m-primary ideal in A possessing minimal multipilicity.

We maintain the same notation as is given in Section 2. We begin with the following.

Theorem (3.1). Suppose that I"*1 = mI™ for some n > 0. Then ProjR is a Cohen-
Macaulay scheme.

Proof. By [K, (2.13)] it suffices to check that ay, as,..., ag is a d-sequence on I? for all
p>n+2. Let Q; = (a1,az,...,a;) for 0 < ¢ < d. Firstly we will show that Q; N I? =
Q:IP71. In fact, as I? = mIP~! = mQP~! and Q; N QP! = Q:QP~?, wesee Q; NIP C
Q:QP 2 NmQP! C mQ; - QP72 = Q;IP~! (note that G(Q) is a polynomial ring). Hence
QiNIP =Q;IP"! for 0 <i < d. Let 1 <i < j < d be integers and choose z € I? so that
aiajz € Qi—1I?. Thenz € Q;_; NI? = Qi—1IP7! whence ajz € Q;_1I?, and thus a,,
as,..., aq is a d-sequence on I?.
Example (3.2). Let k[[X,Y]] be the formal power series ring in two variables over
an infinite field k and A = k[[X5, X*Y, X3Y%, X2Y3, XY* Y%)] in k[[X,Y]]. Let I =
(X%, X*Y,XY*Y%)A and Q = (X®°,Y°)A. Then I* = QI*® and mI = mQ. The ring R is
not Cohen-Macaulay by (2.9) since I® # QI2, while ProjR is a Cohen-Macaulay scheme
by (3.1) because I* = mI%. As X3Y?2 ¢ I but (X°,Y1?). X3Y?2 C I3 depthG = 0. Hence
depthR = depthS =1 by (2.6) and (2.7).

Let N be the unique graded maximal ideal in R(Q). We note a(R) = —1 (cf. [GN, Part
I1, (3.3)]).

Lemma (3.3). (1) H},(R) is a finitely generated R-module and m - H},(R) = (0).
(2) HY(C) = Hy(C) = (0) if a1(R) < 0.
3) I=Qifd=1and a;(R) <0.

Proof. (1) The second assertion follows from the embedding H},(R) C H}/(C) (cf. (2.2)).

To see the first one we may assume A is complete. Let Kx be the graded canonical



module of R. Then (0) :x Kr = (0) as dimR/P = d+ 1 for all P € AssR (cf. [V,
(1.7)]). Let E = Endg Kz and apply the functors Hj,(*) to the exact sequence 0 —» R —
E — E/R — 0. Then H},(E/R) = H},(R) as depthg E > 2. Thus H},(R) is a finitely
generated R-module.

(2) and (3). Let f = aqt. Then f is a nonzerodivisor on C (cf. Proof of (2.5) (1)).
Let C = C/fC. Then by the exact sequence 0 — C(-—1) Leoto 0, we get the
embedding H%(C) € H}(C)(—1). Hence a,(C) < a;(C) + 1. Note a;(C) = a1(R) (resp.
a1(C) < max{a;(R),—1}) if d > 2 (resp. d = 1) (cf. (2.4)). And we see a;(C) < —1 so
that ag(C) < 0. Because C,, = (0) for n < 0, this forces H}(C) = (0) whence H},(C) = (0).

Assertion (3) is clear.
First we note the following result in the case where dim A = 2.

Proposition (3.4). Suppose d =2. Then
(1) HY,(S) is a finitely generated S-module.
(2) S is a Cohen-Macaulay ring if a;(R) < 0.
(3) R is a Cohen-Macaulay ring if and only if a;(R) < 0 for all 1 € Z.

Proof. (1) This follows from (2.4)(1) and (3.3)(1).

(2) See (2.4)(1). Note that by (3.3)(2) H%,(C) = (0) for i < 1.

(3) Assume a;(R) < 0 for all i € Z. Then S is Cohen-Macaulay by (2). We have a(S) <
—1 =1-d, because a(S) = max{az(C), —2} and a,(C) < max{az(R), —1} by (2.4)(3) and
(4). Hence R is a Cohen-Macaualy ring by (2.8) and (2.9).

Theorem (3.5). Suppose d = 3. Then S is a Cohen-Macaulay ring and I® = QI? if and
only if a;(R) < 0 for all i € Z.

Proof. Assume that S is a Cohen-Macaulay ring and I® = QI%. Then a(S) < —1 by
(2.7) so that ag(R) < —1 by (2.4)(3) and (4). Hence a;(R) < 0 for all i € Z (recall
that a(R) = —1 and depthR > 3 by (2.4)(1)). Conversely assume that a;(R) < 0 for
all 7 € Z. Firstly we will show that S is a Cohen-Macaulay ring. Assume the contrary.
Then depthS = 2 by (2.4)(1) because depthp C > 2 by (3.3)(2). Hence depthR = 2 and
depthG =1 by (2.6). Let a = R4 and consider the standerd exact sequences

(a) 0—a—R-—A—0,

(b) 0—a(l)—R—G—0.

Then applying the funtors Hi,(*) to (a) and (b), we get an isomophism H2,(a) = H%,(R)
and the embedding H},(G) C H3,(a)(1). Hence a;(G) < —2because az(a) = a(R) < 0 and



a1(G) < az(a) — 1. Choose an element g € Gy so that g is G-regular (this choice is possible,
because depthG > 0 and A/m is infinite). Let G = G/gG and apply HY,(*) to the exact
sequence 0 = G(—1) 5 G — G — 0. Then from the embedding HY,(G) C H},(G)(—1) we
see a9(G) < a1(G) + 1; hence ag(G) < —1. Therefore H},(G) = (0) so that depthG > 2,
which is absurd and thus S is a Cohen-Macaulay ring. Because a(S) = max{a3s(C), —3}
and a3(C) < max{a3z(R), —1} by (2.4), we get a(S) < —1 whence rg(I) < 2 by (2.7). Thus
I® = QI?, which completes the proof of Theorem (3.5).

The scheme ProjR (resp. ProjG) is Cohen-Macaulay if and only if Hi/(R) (resp.

2/(G)) is a finitely generated R-module (resp. a finitely generated G-module) for all

i #d+1 (resp. i # d) (cf. [STC, (2.5), (2.11), and (3.8)]; note v/T = m) and ProjR is

Cohen-Macaulay if and only if so is Proj G. When this is the case, the sequence bit, bat,

..y bst (s = depth G) is G-regular for any system by, by, ..., ba of generators for @ (cf. [STC,
(2.5) and (2.11)]).

Theorem (3.6). Suppose p4(I) >1(A)+1 orr(A/I) < d—1. Then I> = QI if Proj R

is a Cohen-Macaulay scheme and S is a Cohen-Macaulay ring.

Proof. Let z € I? and write z = E:Ll a;z; with z; € A. Then for the same reason as
is in the proof of (2.10), we get z; € Q@ : mforall 1 < ¢ < d. Let J =@ : m. Then
r(A/I) 2 La(J/I) =La(J/Q) —La(I/Q) = 1(A) — pa(I) +d, because £4(J/Q) = r(A) and
L4(I/Q) = pa(I) — d. Therefore if r(A/I) < d — 1 or more generally pa(I) > r(A) + 1,
we have £4(J/I) < d — 1 so that the elements z;, z3, ..., £; mod I cannot be A/m-
linearly independent in J/I. Without loss of generality we may write 4 = E?;ll T +y
with ¢; € A and y € I. Then since z = 22‘:1 ;T = Zf__fll(a.' + aqci)zi + aqy, we have
T —aqy € (ai + aqci | 1 <i <d—1)NI% Recall that depthG > d—1 by (2.7) since S is a
Cohen-Macaulay ring. And we get (a;+aqc; | 1 <i < d-1)NI%? = (a;+aqc; |1 <i<d-1)I
by [VV, 2.7], because Q = (a;+aq4ci | 1 <i < d—1)+(aq) and because Proj§ is a Cohen-
Macaulay scheme with depthG > d—1. Hence ¢ —aqy € (ai+aq4¢; |1 <1 <d-1)I C QI
so that z € QI. Thus I? = QI.

Corollary (3.7). Suppose 1(A) < d. Then I? = QI if ProjR is a Cohen-Macaulay

scheme and S is a Cohen-Macaulay ring.
Proof. We may assume I # Q. Hence p4(I) > d+ 1 and the assertion follows from (3.6).

Corollary (3.8). Suppose d =3 and r(A) < 3. Then R is a Cohen-Macaulay ring if and
only if Proj R is a Cohen-Macaulay scheme and a;(R) < 0 for all i € Z.

Proof. See (2.9), (3.5), and (3.7).



4. EXAMPLE.

Let k be an algebraically closed field. Let R = k[X,Y, Z,V, A, B, C|] be the polynomial

ring in 7 variables over k and let
a=(X,Y,2)-(X,Y,2,V)+(V? - (AX + BY + C2)).

We put S = R/a and let z, y, z,..., ¢ denote respectively, the reductions of X, Y, Z,..., C
mod a. Let M = S;, O = Sy, and m = MSy. We put Q@ = (a,b,¢)O and I = Q + vO.
Then we have
Example (4.1). (1) (O, m) is a Cohen-Macaulay local ring of dim O = 3.

(2) m? = Qm, I* = QI?, and mI = mQ. But I? # QI. Hence the rings R(I) and G(I)

are not Cohen-Macaulay.

(3) em(O) =5 and r(O) = 4.

(4) depthR(I) = 3 and a3(R(I)) < 0. Hence a;(R(I)) < 0 for all : € Z.

(5) ProjR([I) is a Cohen-Macaulay scheme.

Proof. (1) (2) and (3). Let q = (a,b,c)S and J = q + vS; hence M = J + (z,y,2)S and
MJ = Mq. Let P = (X,Y,Z,V)R. Then P = \/a so that dimO = dim S = 3. Since
v? = az + by + cz and v® = 0, we get M? = qM and J® = qJ%. Therefore a, b, ¢ form a
homogeneous system of parameters for S with S/q = k[X,Y, Z,V]/(X,Y, Z,V)?, whence
£5(S/q) = 5. Consequently, to see that S is a Cohen-Macauly ring, it suffices to show

Claim (4.2). e4(S) =5.

Proof of Claim (4.2). We have eq(S) = €r,(Rp/aRp), because P = /a and R/P
k[A,B,C]. Let k = k[C,1/C] and R = R[1/C]. Then R = k[X1,Yi,Z1,V1, A1, By]
where X; = X/C, Y1 =Y/C, Z, = Z/C,..., and B = B/C. As aR = (X1,Y1,2,) -
(X1, Y1, 21, V1) + (V2 — (A1 Xy + BiYy) — Zy) and as X, Y1, Z1, Vi, Ay, and B, are
algebraically independent over k, substituting Z; with V2 — (4;X; + B;Y;), we get the
identification

R/aR = k[X1,Y1, V1, A1, B1]/(X1, Y2, Vi)(X3, V3, VD).

Let T denote the ring of the right hand side. Then the ideal PR/aR corresponds, via
the identification, to the prime ideal p = (X1,Y;,V1)T so that, counting the number of
the surviving monomials in X1, Y1, and Vi, we readily get £r,(Rp/aRp) = £1,(T,) = 5.
Hence e4(S) = 5 and S is a Cohen-Macaulay ring.

Suppose v2 € qJ and write v2 = av; + bvy + c3v3 with v; € J. Then since az + by +cz =

avy + bvy + c3vs and since a, b, ¢ is an S-regular sequence, we have z — v3 € (a,b)S.



Consequently Z € (A, B,C,V)R + a, which is impossible because the ideal a is generated
by forms of degree 2. Hence v? ¢ qJ so that we have I? # QI. Therefore by (2.9) the
rings R(I) and G(I) cannot be Cohen-Macaulay. As m? = Qm, we get r(O) = r(0/Q) =
Lo(m/Q) = 4. Of course en(O) = eq(O) =5 by (4.2).

(4) We need the following. »

Claim (4.3). aSNJ" =aJ""! and (a,b) N J™ = (a,b)J""! for all n € Z.

