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TOWARDS A THEORY OF STABLE LOCAL RINGS

SHIRO GOTO

ABSTRACT

My talk is based on a work jointly with F. Hayasaka and Y. Shimoda. Our purpose
is to give a structure theorem of stable local rings. The results are summarized into the
following.

Theorem. Let A be a Noetherian local ring with the mazimal ideal m. Assume that
depth A > 0 and the field A/m is infinite. Then the following three conditions are
equivalent to each other.
1) I= T for every regular ideal I in A.
(2) dim A =1 and every m-primary ideal I in A is stable, that is, the equality I 2=al
holds true for some a € I. R
(3) dim A = 1, and either (i) e(4) < 2, or (ii) MinA = {p}, p # (0), p* = (0), and
the Ting A\/p is a DVR.

Here e(A) denotes the multiplicity of A with respect m and A stands for the m-adic
completion of A. For every regular ideal I (that is, an ideal I in A which contains at
least one non-zerodivisor in A) we denote by I = |J,5o[I™* 4 I"] the Ratliff-Rush
closure of I. -

The local rings satisfying condition (2) in my theorem are called stable ([SV1, SV2,
Li]). The equivalence in my theorem between conditions (2) and (3) holds true for every
Cohen-Macaulay local ring A of dimension 1, which is the main result of my talk. When
A contains a field, condition (3) (ii) is equivalent to saying that

A= R{[t]) w R[]

(the idealization), where e = e(A) and k[[t]] denotes the formal power series ring over a
field k. Consequently, thanks to the method of the late Professor Tetsushi Ogoma for
constructing bad Noetherian local rings (cf. [Le]), one knows that for every integer e > 1
there exists a stable local integral domain R with e(R) = e.
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PRESTABLE IDEALS AND SAGBI BASES

REHES QLERFHEFERRFR)
AL (RRKFERZEBERRERIER)

INTRODUCTION
Let R = K|[zy,... ,%,] denote the polynomial ring in n variables over a field K
with each degz; = 1 and let I C R be an ideal which is generated by monomials
Ug,... ,Unm with degu; = -+ = degunm. The Rees algebra of I is the subalgebra

R(I) = K[z1,- .. ,Tn,Utt, .. ,umt] of R[t]. Let A = Klz1,...,Zn, Y1, - ) Ym) =-

R[y1, ... ,Ym| denote the polynomial ring over K and define the surjective homo-
morphism 7 : A — R(I) by setting 7(z;) = z; and 7(y;) = u;t. The toric ideal
Jrqy of R(I) is the kernel of w. Blum [1] proved that if Jr(r) is Koszul, then all
powers of I have linear resolutions. Thus in particular if Jr(;) has a quadratic
Grobner basis, then all powers of I have linear resolutions. However, the existence
of a quadratic Grébner basis of Jr(ry is a rather strong condition which guarantees
that all powers of I have linear resolutions. In [8] a much weaker condition, called
the z-condition, for Jg(r) is introduced and it is proved that if Jg(s) satisfies the
z-condition, then all powers of I have linear resolutions.

In the present paper, a new class of monomial ideals, the class of prestable ideals,
which contains the stable ideals [4] is introduced. If I is prestable, then Jr(r) satisfies
the z-condition and all powers of I have linear resolutions. See Corollary 1.5. We
then discuss a class of prestable squarefree monomial ideals I arising from finite pure
posets (partially ordered sets) such that Jr(r) has a quadratic Grobner basis. See
Theorem 2.1 and Corollary 2.2. Finally, as one of the applications of such prestable
ideals coming from finite pure posets, Sagbi bases of the algebras studied in [5] will
be determined. See Theorem 3.2.

1. PRESTABLE SETS

Let R = K|[z1,... ,%n] denote the polynomial ring in n variables over a field K
with each degz; = 1, and write V@ for the set of all monomials of R of degree d.

A nonempty subset N = {uy,us, ... ,um} C V¥ is said to be a prestable set if
N possesses the exchange property (x) as follows:

(*) For all N = 1,2,... and for any two monomials Hf’:l u;; and 1Y, ug, with
M, uy; = af'z3” -+ - 23 and MY, u, = 28'2% - -zl such that ¢y = by,...,
ag-1 = bg_1 and a4 < by for some 1 < ¢ < m, there exist 1 < j < N and
q < p < n such that z4(u;/z,) € N.

One of the most fundamental classes of prestable sets is
1



Example 1.1. Recall that a set of monomials V' C V{9 is stable if, for all u € A/
and for all i < m(u), one has z;(v/Tm)) € N. Here m(u) is the largest ¢ for which
z; divides u. A stable set N is prestable. In fact, if Hf’ﬂ ui; = z7'25? -+ - 2 and
I, w, = gl .. -z with each ui;, ur, € N such that a; = by,... 401 = by1
and ag < by, then there is p > ¢ with a, > b,. In particular z, divides some u;;.
Since m(u;;) > p > ¢ and since N is stable, one has z4(u; [Tm(u;;)) €N.

Let I C R be an ideal generated by monomials of degree d and G(I) the minimal
system of monomial generators of I, i.e., G(I) = INV,9. We say that I is prestable
if G(I) C V,\9 is a prestable set. The Rees algebra of I is the semigroup ring

R(I) = K[z1,. .. , 2, {uttuecny] (C R[t] = K[z1,... ,Tn,t]).
Let A= K[21,... ,Zn, {Uu}tuecn)] = R[{¥u}uec)] denote the polynomial ring over
K with each degz; = degy, = 1. The toric ideal of R(I) is the ideal Jr) C A
which is the kernel of the surjective homomorphism 7 : A — R(I) defined by
setting m(z;) = z; for each 1 <4 < n and 7(y,) = ut for each u € G(I).

Let <® be an arbitrary monomial order on the polynomial ring K {%u}uean)
and <.; the lexicographic order on R induced by z; > z3 > --- > z,. We then
introduce the new monomial order <(*) on A by setting x2y® <M x2'y if either (1)
X2 <jep X¥ or (ii) x* = x¥ and y® <® y*'. Here each of x* and x* is a monomial
belonging to R and each of y® and y®' is a monomial belonging to K[{yu}uec(n)-

We now state the reason why we are intereted in prestable ideals. We refer the
reader to, e.g., [3] for fundamental materials on Grobner bases.

_Since a prestable set satisfies the {-exchange property [7] for all monomial orders
<® on K[{yu}uec(n)], Theorem 1.2 below is a special case of [7, Theorem 5.1].

Theorem 1.2. Work with the same notation as above. Suppose that I C R is a
prestable ideal and G is a Grébner basis of Jr(1yN K[{yu}uec(n) with respect to <M.
Then

G U {Tiyy — 7% ; u,v € G(I), ziu = z;0}

is a Grobner basis of Jr(r) with respect to <,(2

The elimination property of the lexicographic order together with Theorem 1.2
guarantees that

Cordllary 1.3. Suppose that I C R is a prestable ideal and G is a Grébner basis
of Jr(n N K [{yutuec(n)] with respect to <®W. Then for each 1< €< n

GU{ziyy — zjy; u,v € GI), £< 4,5 <n, zu=1zw}
is a Grobner basis of
Jray NK[zg, Teg1, - - -, Tny {Yutuean)]
with respect to < on K[z, Teg, - - - 5 Tny {Yutuec()-

Corollary 1.4. Let I C R be a prestable ideal and suppose that JryNK[{yu}uean)]
possesses a quadratic Grobner basis. Then the toric ideal Jgr(ry has a quadratic
Grobner basis. Thus in particular the Rees algebra R(I) is Koszul.



Conca and De Negri [2] discovered an example of a strongly stable ideal I C R
for which Jr(ry N K[{yu}uec(r)] possesses no quadratic Grobner basis.

If f € A is a homogeneous polynomial, then its z-degree is the degree deg,(f) of
f as a polynomial in the variables z,... ,z, with coefficients in K[{y, }ueq(n)]. For
example, if f = z?zoy1y2 — z3y3y4, then its z-degree is deg,(f) = 3. We say that
Jr(r) satisfies the z-condition (8] if there exists a Grobner basis G of Jg(;) such that
deg,(g) < 1foreach g € G.

Corbllary 1.5. Let I C R be a prestable ideal. Then all powers of I have linear
resolutions.

Proof. If I C Ris a prestable ideal, then the toric ideal Jz(s) satisfies the z-condition.
Thus [8, Corollary 1.2] says that all powers of I have linear resolutions. O

2. PRESTABLE IDEALS ARISING FROM PURE POSETS

In the present section we are interested in finding a reasonable class of prestable
ideals I C R for which JR( 1 N K[{yu}uec)] has a quadratic Grobner basis.

Let Q =Q,UQyU--- Uy be a finite pure poset [11, p. 99] of rank d — 1, where
each Q; is the set of rank i — 1 elements of Q. Let Q; = {20,220}, and let
‘R=K [{z } 15i<d ] denote the polynomial ring over a field K with each deg :1:(’) =1

1<j<p;

We will associate each maximal chain
¢! 2 d
C :z:fn) <$gz) < < a:gd)
of © with the squarefree monomial

— »(1)..(2 d
0 = o5l

of R of degree d. Let M(f2) denote the set of maximal chains of Q.

Theorem 2.1. Work with the same notation as above. Suppose that §2 satisfies the
condition that if :v(') >zl then zjf) >z for all § with j' < j and x(’) v
for all k' with k K. Then {zc, C € M()} is a prestable set.

Proof. We work with the ordering

a:gd),:cgd) x](,‘i),x(d 1), .- xpd f),z(d 2. x(§>,x§1),~-- ,zg).

Let [I).; zc,, = ITi; y) 7 and [T, zc,, = Ili; ; 0" ? . Suppose that a('°) < b("’)
and agi) = bg-i) for all < and j with either (i) ¢ > 4o or (ii) ¢ = ¢p and j < jo. Let
A; = {pr; 2, € Cp,} and B; = {g,; o{) € C,,}. Then T, |4;] < T2, By,
where |A;| stands for the cardinality of the finite set A;. It then follows that there
exist Cp, and Cy, such that Cp, NQip41 = Cy, NQig41, Cpy Ny C {5y, -+ , 20}
and Cp, N, € {21, 2l}. Let Gy, N Qg = {280}, Gy, N Ry = {25}
and CqP Ny = {:v("’)} Then 7" < jo < j'. Since m( ) < glio+)) in Q, one has
2l < glot). Let Cp, N Ry = {27V}, Since x(“’ Y < 2% in Q, one has



ol < zg?) Hence z°7V < zggc’) < g0+ Thus (Cp, \{x§~f°)})u{z§€°)} € M(Q),
as required. a
Corollary 2.2. Suppose that Q) satisfies the same condition as in Theorem 2.1 and
let I C R denote the prestable ideal with G(I) = {z¢; C € M(Q)}. Then all powers
of I have linear resolutions. Moreover, the toric ideal Jr(;) of the Rees algebra
R(I) possesses a squarefree and quadratic Grobner basis. (A Griobner basis is called
squarefree if the initial monomial of each polynomial belonging to the Grobner basis
is squarefree.)

Example 2.3. Let R = K [{xy)} 1gign ], where n < m, denote the polynomial ring
sism

in nm variables and A the set of all monomials z§i)x§~§) . a:gz) with 1 < j; < j2 <

- < jn < m. Let I C R be the ideal with G(I) = N. Then all powers of I
have linear resolutions and the toric ideal Jg(r) of the Rees algebra R(I) possesses a
squarefree and quadratic Grobner basis. It follows from Corollary 1.3 that, for each

1 < £ < n, the ideal Jg)y N K [{xi’)} 2sign A{Yutuean)] (as well as the ideal Jr(y N
sism

K [{a:g-i)}f(g;é: , {Yutuec(n)]) possesses a squarefree and quadratic Grébner basis.
sSism

3. COMPUTATIONS OF SAGBI BASES

Let K[t] = K[t1, ... ,tq] denote the polynomial ring in d variables over a field K.
Given a finite set F = {fi,... , fu} C K][t], we write K[F] = K[f1,..., fa] for the
subalgebra of K[t] generated by fi, ..., fn. The initial algebra of K[F] with respect
to a monomial order < on K|t] is the subalgebra

in<(K[F]) = K[{in<(f); f € K[F]}]
of K[t]. A subset S of K[F] is said to be a Sagbi basis of K[F] with respect to < if
in<(K[F)) is generated by {in<(s); s € S}. A Sagbi basis always exists. However,
a finite Sagbi basis does not necessarily exist.

Let R = K|zi,...,%,] denote the polynomial ring in n variables over K with
eacg degz; = 1 and I (C R) the defining ideal of K[F]. Thus Ir is the kernel of

the surjective ring homomorphism from R to K[F] defined by setting z; — f;.

Given a generic weight vector w € R, on K|[t], we introduce the new weight

N a® o

vector @ = (w - ay,...,w - a,) € R, on R, where iny(f;) = t% =t ---t)
with a; = (@, ... ,agd)). The initial ideal ing(I5) of Ir with respect to w may
not be a monomial ideal. Let Ji,, (5 (C R) denote the toric ideal of the semigroup
ring K[iny(f1),--. ,ny(fs)]. It is known [12, Lemma 11.3] that iny(Ir) C Jin,(r).
Moreover, [12, Theorem 11.4] says that

Lemma 3.1. A subset F C K[F] is a Sagbi basis of K[F| with respect to a weight
vector w if and only if Jin () C ing(IF).

Fix integers 1 < £/ < n < m. Let X = (xy)) 1<i<» D€ the m X m matrix of

‘ 155 <m
variables and K[X] = K [{xg’)} 11<5,~§,,] the polynomial ring over K. The notation
Sism
[J1,d25 - »dn), 1 £ J1 < j2 < -+~ < jn < m, stands for the n X n submatrix




QORI

A
b B LB
Jl J2 Jn

()(n) ()
xnx ... J’:

of X. Let X, = {m(') 1<i<4,1<j<m}and
[(X) = {det([j1, j2,--- »Jn)); 1 <1 < J2 <+ <Jn <m}.

In [5] the authors discuss the subalgebra Ry(X) = K[['(X) U X, of K[X]. If £ =1,
then a Sagbi basis of R;(X) is given in [9, Proposition 2.1] (when n = 2) and [6]
(when n > 2). Using Example 2.3 we determine a Sagbi basis of Re(X) for all £ > 1.

Recall that a diagonal order on K[X] is a monomial order < on K[X] such that

inc(det((js, g2, - o dal) = 2305y -2l
for all det([j1,J2,--- ,Jn]) € ['(X). We work with the diagonal order <giqy on K[X]
defined by the weight vector w = (i) 1gign .
sism
Theorem 3.2. The finite set I'(X) U X, is a Sagbi basis of Ry(X) with respect to
the weight vector w = (i/) isisn - Moreover, the toric ideal Jin, (r(x)ux,) Possesses a
squarefree and quadratic initial ideal. In particular the initial algebra in,, (Ry(X)) is
normal and Koszul.
Proof. Example 2.3 says that the toric 1deal me([‘( X)) possesses a squarefree qua—
dratic Grébner basis G and that
Qu{:cg‘)y,, - a:( Vs u,v €N, x(')u = x(’)v 1<i<{}

is a squarefree quadratic Grébner basis of Jin,, r(x)ux,)- Since ['(X) is a Sagbi basis
of K[['(X)] with respect to the weight vector w = (z’ ) igign ([12, Theorem 11.8)), it
follows that G C ing(Irx)) C ing(Irxyux,). By vu'tue of Lemma 3.1, our work is
to show that each binomial z; )yu — x(,)y,, € Jin.(0(x)ux,) belongs to ing(Ircxux,)-

Let z(’)yu - :1:( ) Yo € Jin,(r(x)ux,)- Then there exist

1<k < <k 1<j<j<kipp<---<k,<m
such that u (resp. v) is the main diagonal monomial of det(U ) (resp. det(V')), where
U= [kly"' 7ki—l1jl7ki+1:'” ;k'n] (l'eSP- V= [kla"' i— I;Jyk‘l-}-h"' 7kn]) NOW)
we introduce the (n + 1) X (n + 1) matrix
zfcll) 1L‘§~1) x(.,l) e :rg)
<z> g (a) ®
Ty e T

M= 7 i

xk} g f) g

xfc’:) . x§") z;,’,‘) o 935:,)



with det(M) = 0. Since

i-1 .
det(M) = S (=1)Pz() det(ky, ..., kpt, kprts--- 5,5 kn)

p=1

+(=1)'2% det(U) + (—1)"*'z) det(V)

n o
— 3 -1z det(ky, .. 15,5 kgt ks - s Kn),

p=i+l
the polynomial

n
F=(-1)(aPy — zPy,) + Z( Py, — 3 (-1,
p=i+l

where each of the u,’s is equal to elther detlky, ..., kp—1,kpt1,--- 13,7+ s ka] OF
det[ki,...,4,7",--- s kp—1,kps1, ... , kn), belongs to the defining ideal Ir(x)ux,. Since

the main dlagonal monomial of det(M ) is iny(z; O det(U7)) = znw(x(') det(V)), it

follows that ing(f) = gl)yu - a:( )y, as desired. O
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FINITENESS OF COUSIN COHOMOLOGY, I

KAWASAKI, TAKESI

1. INTRODUCTION

The main theorem of this paper is

Theorem 1.1. Let A be a Noetherian ring and M a finitely generated A-module.
Then all the cohomology modules of the Cousin complex of M are finitely generated
and they are zero except for finitely many ones if

(C1) A is universally catenary;
(C2) all the formal fibers of all the localization of A are Cohen-Macaulay;
(C3) the Cohen-Macaulay locus of arbitrary of finite type A-algebra is open and
(QU)
for any pair q O p of prime ideals in Supp M.

This is already known by Dibaei-Tousi (1] if A has a dualizing complex or if A is
local. The novelty of Theorem 1.1 is generalizing their theorem for non-local rings.
As consequence of Theorem 1.1, we obtain two corollaries.

Corollary 1.2. Let A be a Noetherian ring of positive dimension. The following
statements are equivalent: )

1. A has an arithmetic Macaulayfication, that is, there is an ideal b of positive
height such that the Rees algebra @nzo b™ is Cohen-Macaulay;
2. A satisfies (C1)~(C3) of Theorem 1.1,

htq =htq/p +htp
for any pair of prime ideals g D p and A has no embedded primes.

Corollary 1.3. A Noetherian ring is a homomorphic image of a Cohen-Macaulay
ring if and only if it satisfies (C1)~(C3) of Theorem 1.1 and has a codimension
function. In particular, an excellent ring is a homomorphic image of a Cohen-
Macaulay ring if it has a codimension function.

Although the author prove these corollaries for local rings without Cousin com-
plex, we can prove them for non-local ring by using Theorem 1.1.

In this paper, we describe a part of the proof of Theorem 1.1 in detail. The rest
part will be appear in (3. There is a complete proof of Theorem 1.1 in 2]

Throughout this paper, let A be a Noetherian ring and M a finitely generated
A-module.




2. PRELIMINARIES

We recall the definition and basic properties of Cousin complexes. For a prime
ideal p € Supp M, the M-height of p is defined to be htysp = dimM,. If b C A
is an ideal such that M # bM, then let htps b = inf{htpsp | p € Supp M NV (b)}.
For an integer ! > 0, let U’(M) {p € Supp M | htps p > 1}.

Definition 2.1. The Cousin complex M* of M is defined as follows: Let M-?2 =0,
M~! = M and d3}: M~? — M~! the zero map. If p > —1 and d5;%: MP~2 —
MP-1 is given, then we put

M= B (Cokerdi?),

pESupp M
hta p=p

and d5;': MP~1 - MP is defined to be
&t a) = (...,a/1,...).

By definition, the construction of Cousin complexes commutes with localiza-
tion. That is, S™!M*® = (S~!M)* as complexes of S~'A-modules if S C A is a
multiplicatively closed set.

If Ais a local ring with maximal ideal m and d = htps m, then M¢ = (Coker d%; %), =
Coker dd;2. In other words, H4(M*®) = H%=1(M®) = 0. Therefore, if A is not loca.l
then SuppHP(M') C UP2(M) for all p.

The following theorem has many applications.

Theorem 2.2 (Colon Capturing). Letxy, ..., n € A such thathty(zy,...,2,)A =
n. Then

(:vl,...,:c,._l)M::c,, C (a:l, S Tp—1)M: H anan(M')

q<n—-1
If, in addition, z1, ..., T are in the Jacobzan radical, then
(@1, 2i))M 2 C (21, ., 2io1) M : H ann HI(M*)
g<n—-1
for anyi <mn.
Proof. Let K* be the Koszul complex with respect to = zi, ... , ,. The double

complex K* ® M* gives two spectral sequences
'EBY = HP(z; HI(M*)) = HPYI(K* @ M*),
"EB = HP(HI(x; M*)) = HPYI(K* @ M*).
Since ht(z1,...,2,)A = n and MP = @, P_’,(Cokerd"’M'2),,, "EFT=0if0 <

p < n. Hence H" ?(K* ® M*) = H" !(z; M). On the other hand, 'Ef 9727 is
annihilated by ann H9(M*). Therefore

< 11 anan(M’)> H Y (z; M) =
g<n—1
Since

H Y (@ M) ——— M/(z1,...,Zn))M 22 M/(21,...,20-1)M

is exact, we obtain the first assertion. By using Krull’s intersection theorem, we
obtain the second assertion. |




3. THE PROOF OF MAIN THEOREM, I

In this section we prove the following claim.