Proof of Claim (4.3). We may assume n > 2. Firstly we will check the second equality.
Since J? = qJ +v%S, we have (a,b)SNJ? = (a,b)J +(a,b)SN(cJ +v2S). Let ¢ € (a,b)SN
(c¢J +v2S) and write ¢ = ci + v2€ with i € J and ¢ € S. Then because v? = az + by + cz
and ¢ € (a,b)S, we see (i + z€) € (a,b)S so that ¢ + 2€ € (a,b)S C J; hence z£ € J. As
z € J, this forces { € M = J + (z,y,2)S. Let { = j + (az + By + vz) with j € J and
a,B,7 € S. Then ¢ = a(zj)+b((yj)+c(i+2j) because v2¢ = (az+by+cz)j. Consequently
i+zj € (a,b)S as¢ € (a,b)S, whence ¢ € (a,b)J. Thus (a,b)SN(cJ+v2S) C (a,b)J so that
we have (a,b)SNJ? = (a,b)J. Now let n > 3 and suppose that (a,b)SNJ"~! = (a,b)J"~2.

Then because J® = qJ" !, we see

(a,0)S N J" = (a,b)J" ! + (a,b)S NeJ™ !
= (a,8)J" ! + ¢[(a,5)S N T
= (a,0)J" ' + ¢ (a,b)J"? (by the hypothesis of induction on n)
= (a,b)J"" L.

This proves the second equality. The first one easily follows, by induction on n, from the

second.

By (4.3) and [VV; (2.7)] we get depth G(I) = 2, since by (2) G(I) is not Cohen-
Macaulay. Therefore depth R(I) = 3 by (2.5)(3). On the other hand, by (2.7) S(I) is a
Cohen-Macaulay ring of a(S(I)) = rq(I) —3 = —1. Hence a3(R(I)) < 0 by (2.4)(3) and
(4); so a;(R(I)) < 0 for all 7 € Z.

(5) By [K; (2.13)] this follows from (4.3) (recall that the field k = O/m is algebraically
closed).

This example (4.1) shows the assumption in (3.7) and (3.8) that r(A4) < d is not super-

fluous. It also provides with a counterexample the main conjecture explored by [KN].
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- Throughout this paper, all fields, rings and algebras are assumed to be
commutative with unity. Our special notations are indicated below, and our
general reference for unexplained technical terms is M1].

In what follows, we use the following notations unless otherwise specified :
R : a Noetherian integral domain,
K := K(R) : the quotient field of R,
R : the integral closure of R in K,
L : an algebraic field extension of K,
« : a non-zero element of L, ‘
d=[K(a): K],
Ya(X) = X+ n X% 4+ 4y, the minimal polynomial of « over K.
G=a+mal+ 4y (1<i<d-1),
iy := N1 (R :g n;), which is an ideal of R.
I,:=R:paRfora€e K.
It is clear that for a € K, Iiq = I, from definitions.
Let R be a Noetherian domain, K its quotient field. Take an element « in
a field extension of K. Let 7 : R[X] — R[o] be the R-algebra homomorphism
sending X to a. The element « is called an anti-integral element of degree d over
Rif Ker m = Ijojpa(X)R[X]. When « is an anti-integral element over R, R[o]
is called an anti-integral extension of R. (See [0SaY] for detail.)
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Generic hyperplane section of complete
intersections of height three

Junzo Watanabe
Department of Mathematical Sciences
Tokai University
Hiratsuka 259-12

December 9, 1996

Let (A,m,k) be an Artinian ring. In [3] I proved that the ineqality u(I) <
length (A/(£)) holds for any element ¢ € m and for any ideal I C A. This led
me to the consideration of the problem: For which Artinian rings (A, m, k)
is it true that

Max{u(I)|I € A} = Min{length(A/(¢))|¢ € m} (1)

For simplicity we will consider only homogeneously graded Artinian rings
(A,m k), ie., A= @i, A, m=@®i,; Ai, with Ac # 0 and A = k[A;] where
k := Ay is a field of characteristic 0. We will say that (A, m, k) satisfies the
weak Lefschetz condition (WLC) if there is an element ¢ € A; such that the
map induced by the multiplication by ¢

f:A,‘ — A,;+1

is either injective or surjective for each i. Note that the WLC on A implies
A has a unimodal Hilbert function.

The WLC seems to be the quickest way to prove the equlity (1), since we
have

s(A) < Max{u(I)} < Min{length(A/(£))} < s(4),
where s(A) = Max{dimsA4;}.
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Here are some known results.

o A =k[z,y]/I, I any Gorenstein ideal. (A stronger statement is proved
in Tarrobino [1].)

o A = k[xy,22,--- 2]/, I = (a:‘lll,x‘ziz,"-,xi") (We will call this a
monomial complete intersection.)

o A=kl[zy, a9, xn)/J, J = (@D, 22, 2% f,
where f is a homogeneous element of any degree, which is general
enough. (We will call such an ideal a Gorenstein ideal of general type.)
For details see [2].)

Hidemi ITkeda has constructed a Gorenstein ring of embedding codimenstion
of 4 which does not satisfy WLC and which has a unimodal Hilbert function.
(Her example is not a complete intersection.)

Here are some open problems:

Problem 1. Does any complete intersection of any embedding codimension
satisfy WLC?

Problem 2. Does any height three Gorenstein ideal satisfy WLC?

Problem 3. Is the Hilbert vector of any Gorenstein ring of embedding codi-
mension 4 a unimodal sequence?

Recently I proved the following

Theorem 1 Let R = k[z,y, z] be the polynomial ring over a field k of char-
acteristic 0. Let I be a complete intersection ideal of R generated by home-
geneous elements f1, f2, fs € R of degrees dy,da,ds respectively, where we
assume that 2 < dy < dp < ds. Then the following conditions are equivalent.

(i) u(I+£R/ER) =3 for any generic linear form £ € R.
(ll) ds < dy+dp — 2.
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Here the meaning of a generic linear form is this: Let £, 7, { be indeterminates
over R and k' = k(¢,n,¢), R’ = K'[z,y, z]. Since R/J — R'/JR' is faithfully
flat we may replace R by R’ without affecting our situation. The element
¢ = €x +ny + (z is called a generic linear form of R. Actually it is an
element of R’ but we treat it as though it is an element of R. For proof of
the Theorem see [4]. Below I will explain how this theorem is used to prove
the WLC for certain cases for complete intersections in k[z,y, z].

Proposition 2 As in Theorem 1 let R = k[z,y,z] be the polynomial ring
over a field k of characteristic 0. Let I be a complete intersection ideal
of R generated by homogeneous elements fi, f2, fs € R of degrees dy,da, d3
respectively, where we assume that 2 < dy < dy < d3. Put A = R/I. Let
h; = dimgpA;. Let “” denote the reduction by a generic linear form. Then
the following conditions are equivalent.

(i) A satisfies the WLC.

(ii) s(A) = length(A).

(iii) The sequence ho, hy — ho, h_z — hy,- -+ (with non positive parts ignored)
is the Hilbert function of A.

(iv) Either ds > dy+dy—2 or if eyand ey are the relation degrees of f1, fa, f3
over R (which is a two dimensional polynomial ring), then |e;—ey| < 1.

Proof. The equivalence of (i), (ii) and (iii) are straightforward. Let us
prove that (i) implies (iv). If d3 > di+dz —2, then there is nothing to prove.
Assume ds < d; + dz — 2. By Theorem 1 we have that u(I) = 3. Let

0— R(—Cl) (&) R(—ez) — R(—dl) (5] R(—dz) (&) R(—dg) -1

be a minimal free resolution of I. Since ~ is the reduction by a generic
linear form the ideal I is a height 2 perfect ideal. The WLC implies that
length(A) = s(A), which is the least possible number for length(4) expected
only from the Hilbert function of A. Thus it implies that |e; —ez| < 1. (Note
~ that the greater the value |e; — €| is the length A is the greater. Also note
that since Ye; = Y d;, Y d; = even = |e; ~ €3/ = 0 and Y d; = odd =
|el - 62] = 1)
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Now we prove that (iv) implies (i). Assume that ds < dy +d; — 2. Let
J = (2%,y®,2%) and B = R/J. We know that B satisfies the WLC, hence
the relation degrees e, e, for J satisfy |e; — ez| < 1 by the implication (i) =
(iv). Since the Hilbert function of A is the same as that of B it implies that
A satisfies the WLC.

It remains to prove that if ds > d; + d, — 2 then A satisfies the WLC. Let
A" = R/(f1, f2). For i < ds, we may identify A] = A;, and the multiplication
¢: A;_1 — A; may be regarded the same as that for A’. Since A’ is a complete
intersection of dimension 1, we have that the multiplication £: A;_; — A; is
injective for 1 < d. Note d3 > dy+d2—3 = d3 > (d1+d2+ds—3)/2, which
is the socle degree of A. It follows that £: A;_; — A; is injective for at least
first half of the graded pieces. For the rest it is surjective by the duality of
a Gorenstein algebra. Hence the WLC follows.

vspace2ex Now we can use Theorem 1 and Propsition 2 to prove WLC
for certain cases in R = k[z,y, z].

Corollary 3 Let I = (f1, f2,f3) C R be a regular sequence with degrees
dy,da,ds. Assume that d3s > Maz{dy,d2}. If ds > dy + d2 — 3 then the Weak
Lefschetz condition holds on the ring R/I.

Proof. (i) The case d3 > d; + d2 — 2 was explained in Proposition 2.

(ii) Assume that d3 = d; + d3 — 2. Denote by “” the reduction by a
generic linear element. One sees easily that fs is a generator of the socle of
R/(f1, f2). Hence we have zfs € (f1, f2) and 4 fs € (f1, f2), which gives two
(independent) syzygies of the same degree. Thus by Proposition 2 the WLC
follows.

(iii) Assume that d3 = dy + d, — 3. We may assume that fi, f, are a
regular sequence. Then we have that Zf; and % f; are linearly dependent
modulo (fy, f2) as they are in the socle of R/(f1, f2). This gives a syzygy of
degree d3 + 1. The degree of another basic syzygy is automatically ds + 2.
Hence by Proposition 2 we have the WLC.

Remark 4 By the Corollary above we see that if deg(f,) = deg(f;) = 3 then
WLC holds with any fs (i.e. independent of deg(fs)), provided that they are
a reqular sequence. Also if deg(f1) = deg(f2) = 4 then WLC holds with any
ds = deg(fs) except for ds = 4. Thus the unknown easiest case for WLC is
the case d; = dy = ds = 4.
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Here is another consequence of Thoerem 1.

Corollary 5 Let R = k[z,y, 2] be the polynomial ring over a field k of char-
acteristic 0. Let I be a complete intersection ideal of R generated by ho-
mogeneous elements f1, f2, fs € R of degrees dy,dz, ds respcetively, where we
assume that 2 < d; < d, < ds. We have

(i) d3>di+d2—2<ds = I:¥ is generated by 3 elements.

(ii) d3s < di+dy—2 = I:{is generated by 5 elements.

For proof see [4].
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BEZoh=Ry FHIEHDEE 3D Gorenstein 1 77 VDK

WM A (Tadahito Harima)
WERY BEHERER

80 FE3: A = @iroA; 2k kb LOBENRENERETS. TUbB, Ay =k A=
k[A1], dimy A; < 0o THB. H(A,1) = dimy A;, ¢ = 0,1,2,..., % A @ Hilbert B
¥, F(A)) = Eion(Ayi))\i % Hilbert I EES. A % Artin £95. Z0DEX,
c(A) = Max{i | A; # (0)} EHWNT, A D socle degree &5 5. 44k, A © Hilbert B%(3,
1> c(A) TN UT H(A ) =0 &5, BENSHAHFI b ={ho=1,h1,...,h;0,0,...}
(7272U, hi > 0,0 <3 < c) M, 5 Gorenstein Artin 3RO Hilbert BAEIZL > T3 & &,
ZDHEF| h % Gorenstein FF| EMEIRT LicT 5.

ZhE TIZ, Gorenstein HFIDOHH A HIBICET AHED, TLOALBLICL TS
D T&E/. RO Stanley KiTk b by <3 ODHAORMAITEEA R, COMEILE
WTERHTHY, bBAAINWETOEL OHBICHELEATELLEVHIEENSD
ZTOEEWIDNS.

Stanley’s characterization ([10, Theorem 4.2]). h = {ho = 1,h1 < 3,hs,...,he #
0,0,...} 4%, Gorenstein 351 TdH 312 DBHEFRSEMEIZKROD (S1) D (S2) TH 5:
(S1) h : symmetric, i.e., h; = h.—; for all : = 0,1,...,[c/2];
(S2) (ho, by — hoy by — ha,y ..., hieja) — hiej2)-1,0,0,...) iF O-sequence.

ZO®H20EHE DRBUIH, by > 4 DA D Gorenstein FH| DR A RIEIIRIZR
RIRTH 5.

D% (S1) & (S2) DMLBHDFHEZZ 5 L&, % (S1) i, (—#D) Gorenstein
RO self-duality 2> 53D L M, & (S2) 1% LTI, L > 72 Gorenstein BD EA
WHENSHITBZDD, TCITEFRYNONETERS.

RizEOY yRITLTE, 2hoD 2 20%H (S1), (52) ORAMDIEHITONTH
U7 D% D, linkage BRADOELXNHEE [9, Remark 1.4] GRFHIC link 7520207
X n ® Cohen-Macaulay £ T 7)VOFIZL, B&E n+ 1 D Gorenstein 1 77 IV TH5BH) %
5T, 52 ohic (S1), (S2) &7 $5F% Hilbert B%IC$H D Gorenstein Artin B%
BB L7 [4]

TITAER, TOXHOLEHOIEN %, Stanley KERHOT Fo—FIZL BTk
(U Hilbert B%% & Betti #FIDH T maximum EHDICERB LT) TEZ, #ho
DFEA %@ LT, Stanley’s formulation (& {124k (S2)) KRS T2 REHILHER
(Gorenstein B, Gorenstein 4 F 7V > THahd LB WHE) 2887 5.

§1 Gorenstein Artin R¥ftZB] k(z,y,2]/] ® diagonal degrees: LI, liH DI
Bk IEK 0 ORBMEAKETS. T 24 k E3EMEBHRRE R = klz,y,2] = @ixoRi,
degz = degy = degz = 1, DX 3D Gorenstein HFRA T TINET B, ile, A=R/I =
Bi>0A; 13 Gorenstein Artin R B TH 3. [11, Corollary] 25 I DAERITTLOME p(1)

—115—




B3ULOBHERTHBOT, p(I)=2m+1(m>1) E6{. ADRMNE RMBOLL
TOH/NE B iR

0 — R(=s) — O R(-p) 25 G R(—g:) — R(0) — A— 0
(1 <. < @my1,P1 > o > Pomyr) Guﬂ%ﬂ'éﬁ@%ﬁ (numerical characters) D7l

{01, 1 @2mt15P1, - - - Pamepr; 8}
EZ5BH. X1, 175 [fi;] OMAKS fi DRH (diagonal degrees) % r; &9 5, e,
ri=pi—¢ (l<i<2m+1).

(1, page 466] » &, numerical characters & diagonal degrees @ B{RI,

2m+1 2m+1
(BE1) ¢ er, (BE2) p rl + Z r;), (BE3)s= Y r;
];ﬁz j=1

THAHEIENGN>TWB. WZIZ, A D diagonal degrees, numerical characters, Betti ¥{
ix, 1 oabhhidmo 2564805, ZDEX, A D Hilbert B URFTETE 3.

diagonal degrees D458t (I ([2, Proposition 3.1], [3, Theorem 2.1], [7, page 62-63]). &
OO BEFH {r,...,roms1} D%, 5 Gorenstein ZRD diagonal degrees TH 5 72D b
BERSE&MEIIKRD (D1), (D2) > (D3) TH5:

(D1 ry > ... > romys;

(D2) r 3T RTEHE I IIFEH;

(D3) r1 >0, 73 + romy1 > 0,73+ 19 > 0,0, gy + gz > 0.

wETIE, BA ohic (D1-3) #HIFTHF {r;} % diagonal degrees {Z$H D Gorenstein

Artin RO B SR EEE2EZ 5. ZO#KII, [4, Theorem 3.3) DK%, L 4
M3l &ic&-THLNE.

§2 Gorenstein 41 F7 JVD#K: [9, Remark 1.4] DFZ ELT, P2 O A% - T, HHICE
& 3 @ Gorenstein £ T 7 IVOHIENS.

fEL X,Y 2 PPOFREOHRDSNEIEET, XNY =¢, XUY BRLEXXET 5.
CDEE, A=R/I(X)+ I(Y) i% Gorenstein Artin R T#H 5.

T 2. 2, AREOEDOEHOM (5,4),(3,3),(1,2) KM LT, RO LI BWEREILH S
P23l HOHEDES X 125D 1 2% X = B(5,4)UB(3,3)UB(1,2) TEY

X

o o o o
o o o o
o o o o
o o o o
o o o o
o o o
o o o
o o o

FMUEITUT, X =Ur,B(di,e;) 3FHT . 122U, Db e > >en £T5. &
DLHIUBRBICHLAMRMD HDES X % pure configuration EFERI &iZT 5.
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EFE 3. (D1-3) 2AH72F {r1,...,romp} KHLT,

di = %(Tm+2—i + Tm+1+i) (]- S 1 S m)a €m = %‘(7‘1 + r2m+1)7

ei—eit1 = j(rmii—itrmpip) (1<i<m—1), d = (LLydi)+3(r1 +rmia)
BOLEDOBEEAERL, X = UL, B(di,e;)) 2E->TET, 361X 2838 B=B(d,e;) %
EB. Y=B\X &BL. Z0&LH7U (X,)Y) % {r;} ® G-pair LRI EIZT 5.
EIE 4 ([6]). (X,Y) % {r;} ® Gpair £F5. TD&EE, A=R/I(X)+ I(Y) @ diagonal
degrees {3 {r;} IT—&7 5.

CORBEZIERT 5701, LEGHEEERLTLT FLE 46 2IRBTE0) &
~RTHL.

£ 3 DELF DT T, pure configuration X = U%, B(d;,e;) C B = B(d,e;) iZH LT,

Ui €y

I(B(diye)) =( ]I (2-b;2), [I(v—¢2)),

J=vi_1+1 J=1

7L w=0,v=d+ - +di(l<i<m), 25T bj,c; €k BENB.

Ui €

gi= [ (@-biz), hi= ][I (y—cz)
J=vi—1+1 J=eiy1+1
1<e<m, 12720 eny1 =0, EBL. 60T,
d
gmpr= [[ (z—0b2)

J=vm+1

EBL.F,
Gi=¢192" " 9m, G2 =91 Gm-1hmy--,Gm = giha -+ hp,
Grsr = b1+~ b,
Gmtz = 9293 Gm+1, Gmts = h1gs - gmt1s- -, Gampr = b1 ho1gmin
EBL. ZOEE, MIFENLHETRITRES.

fi5E 5. {Gl,- . ,G2m+1} i, I(X) + I(Y) OB/NEKFZTH D, degGy < --- < deg Gamgr
L35,

X% P OFRMEOS (ROMEHEE #X TET) ORALETS. X OFRERER C i
1 &kt Cohen-Macaulay T& % D T, linear 7% non-zero divisor [ 3% 5. TD I &% fF -
T UTOIENEETES. X O Hilbert B3t (374bb H(X,:) = H(C,i)) i, AKX
X1 M UT, H(X,i) = #X Thb. 22T,

B(X) = Min{i | H(X,1) = #X}
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EBL. D&k,
H(X,0) < H(X,1) < - < HX,B(X)) = HX,B(X)+ 1) = --- = #X
LB, & 51T, X O Hilbert BA¥D 1 345
AH(X,0),AH(X,1),---AH(X, 5(X)),0,0,...

i3, C/IC @ Hilbert Bi3{TH 5, 37545 O-sequence TH 5.

X,Y % P OBFRBEOEDOELST, XNY = ¢, XUY FRLXXETE. A=
k[$0,$1,,$n]/I(X)+I(Y) é:i%i( :@&:%,

fE 6 ([4]). 0<1<BXUY)ITHLT,
H(A,i)= HX,i)+ HX,8(XUY)—1—1)— #X

DRILT 5.
SHIT, COMBEEE > TRADD 5.
BET. c(A)=pXUY)-1.
TR 4 OEBAOLERE. 3, KICEET 5:
deg G; = %(7'1 +o i it Tameg);
2m+1
BXUY)=(> r)—2
i=1
NS EHES 7THho, AD diagonal degrees 2% {r;} E—HTHI LHbh5b. QED.

#1 8 (JA U Hilbert B%% & > diagonal degrees ([2, page 379-381])) . Bf&kHl%{E > TaH
B9 5. R/(z*,y*, 2*) @ Hilbert B3 A :

R: 1, 3, 6 10, 12, 12, 10, 6, 3, 1, 0, 0, 0, O,
Ah: 1, 2, 3 4 2 0, -2 -4, -3, -2 -1, 0, 0, 0,
A%h: 1, 1, 1, 1, -2, -2, -2, -2, 1, 1, 1, 1, 0, O
A3h: 1, 0, 0, 0 -3, 0 O O 3 0 0 0 -1, 0

numerical characters : {4,4,4;8,8,8;12}.

diagonal degrees : {4,4,4}.

U Hilbert 3% b2 {r} 13, {4,4,4} ZBK {d,—d} (d>0) ZHMLT, EOHT,
2 (D1-3) &4k T bDERDTFIIT L

I {4,4,4}
2-2 / N©9-¢
I {4,4,4,2,—-2} 1II {4,4,4,0,0}
2,-2 / AN \ 2/-2
IV {4,4,4,2,2,-2,-2} V {4,4,4,2,0,0,-2}
\ o0 2,-2

VI {4,4,4,2,2,0,0,—2,—2} : saturated
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Xt 9 A numerical characters {% :

I {4,4,4;8,8,8;12} : minimum

- o
I {4,4,4,5,7;8,8,8,7,512}  III {4,4,4,6,6;8,8,8,6,6;12}
2 Q o
IV {4,4,4,5,57,7;8,8,8,7,7,5,512} V {4,4,4,5,6,6,7;8,8,8,7,6,6,5;12}
o 2

VI {4,4,4,5,5,6,6,7,7;8,8,8,7,7,6,6,5,5; 12} : maximum

Zho%FEH T3 Gpair 12bid:
I

0o 0 o o © o o o Il 0 o 0 o o o o o IIl o o e e o o o o
0O 0 0 0 e e o 0O 0 O © o o o o 0O 0O e ® o o o o
0O 0 0 0 © o e o O 0 0O © e o o o O 0 0 O e o o @
0O 0 0 0 © e o o O 0 0 O e o e o 0O 0 0 O © o o e
IV o 0o ¢ o o o o V 0 e o o o o o VI 0 ¢ o o o o o
0O 0 e o e o o O o o o o o o 0O 0 e o e o o
0O 0 e o o o o O 0 0O e e e o 0O 0 e o e o o
© 0 0O e e e @ 0O 0 0 e e e o 0O 0 0O e e o @
0o 0 0o 0 e e @ 0o 0 0 O e e 0O 0 0 0o e e e

E# 9 ([2]). (D1-3) £H77 {r;} H% saturated TH B L1, SOPFNTEAK {d,—d} %
fMUTH, (D1-3) &7 L, 1R U Hilbert B%t% b OMIIRFAELLNEZIIE .

& 10 ([2, Theorem 3.2]). {r;}  saturated Tdh 5 12D DBERLFFMHIL, ri+romis—i =
2(2<i<m+1)TH5B. £1, LA diagonal degrees 7272 1 DD saturation % .

SEIE 11 ([6]). (X,Y) % saturated diagonal degrees {r;} ® G-pair &9 5. A=R/I(X)+
IYV)EBL. ZOEE, RBDDIS.

M) X =(; T -1

i#Fm+1
@) XU = (% ) 2.
(3) c(A) = (zg r)—3=8(XUY)-1.

(4) B(X)<B(XUY)—-1-pB(X).

(5) A @ Hilbert B, KD K 5T X D Hilbert BB TET I ENTEA:
H(X, i) 0<i<BX) -1

H(A,)) = ¢ #X BX) <i<BXUY)—1-B(X);

H(X,o(A)—%)  BXUY)—B(X)<i<c(A).
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(6) A 13 weak Lefshetz condition Z%7z3. $Hbb, g € A st A -5 Ay
(0<i<c) IHHEITLHTHS.

(7) A @ Hilbert B8%i3%& 4 (S1), (S2) %/ F.

EE 12, 1 IL IV OBITIEE 11 (5) IR LTWAENA, 1L V OB TREKLL TN S,
88 13. pure configuration X = %, B(d;,e;) 1% UT, IRDVKILT 5.