Claim 1. Assume that A satisfies (C1)—-(C3) of Theorem 1.1 and that M satisfies
(QU) of Theorem 1.1. If H=1(M®), ..., H1(M*) are finitely generated and

| Supp H?(M*) C U**(M),
p2l
then H'(M?*) is finitely generated.
Proof. Let b C A be an ideal such that V' (b) = U,5; Supp H?(M*). Then htpr b >

1+ 2. Let F, be a free resolution of A/b. The double complex Hom(F,, M*) gives
two spectral sequences

'EPY = HP(Ext?(A/b, M*)) = H?*I(Hom(F,, M*))
" EP1 = Extd(A/b, HP(M*)) = HP+(Hom(F., M")).
If0 < p < l+1, then 'E}? = 0 and hence H'(Hom(F,,M*)) = Ext"*'(4/b, M)

is finitely generated and hence 'EQ is also. On the other hand, "EP? is finitely
generated if ¢ < I. Since

0 " ng}— 1 " E,?I " E:,l-r-{»l

is exact, we find that "E$! = Hom(A/b, H'(M*)) is finitely generated. Since
Supp H'(M®) C V(A/b), AssH'(M*) = AssHom(A/b,H'(M*)) is a finite set.
If p € Ass H'(M®), then H'(M?*), is a finitely generated Ap-module because of
the result of Dibaei-Tousi. There is an integer N such that b¥ H'(M*), = 0 for
each p € Ass H'(M®). This means that b H'(M*) = 0. Since V(b) = V(b%),
H'(M*) = Hom(A/b", H'(M?*)) is finitely generated. O

The proof of (JHP(M*) C U+?(M) will be appeared in [3].
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Cohen-Macaulay associated graded rings

Shin-ichiro Iai

This is a joint work with S. Goto [GI]. Let A be a Noetherian local ring with the maximal
ideal m and dim A = d. Let I( A) be an ideal in A and s = ht4 I. We always suppose
that dimA/J =d —s. We put G = G(I) := @, I*/I**!, which is called the associated
graded ring of I. Let ¢ be an integer such that £ < d and let J be a reduction of I
generated by elements a1, ap, - -+ ,a,. We denote by r;(I) the reduction number of I with
respect to J. The analytic spread of I is A(J) := dimA/m ®4 G. Then s < A\(I) < £
We always assume that the generating set {a1, as, ,a¢} of J is a basic generating set
for J in the sense of Aberbach, Huneke, and Trung [AHT], which means that J;A, is a
reduction of JA, for all ¢ € V(I) with 2 = ht4q < £. Here let V(I) be a set of prime
ideals in A containing I and J; := (a1,as, -+ ,0;) for 0 < ¢ < £. By [AHT], 7.2, there
always exists a basic generating set for J if the field A/m is infinite. When the ring A is
Cohen-Macaulay, the ideal J; is a complete intersection (see Lemma 2). For s < i < £,
let
r;(I) := max{ry, (I,) | p € V(I) and ht4 p = i}.

We set r; = 1;(I) for short. Put n = r,, which is a generic reduction number. Let a(G)
stand for the a-invariant of G (cf. [GW], 3.1.4). When the ring G is Cohen-Macaulay, we
will use repeatedly the a-invariant formula: a(G) = max{r;—i | s < i < £} U {r;(I) — ¢}
(cf. [U], 1.4).

The main purpose of this paper is to extend a theorem given by [GNN] in the case
where the number n is arbitrary (see Proposition 20). First of all, let us state the following.

Proposition 1. For each a basic generating set {ai,as,- - ,a¢} for J, the following two
assertions hold true.

1. If G is a Cohen-Macaulay ring, then there exists an integer a > —s such that
() r,(I)<a+¢,
(2) JsNIt=JJI7! foralll <i<a+s, and
(3) (J; @ @jyr) NIHH = JIo% for all s < i < L.
2. Conversely, assume that there is an integer a > —s, which satisfies the conditions
(1), (2), and (3) above. Let Js be a complete intersection ideal and let & be an integer

with depth A > 6 > 5. Then
depthG > §

if depth A/I* + J; > min{d — 5,6 +a — i} forall1 <i< a4+~

Remark. By [Tr], 3.6 together with Lemma 9, the least number a that satisfies the above
conditions (1), (2), and (3) (in case it exists) becomes the a*-invariant of G: a*(G) :=
max{a;(G) | © € Z} if J; is a complete intersection. We note a*(G) > —s because




a*(G) > —grade G, by [Tr], 2.3, and —htc G4 > dimG/G; —dimG = dimA/I—-d = —s
by our standard assumption that dim A/I = d—s. The ideal J; is a complete intersection
if the ring A is Cohen-Macaulay (see Lemma 2).

We will prepare some results for a proof of Proposition 1. Take an integer ¢ with
s < i< £ Then we have ht I 4 [J;I% : I%+] > i+ 1 because [% 1A, = J;I" 4, for all
prime ideals p € V(I) with ht4p < i. Therefore we can choose a system of parameters
Ts41, Tst2,-- -, Zq for the ring A/I such that z;, € S : I* *1 for all s <4 < £. We put
q = (a1,02,.-.,0s,Tst1 — G541, Ts42 — GBs42, -+ -, Te — Qg To41, Te42, - - .,Z4). Then we get
the following.

Lemma 2. \/g=m.

Proof. Let p € V(q). We shall prove that a1, az,...,a; € p for all 0 <4 < £ by induction
on i. We may assume s+ 1 < i < £ and ay,as, ..., ai_1 € p. We have 2} *? = g,af—* !
mod p, as z; = a;. By the choice of z; and by the inductive hypothesis on 2, we get
xiag“‘ﬂ € J;_1I%-1 C p. And hence x:“‘+2 € p. Therefore z; € p, so that a; € p.
Thus we see J and (Ts41, Ts42,---,Tq4) are contained in p, and hence p = m (recall that
I+ C J and T441, Tsqo,. .., Tq is a system of parameters for A/J). 0

For 0 <1 < d, we put

(a1, ast, ..., ast)G (0<i<ys)

Aji= A+ (zs-i-l = Qg1 Ts42 — Qsqaly ..o, Ti — a‘it)G (3 +1<:< e)
Ag+ (Zes1, Tewa, - - -, T)G . ((+1<i<ad)
and
(a1t,aqt, ..., ast)G (0<i<s)
B; :={ B; + (Tsy1, Tst2, - - -, Tiy Gsp1t, Gspat, . . -, 8it)G (s+1<1i<¥)
By + (Te41, Teg2, - - -, 3:)G (£+1<i4<d).

Then we get \/A—J = \/B_] forall0 < 7 < d. Infact,let 0 < j < d. We may assume j > s.
The inclusion A; C B, is trivial. Similarly as in the proof above, we take Q € V(4;). It
is enough to show a;t, ast,...,a;t € Q for all 0 < ¢ < j. Let us use induction on 7. We
may assume that s+1 <4 < j and that it holds true for ¢ — 1. Since z; = a;t mod Q, we
have :v:-“‘+2 = z,(a;t)" -1 *! because (z,-a:"““)t’*-‘“ € (Jim IF-1t5-1 DG C Q by the
choice of z; and by the inductive hypothesis on i. Hence z; € Q. Therefore a;t € Q.

In the case where J is a special reduction of I in the sense of Aberbach and Huneke,
the following lemmas have been proved in their paper [AH]. Put 9t = mG + G,. For
each graded G-module E, let F; stand for the homogeneous component of E of degree j.
We set Esn, = @i>mE; for each m € Z.

Lemma 3. G is a Cohen-Macaulay ring if and only if the sequence
ait, agt, .. ., ast, Tsp1 — as+lty Tsy2 — as+2t) ey Te — a£t7 Le+1, Te42y-- -5 2d

is G-regular.



Proof. Let 0 < j < d. The equality +/ A; = /B; implies that all minimal prime ideals of
A; are graded because B; is a graded ideal, and moreover /A, = 90t because /Bq = M

(recall that Zs41,Zs42,...,Zq is a system of parameters for A/I). Therefore, if G is a
Cohen-Macaulay ring, then that sequence is G-regular because all associated prime ideals
of A; are graded. The converse implication is trivial. O

Lemma 4. Let ¢ be an integer with 0 < ¢ < £. If G is a Cohen-Macaulay ring, then
[(alt, ast, ..., ait)G el ai+1t]Za(G)+,;+1 - (alt, ast, ..., a,'t)G.

Proof. Thanks to the a-invariant formula: a(G) = max{r; —j | s < j < £} U {r;(I) — £}
(cf. [U], 1.4), we have r; < a(G) + j for all s < j < £. Since the sequence a;t,ast, ..., a,t
is G-regular by Lemma 3, we may assume s = 0 by [VV]. We need the following.

Lemma 5. Let s =0 and 0 <1 < £, Assumer; < a(G) +j for all0 < j < £. Then
(.’l?l - alt, Ty — agt, ey Iy — a,»t)G N '[G]Za(G)+i+l = [(alt, agt, e ,a,-t)G]Za(G)+,-+1.

PT’OOf We have [(.’L‘l, To,. .. 7$i+1)G]Za(G)+i+l - [(alt, ast, ... ,ait)G]za(G)+i+1 for all 0 <
i < £ because z; 1 I™ C J,I™ for all m > r;+1 by the choice of ;,, (recall that
a(G) +i+ 1 > r;+1). Hence the left side of the required equality is contained in the
right side. To prove the converse inclusion, we will use induction on i. We may as-
sume ¢ > 0 and it is true for 1 — 1. Let m > a(G) + i+ 1 and take any element 7 €
((a1t, ast, . . ., it)Glm. Write n =37 _, (aat)n, for some ny € [Glm—1. Then 3 _ T4n0 €
[(z1,22,...,2)G)sa+i C [(a1t,a2t,...,0:_1t)G]5a(G)+: (recall that the above inclusion).
So Z.i=1 Zalla € (1 — a1t, To = agt,...,T;-1 — a;_1t)G by the inductive hypothesis on i.
Therefore n = 37" _| Talla — Y 0e1(Ta — Gal)a € (31 — a1t, 22 — ast, ..., z; — a;t)G. O

Lemma 5 leads to an injective homomorphism
[G/(alt, aqt, ... ,a,-t)G]Za(g)HH — G/(IL'I —a1t, Ty — aqt, ..., x; — a,-t)G

of G-modules for all 0 <7 < £ Let 0 < ¢ < £. Then since the element z;; — a;;,t is
G/(z1—a1t, T3—ast, . . ., ;—a;t)G-regular by Lemma 3, it is also [G/(ait, ast, . . ., ait)Gl>a(G)+i+1-
regular by the injective map above. Hence a1t is [G/(a1t, ast, . . ., 6;it) G]54(G)+i+1-Tegular
(recall that z;41[Gl>a(g)+i+1 € [(a1t, ast, ..., ait)G]>a(G)+i+1)- This completes the proof
of Lemma 4 O

Corollary 6. If G is a Cohen-Macaulay ring, then the conditions (1), (2), and (3) in
Proposition 1 are fulfilled for the integer a(G).

Proof. We have a(G) > —s (see Remark in this paper). Since G is a Cohen-Macaulay
ring, the sequence ait, ast, ..., ast is G-regular by Lemma 3, so that J; N I* = J,I*"! for
all ¢ € Z by [VV]. Then Lemma 4 means that the sequence a;t,ast, ..., ast is G-filter
regular, and hence the assertion follows from [Tt|, 3.6. a

Let a be an integer with a > —s and d an integer with s < § < depth A. For each
integer m > s, we consider the following two conditions.



(A,,) depth A/J;I**" > § — 1 whenever s <7 <mand 0 < j <.

(Bm) (Ji : @gy1) NIoHH = JiI** whenever s <4 <m < £

Recall that (B,_;) is our condition (3) in Proposition 1. Now let us note the following
lemmas due to [GNN], which are delicately used in this paper.

Lemma 7. Let s < m < £ and assume the condition (By,) is satisfied. Then Jo_1 nIett =
Jor I lifs+1<a<i<m+1.

Proof. See [GNN], Proof of Claim 3. ’ ]

Lemma 8. Let s < i < {. Assume 1;(I) < a+ £ and the condition (Be-1) is satisfied.
Then J;N 17 = J, P~ for all j > a+1+ 1, and hence we have

[(alt, azt, ceey a,;t)G G ai+1t]24+i+1 - (alt, azt, ey ait)G
ifs<i<t.

Proof. Using the same arguments as in the proof of in [GNN], 3.1, we get J;NI7 = J,I7~}
for all j > a + i+ 1. For the last assertion, see in [GNN], 4.1. O

As a direct consequence of Lemma 8, we note the next claim.

Corollary 9. Assume that the conditions (1), (2), and (3) in Proposition 1 are fulfilled
for an integer a. Then J;NI7 = J,I'~ for all j € Z.

Proof. Lemma 8 implies J; N I? = JI7~! for all i > a + s + 1. Then we get the required
equality by condition (2). O

In the rest of this paper we always assume J; is a complete intersection ideal. We
will use repeatedly the result of [VV] that, for each integer h, if J, N I* = J,I*~! for all
1< i< h, then ;NI = J;I*"! whenever 1 <4 < hand 0 < j <s. We also use
the isomorphism M /N “SaM /aN form z mod N to ax mod aN, where M, N, and a
denote an A-module, an A-submodule of M, and an M-regular element, respectively.

Lemma.10. Let h be an integer and let 0 < j < s. Assume that J,NI* = JI'7! forv
all1 <i<h ThendepthA/Iz+J > min{6 — 5,0 +a —1} for all1 < i < h if sois
depth A/T* + J;.

Proof. Descending induction on j. The assertion being trivial for j = s, we may assume
that j < s and that it is true for j + 1. We need to show that the assertion holds true for
j. Suppose that it is not true and take an integer 1 < ¢ < h as small as possible, so that
we have i > 1. We set A = A/J;. Then depth A/I*A + a;11 A > min{6 — 5,0 + a — i} by
the inductive hypothesis on j. We consider the canonical exact sequence

{’Z + aj+1z A

I'A I'A I'A + G/j+1A




of A-modules. Since Jj41 N I* = J;31I*"! and since a;4; is an A-regular element, we get

the isomorphisms _ _ _ _
I'A + aj+1A ~ aj.,.lA A

la¥)

A a4 [-14
as A-modules. We have that depth A/I*"'4 > min{§ — 5,6 +a —i+ 1} by the minimality
of 4, and hence, applying the depth lemma to the short exact sequence above, we get
depth A/I*A > min{6 — 5,6 + a — i}. This is a contradiction, which completes the
proof. O

Corollary 11. Let s < m < {. Assume that J,N I = J,I*" for all1 <i<a+s. Then
depth A/I* > min{6 — 5,0 + a — i} for all 1 <i < a+m+1 if (By,) is satisfied.

Proof. By Lemma 7 together with the assumption that J,NI* = J,I*"' forall 1 < i < a-+s,
we get J;NI' = J,I'"! forall 1 <i < a+m+1, so that the required inequality follows
from Lemma 10. : O

Lemma 12. Let h be an integer and let 0 < j < 5. Assume that J,NI* = J,I*"! for all
1<i<h. ThendepthA/J;I'> 6~ s for all 1 < i < h if so is depth A/I* + J,.

Proof. We use induction on j. If j = 0, our claim is clear since depth A > §. Assume that
j > 0and that depth A/J; _;I' > 6 —s. Let A = A/J;_;. Recall that depth A/I'A > §—s
by Lemma 10. Looking at the following exact sequence and isomorphism:

oA A A o, A
= 3 ——=—=——0 and —
a;I'A  a;I'A  ajA a;I'A It

;;,l bN|

1R

0—

’

we see that depth A/a;I*A > §—s by the depth lemma. Hence depth AT +J;; > 6—s.
We consider the two natural exact sequences
Jiz1 A A Ji—1 A A

— a3 — 3 —— 50 d 0— . -
N IRV /AR N R oy A an Tl TLE TS

0— -0

of A-modules. Here we have J;_,/J;I' N J;_y = J;_,/J;_,I* because
Jj_l N lei = Jj_l n (Jj_lIi + G,in)
= Jj_l.[i + (J]'_l N ain)
= Jiad' +a;((Jj-1:a;)N T)
= Jj_11i+aj(Jj_1 ﬂIi)
= Jj_1[i+ajJ,~_1Ii‘1
= Jj_l.[i.
Therefore we get depth A/J;I* > § — s by the depth lemma. O

Corollary 13. Assume that J,NI* = J,I'™! for all1 < i < a+s. Then the condition
(As) is satisfied if depth A/T* > 6 —s foralll1 <i<a+s

Furthermore, we arrange the following three Lemmas.



Lemma 14. Let s < m < £. Assume that J,NI* = J,I'™! for all 1 <4 < a+s and the
condition (By,) 1s satisfied. Then Io¥ ) JuyIoti=t = J Jo% /], 1 I° as A-modules for
all<a<t<m+1.

Proof. Let 1oV /Jq 1 I%T"1 — JoI°/Jo 1 I°** (z mod J _Jot1 s gz mod Ju o).
It suffices to show this is injective. Let = € I** and suppose aa € Jo_1I**". Then we
have £ € (Jac1 : Go) N I%T = [(Jao1 & aa) NIF]N It C Ju_y N I%* (use the fact
that aq is A/J,_;-regular if @ < s and use the condition (Bn) if @ > s). We shall show
Jo_ N Iet = J,_1I°"~1 In fact, by Lemma 7, we obtain that Jo_1 N ot = J,_Jetit
if s+1 < a < j<m+1 And moreover, by Lemma 7 together with our standard
assumption, we see J,N [ = J,I'"! for all 1 < j < a+m+1, so that Jg N I = J 7!
if1<k<sand1<j<a+m+1by[VV]. Thus the required equality follows. Then
z € Jo_11%t*"! and hence it is injective. : O

Lemma 15. Let s < m < £. Assume that J,N It = JI'™ forall1 <i < a+s. Then
the implication (Bn) => (Amy1) holds true if depth A/I' + J; > min{§ — 5,6 +a — 1} for
alll1<i<a+m+1.

Proof. We must prove that depth A/J, I at+i > §—j whenever s <t1 <m+land0 < a <.
Let us use induction on o. When i = s, our assertion follows form Corollary 13. Let 7 > s.
If @ = 0, it is clear. We may assume a > 0 and it holds true for & — 1. Then, applying
the depth lemma to the natural exact sequences

0 = JoI®H [Ty I = Af T i I — A)Jo 1T =0
and ) ' ' ‘
0— I°H /gy I — Al Ju I — A/I*T >0
of A-modules, we get the assertion by Corollary 11 and Lemma 14. O

Lemma 16. Assume that the conditions (1), (2), and (3) in Proposition 1 are satisfied.
Then . ' '
depth Ia.+z+1/JiIa+z + Ia+z+2 > §—1—2

for all s < i < £ if depth A/T* + J; >min{d—s,0 +a—1i} foralll<i<a+?

Proof. The condition (A,) is satisfied by Lemma 15. Looking at the natural exact se-

quences ‘ ‘ ‘ .
0 — JoHHL/ LT+ 5 AJJ I — A/ 50

and
0— Ia+i+2/.]ila+i+l N A/Ji]'a+i+1 - A/Ia.+i+2 =0

of A-modules, we get depth I¢*i+1/J,[*+ > §—1 and depth ["*+?/J;I atitl > §—j—1by
the depth lemma together with Corollary 11 and (Ag). We consider the canonical exact
sequence

0— Ia.+i+2/JiIa+i N Ia+i+2 N Ia+i+1/JiIa+i - Ia+i+1/JiIa+i + Ia.+1l+2 =50

of A-modules. J,I¢T N I¢t2 C J; N [o++2 = J;Jo+*+! by Lemma 8. Hence we get
the equality Jo+i+2/J [0+ O [o+#+2 = [o+i+2/ J;[e+t+1 50 that the assertion follows from
applying the depth lemma to the exact sequence above. O



We denote by Hi,( ) (¢ € Z) the graded 12 local cohomology functor of G with respect
to 9. Let a;(E) = max{j € Z | [Hix(E)]; # (0)} (i € Z). We are now ready to prove
Proposition 1.