1 — A)(1 =A%)
FEBYE

(1) (X, = Yoxee

(2) H(X,j) = iH(B(d,», e)i — vioa).
(3) B(X)=Max{e;+v;—2|1<i<m}

EIE 11 OERADHERE. (1), (2) IIHE 13 3) 267 3 (2) LHWETHo7<. (4)
i3 (1), (2) & “saturated” ODEHEN ST ¢ (I TIT saturated H3%<) . (5) I3HE 6 %24F
9. (6) 13 [9] #BHE. (1) X (6) 15T K. Q.ED.
Stanley’s characterization MIEBR. I ODNWTRAIAEO Y VRY L THE LI
([4]). HEHE: B = k[z,y,2]/J ZBF 75 Gorenstein Artin ZREM IR ET 5. B O diagonal
degrees O saturation @ G-pair (X,Y) & -TL 5. 2O & &, A=klz,y,2]/I(X)+1(Y)
& B @ Hilbert B¥UZ—% 3 20T, & 11 (7) » 5, B ® Hilbert B3t (S1), (S2) %
Aleg T ERDNB. Q.E.D.

§3 FIEE. EH 4 THERL L7 Gorenstein £ 7 7)ViE, UTFO (MEOHTHR~RLNE) HE
RO EDHERATE .

fi1%& 1 ([3]). Gorenstein 4 F 7 IViZ, W OEMEYIZ link 35 2 DD Cohen-Macaulay 1 7
TILDOFMELTERINEDN?

& 2. saturated diagonal degrees % 2 R = k[z,y,2] DE X 3 ® Gorenstein 1 7 7 )V
3, BMAEIC link 55X 2 ® Cohen-Macaulay f T 7IVOMTEINEDN?

i@ 3 ([8], [12,13]). Gorenstein Artin 38 A = ®{_,A; I, \» D weak Lefschetz condition
EHITn? '

fBI& 4. I 13 saturated diagoal degrees % D R = kz,y,2] D& & 3 @ Gorenstein 1 7
TINVETH. ZDEE, R/TIZWVWD WLC 2H723 0 ?

& ([8]). R=k[z1,...,2,) DEE n D Gorenstein 1 77V I (A=R/I = @A) i<xH L
T, ROEHB%2A1-FT RO HE n—1 0 Cohen-Macaulay 1 77V J WEHETHEX, T
13 J D tight divisor & E95: I D J TH-T, A D Sperner number & R/J @ multiplicity
N— 7 5. Max{dim A;} % A @ Sperner number &F 9 ([12]).

fii%8 5. Gorenstein £ 7 7 JVid, \»> Cohen-Macaulay 4 77 L@ tight divisor {27857
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fAI%E 6. saturated diagonal degrees # > R = k[z,y,2] DEX 3 @ Gorenstein 1 7 7 )b
&, WD tight divisor {27550 ?
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“EW BRGSO FROBENIUS BT X % H#M1)

D B— Rk - B - HREE)

4 % T F-terminal, F-canonical, F-regular, F-pure, F-rational 7% EO &% - TH

o THSDBIZEH 0 DFHFH terminal, canonical, log terminal, log canonical,

rational singularity IZXIEd 5 (ST A LIICEE LK) DD, ZhsikLEkoH

TRBEENMD RO BTHY, [EB] ORI b-& [EV] BUOTULDXINER

BNEORKELDOEEZS. ARMIIE (FRA) © [EX] % Frobenius E£IZBH 3
WALWAABETEDLIICERBTEDDORATH 5.

I TIRRIC, BESOBHEICHRITAH5MKEF O “discrepancy” & Frobenius Hfg
D splitting IZXt9 % obstruction & DBEFRAERN, THEBEMT LT, tight closure O
B S5/ 6N 5 test ideal DD “E# 0” TOEH®RMN I bl A 5.

PP A% p >0 DR, Frobenius B F: A — A, F(a) = a? |3 finite map &
T5. £, UTHIT AL reduced &9 5. LUF ¢g=p° BT pOMEL, KO3
DEH

Fe:A— A AT A Ao AV
ZF—RT 5.

Fh, AFTNIICHLT W = (a%a € I) &L, I O tight closure I* % z €
I" < Jcc A’ Vg1, cat € T L¥EHT 3. (AL, A° % A ® minimal prime |2
FENLTOTLOER LTS - ADPEHDOEE, A" =A\{0}. )

1. AF77TIVF(A)
q = p® IZ8 LT injection 4 — A9 i3
Hom (A9 A) — A = Hom4(4, A)
AVOEBIT. Z0B%E F(A) £ F(A) i ¢ KBLTRHDIIRIL,
Fy(A) = A<= A — AY9 % split <= A ' F-pure

Typeset by AA(S-TEX
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Thb. Fh, ce AITHL,
(1.2) cEF(A) = c:A— AN A— AV ZEH LU THR

WEZRB. Fy(A) i3 A D F-pure &7 5751 obstruction Z&® LT 5.

B ¢ WM 5 & & Fi(A) DEREBADI L1525 BARGHIME > THELR, &b
TBHEIIC Fy(A) T A D “test ideal” 2 FL. - T, HIZIT local ring (A, m) iZH
T Spec(A) \ {m} 2 F-regular 725, F,(A) i3 ¢> 1 T stable IZ70 5. ZOA T T I)V%
F(A) &FC (I F(A) =0 F(4) &6<. )

EELD, Fi(A) BRFMLETTRTH .

2.  FRIKD injective envelope & H 7z F(A) DHE.

(A,m) %43 p > 0 ® Noetherian local ring, E := E4(A/m) %F&KD injective
envelope &9 5. F-pure OHE & FFFIC L TKRIRE S ([Fe] Lemma 1.2 Z8).

Lemma 2.1. IROSEMHITEHE
(1) ceFy(4)
(2)  cKer (E— E®4 A1) =(0)

Ker (E — E®AY ) @ (¢ 12B¥3) M%E4s% E XI5 (0) O Frobenius closure
LEL, (0)F &L
—%, 4T TIVD tight closure iZBE# L T test ideal DBEENH 5.

BE. c € A D test element <= FEROATTIV I LEED z € I* 1T LT
cx € I. A D test elements THEKI NI A T T IV A% test ideal EFLV, 7(A) EEL.

T(A)=A < A DFTXTDA T T IV tightly closed <= A i weakly F-regular.

test ideal i E T®D (0) @ tight closure (0)* @ annhilator Tdh % & ([HH], (8.23)
— EREICE (0)F9) (0) € (0)F &b F(A) D r(A) B¥birs. ZORTR 7'(4) =
Anny(0) EEELTHL. #-T 7'(4) Br(4) KOEITNIWIRERS S (X12%
IVIFNTBNL, BHPFHNEHEOTT—HT S EEbNBDH). A D canonical class A
BREHE B DEE 7'(A) =7(A) WEAI NI EV I TEHRID 5.

(2.2) 7'(A) » m-primary D& &, 7/(4) D mF(A). #-T F(A) D 7'(4) D
mF(A).
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GE¥) z € (0)g & a € m T LT az € (0)F EANERL. a? € 7(4) £1 3
g=p° WA L, F¢(az)=alF(z) =0 £ D az € (0)F HRE3.

WRDEE|T Huneke D44 D Barcelona conference TO lecture THEEIN TS
([Hu)).

% 2.3. 7(A) 2 m-primary T (05, FA T 7V p#milH LT Ay ¥ F-regular)
bL AW F-pure 56 7(A) =m.

T(A) =m BEIALTBE, ADNTA—=F—F (z1,...,24) I L, “tight closure
o v &8 E0IOEDNS (21,...,2i-1) @ C (21,...,2i-1)* T, ( )* T test
ideal THBVADT, EED/ X5 4 — % —F I weakly regular sequence {2759, A I
Buchsbaum ring T& 5. '

FIZE, “TRBARXTRES FIOWEEF > EEbN B (Buchsbaum ¥ i3 AHIE
HMEKICL > TRENTNE). EH 0 DT —NIVEREEKD cone, “simple K3 R E” LD
mod p reduction EH p>0DEE 7(A) =m PRV IULDETFERINS. ChoDk
R A3 ERMEO p i LT F-pure THB EBDOBAR, THODFMIBHLZ L.

3. Discrepancy & DB{%.
A 2 normal local, (A, m) IZAT Spec(A) \ {m} ¥ F-regular EIRET 5.
f:X — Y :=Spec(4)

2N projective birational map, X ¥ normal, Gorenstein &9 %. il A O canonical class
c(Ka) 2 Cl(A) THE r O torsion &9 5&, Kx = f*(Ky)+Y a;E; £135 a; €Q
(ra; €Z) DEETEAS. (T I T E; I3 exceptional divisor 29 XTEL &F5. ) 2D
a; ¥ B; @ discrepancy EFEEN TN 3.

EH (3.1) & E; I,
b; := min{vg,(z) | z € F(A)}

EBE, FilTHL, ai>-bi—1Th5.
[FEBA] & DFEFAISAEMIC A B Fregular (resp. F-pure, F-terminal) 7% 5134 1 i
XU, a; > —1 (resp. > —1,>0), Bl5 A » log-terminal (resp. log-canonical, terminal)

ERLUIDER—THA.
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ce F(A),vp(c) =b; #MB. ¢>1 &L, BPABi: A AV L ¢ AVI 5 A
EDOEN c ICXAT|EETS. ¢ FHRBICHLEARLILEZEZTEL. T, adjunction
formula £ 0

Homo, (0%, 0x) = Homoy (0¥, Ox(Kx)) ®oy Ox(—Kx)
> 0x(Kx)1/qg®0x Ox(—Kx) = Ox((1-q)Kx)"*

ThHB. —%, R ¢ € Oy(1—g)Ky)/1 b5, ¢ € Ox((¢—1)(X aiB))9). (&
B a; BAHENS, YIVBTEOHERETILENHBD, ¢>1DEZRIRERICE
2LV, )

£ % E; @ generic point &9 5. { TOD Homox(O}/q,OX) DERRITE B LT 5
L, EWCNT ¢ =3f EELE s emlDE) THZ 6, < —b;— 1 ERETS L,
(¢—1)(—a;) > qbi+1) £EHY, c=¢i O E; TD value 28 b; THH I &ICRT 5.

4. T2 DA T T7IVOREDBERE.

(4.1) (A,m) 2" normal, K4 = A, 7(A) ° m-primary, dmA=d DL ERD 3D
DATTINVEROERT [RAIUL] THA. (HL (1), (2) 3 “BE 0" & x, (3),(4) &
EH p>0DEx. ) '

(1) $EEOMM f: X — Y :=Spec(A) iixtL, Anng(H4Y(X,0x) (2) %
BEDRY f: X — Y :=Spec(A) IZH L, fulwx)=H'(X,wx) CK4=A.

(3) A D test ideal 7(A4) (c€ A D c€ 1(A) LREBDATTIVI EEED
z € I* (tight closure of I) iIZH L cz € I £75 T L).

F 9 Grauert-Riemenshneider BEEEDO TIZ (1) = (2), A PEH 0 D &L X, re-
duction mod p, p > 0T LT [Hal 1L D (1) = (3) =X 5.