Proof of Proposition 1. The assertion 1 directly follows from Corollary 6. Let us prove the
assertion 2. Since J, is a complete intersection, the sequence a;t, ast,. .., ast is G-regular
by [VV] together with Corollary 9. Hence, passing to the ring A/J;, we may assume s = 0
(cf [GNN], 3.4). For each 0 < 1 < ¢, we put U® = [G/JitG)>a1iy1. Then a;yit is an
U9-regular element for 0 < i < £ by Lemma 8. Let Vv® = y® /at+1tU(’) We have the
natural exact sequence

0— Ut 5 v 45w 40 ()

of graded G-modules. Here W& = [W®) ;11 = [UD]gqiqy & Tt/ JiJo+ 4 Jotit2,
Then depth W® > ¢ —4 — 2 for all 0 < 1 < £ by Lemma 16. We have the claim that

a;(U®Y) < a+i whenever 0 <i < £and j € Z.

In fact, We will prove it by descending induction on ¢. The assertion holds true if 7 = ¢
because U® = (0) (recall that r;(I) < a+£). Let i < £ and assume that a;(U¢+Y) <
a+1+1for all j € Z. Applying the local cohomology functors HJ (*) (j € Z) to the
exact sequence (f), we get the resulting exact sequence

- = Hp(UH) = HRp(V) = Hp(WE) -

of graded local cohomology modules. we have a;(V®?) < a + i+ 1 by the inductive
hypothesis on 7 (recall that W is concentrated in degree a+z'+1).' Thus a;(U®) < a+i,
as ai41t is an U-regular element.

Hence we have in particular that a;(U©) < a for all jE€L. We consider the canonical

exact sequence
02U =G=C—-0 ()

of graded G-modules. Then C = Co ® C; & - -- & C,, so that a;(C) < a (see [GH], 2.2).
Hence we get a;(G) < a for all j € Z.

Now let us prove depth G > §. Firstly, we shall consider the case where ¢ = 0. Then
G=Go®G 1@ - DGy Let 0 < j <r1;(I). By our standard assumption of the depths,
we have depth A/I’ > §, as r;(I) < a. Then applying the depth lemma to the exact
sequence 0 — I7/[7t1 — A/t — A/I’ — 0 of A-modules, we get depth I7/I7t! > §.
Then depth G; > 6, so that depth G > § by [GH], 2.2.

Let £ > 0. Hence U # (0). Suppose that depthG < 6. We put ¢ = depthG and
a = a;(G). Then by [KN], 3.1, we have a < a because a;(G) < a for all j € Z. We have
depthC > t and Hi,(C) = [Hm(C)]a by our standard assumption (recall that depth C; =
depth I7/I’*1 > § for all 0 < j < a — 1 and that depthC, = depth I*/I**! > § —1).
Therefore, from the resulting exact sequence

<+ = 0= 0 — HR(U®) = HEL(G) = HR(C) — -

of graded local cohomology modules from (ff) we obtain depth U® = ¢ and a,(U©®) = «
because @ < a. Then by [GNN], Claim, we have the fact that

U® = (0), depth U® =t — 4, and a,_;(U®) = o+ i for any 0 < i < £.




But let us give a sketch of proof for the sake of completeness. In deed, assume that the
assertion is not true and take i as small as possible. Then ¢ > 0. Since a;_it is ut-
regular, we have depth V&Y =t — 7 and a;; (V@) = a + 4 by minimality of 3. By
depth WD > 6 —i—1 we obtain the resulting exact sequence

S 50— 0= HEH(UD) = B (VD) - H (WED) — - -

of graded local cohomology modules from (f). Hence, because W1 = [w0=1],,; and
because a,_;(VE™D) = a+i < a +1, we get U # (0), depthU® =t — i and a,_;(U9D) =
a + i, which is contradiction to the choice of 1.

Thus we get U® # (0) for any 0 < i < £. However, this contradicts U@ = (0).
Therefore depth G > 6. O

We note a direct consequence of Proposition 1.

Corollary 17. Let the ring A be Cohen-Macaulay and assume that there exists an integer
a > —s such that

M ry;(I)<a+{,

(2) J;NIi=JI7! for alll1 <i<a+s,

(3) (Ji : @ig1) NIM=sHH = J,I"=% for all s <1 < ¢, and

(4) depth A/I* + J; > min{d — 5,d + a — i} for all1 <+ §a+£.
Then G is a Cohen-Macaulay ring. Moreover so is R(I) := ;5o 1" if a < 0.

By [TI], we get the last assertion on the Cohen-Macaulayness of the Rees algebra R(I)
(see Remark in this paper). Next let us consider the case where a(G) = n —s. We have
the following corollary.

Corollary 18. Let A be a Cohen-Macaulay ring and assume that depth A/T' + J; >
min{d —s,d—s+n— z} for all1 <41 < n—s+{. Then the following two conditions are

equivalent.
1. G is a Cohen-Macaulay ring with a(G) =n — s.

2. (1) () <n-s+8
(2) J,N It = JI'! foralll1 < i< m, and
(3) (Ji @ @gy) NIM=sHH = JIn=5% for all s <1 < L.

Proof. Assume the condition 2 is fulfilled. Then the Cohen-Macaulayness of G follows
from the assertion 2 in Proposition 1. We shall prove a(G) = n — s. Since the sequence
ait, ast, . . ., ast is G-regular, we may assume s = 0 (cf. [GNN], 3.4). Recall that the exact

sequence
0009 2G->C—0 (1)

of G-modules in the proof of Proposition 1. Since a(G) < n, it suffices to show dim C, = d.
Suppose [Cy], = 0 for all p € Spec A with dim A/p = d. Then, since the ring A is Cohen-
Macaulay and since C,, = I*/I™*! as A-modules, I}' = (0) for all p € V(I) with htap =0
by Nakayama’s lemma. This contradicts to the choice of n. The converse implication
follows from Corollary 6. » O




In the rest of this paper we consider the case where § = d. We always assume our
basic generating set {a1,as,- -, ap} is an I-filter regular sequence, which means a; & p
whenever 1 <1 < ¢ and p € Assy A/J;-1\ V(I). If the field A/m is infinite, then there
exists such a generating set of J by [A], 2.3.

Lemma 19. Let s < m < £. Then the implication (A,,) = (Bn) holds true if r; < a+1
for all s <i<'m.

Proof. Let s < i < mand L = (J; : ajy1) N I°"*. Then L D J;I°*:. Take any
p € Assy A/J; 1%+, Tt suffices to show that LA, = J;I°**A,. If p & V(I), then a;41 € p

because {aj, a2, - ,a¢} is a good generating set, so that we have nothing to prove. We
may assume p € V(I). The condition (A,,) implies ht4p < ¢, as § = d. Then LA, =
JiIoti A, sincer; < a+ 1. O

Proposition 20. Let the ring A be Cohen-Macaulay and assume that there erists an
integer a > —s such that

() () <a+d,

(2)r;<a+iforalls<i</,

(8) JsNI'=J,I'" ! forall1 <i<a+s, and

(4) depth A/I* + J; > min{d — s,d+a — i} forall1 <i<a+¢.
Then G is a Cohen-Macaulay ring. Moreover so is R(I) if a < 0.

Proof. Since (A;) is satisfied by Corollary 13, (B,—;) is satisfied by Lemma 15 and 19.
Therefore the assertion follows from Corollary 17. O

Notice that the conditions (1), (2), and (3) above are necessary conditions of the Cohen-
Macaulayness of the ring G with a(G) = a (recall that the a-invariant formula: a(G) =
max{r; —i | s < i < £} U {r;(I) — £} (cf. [U],1.4)). '

Let us give some consequences of Proposition 20. The following corollary is a gener-
alization of a result due to [VV].

Corollary 21. Puta = max{r; —i | s < i < £}U{r;(I)—¢} and assume that depth A/I' +
Jy > min{d — s,d+a —i} for all1 < i < a+£. Then the following two conditions are
equivalent.

1. G is a Cohen-Macaulay ring.
2. A is a Cohen-Macaulay ring and J,NI* = J,I*"! forall1 <i<a+s.

When this is the case, we have a(G) = a, and hence the ring R(I) is Cohen-Macaulay if
a<0.

The last assertion directly follows form a-invariant formula. The next corollary covers a
result given by [N] in the case of ideal adic filtrations.

Corollary 22. Let A be a Cohen-Macaulay ring and put a = max{r;—i | s < ¢ <
YU {r;(I)—¢}. Assume that depth A/I'+J; > min{d—s,d+a—i} forall1 <i<a+¢.
Then the following two conditions are equivalent.




1. G is a Cohen-Macaulay ring.

2. G(I,) is a Cohen-Macaulay ring for allp € V(I) with htap =s.

When this is the case, we have a(G) = a, and hence the ring R(I) is Cohen-Macaulay if
a<0.

Proof. It is enough to prove that the condition 2 implies JNIt = JI' tforalll < i< a+s
by Corollary 21. We will use induction on 4. If 1 =1, the assertion is clear. Let ¢ > 2 and
assume that it holds true for i — 1. Take any p € Assq A/JI*~1. It suffices to show that
(J,NI)A, = J;,I'"' A, because it is trivial that J,NI* D J,I*"'. We may assume p € V(I).
Thanks to Lemma 12, we get depth A/J,I*"! > d — s by the inductive hypothesis on 1,
and hence ht 4 p = s. Since G(I,) is a Cohen-Macaulay ring, the sequence ait, ast, . . . , ast,
is G(I,)-regular, so that J,A, N I7A, = J,I'"' A, for all j € Z by [VV]. O

By [VV], when I is an m-primary ideal, G is a Cohen-Macaulay ring if so is A and
r;(I) < 1. Hence the following result follows from Corollary 22.

Corollary 23. Let A be a Cohen-Macaulay ring and put a = max{r;—i | s <1 <
ey U{r,(I) —£}. Assume that depth A/I*+ J; > min{d—s,d+a—1} foralll1 <i<a+l
Then G is a Cohen-Macaulay Ting if a generic reduction number n is at most 1.

Let us close this paper with the following result.