— D AT UTIEE (1), (2) & (3) DBEARIE (1), (2) ¥ (3) IKEFENBHI LELD
b SN (FIZIE A DN rational singularity D& & (1) DA F7IVIE A W, A&
F-regular & (3R S0 S—KIC 7(A) # A), A DY normal T canonical class DALEDY
HRDEX, r=ord(cl(K,4)) £H %, canonical cover

B = EBnEZ,. Bn = @nEZ,Kfqn)

%22 % (K™ 13 K7 @ divisorial hull).
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Kp =Homu(B,K4) & ®nez, Hom.A(K,(cl_n)»A)’
Ep = HA(KB) = Gnez, HA(KY)

EBBE. (rp)=10&X (ZOREBRAENLERD ORHPBIEFERICLE) Ep DHFT
@ (0)* 3% degree O (0)* TR L, Ep @ socle |$ degree 0 i128H 5 DT ([NW]) &k
IDRYAC I

(4.2) T(A)=1"(B)nA

BE ZOFEOFEIL F(A) EEWICLT A D test ideal &, ZEH 0 DFRHD
BHEISHRONENANADALE (discrepancy 75 &) DEEHERNETH-72, LHLk
i)i@f,?ﬁ@ﬁ:$lf_ck D, test ideal & discrepancy EDBIENL DS T - THRIZZ
EAMNREIFTHEL.
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2 {RjtJacobian Conjecture WCHEL TEZX 22 L
- %X Jh,k) = hiZ>oPWT -

kH HE  (HUEMXFEFEER)

Abhyankar [A]l% 2 ¥R 5t Jacobian ConjectureZ . WAWAB ZHE» SKRITL TW 38,
ZFO—2DKEIC Newton polygon #FHL TWVW24bD8Hb. Thbdb., 2ZHx, yO
ZHAEFE X BT, x, yiZ weight p, a (p, ATBARABTHERBLZL) 252 T, %
DERTOERKZ (p,a) -form& P, FHK f(x,y) D DFEKTOD leading form %
f(x,y) ®leading (p,q)-form& MEX, Jacobian J(f(x,y),g(x,y)) # LiIcZELL. £, gD
EBEBOBKRORHEBEIZ> 1THE2LH>ALTHNX f, ¢ BbdLE, FEOBARKOMD,
q Z2WT., £, gDleading (p,q)-forms FE—® (p,a)-form h(x,y) DX FIZEH % »
JHEThd->T. ZTOh(x,y)IZFL T, #BH%Z (p,qa)-form k(x,y) % & NiF. Jacobian
J, KA he—HT2DTH 5.

ZO&S%h, kKOBFEEWR. p, dOVWTOEHFA2WZ2HT (1) p, ¢ IEEEHTH-
T, 200 —FHEIET, (2) p+a > 0ThnNiTINWTeHBKEIN 2> TH
SNTW3., 22T, ZO &I RIFADh, ki >V TOBEHBLBFEL K b NIE. Jacobian
Conjecture DR ICEM T AHEMEIH 22 HNL VDT, Abhyankar OF X b -
FBA (b, aD—FH 0FRBAOEA) 2FLLTROVWTEXTH Iz,

A@t:% BRIMOSAREEZRWEE TRV, J(hk) = hOBBENE T H 50

HEKOBBEETHELOICE bhéo

1. BEE.

(1) h, k» (p,q)-formsT. J(h,k) = hEHL. c B 0THRWVWEHTHNIE. ch, k
DL ZOEBRKXOBTHA22S5. h OFBEFIEERL TLW,

(2) h, k& (p,q)-formsT. J(h,k) = ch Z#H L. ¢ B 0THRVWEKTHNIE. b &
c 'k IFEABRAI(h, k) = hOBRIZZBDT. Jh,k) =ch (0# cEC) DWBLEAZLE
255,

(3) h = x*y®, k = (a-b) 'xy (a, b€ {0}JUN, a # b) &¥hniF J(hk) =h T
HA0B. Thite, aDEBIZEEGKRIC. COMEORIIR S, 5. p, q BLDBRET
HBIHEARLOVWTE., COMAEDBLRLT. — BB ITARTEShZZEBHOSATY
% (Abhyankar [A]l)e T 2b b,

(i) (p,a) = (1,1) OFAIF. x, yO L IREH (x> cx +dy, y - ¢'x +d'y (cd’
# c'd))i2k->T. Lo@E»roBons,

(ii) p =1, > 10BAE. T#x » x, y =2 y+cx? (0 cEC) &> THES
N3.p> 1, 0a=10BEA3RABETH 3.

(iii) p > 1, a > 10HE&F. REHIZIE. LoBARESN 3.

N

R F)
0,

H} n

P
D5 a=1THd, —ic. (0,1)-formld y*F(x) O TH 3. 2 T.

N
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h, k» (0,1)-forms O & &, h = y*H(x), k = y°K(x) e Z& T,
J(h,k) = y®*°"'(eH'K - dHK')
BAEBHBOND, LIEB-oT,. ROEFENSEFESNS.

FH1.l. FoiEEosvbe T, Jhk) =hid. e=12>. H=HK- diK'& [,

EBICEARFRTORPH2HE. — BRI OLPLW. LHAL.d=0 DHEL,
deg K = 1 iAW, BIBBRICLLBE. Thbb:

EFHL.2. (1) d=0 0BA&R

K=t1'x-b), H=c(x -b)t (b, c EC, ¢ # 0, t EN)

(2) d # 0, deg K =1 DFAIF. K=x-b (b EC) &FT 2L,

H=—c(x - b)e*!? (0 # ceC)

S (1) d =0 ThhiF. £HIT H=HKTH2. REELXRT. deg K =1 Bb»
D, K BH OFRFTH2H6. t=degH &LT., LOBEBBONB,

(2) zOBA. ZMiE H= (x-bH-di, Todbb, (1 +dH=(x-bH IR,
LEdBoT, HiZ x -bORF K 2L T&We §38, 0 = K '»6, (1 +dK =
KUl o>T. j=1+d ((EHKEDLDY)

deg K > 10HBE&E. BBENFE T 20222 LiE. CBOPLVWHETDH S,

FHE1.3. H, K »FEL.1 ofhrsa-8E. (1) KICEERITIRZL, (2) H O 1KHE
FliE KORFTH 3.

R &Mkl H = H'K - dHK' Tdhofzo (2) OFH: £ 2 HO1LKREFT. H = fg
(g iz fTEIVPIhAW) ThHaLx, It 'TEHOYYH, I"TRE VA ZVDL S,
f i KORFTH2. (1) OFEBH: £ 5 KO 1 KXREFT. K= fg*(g* &t TEOVY i
Wem> 1) 23238, K 'TEIIYN 225, £HEOFETIR tTHOIYHLZ. Lk
BoT. £l HOERFTH 2. (2) OILHDEE fgxAVd e, ZFHEOMBLELI"TH 2
L. GBI EBIRE TENhACEIZAE->T. FPEEXHS. (GEHEDLD)

LldB->T. KDOIREAE nkEDB L.

K=a(x -bi1)---(x -ba), H=a'(x - bi)e' --(x - ba)®"
LBLZEMBTE, a, bi, 5 TOVWTOFEHAFTETTILHTES, a' 2V TH,
£ 0P IIBEBETHY, BRLTOLEIW, 2zl n=2 Ok EF,

a '(b, - bz) " '€Z H»> e =d+a'(by -bz)"', ez =d-a'(by - bz)"!
= 0 BEHFICRS,

FOIFBH: H=(x - b)) (x - bz)°%, K=a(x-bi)(x-b) Wx. £HERXOATLIR

a(x - bi)e'(x - bz)°?[(e:-d) (x - bz) + (ez-d) (x - bi)] Thbb.

1 =a(e; + ez - 2d)x + a(d - e1)bz + a(d - ez)b:

Wwxiz, e + ez = 2d, e;bz + ezb: = d(b: + b2) - a”!

ThE e, ez KOVWTHBWT., LLoEEMBEONZ. (FEHKDLD)

3.p=-1,q=108HB4&

COFBE.p+a=0T. BHRELLBMERZRBESDRWS, BR22LIXT %,
—fic. (-1,1)-form X 1 ZEHDEER F(T) AW T, x*y°F(xy) (F(0)# 0) OF
kXN 2, Jh,k) =hThaeE. 9. k OFHEIEELTHLHVILO>DOT. EH
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HEZLDOEA%E T 5. h = x*y°H(xy), k = x*y*K(xy) (H(0) # 0, K(0)# 0) & 3B
<o (-1,1)-degree d(-1, 1y FEZ B L,
d-1. 0 (J(h,k)) =d-1. 1) (bk) - d-1. 1) (xy) = d-1. 1) (BK)
THd3HP6. dic1.nr (k) =0, §2bbB, s=1t TH->T. k TEHEIZWEREL -
S, s=t> 0. ThaERELHETSL.
J(h,k) = x**s"'y®**s"'[s(a - b)H(xy)K(xy) + (a - b)xyH(xy)K' (xy)]
Lz o>T. s=1(=1t) »>. 1= (a-0b)[Kixy) + xyK' (xy)]
COBBRAN»S, deg K(T) =0 &40
k = (a - b) 'xy .
BHBoh, h iIZOoWTHE a# BV EIIL S, k TEHEAMATLLIVWL S,
FHE2.1. (-1,1)-forms h, kT&dH»>T. J(h,k) = k&2 BDF. ROFOHETH 3,
h = x*y®H(xy) (H(T)ECI[T]; a, b FETRVWEHEEK Ta # b)
k=(a-b)'xy+t+c (c €EC)

4. p< 0, qg>0,p+taqg#* 0DBA

s=-pkT B, p, aEHEBRESLZWVWOEH» S, (p,q)-degreed’ 0D EIFR T x%y*°
DRFXFTH3. LEzHB->T. (p,a)-formiZ 1 EHOLEHAF(T)ZHWT x*y°F(x%y) D
RXN3, #2T. BEAFBRI(h,k) = hiZBWT., h = x>y°H(x%*"), k = x°y*K(x%y*°) &
LTEtET 2. £7. do.o J(hk) =d. oy (h) +deoay (k) - do o (xy) TH3
PS5, c=d=1&LT&W, filiF. H(0)# 0L T&W. T3¢,

h = J(bh,k) = (a - b)x*y°H(x%®)K(x%*) + (as - ba)x**y"**H(x%y®)K' (x%y*) +
(q _ s)xa+qyb+sH'(qus)K(qus)
SO H(T) = (a - b)H(T)K(T) + (as - ba)TH(T)K'(T) + (q - s)TH' (T)K(T) --- @

QI T=0EKALT. (a-Dbk(@) =1---- @

EE3 L. FoRHEobELT. Jhk) = hksiE. O, QOfic. RBFE X 3.

(1) ¢ » H(T) OB ThAhiE. r i K(T) OB TLHB. LizB->T. deg H(T)# 0T
L deg K(T) = 1.

(2) KMIZIFERITZ W,

(3) (i) H(T), K(I)BEIZEHZSIE. a # bTH->T. k= (a - b) 'xy

(ii) 25T WHESIE (a-b) + (as-bq) (deg K(T)) + (q-s) (deg H(T)) = 0

AEBH (1): £=T-c» H(T) © 1KREAFTH(T) = £°g(T) (g(c) # 0) THhiE.
Qoo EBITE VWY hZcEe»6,. f FK(DORFTH S,

(2): K(MMBE=T-c OFEATE I NIE. OOFELHE THEYYh2DT. £ I
HTOD1REFTHB. H(T) = £°g(T) (g(c) # 0) & 2&. OOHADIF" ' TE YY)
N30T, FETH .

3): (i) FO»PSob» 3. (ii)ik. (1) &V, deg H # 02 56(F deg K 0IZEE
LT, OO TROWTOREXRORBOLETHOLI» S, (FEHKDLD)

AE (3),(1) oBALUANATIE. choDFEBFIE. Jhk) = hOESEHETEEZV,

#l. deg H(T) = 0, deg K(T)> 0DiFA I

K(T) = rT* + (a-b)"', afus + 1) = b(ug +1) , #z#ZLu EN, 0 # r€C
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SEBH OH(T) = 12 LT&Wwe Ol 1 = (a - b)K(T) + (as - ba)TK' (T) W2/ B,
deg K(T) = u 2L T. K(T) = coT* + cuT¥ " ' +-4+ cy EBLEZODEHERT

T*O R H»S 0= (a - blco + (as - bqgJuce .. a - b = -u(as - bq)
cn»s., LoFE2ABHEB.
Eﬁxﬁﬁ)E\ 1= (a - b)Cu oo Cu = (a - b)-l

Lted->Tou=1%6F, FROEI>ICLE->TWSE, u> L&D, T (0 < i<
uDRE»S. 0 (@ - b)cu-: + (as - bag)icu-:

Cu-1# 0LRETSE a-b+ilas-bag) =0 &i228, CThizETHHLEE2RI
FET B, WZIT, cu-: = 0. 2N T, H KZLBOEZEHhEIT B> 2.

2 H KBEOEBEEARLEELELED. T2, LOSFTELRZICL T, Jh,k) =
h a3 ceBbh»s, (GEHEKDLD)

—fEic. deg K(T) = 1&RET A&, la-s|l =1|p+al OEXFMALT. £h2EE
TTCEBTET. WANWRILAIBBONIM., >FLFLD2L0VAEEFEELIPOR
Wo deg K(MMAEEDNIE. ERREFE2EETICLBTELZDN, FHREIKRPEKIIRZS
TLED

[A] S. Abhyankar, Expansion techniques in algebraic Geometry, Tata Inst.F.R.,
Bombay, 1977.

[N] M. Nagata, Two-dimensional Jacobian Conjecture, Proc. 3rd KIT Math. Workshop
1988.
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3 XKJt Gorenstein Stanley-Reisner rings
7 Betti HIZDWNT

EERFEACHFES  FHER

BREREASV = {rnrg,. o0 WKALT, THEES V LORRERE
(simplicial complex) N\ #KD%EMH (1), (2) Ziuicd 28 OfEEGET
o MEL, 2" 3V ORTEEGERPOLLLIRELT S,

(1IN <i<ve LT, {a;} € Ao
(2Yoce A, TCo=T€N,

$(o) T HRES 0 DBEXERT LTS, A DILok N DI (face)
EV I, BT (o) =i+1DEE| iface £V 9o d = max{i(m) | o€ A}
EBE, A DRI (dimension) & dlmA =d-1 TEHLT 5,

A=klrg g, 0] 2R EO0E SHEEABET 5.V = ={r. w91}
o BEARREAK NCHLTADIFT L Iy RO L HEA T 5o

In = (v, x|l <ip <idg <o <ip oo {ag a0 V€ A)

k[A] ;== A/In %A @ Stanley-Reisner BRE 29,

D, A& dega, =1 ELTRHENER A=@ 0l LAY T
BELRA] D EL RIS A LRSS EF L[] = ,20(/ A, EA
E b,

k[A] © A EOXES EBNEBDHE

0 —» @A) e @A) AT KA 0
JEZ i€Z

ETh, ZIZT, h & K[A] ® FETY—KIT (homological dimension) &
W A =hd (MA]) EHODT, TDEX v—d<h < CAS ) Tk
7)‘55[]‘511’(‘4‘6 % 0 % k[A] @ (i) N FE((L)-th Betii number)
v, F 3= Y ez Bi * R[A] DN /‘7‘*5( (| th Betri number)
EVIo A B d—1 KD Gorenstein complex 25X, h=v . 3 =1
b,

TDEE, RDEEPEZENT,
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R HARIER N & o BOTESEZ DD 2 KILD Gorenstom compler
b, ZOLE

D (v—=1)(v—1-=3)fv—=3\ . ) o
H(K[A]) < 1 (1,_1). I<i<e—1

ALY LD,

SEBAIZ X, Hochster DR L Bricker-Eberhard D%l = w5

§1. Preliminaries

Let A be a simplicial complex on a vertex set 1". We explain Hochster’s
formula. Given a subset W of V7, the restriction of A to W is the suhcomplex

Ay ={ceA|oC W}

of A. In particular, Ay = A and Ay = {0}
Let H;(A: k) denote the i-th reduced simplicial homology group of A with
the coefficient field k. Note that H_;(\;k) = 0 if A # {§} and

im0 (2>0)
Hochster’s formula [Hoc, Theorem 5.1] is that

3, = Z dilnkHj_,-_l(AW: k).

i
WCV, §(W)=j
Thus, in particular,

3,(/\[A]) = Z dimk Hu(w')_i_l(Au'lk).

wcv

Some combinatorial and algebraic applications of Hochstci's formula

have been studied. Sce. e.g., [B-H;]. [B-H,], [H,]. [Hs]. [Hy]. and [T-Hy].

We define the Gorenstein complexes. Let \ be a (d — I)-dimensional
simplicial complex on the vertex set V" with v vertices. We define

corel = {o € V' | stara{a} # V'),
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and

coreN := A1

We call A Gorensicin over k (or k-Gorenstein) if it satisfies one of the
following equivalent conditions;
(1)For all faces o € core (including o = @) we have

k. i =dim hink ,.a(7).
0, otherwise.

Hi( link ..,.a(0); k) = {

(2)k[A] is Gorenstein ring.
As for Betti numbers of (d — 1)-dimensional Gorenstein complex A with
v vertices, it is well known that h = v — d, and 3, (k[A]) = | hold. where h
is the homological dimension of A[A].
A Gorenstein complex A is said to be Gorenstein *over k (or b (lorenstein )
if it satisfies one of the following equivalent conditions;
(1)coreA = A.
(2)For all | <i < v. ., are zero-divisors in A[A].
(3)A is non-acyclic. where A is acyclic if and only if Hi(A: k)= 0 for all 1.

We have the following hierarchy:

{Boundary complexes of simplicial polytopes}
C {Triangulations of a sphere}
C {k-Gorenstein® complexes}

Remark. (1) All the inclusions above are strict. Non-shellalile triangu-
lation of a sphere (a Poincaré sphere respectively) gives the [irst (second
respectively) inclusion strictness. i

(2) If we consider all the classes restricted to v — d < 3. then they are all
equal ([Bru-Her,]).
(3) If we consider all the classes restricted to d < 3, then they are all equal.

§2. Main result

Now we state our main result.

THEOREM 2.1. Lct k be a field. and let A be a 2-dimensional (Jorenstein
complex vith v (> 5) vertices. Then we have

—1)(v—i—3)[v=3
i+ 1 i—1

kA < &

). L<i<e—1.
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Remark. 1t A is the boundary complex of a 3-dimensional sticked poly-
tope, then equality in Theorem 2.1 holds. See [T Hj] for the definition and
the proof.

From now on we lix a field &. We first consider the acyclic (lorenstein

case. Let A bea 2-dimensional acyclic k-Gorenstein complex with  vertices. -

Then A is known to be of the form

A=T(v—1)%{o}.
where I'(v — 1) is the boundary complex of (v — 1)-gon. {o} is the simplicial
complex with one vertex, and Ay x A, is a simplicial join of N, and Ay,
which is defined to he

Ay x Ny ={o1 U0y |01 € Aoy € Ny}

By [De] we have

AMAY = AL —1)])

/

v—3\. v—3 o
- <z+1)1+<7‘—1)("_1_3)
o (e=1)v—=i=3)[v=3
B i+1 -

for 1 <17 <wv —4, as desired.

From now on we concentrate on the Gorenstein* case. By Reimnark (3) in
the previous section. 2-dimensional Gorenstein™ complexes are nothing but
triangulations of a sphere. Then we treat the problem in a combinatorial
view point. To prove the theorem, we use:

THE INDUCTION THEOREM OF BRUCKER-EBERHARD (cf. [()da. p190]).

Suppose a finite triangulation N of S* is given. We get a trianqgulation A’
of S? with one morc vertex, if a vertex of A is * split into two ~ by one of
the three steps (1), (2).(3) shown in the figures below. We can oblain any
given finite triangulalion of S* from the tetrahedral triangulation hy splitting

vertices finitely many times. : EI ﬁ
_ 3
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LEMMA 2.2. /Ll A be a triangulation of S* on a verter ~cf Vowith
v vertices. And let N be a triangulation obtained from N by 12) in the
Induction Thcorem. which is indicated as below.

Put V' .=V U{p}and W := W' — {p} for W' C V",
(1)We have | dimgHo( Ny k) — dimyg Ho(Aye; k) [< 1 for W C V.
(2)dimkH0(A’”,,; k) = dimg Ho(Aw: k) + 1 holds if and only if 11 " is one of
following cases;

(a) pe W', w.a.y, = ¢ W

(b) w,y € W', p.a,z ¢ W', and w and y are disconnected in Njy.,.
(3)Let n(a); (vesp. n(b);) be the number of j-element subset~ 117 of 17
which satisfy the condition (a) (resp. (b)). Then we have n(ar, = ("'4)

J—1
and n(b); < (/23) for j > 2.

Proof. (1) and (2) can be proved by one by one checking.

(3) As j-element subset W’ satistying (a) we can freely choose (j —1)
elements from V' — {w,x,y, =}, which has just (v — 1) element.. We use
similar arguement for (b). : Q.E.D.

LEMMA 2.3. Ll A be a triangulation of S* on a verter ~of Vowith
v vertices. And lel \' be a triangulation obtained from N by (3) in the
Induction Theorem. which is indicated as below.

u : 4 u Z y
N\

w b w X

Put Y= u?/ W {p} and W= W — {p} for W' C V7.
(1)We have | dimy Hy(Ajy; k) — dimg Ho(Aps k) [< 1 for W C VY
(2) dimy Hy( N}y k) = dimg Ho(Nws k) 4+ 1 holds if and only if W' is one of

following cases;

—135—




(a)p € W', uyw. v y,z ¢ W

(ax)w, = € W' poua,y, g Woand w and = are disconnected in Ay,

(az)x,z € W' pouiwy ¢ Woand v and = are disconnected 1 Ny,

(ag)u,x.z € W' pow,y ¢ Woand ¥ and @ are disconnected i Ny

(as)w,r,= € W' pou,y ¢ W oand 0 and = are disconnected m Al

(aghw,y, = € W' pou,x ¢ W and w and y are disconnected m Niy-,.
(B)IfW € V satisfies one of the following (by) or (by). then dimp oy Ayri k) =
dimy Ho(Ay; k) — 1 holds;

(by)p,u.x € W' w.y,z ¢ W and v and x are disconnected i Ay .
(ba)p,w,y € W' wia,z ¢ Woand w and y are disconnected in Ny,
(4)Let n(a;)j. 1 <7 <8 (resp. n(b;);, 1 < i < 2) be the number of j-
element subsets W' of V' which satisfy the condition (a;) (1csp. . h,)). Then
we have n(ay); = (;:;) n(ay); < (‘]:3) n(as); < ('I::) n(a; < (;’:;)

n(aqg); < n(by); (171(17:((1,6)]» < n(by); forj > 3. 4

Proof. (1).(2), and (3) follow from one by one checking.

(4)For n(ay);. n(ay);, n(as);, and n(as); we can see the asscrtion as in
Lemma 2.2 (3).

Let A;;, 1 <1 <6 (resp. B;j, 1 <1 <2) be the set of all j-element
subsets W of ¥ which satisfy the condition (a;) (resp. (h;)). \Ve define
the map Ay; — By, (W' — WU {p} — {z}). which is easily ~cen to be
well-defined and injcctive. Then we have n(ay); < n(by); for j > 3. We can
prove n(ag); < n(by), for j > 3 in the same way. Q.E.D.

LEMMA 2.4. Le/ A\ be a triangulation of S% with v verticcs. And let
A be a triangulation obtained from A\ by (1),(2). or (3) in the Induction
Theorem above. Then we have

Bront (M) < s (FIA]) + Arsa(A]) + ( . 3).
fori>1.

Proof. In the casc of (1), the assertion is proved in [T-H;, Leinma 2.3.1]
with equality. By Hochster’s formula we have
IA[A))iie = 3 dimy Hy( Ny k)
WiCVs, j(W)=it1
= > dimy, Hy(Njyr: b)
v@W V(W) =i41

+ Z dimg I\[U(A’W: ISR
CEWICY. (W) =it1
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Hence, for the case (2) by Lemma 2.2 we have

Biim(k[A]) < 3 dimg Ho(Apw: k)

HCV, (W)=i+1

N S

WV, j(W)=i
r—3
= 3D+ )+ ()

as desired.
For the case (3). similarly, by Lemma 2.3 we have

ﬂi,i-}-l(k[A/]) S Z dinlk HU(AW'; ]\)

WV, f(W)=i+1

e () ()

WV, i(W)=i

Dot +Aeix+ (7).

Q. E. D.

THEOREM 2.5. l.ct \ be a triangulation of S* with v verticcs. Then we
have
kA <077
Liv1(RA]) <ol .
Piit1 i

Proof. We give a proof by induction v. Thanks to Lemma 2.1. we have
v—4 v—+ =
B (RAD) < 4 =1
w”w[])_1<H4>+m )(i )*(x )
Lfv—4 v—4
_I«FH>+(5 )
. fv=3
VRS

as required. Q. E. D.