Theorem 24. Let A be a Cohen-Macaulay ring and assume that depth Al' + J; >
min{d — s,d—s+n— i} foralll<i<n-—s+ L. Then the following three conditions

are equivalent.
(1) G is a Cohen-Macaulay ring with a(G) =n —s.
(2) () ry() En—-s+¢,
(ii) J,NI'=JI'"! forall1 <1< n, and
(iii) ; <n—s+1 forall s <i <L

3) () () <n-s+¢

(i) J,NI*=JJI"! foralll <i<m, and

(iii) (Ji : @) NI = JIP% for all s < i < L.
Proof. (1) = (2): Lemma 3 implies the sequence ait, azt, . . ., ast is G-regular, so that the
condition (i) holds true by [VV]. The conditions (i) and (iii) follow from the a-invariant
formula: a(G) = max{r; —i | s <1 < £}U{r,;(I)—£}. (2) = (3): Since the condition (Ay)
is satisfied for n — s by Corollary 13, we get (Be—1) is also satisfied for n — s by Lemma
15 and 19. The implication (3) = (1) directly follows from Corollary 18. O
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B-SEQUENCES AND APPROXIMATIONS OF
GENERALIZED COHEN-MACAULAY IDEALS

YUKIHIDE TAKAYAMA
(RITSUMEIKAN UNIVERSITY)

INTRODUCTION

Relation between Bourbaki sequences and local cohomomogies has been
studied several times, for example, by Evans-Griffith [5] and Auslander-Buchweitz
[2]. In [6], we studied approximations of generalized Cohen-Macaulay modules
by (non-CM) maximal generalized Cohen-Macaulay modules.

Let (R, m) be a Gorenstein local ring and consider a generalized Cohen-
Macaulay ideal I C R of codimension 7(> 2), which is an ideal such that the
local cohomology is H:(R/I) = M; 1 =0,... ,n—r —1, for some finite length
R-modules M;. Then there exists a maximal generalized Cohen-Macaulay
module M fitting into a length r long Bourbaki sequence

(1) 0—F_,—-—F—M-—I—0 (ezact)

where F; are R-free modules, such that H:(M) = H:(I) for i < n —r and
H=™+Y(M) = 0. If we restrict ourselves to consider M satisfying the additional
homological condition :

(2) H.(M)=0 (n—-r+2<i<n-1),

then M is unique up to direct R-free summands (See Proposition 8). We will
call the Bourbaki sequence (1) an approzimation sequence and M an approz-
imation module of I. The proof of this fact is carried out by constructing,
with a homological method, approximation modules M that always satisfy the
condition (2).

In this paper, we are interested in approximation sequences that do not
satisfy the condition (2). We do not know a systematic method to construct
such sequences, particularly in the case of r > 3. Recall that length 2 Bourbaki
sequence can be constructed by finding basic elements ([4] Chapter VII §4).
In section 1 we introduce the notion of b-sequences for Bourbaki sequences
of arbitrary length, which plays a similar role to basic elements. Then we
give a characterization of long Bourbaki sequences in terms of b-sequences
(Theorem 3). Section 2 gives a characterization of (non-trivial) approximation
sequences that do not satisfy the condition (2) in a typical case in terms of
b-sequences (Theorem 12). Some examples in the case of 7 = 3 are considered
in section 3, where we focus on the special case of approximation modules M
such that HiH(M) = H*Y(M) = K (field) and H:(M) = 0 otherwise for
1< N.



For a set S, we will denote by (S) the module generated by S. Also, for a
module M over a ring R, the ith syzygy module will be denoted by Q;(M).

1. B-SEQUENCES FOR MODULES

1.1. b-sequences and long Bourbaki sequences. Recall that length 2
Bourbaki sequences over a normal domain R

00— F —>M-—1-—0,

where F' is a R-free module, M is a finitely generated torsion-free R module
and I C R is an ideal, can be constructed by finding basic elements in M ([4]
Chapter VII §4). In this section, we introduce the notion of b-sequence , which
is a couterpart of basic elements for long Bourbaki sequences

0O —F,— - —Fh—M-—I,
in particular for r > 3. We first prove
Lemma 1. Let R be a Noetherian ring and M be a finitely generated R-module
with a presentation 0 — Kere — U -+ M — 0, with a finitely generated

free R-module U. Also let f : F — G be a monomorphism of R-modules
where G is free of rank G = q. Then, following are equivalent.

(2) We have an ezact sequence

0—wF-Le—omMm—I1—0 (ezact)

for an ideal I C R.

(it) We have By,...,B8;, € U\Kere and ¢ € Homg(U, R) such that
(a) Ker(p) = (A, -..0,) + Kere, and
(b) we have the following commutative diagram

0 0
0 — KerfBo f —_— Ker g — 0
\
0 — F N G
Bof ﬂJ
0 —— (B,...,B8;) NKere —— (by,...,0,)
0 0

where B(m;) = B; for all i with {m,... ,m,} a free basis of G.
In this case we have I = Im .

Now we introduce the notion of b-sequence .




Definition 2. Let R be a Noetherian ring. For a finitely generated R-module
M with a presentation 0 — Kere — U — M — 0 and a R-module
monomorphism F — G where G is R-free, the sequence fy,... ,0, € U\ Kere
together with ¢ € Hompg(U, R) satisfying the condition (ii) in Lemma 1 is
called a b-sequence for the pair (f : F — G, M).

From Lemma 1 we immediagely have a characterization of long Bourbaki
sequences.

Theorem 3. Let r € Z ber > 2. Let R be a Noetherian ring and M be a
finitely generated R-module. Consider a R-module homomorphism f, : F, —
M from a R-free module Fy. Then, following are equivalent.

(i) We have a long Bourbaki sequence of length T
0— R . Iy By 51 o

where I C R is an ideal and F; are R-free modules.
(1) There ezists a b-sequence ({B;}:, p) for (Ker fi < Fi, M) such that

0—)Fr_1fr—_i"'£)F2‘I2—)Kel'f1———)0 (ezact)

Remark 4. Notice that a b-sequence in the case of length 2 Bourbaki sequence
is not the same as a sequence of basic elements in the sense of [4]. If we
choose a suitable b-sequence {B;} under a suitabule condition, {e(B;)} can be
a sequence of basic elements.

1.2. Sygygies of Artinian Gorenstein rings. A b-sequence has slightly
more explicit description for some class of modules over Gorenstein local rings.
Let (R, m) be a Gorenstein local ring of dimension n. We will denote the dual
Hompg(—,R) by (—)*. Let ;, C R (i=0,...,d) (d < n—r—1) be Gorenstein
ideals of grade n and set M; = R/J;. Let (F?,8") be a minimal R-free
resolution of M;. By self-duality of the resolution we immediately have

Lemma 5. For all i, Qi(M;) = Qn_ip1(M;)* = 0511 (Qniya (M)*)
Now consider the module M = @% , Q:(M;). By Lemma 5 we have

Proposition 6. Let ({5}, ) be a b-sequence for M. Then ¢ = @LO a; 03,@
where a; € 0f (S%u(M;)*).

This range of a; has more explicit description if J; = m = (zy,... ,7,) and
R= S=K[.’L'1,...,.’I,‘n].

For I = {i1,... ,iu} C {1,... ,n} = [n], we deonte by e; a base e;; A---Ae;,
of the Koszul complex K, over S of sequences zi,...,zZ,. A dual base to e;
is denoted by e}. For J, K C [n] with JN K = 0 we define o(J,K) = (~1)*
where ¢ = §{(j,k) € J x K | 7 > k}. Then we have z; A zx = o(J, K)zjuk-




Corollary 7. Let M; = K(= R/m) for all i. Then a; in Proposition 6 is an
elemet from

<Z(—1)k+10(=]\{jk}a [n] = (I\{Fe}))Ts€lm—ngepy : I = g1y -+, 3} C [n]>

k=1
2. APPROXIMATION OF GENERALIZED COHEN-MACAULAY IDEALS

2.1. Approximation modules. Let (R, m) be a Gorenstein local ring and
consider a generalized Cohen-Macaulay ideal I C R of codimension r (r >
2) such that H:(R/I) = M; for i = 0,...,n —r — 1 where M; are finite
length R-modules. Then we have the following result, which is an immediate
consequence from Lemma 1.3 [1] and Theorem 1.1 [6].

Proposition 8. For a generalized Cohen-Macaulay ideal I C R of codimen-
sion r(> 2) there ezists a mazimal generalized Cohen-Macaulay module M
fitting into a Bourbaki sequence

0—F 1 — - —F—M—I—I
such that Hi (M) = Hi(I) for i < n—r, H-"tY(M) = 0. Moreover, if we
assume the homological condition (2), then M is unique up to R-free direct
summands.

Notice that in Proposition 8 , the ideal I is approximated by the module
M in a similar sense to Auslander-Buchweitz (see [6] for detail). We will
call the maximal Cohen-Macaulay module M (or long Bourbaki sequence) an
approzimation module (or approzimation sequence).

More specific result can be obtained when we consider a special class of
ideals.

Proposition 9. Let (R,m) be a regular local ring and let I C R be an ideal
of codimension r (> 2). Assume that we have an approzimation sequence

O—)F,-_1—)"'——)F1—)Qt+1(N)®H—)I—)O

for some R-free modules H, Fi,...,F._1 and a finite length R-module N.
Then, we have

(3) H"‘(R/I)_{O i<n-—-riFt
Also the converse holds if
(i) r=2, or

(ii) r > 3 and we assume the homological condition (2) for the approzimation
module M of I C R.

As proved in Proposition 8 and Proposition 9, the homological condition (2)
assures the uniqueness of approximation modules M. If we do not assume this
condition, we have a large varieties of M even in cohomologically very simple
cases. For example,




Proposition 10. Let 7 > 3 and 0 < t < n —r — 1 be integers. Let S =
K[z1,...,zs) be a polynomial ring over a field K and m = (z1,... ,Zn). Let
M be a mazimal generalized CM module over S with depth M = t+1. Consider
a minimal S-free resolution of M :

F.ZO——)F_t_l‘pﬂgan_t_Q‘pﬁz"'&)Fl—wl')Fo—(pi)M——)O.

Also let N be a non-zero finite length module over S. Then the following are
equivalent.

(i) For anyl € Z such thatn — 7 +2 <1 <n—1, we have

. K ifi=t+1
Hi(M)={ N ifi=1
0 ifi<ni#t+1,l

('L’L) Q"_l(M) = Fn—-l/En+t+2—l,- and NV = Qn_l(M)*/IIIl (p,*,_,.

where we denote Q,(K) simply by E,, and we define (—)* = Homg(—, S(-n))
and (—)" = Homg(—, K).

A typical class of the modules that do not satisfy the homological condition
(2) is Dy Qi1 (M:) ® B, 2 (IV:) for finite length modules M; and
N;, which we will consider in the next subsection.

2.2. Approximation sequences of non-trivial type. In this subsection we
assume (R, m) to be regular local. In the proof of Proposition 8 we construct
approximation modules M in a homological method, which always entails the
homological condition (2). See [6] and [1]. Now we are interested in the follow-
ing problem: how can we construct apprximation sequences as in Proposition 8
that do not satisfy the homological condition (2)? The simplest answer to this
question is to make the direct sum of an approximation sequence as in Propo-
sition 8 and the following exact sequences:

O—+G$f)—>--'——>G§i)——>Qi(M)—>O (i=n-r+2,...,n—1)

where N; are any finite length R-modules and G are minimal R-free res-
olutions of N;. Then we have a Bourbaki sequence with the approximation
module M’ = M & @, +2$(IV;) and the map from M’ to the ideal I is
trivial on @:’;:_T +2§4(V;) part. We will call this an approximation sequence
of trivial type.

‘Now we will consider approximation sequences of non-trivial type. Letr € Z

be r > 2 and n > r + 1. Consider a long Bourbaki sequence of length r
(4) 0 F - —FB—F-SMoN-5HT1—0

where I C R is a generalized Cohen-Macaulay ideal of codimension r, F;
are R-free modules, and M = @7 Qi1 (M;) and N = D i (V).
From this sequence, we construct the following diagram, where U, —3 M and



V. =% N are minimal free resolutions of M and N , and the third row is the
mapping cone C(a,) of a chain map a,, which is a R-free resolution of I.

0
1

— F, — F, % Ker¢ —0
az | apd 4

— eV, — UeV, & MeN —=0

1¢
— UeVieFly, — UyoVy, — I -0

4
0

Under this situation, we have

Lemma 11. Following are equivalent.

() the approzimation sequence (4) is of non-trivial type
(i1) For any free basis {m;}; of Fy there ezists an indez i such that a;(m;) ¢
Uo and al(mi) ¢ %

From Lemma 11, we immediately have

Theorem 12. The apprizimation sequence (4) is of non-trivial type if and
only if
(i) there exists a b-sequence {;}:(C Uy ® V;) and
(it) the submodule N := ({f3;}:) of Uy ® Vi cannot be decomposed in the form
of N =A® B for some (0#)A C Uy and (0#)B C V,

3. SOME APPLICATIONS IN CODIMENSION 3

3.1. b-sequences for E;;, and E,;, ® E,_(d) (d € Z). As an application
of our theory, we will consider a special case. Let S = K [z1,...,z,] and
m = (z1,...,Z,). We consider the standard grading with deg(z;) = 1 for all
i. Also, in the following, the dual (—)* always denotes Homg(—, S(—n)). We
now consider the graded approximation module M = E,;, and E¢1® E,_,(d),
for arbitrarily d € Z.

First of all, by Lemma 1 and Corollary 7 we have the following.

Corollary 13. Following are equivalent.
(i) We have a length 3 Bourbaki sequence
0—F LG5 B @B.i(d — I(c) — 0 (ezact)

where I C S is a graded ideal and F' and G are finitely generated S-free
modules.

(#1) rank F' = rank G —n + 2 — (*}') and we have a b-sequence ({8;}:,)
for (f,Ety1 ® Eq1(d)) where B € Kipq @ Kpo1(d)\Es+2 ® En(d) and




¢ = (a,b) € Ax B, with

A = < 3 (=17 o (L\ {5}, (In\L) U {i; D) zs;e{mpryogyy | L= {i1, -+ sine} C [n]>

=
B = ((-1)'mjefygy — (1) zigfyy | 1 Si<d < n),
and thus ¢ : Ky ® Kn_1(d) — S(—n) is a degree n+c’ homomorphism.
In this case, we have I = p(Kyp1 ® Kn_1(d))(—c)
We also consider the case of M = Ey,,.
Corollary 14. Following are equivalent.
(i) We have a length v (> 3) Bourbaki sequence
0—F_— - —FKh—FR Ly B — I(c) — 0 (ezact)

where I C S is a graded ideal, and F; are finitely generated S-free modules.
(i4) We have rankKer f; = rank F; +1 — (":1) and a b-sequence ({B;}; C
Kt+1\Et+2, pE A) fOT (Ker fl — Fl, Et+1) where

A= <i(—1)j+10 (L\{5;}, (P\L) U {631 zi,€{mpmogy | L = {1, - yins} C 1]

=1

and thus ¢ : K,y1 — S(—n) defines a degree 'n + ¢’ homomorphism. In
this case, we have I = ¢(Kit1)(n —c).

A small application of this explicit formula is

Corollary 15. There is no graded ideal I C S of codimension r (> 2) of
depth(S/I) = 0 such that local cohomology is trivial except Ho(S/I) = K(c)
(for some ¢ € Z) and having a length r approzimation sequence with approzi-
mation module E;.

Remark 16. By Proposition 9 it is assured that an ideal as in Corollary 15
has a length r approzimation sequence with approzimation module Ey®H, with
non-trivual S-free module H. We will show later that there erists an approzi-
mation sequence with approzimation module Ey ® E,_;, due to Corollary 13.
See Ezample 20.

3.2. Numerical condition for codimension 3. Now we consider in par
ticular the case of Corollary 13 . The existence of approximation sequences as
in Corollary 13 only implies that codim I < 3. To assure that the codimension
is exactly 3, we need additional condition. We have

Proposition 17. Letn > 4 andt < n—4. Assume that we have the following
long Bourbaki sequence

P q
(5) 0— EPS(-a;) — P S(~b;) — Esr1 @ Ena(d) — I(c) — 0

=1 =1

)



with I C S a graded ideal and ¢ € Z. Then we have codimI < 3 and the
equality holds if and only if

Lg=p+(";)+n-2
q P ’

2.) b= ai=n’—2+dn+c+d+ (?:12) + (";1)@-

=1 i=1

3. (zmd

q /4 .
S = al = n®—(3+2d)n>+ (d® +4d +1)n — ¢ - d?
i=1 =1

+(n;1>(t+1)2— (";2)(2t+1)—2<’:__f>

3.3. Examples. Now we give a few concrete examples in codimension 3.

Example 18 (approximation module Fy,; with ¢ = depth S/I =1). We first
give an application of Corollary 14. Namely, a codimension 8 ideal I with ap-
prozimation module Eyyy. Lett =1 and n = 6. We can choose a b-sequence
({B:}i,a) with a € A and B; € K;\E; as follows:

a = zT1T4€], + T1T5€]5 + T1Teelg + TaTalsy + T2Tseqg
+ZoT6€5g + T3Ts€3, + T3T5€355Y + T3Tgelq
B = e, P[r=e, B3 = €23, P4 =ess, Ps5= ey, ,36 = €56

Then we obtain the long Bourbaki sequence
0— $%(-3) L5 5%(-2) L B, 5T —0.
where '

f= T3 —T9 x; 0 0 0
0 0 0 Te —T5 T4 ’
g(m;) = 8a(B:), i = 1,...,6, with S~%(=2) = Dy_; S - my, and p(Ba(e;;)) =
ziz; of (4,7) = (1,2),(1,3),(2,3),(4,5), (4,6), (5,6) and ©(3(eij)) = 0 other-
wise. and I = (z1, %2, 23)(Z4, 5, T6), with codimI = 3.

Example 19 (approximation module E;y; @ E,_; with ¢t = depth S/I =1). We

continue to consider the situation in Ezample 18. As an application of Corol-
lary 13, we can see that the same ideal fits into a long Bourbaki sequence with
approzimation module Ey 1 & E,_; = F) ® Es. In this case, we can set a € A
as in Erxample 18 and

b= —137974B1y = T3xoT2e}456 + T3ToT4€d 0556 € B.

Also we set (i,...,0s to be the same as those in Ezample 18 and (§; =

— 2 — — - —
T1T2T4€14 — 23456, P8 = T1T2€14 — €12356, P9 = €13456, P10 = €12456, P11 = €12346,
F12 = e12345. Then we have an approzimation sequence of non-trivial type

0 — S%(=3) & S(—6) -1+ 55(—2) @ S°(=5) - Er ® Es 51 — 0



where

z3 —zo 23 0 O 0 O 0 0 0 0 0
f=10 0 0 zg —=5 T4 0O o0 0 O 0o 0|,
0 0 0 0 0 0 =z —z4 T —IT3 —Ts Ts

g(mi) = (02 ®5)(B), i = 1,...,12, with $°(-2) ® S°(=5) = @2, S m,
and o(@alen)) = s for () = (1,2),(1,3), (2,3), (4,5),(4,6), (5,6) ond
©(y(ei)) = 0 otherwise. Furthermore, (05 (e23456)) = TiT273, (05 (€12356)) =
23334, and (05 (eijum)) = O otherwise. The ideal I 1is the same as that in
Ezample 18. We can also check that this sequence satisfies the numerical con-

dition in Theorem 17

Example 20 (approximation module Ey; © En_1(d) with ¢ = depth S/I = 0).
By Corollary 15, we do not have a long Bourbaki sequence with an approzima-
tion module By and a codimension 3 generalized CM ideal I. However, there
are long Bourbaki sequences with approzimation modules E, ® Es(d) ford € Z,
which is an application of Corollary 13. Letk =1 and n = 6. Then, we choose
a b-sequence ({Bi}i, ) as follows: We set B; € K, ® Ks(1) to be

Bi = —Te€i345 + T5€12346, B2 = xéea - 2?%613456,

Pz = xéez - 1?%‘312456, By = 1"%33562 — T1€12345,

Bs = 1‘327662 - 3%312346: Bs = —1‘§€12346 + 1‘3612456,
Br = e23ass, Bs = e123s6-

Also let ¢ = (a,b) be
= g¥e! + impel + TT3e} + TiTa€] + TiTsE] + T3T6E]

a
_ 5 * 5 * 5 % 5 %
b = ToTeelasss + TaT5€12345 T T3TeC13456 + T2T6€12456

Then we have a non-trivial approzimation sequence
05 F 16 -5 B oEs(1) 25 1(2) >0

where g(m;) = B, i = 1,...,8, and F = S(-10) ® S%(=17) = (u,v,w) with
F(u) = zhmg — zims + zime, f(v) = —TIM1 + Tema — Tsms and f(w) =
—zimy — Zymg+T3ms —T3my+zizamg. The map ¢ is as follows: #(z;) = ziz?
(i=1,...,6), ¢(s(e12s15)) = 7575, $(0s(€12346)) = 376, B(0s(er23s6)) =0,
¢(35(€12456)) = xzxé, ¢(35(€13456)) = stg, and ¢(35(€23456)) = 0. The ideal
is I = Img = z°m + (2376, 1375, 7373, To23). Finally we can check that this
approzimation sequence satisfies the numerical condition of Theorem 17, so
that codim I = 3.
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Buchsbaum Stanley—Reisner rings with linear
: resolution

Naoki Terai (Saga University)

and
Ken-ichi Yoshida (Nagoya University)

1. INTRODUCTION

Let A be a simplicial complex on V = {z1,...,z,}. Let k[A] = S/Ia denote the Stanley-
Reisner ring of A over a field k, where S = k[X, ... ,X,] and I, is the ideal generated by
all square-free monomials X;, - -- X;, such that {z;,...,zi,} ¢ A. Let

0— @ S(=j)rs® 25 ... 2y P S(—4)s*® L35 = A= 5/In =0
jez j€z
be a graded minimal free resolution of A over S. Then
reg A max{j —i|Bi;(A) # 0}, the Castelnuovo-Mumford regularity of A;
indeg A := min{j|(Ia); #0}, the initial degree of A.