Now we give the proof of Theorem 2.1 in Gorenstein® case. First note
that non-zero Betti numbers 4;; := 3, ;(k[A]) only appear in the 2-linear
part (S12.....Fu_qg.,—3 ) and in the 3-linear part ( J13...... ), -9 ) for
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Fomi e (K[A])

1 <7 <wv—4. Since \ is Gorenstein™, we have 4, ;(k[A]) = .
] = f 3. /—Z(A‘{A])'

for every 7 and j. Put j :=i+42. We have /3, ;15( I.[A
Then we have

LMAD = Biip(k[A]) + Biiga(A[A])
= Bripi(M[AD) 4 Becizseia(A[A])

fv—3 . r—3
< v —
< 1<1,+1>+(l l 3)<l,_i_2)

(v—=1)(v—1-=3)fv-3
i+ 1 i—1)
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Gorenstein algebras of Veronese type

B i % 2
(KBRAFEAFERIEFARR)

F. K133 Emanuela De Negri & DIFMFEDHRETH S. —KIZ, nKk
TLL—27 ) v FEMIZEFROARESA=(a,,..a,} PHo/t &, kK L

n ¥ Laurent ZEAIR K[t,.t,",....t,t "1 ICBWT, v EOHER

Fio M0 A0 e s @,am),  1=isv

PERTHESBRKA 2E 2, T2, vEHSEXRK,....y] 25 K[A] ~
D BRI &5 yi—>tai DE%E I, TKYT. TDLXE, I id binomial IZ& o TARK
SN, A D toric ideal LIFEND. £ 77 VI, D initial ideal in(ly),
V7 —EEIL, FES D computational Commutative Algebra (2B}
LPEELZMARNETH L. M, ARESADMEAL Ay D regular Z=AF
57El, unimodular Z=AESE % i3, BRMEHROERL SEEL, FHE
BAOTH ICBVWTRACHRENATVS., ZOL)LRERIIODVWTI, Lk
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Let K be a field and K[ty,¢s,...,t,] the polynomial ring in n variables
over I{. We fix an integer d and a sequence a = (ay,@,,...,a,) of inte-
gers with 1 < a;y < ay; <--+a, <dandd < Y, a;. Let A(a;d) denote
the K-subalgebra of K[t;,1,,...,t,] generated by all monomials of the form
171452 - - 12~ with 1 + @2+ -+, = d and with z; < g; foreach 1 <7 < n.
Such an algebra is called an algebra of Veronese type. Note that if a; = d for
every 7 then A(a; d) is the d-th Veronese subring of K[tq,1s,...,t,], and that
if each a; = 1 then A(a;d) is generated by all the square-free monomials of
degree d in K[t,1s,...,t,]. The algebra of Veronese type has rich geometric
and computational background and has been studied from the view point of
geometry of toric varieties as well as Grobner bases. See, e.g., [Stu].

The purpose of the present paper is to classify all the Gorenstein alge-
bras of Veronese type. We first observe that an algebra A(a;d) of Veronese
type coincides with the Ehrhart ring A(P(a;d)) of an integral convex poly-
tope P(a;d), which guarantees that A(a;d) is a Cohen-Macaulay normal
domain. We then apply a certain combinatorial criterion for A(P(a;d)) to
be Gorenstein and determine all the sequences a and integers d for which
A(a; d) is Gorenstein. Our approach is rather geometric and relies on finding
the equations of facets of a convex polytope.

We refer the reader to, e.g., [Grii] for fundamental results on convex
polytopes. Let Z denote the set of integers and IR the set of real numbers.
We write §(X) for the cardinality of a finite set X.

§1. Ehrhart rings of rational convex polytopes

Let P ¢ R" denote a convex porytope of dimension d and suppose
that P is rational, i.e., each vertex of P has rational coordinates. Let
Y1,Ys2,..., Yy and T be indeterminates over a field K. Given an integer
q > 1, we write A(P), for the vector space over K which is spanned by those
monomials Y ?'Y;? - Yg¥T? such that (a1, a3,...,an) € ¢PNZY. Here
qP := {qa; a € P}. Since P is convex, A(P),A(P); C A(P)p4, for all
p and q. It follows easily that the graded algebra A(P) := @2, A(P), is
finitely generated over K = A(P)o with Krull-dim A(P) = d + 1. Moreover,
A(P) is normal; hence Cohen-Macaulay ([Hoc]). We say that A(P) is the
Ehrhart ring associated with a rational convex polytope P C RY. Consult
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[B-H] and [Hj] for the detailed information about algebra and combinatorics
on Ehrhart rings.

A combinatorial criterion for A(P) to be Gorenstein is obtained in [Hy].
Let P ¢ R" be a convex polytope of dimension d and 8P the boundary of
P. Then, P is called of standard type if (i) d = N and (ii) the origin of R"
is contained in the interior P — P of P. When P C IR? is of standard type,
the polar set

d
P* = {(ay,...,aq) € RY; > aif; <1 for every (B,...,Bq) € P}

=1

is again a convex polytope of standard type and (P*)* = P. We say that
P* is the dual polytope of P. A basic fact is the existence of an inclusion-
reversing bijection between the set of all faces of P and that of P*. In
particular, if (e, @z, ...,a4) € R* and if H C IR? is the hyperplane defined
by the equation %, a;z; = 1, then (q,a,...,aq) is a vertex of P* if and
only if HNP is a facet (i.e., (d — 1)-dimensional face) of P. Hence, the dual
polytope of a rational convex polytope is rational.

(1.1) THEOREM ([H,]). Let P C R? be a rational convez polytope of
dimension d and let § > 1 denote the smallest integer for which §(P —
OPYNZE # 0. Fiz a € §(P — 0P)NZ* and write Q for the rational convez
polytope 6P — o C R? of standard type. Then, the Ehrhart ring A(P) of P
is Gorenstein if and only if the following conditions are satisfied:

(i) The dual polytope Q* of Q is integral, i.e., every vertez of Q* has
integer coordinates ;

(i) Let P c R**? denote the rational convex polytope which is the conves
hull of the subset {(8,0) € R*™*'; g € P}U{(0,...,0,1/6)} in R,
Then, P is facet-reticular, that is to say, if H is a hyperplane in R**?
and if HO\P is a facet of P, then HNZ* £ 0.

The original proof of Theorem (1.1) obtained in [Hy] is combinatorial and
is based on the fact ([Sta;] and [Dan]) that the canonical module of A(P)
is generated by those monomials Y} - - Y;¥T? with (o,...,0q) € ¢(P —
dP)NZ*. An algebraic proof of Theorem (1.1) related with the geometry of
toric varieties also appears in [Nom).
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(1.2) COROLLARY. (1) ([H;]) Suppose that P C IR* is a rational convex
polytope of standard type. Then, the Ehrhart ring A(P) is Gorenstein if and
only if the dual polytope P* of P is integral.

(2) Work with the same notation P, 6, a and Q as in (1.1) and, in addi-
tion, suppose that P is integral. Then, the Ehrhart ring A(P) is Gorenstein
if and only if the dual polytope Q* of Q is integral.

Proof. In fact, the condition (ii) on P of Theorem (1.1) is guaranteed if
either § = 1 or P is integral. Q. E.D.

Let a(A(P)) denote the a-invariant (e.g., [B-H, p. 139]) of A(P). Then,
the integer & in (1.1) coincides with —a(A(P)). Thus, the above Corollary
(1.2) says that, if P is integral, then A(P) is Gorenstein if and only if the
Veronese subring A(P)®) of A(P) with § = —a(A(P)) is Gorenstein.

§2. Algebras of Veronese type

We now study the classification problem of finding all the Gorenstein
algebras of Veronese type. Let n > 2. Fix a sequence a = (ay,4a3,...,a,) €
Z" andd € Z with 1 <a; < a;<...<a, <dand d < Y, a;. First,
it is required to state a numerical result which enables us to see that every
algebra of Veronese type coincides with the Ehrhart ring of an integral convex
polytope.

(2.1) LEMMA. Let I, denote the set of all sequences (21,2, . ..,2,) € Z"
such that (i) 0 < z; < ga; for each 1 < i < n and (i) i, v; = qd. Then,
every element belonging to I, is the sum of q elements in I.

Let P(a;d) C R™ denote the rational convex polytope

P(a;d) = {(z1,...,2,) EIR"; 0< z; < a; foreach 1 < i <,
T+ +z, =d}.
Then, Lemma (2.1) guarantees that the above rational polytope P(a;d) is,

in fact, integral and that the algebra A(a;d) of Veronese type coincides with
the Ehrhart ring A(P(a;d)) of P(a;d). That is to say,

(2.2) COROLLARY. (1) The convez polytope P(a;d) is an integral convez
polytope of dimension n — 1.
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(2) The Ehrhart ring A(P(a;d)) of P(a;d) is generated by A(P(a;d)); as
an algebra over K = A(P(a; d))o.

(3) The algebra A(a;d) of Veronese type is isomorphic to the Ehrhart ring
A(P(a;d)) as graded algebras over K. '

(4) The algebra A(a;d) of Veronese type is a Cohen-Macaulay normal
domain with Krull-dim A(a;d) = n.

Proof. (1) Let I, C Z" be the same finite set as in Lemma (2.1). Then,
I, = ¢P(a;d)N\Z" for every ¢ > 1. Let CONV(I;) denote the convex hull
of I; in R™. Since I = P(a;d)NZ", we have CONV(I;) C P(a;d). By
Lemma (2.1), if x = (21,...,%s) € I, then X has an expression of the form
x = xM 4 ... 4 x(9) with each x¥) € I;. Since (1/g)x™ +--- + (1/¢g)x@ €
CONV(L), x = ¢((1/¢)x® + - -+ + (1/4)x®) belongs to gCONV(I;)NZ".
Hence, I, C ¢gCONV(L1)NZ". Since I, = qP(a;d)NZ" and CONV(];) C
P(a,d), we have gCONV(I,)NZ" = qP(a;d)NZ" = I, for every ¢ > 1.
Hence, CONV([;) = P(a;d). Thus, P(a;d) is an integral convex polytope.
It is a fundamental fact on convex polytopes that if X C IRY is a convex
polytope of dimension d and if H C IR" is a hyperplane with H (X —0X) #
@, then HN X is a convex polytope of dimension d — 1. Hence, the convex
polytope P(a;d) C R" is of dimension n — 1 since d < }iL., a;.

(2) The Ehrhart ring A(P(a;d)) is generated by A(P(a;d)), if and only
if every x = (z1,...,%,) € ¢P(a;d)NZ" has the expression of the form
x = xW ... 4+ x with each x!) € P(a;d)NZ". Hence, by Lemma (2.1)
together with I, = ¢P(a;d)NZ", A(P(a;d)) is generated by A(P(a;d)), as
required.

(3) Since A(P(a;d)) is generated by A(P(a;d)),, A(P(a;d)) is gener-
ated by those monomials Y;*'---Y,**T with (ay,...,0,) € P(a;d)NZ"
as an algebra over K = A(P(a;d)),- On the other hand, the algebra
A(a;d) of Veronese type is the subalgebra of K[ty,t,,...,t,] generated by
those monomials $71¢32 - - - tZ* with each 0 < z; < a; and %, z; = d, ie.,
(1,T2,--.,Ts) € P(a;d)NZ". Hence, A(P(a;d)) = A(a; d).

(4) Now, the Ehrhart ring associated with a rational convex polytope
of dimension n — 1 is always a Cohen—-Macaulay normal domain of Krull-
dimension n. Hence, the algebra A(a;d) is a Cohen-Macaulay normal domain

of Krull-dimension n as desired. , Q.E. D.

We are now in the position to state our main result of the present paper.
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(2.3) THEOREM. Letn > 2. Fiz a sequence a = (a4,02,...,0,) € Z" and
deZ withl1 <a;<a;<...<a,<dandd <Y, a; Let K[t;,t,,...,1,]
denote the polynomial ring in n variables over a field K and suppose that
A(a;d) is the K -subalgebra of K[t1,ts,...,t,] generated by all monomials of
the form 7432 -+ - t2* with ¢, + z2 + - -+ + =, = d and with z; < a; for each
1 < i < n. Then, the algebra A(a;d) of Veronese type is Gorenstein if and
only if one of the following conditions is satisfied:

(a) d divides n, and a; = d for everyi=1,...,n;

(b) n=d, and a; € {2,d} for everyi=1,...,n;

(c) n=2d, and a; € {1,d} for everyi=1,...,n;

(d) a1+ -+ an —d dividesn, and d > az + -+ + ayp;

(e)d<ay+-+ap,n=a1+--+a,—d, anda; =2 fd < T7_, a; —a;;

(f)d < ag+---+an, n =2(ay+---+a,—d), and a; = 1 ifd < 7_, aj—a;;

(g)ar=-=an1=1,0a,=d,andd>n—1;

(hyay=+=an1=2,a,=d, andd >2(n —1).

Proof. Let H be the hyperplane in IR™ defined by the equation z; +
...+ z, = d, and let 3 : R™™' — H denote the affine map defined by
Y(T1ye ey Tno1) = (T1, oy Tno1,d — (T + - + Tnq)) 0 (21,...,20-1) €
IR*'. Then, ¥ is an affine isomorphism with ¢(Z"') = HNZ". Hence,
#~1(P(a;d)) C IR*! is an integral convex polytope of dimension d — 1 and
the Ehrhart ring A(y~!(P(a;d))) is isomorphic to A(P(a;d)) as graded alge-
bras over K. Recall that the algebra A(a; d) of Veronese type is isomorphic to
A(P(a; d)). Hence, our work is to study the problem when A()~'(P(a; d)))
is Gorenstein. In this proof, to avoid difficult notation, we write P instead

of ~1(P(a,d)); that is to say,

P ={(x1,..;,Tny) ER"'; 0< z;<aq;foreach 1 <:<n-1,
d—a, <214+ 2oy < d}.

We now apply Corollary (1.2) to the integral convex polytope P C IR™™!
of dimension n —1 and determine all the sequences a and integers d for which
the Ehrhart ring A(P) is Gorenstein. First, let § > 1 denote the smallest
integer with §(P—dP)NZ"™* # 0. If ¢ > §, then ¢(P—8P)NZ""" contains
§(P—0P)NZ" 4+ (¢—8)(PNZ""). Hence, §{g(P—OP)NZ"""] > 1 since
P is integral. Moreover, if A(P) is Gorenstein, then §{§(P — OP)NZ""'] =

1. Thus, a basic step for our classification is to determine when §[6(P —
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OP)NZ""'] = 1. Note that (z1,...,2,-1) € Z""" belongs to §(P — dP) if
and only if

(1)1 <2z <éa;—1foreach1 <1< n—1;

(ll) 6(d—an)+l SZI+...+Zn_1 Sﬁd—l
Thus, since {z;+...+2,_1; 1 < z; < da;—1 for each 1 < i < n—1} coincides
with {n—1,n,n+1,...,8(ar+...+an-1)—(n—1)},ifj{6(P-OP)NZ" '] =1,
then the following four possible cases arise:

[1]n—1=6d—1,ie,n=éd,

[2) 6(ay+---+an-1)—(n—1) = 6(d—a,)+1,ie,n =6(ay+- - +a,—d);

[8] 6(d—an)+1=46d—1,ie, ba, =2;

[4] ba; =2 for every 1 <:<n—1.
If none of the above conditions [1], [2], [3] and [4] is satisfied, then A(a;d)
is not Gorenstein. We analyze combinatorics on §P for each of the above [1],
[2], [3] and [4] in what follows.

Case [1]: Let n = éd. Then, (1,...,1) € §(P — 9P). Let Q = 6P —
(1,...,1). Since §(d — a,) — (n —1) =1 — ba, and éd — (n — 1) =1,

Q = {(z1,--)Tn-1) € R '; -1<z;<éa;—1foreach1 <i<n-1,
1—5anS$1+"'+$n-1 Sl}

Corollary (1.2) guarantees that A(P) is Gorenstein if and only if the dual
polytope Q* of Q is integral. To see when Q* is integral, we must find
all the facets of Q. Let H; denote the hyperplane in R*~! defined by the
equation z; = 6a; — 1 for 1 = 1,...,n — 1. Then, H;NQ is a facet of
Q if and only if the closed halfspace ’HE-) : z; < da; — 1 appears in the
irredundant representation of Q as the intersection of finite closed halfspaces.
Let, say, 2 = 1. It follows from the linear inequalities which define Q that
2y <1—(z3+ -+ 2n-1) <n—1. Hence, H;NQ is a facet of Q if and only
if 6a;—1 < n—1 = 8d—1, in other words, if and only if a; < d. Similarly, for
each2 <i<n—1,H;NQis afacet of Q if and only if a; < d. Let H,, denote
the hyperplane in IR*™! defined by the equation z1 + -+ + Tpn_y = 1 — bay,.
Sincel —n < z; + -+ + T,_1, the same technique as above enables us to
show that H, N Q is a facet of Q if and only if 1 —n < 1 — éda,, ie., a, < d.
Thus, for every 1 < ¢ < n, we know that H; N Q is a facet of Q if and only
if a; < d.

By virtue of Corollary (1.2), if n = éd with 6 > 1, then A(P) is Gorenstein
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if and only if da; = 2 for every ¢ with a; < d. Thus, if
(a) d divides n and @¢; = d for every : = 1,...,n,

then A(P) is Gorenstein. Suppose now that we have a; < d for some 1 <
j < n. Then, a; < d. Hence, da; = 2. Thus, two possible cases occur. If
§ =1 and a; = 2, then a; = 2 for every ¢ with a; < d. Hence,

(b) n=d and a; € {2,d} for every 1 =1,...,n.
If § =2 and a; = 1, then a; = 1 for every 1 with a; < d. Hence,
(<) n=2d and a; € {1,d} forevery i =1,...,n.

Thus, if n = éd with § > 1, then the algebra A(a;d) is Gorenstein if and
only if one of the above conditions (a), (b) and (c) is satisfied.

Case [2]: Let n = é(a; + - - - + ap, — d). Then, (éa; —1,...,0a,_; —1) €
(P — OP). Let Q = 6P — (6ay — 1,:..,6a,_1 — 1). Then, since é(d — a,,) —
§(ay+- - +an_1)+(n—1) = =1, and 6d—6(ay+- - -+an_1)+(n—1) = ba,—1,

Q= {(z1, yTn1) ER* ;1 —6a; <z;<1lforeachl <i<n-—1,
1<z +  +2pq < ban—1}.

Let H; be the hyperplane in IR*™! defined by the equation z; = 1 — éa; for
t=1,...,n—1. Let, say, : = 1. It follows from the linear inequalities which
define Q that z; > —1 — (z;+ -+ + £4-1) = 1 — n. Hence, H1NQ is a
facet of Q if and only if 1 — da; > 1 — n, i.e., éa; < n. Similarly, for each
2<i<n-1,H;NQis afacet of Q if and only if a; < n. Let H, denote the
hyperplane in IR"! defined by the equation z; + -+ z,_; = da, — 1. Since
14+ 1 <n—1,H,NQis a facet of Q if and only if da, —1 <n—1,
i.e., da, < n. Since n = §(a; + - - - + a, — d), we have da; < n if and only if
d < Y%, a; — a;. Hence, for every 1 <1 <n, H;NQ is a facet of Q if and
only if d < ¥7_; a; — a;. Sincea; <a; <---< @y, ifd>ay+---+ ay,, then
d > ¥, a;j — a; for every 1 <1 < n. Thus, A(P) is Gorenstein if

(d) a;+---+a, —ddividesn,andd > a3+ -+ + ap.

Suppose now that d < a; + --- + a, and let k € {1,2,...,n} denote the
largest index with d < Y7_; a; — a;. Then, A(P) is Gorenstein if and only
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if 8ay = da; = --- = bay = 2. Note that, since d > ¥7_, a; — a; for
t=k+1,k+2,...,n, no restriction is required for each of ax;1,arys,. .., a,.
Since da; = 2, we have either § =1 or § = 2. Hence,

(e) n=a,+--+a,—d,anda; =21fori=1,...,k;
or
() n=2(a+ +a,—d),anda;=1fori=1,..,k.

Thus, if n = 8(a; + -+ + a, — d) with 6 > 1, then the algebra A(a;d)
is Gorenstein if and only if one of the above conditions (d), (e) and (f) is
satisfied. '

Case [3]: Let da, = 2. If 6 =2 and a, = 1, thenag; = --- =@, =
1. Since 2(P — dP)NZ"" # 0, we have (1,..,1) € 2(P — dP). Hence,
2(d—1) < n—1 < 2d, ie, n = 2d, which is a special case of (c) as
above. On the other hand, if § = 1 and @, = 2, then a; < 2 for every
i. Since (P — OP)NZ™" # 0, we have a; = 2 for every 1 <'i < n and
(1,...,1) € P — 0P. Hence,d —2 <n—1<d,ie,n=d, which is a special
case of (b) as above.

Case [4]: Let 8a; = 2 for every 1 < i < n — 1. First, if § = 2, then
a; = 1 forevery 1 <1 < n-—1. Since @ = 2P —(1,...,1) is defined
by the linear inequalities —1 < z; < 1 for ¢ = 1,...,n — 1 together with
2(d—a,)—(n—1)<zi+ -+ 21 <2d—(n—1), it follows that A(P) is
Gorenstein if and only if (i) n =2d if d < n — 1, and (ii) n = 2(d — a, + 1)
ifd>a,. Letd<n—1andd> a, Then, n =2d and a, = 1, which is
a special case of (c) as above. Let d < n —1 and d = a,. Then, n = 2d
and a, = d, which is again a special case of (c) as above. Let d > n — 1 and
d > a,. Then, 2(a;+ - -+a,—d) =2(n—14+ap,—d) =2n—-2(d—a,+1)=n
andd>n—1=3%7,a; — an. Moreover, ifd > a; + -+ a, =n—2+a,,
then d > 2(d —an + 1) — 2 + a, = 2d — a,, ie., d < a,, a contradiction.
Hence, d < a3 + - -+ + a,; thus we have a special case of (f) as above. Let
d>n—1and d = a,. Then,

(g) a1=~~=qn_1=1,an=d,andd2n—1.

Secondly, if § = 1, then a; = 2 for every 1 <7 < n —1. Since @ = P —
(1,...,1) is defined by the linear inequalities —1 < z; < 1fori=1,...,n—1

—148—

A




together with d—a,—(n—1) < 214+ - -+z,-1 < d—(n—1), it follows that A(P)
is Gorenstein if and only if (i) n =difd <2(n —1), and (i) n = d — a, + 2
if d > a,. Let d <2(n—1) and d > a,. Then, n = d and a, = 2, which is a
special case of (b) as above. Let d < 2(n — 1) and d = a,. Then, n = d and
a, = d, which is again a special case of (b) as above. Let d > 2(n — 1) and
d> a,. Then,a;+ - +a,—d=2(n—1)+a,—d =2n—(d—a,+2) = n and
d>2(n—1)=3%_ a;— a,. Moreover,ifd>a;+--++a, =2(n—-2)+ay,,
then d > 2(d — an, +2) — 4 + a, = 2d — ay, ie., d < a,, a contradiction.
Hence, d < a; + - - - + a,; thus we have a special case of (e) as above. Let
d>2(n—1) and d = a,. Then,

(h) a=-=ap1=2,a,=d,and d >2(n-1).

We now complete our classification of all the Gorenstein algebras A(a;d) of
Veronese type. Q. E.D.

(2.4) EXAMPLE. (1) Let n > 2 and each a; = d. Thus, A(a;d) is the d-th
Veronese subring of K[ty,%s,...,t,]. Then, A(a;d) is Gorenstein if and only
if d divides n. This result is obtained in [Mat]. See also [Got].

(2) Let n > 2 and each a; = 1. Thus, A(a;d) is the K-subalgebra of
K[ty,t2,...,t,] generated by all square-free monomials of degree d. Then,
A(a;d) is Gorenstein if and only if (i) d = 1, or (ii) d = n —1, or (iii) n = 2d.

(3) An example of each of the cases (d), (e) and (f) of (2.3) is as follows:
(d)n=3,a=(3,5"17),d=12;(e)n=3,a=(2,3,5),d=7; (f) n =4,
a=(1,1,3,5),d =8.

(4) Let n = 3. Then, a = (1,1,d) with d > 2 is an example of the case
(g) of (2.3), and a = (2,2,d) with d > 4 is an example of the case (h) of
(2.3). We should remark that, if P C IR*™" is the unit cube, i.e., the convex
polytope defined by the linear inequalities 0 < z; < 1fori =1,...,n -1,
then every Gorenstein algebra of the case (g) of (2.3) is isomorphic to the
Ehrhart ring A(P) of P and, moreover, every Gorenstein algebra of the case
(h) of (2.3) is isomorphic to the Veronese subring A(P)® of A(P).
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