In general, reg A > indeg A — 1, and we say that 4 = k[A] has a g-linear resolution (abbr.,
A is g-linear or A is g-linear) if the equality holds and indeg A = ¢. That is, A is g-linear if
and only if the graded minimal free resolution of A over S is the following form:

0— S(—(g+p—1)* = S(—(g+p— )Yt o = S(—q)r 5 S+ A= 0.
If we put deg X; = 1 for all 4, A = k[A] is a homogeneous reduced k-algebra with the unique

homogeneous maximal ideal m = (z1,...,7,)A. Also, if we put d = max{#F|F € A} and
¢=n —d, then dim A = d and codim A = c.

Let f; = fi(A), 0 < i < d—1, denote the numbers of i-faces in A. We define f_; = 1. We
call f(A) = (fo, f1s-- -, fa-1) the f-vector of A.

Also, we define the h-vector h(A) = (ho, hy, ..., ha) of A by

dft d
(11) Z(ﬂ_lt _hotht+---+hat®

1—t)F (1-t)
Let e(k[A]) denote the multiplicity of k[A]. It is well known that e(k[A]) = fa-1(A) =
Sino hi(&)- |

Definition 1.1 ([StVo]). Let A = k[A] be a d-dimensional Stanley-Reisner ring. Then it is
Buchsbaum if H:(A) = [H: (A)]o for all 4 < d. Then the invariant

=0

d-1
ra)= 3 71 dimafi ()

i=0
is called the I-invariant or Buchsbaum invariant of A.
In this talk, the following two theorems play important roles.

Theorem 1.2 (Hochster’s formula). Let k[A] be a Stanley—Reisner ring and m the unique
homogeneous mazimal ideal of k[A]. Then the Hilbert series of the ith local cohomology



module H: (k[A]) is given by

' _ / 1 \#(F)
F(HL(k[A]),t) = Y dimg Higipyoa (link aF3 k) 5=

Fea
where link A(F) ={GE€A|FNG =0, FUG € A}.
If we define the a-invariant of a d-dimensional graded ring A by
a(4) = max{m € Z| [Hy(A)lm # 0},
then we always have a(k[A]) < 0.

Theorem 1.3 (Hoa—Miyazaki theorem). If A is a Buchsbaum homogeneous k-algebra,
thenreg A < a(A) + dim A + 1.

2. MOTIVATION

In [EiGo], Eisenbud and Goto investigated rings with linear resolution and showed the
significance of this property. Let us pick up some important results in the class of Stanley~
Reisner rings. Froberg [Frl, Fr2] classified all A for which k[A] has 2-linear resolution.
Hibi [Hi] gave a necessary and sufficient condition for a Buchsbaum Stanley—Reisner ring to
have linear resolution in terms of the reduced homology of the simplicial complex and the
a-invariants of its links.

Also, there is a well-known criterion for a Cohen-Macaulay (Stanley-Reisner) ring to
have linear resolution in terms of its h-vector or its multiplicity with given initial degree and
codimension (see e.g. [EiGo]). However, as for Buchsbaum case, it seems that there is no
such a criterion. Hence we want to study the structure of Buchsbaum Stanley—Reisner rings
with linear resolution in connection with their multiplicities.

3. SOME BASIC RESULTS AND FUNDAMENTAL CONJECTURE

Now let A = k[A] be a d-dimensional Buchsbaum Stanley-Reisner ring with g-linear
resolution, and put ¢ = codim A. Then we have ¢ < d + 1. Indeed, by Hochster’s formula,
we have ¢ = indegA =regA+1 < d+ 1. If ¢ = d+ 1, then A is just a (d — 1)-skeleton
of 2¥. So we may assume that 2 < ¢ < d. Then since 4 is a Buchsbaum Stanley-Reisner
ring, [H} (A)]; = 0 for all i < d and for all j # 0. On the other hand, since A is g-linear,
(Hi(A)]; = 0for all j # ¢—1—4. In particular, H:(A) = 0 for all i # q — 1, d. Also,
a(A) < ¢ —d— 1. Furthermore, by Hoa-Miyazaki theorem, we have that ¢ — 1 = reg A <
a(A)+d+ 1. In particular, a(A) = ¢ —d—1 or g— d — 2. By the above observation, we have

Proposition 3.1. Let 2 < q < d. Let A = k[A] be a d-dimensional Buchsbaum Stanley-
Reisner ring with g-linear resolution, and put ¢ = codim A. Then

(1) Hi(A) = [Hi(A)lo = Hi_y(Ajk) =0 for alli # g —1,d.

(2) HEH(A) = [HIH(A)lo = Ho—a(Ask).

(3) [HE(A)lo = Ha—1(A;k) =0. In fact, a(A) =g—d—1or=q—d—2.

Hence it seems that h := dimy H%"}(A) is an important invariant. We focus this invariant
and prove the following fundamental theorem on Buchsbaum Stanley—Reisner rings with
linear resolution. See also [TeYo], [EiGo] and [Hi].




Theorem 3.2 (Properties of Buchsbaum Stanley—Reisner rings with linear res-
olution). Let c,d,q be integers with ¢ > 1 and 2 < q¢ < d. Suppose that A is a d-
. dimensional Buchsbaum Stanley-Reisner ring with q-linear resolution and codimA =
Put h = dimy HS*(A). Then
(1) e(4) = /Cj;q;l\ h/d 1\ andl(A):h/d‘}\.
(2) The h-vector of A is /1, 6y /C;?_I 2\, /d\h /q_(‘i_l\h ,(=1)d-at /Z\h\
(3) h satisfies the following inequality: ‘
(c+q—2)---(c+1)c
dd—1)---(d—q+2)

Proof. (1) follows from (2). First, we prove (2). Since indeg A = g, one has

(31) 0 S h S hc,d,q =

hp = /C+f7—1\ forallp=0,1,...,q—1.

On the other hand, by the similar argument as in the proof of [Tel, Theorem 2.1], we have
dimg[HE(A)]-1 = d - ha + ha-1

d+1
dimk[H:,(A)]_g = / . ; \ he+d-hg_1+ hg2

. d+p-1 d+p—2 :
dlmk[H:\(A)]—p=/ z \hd+/ pfl \hd‘1+"'+d'hd—p+l+hd—l’

, 2d—q— 2d—q—2
dimg[H(A),a = | d_"q \hd+/d_q_1\h_ 4o d gy + by

By Proposition 3.1, we have
d-1

(~1)ha = X&) = 3 (1) dime Hi(A; k) = (~1)°h

i=—1

and dimg[H2(A)]; = 0 for all j = —1,-2,...,¢ — d. Solving the above equations, one can
easily obtain that h, = (—1)P~9*! (:)h forallp=gq,...,d —1,d. That is, we get (2). Also,

2d )
/d q -I(—II\ +d-hgt+he = dimg [H(A)g-a-1 > 0
implies that
[c+q—2) / d \ h>o.
g—1 g—1
Namely, h < hcgqgq, as required. O

Based on the above theorem, we pose the following conjecture:

Conjecture 3.3. Let d, c, q, h be integers withc > 1, h 20, and 2 < ¢ < d. Then the
following conditions are equivalent:




(1) There exists a Buchsbaum Stanley-Reisner ring A =
such that dim A = d, codim A = ¢ and dim HZ"}(A) =
(2) The above inequality (3.1) holds.

Remark 3.4. In case of ¢ = 2, the above conjecture is easy to prove. Also, we can prove
that this is also true in the case of ¢ = d = 3; see also the last section.

k[A] with g-linear resolution
h. ~

4. BUCHSBAUM STANLEY-REISNER RINGS WITH MINIMAL MULTIPLICITY OF TYPE q

In the following, let ¢, d, g be integers with ¢ > 2, 2 < ¢ < d. Let A = k[4;] be a
homogeneous Buchsbaum k-algebra of dimension d with the unique homogeneous maximal
ideal m = A,. In [Gol] and [Go2], Goto proved the following two inequalities

d-1
d— )
dimg A; < e(A)+d—-1+1(A4), and e(4)>1+ Z /z _ ll\lA(H;‘(A))

i=1
and called the ring A a Buchsbaum ring with mazimal embedding dimension (resp. a Buchs-
baum ring with minimal multiplicity) if equality holds in the first (resp. second) inequality.
Also, he proved that for any Buchsbaum homogeneous k-algebra A, A has maximal embed-
ding dimension if and only if it has 2-linear resolution, and that if A has minimal multiplicity
then it has maximal embedding dimension.

In this section, in the class of Stanley—Reisner rings, we define the notion of Buchsbaum
ring with minimal multiplicity of type q and prove that such a ring has g-linear resolution; see
Theorem 4.1. Also, A = k[A] is a Buchsbaum Stanley—Reisner ring with minimal multiplicity
of type 2 if and only if it has minimal multiplicity in the sense of Goto; see Proposition 4.2.
Theorem 4.1 (Minimal multiplicity of type q). Let A = k[A] be a d-dimensional
Buchsbaum Stanley-Reisner ring, and put indeg A = q and codim A = c. Then

(1) e(A) satisfies the following inequality:

c+dfc+q—2)\
> — .
e(4) 2 d qg—2
A is said to have a minimal multiplicity of type q if the equality holds.

(2) If A has minimal multiplicity of type q, then it has g-linear resolution.
Proposition 4.2. Let A = k[A] be a d-dimensional Buchsbaum Stanley—Reisner ring, and
put indeg A > 2 and codim A = c. Then the following conditions are equivalent:

(1) A has a minimal multiplicity in the sense of Goto [Go2]. That is,

ey =1+ 3 (4~ Doy a).

(2) A has minimal multiplicity of type 2.
(3) A is a finite disjoint union of (d — 1)-simplezes.

Proof. (1) => (2) : Suppose that A has minimal multiplicity. Then since A has 2-linear
resolution, HE (A) = 0 for all 7 # 1, d by Proposition 3.1. Thus e = 1+h and I(4) = (d—1)A,
where h = dimy H1(A). Also, since A has maximal embedding dimension, we have

n=emb(A)=e+d—1+I(A)=e+d—1+(d—-1)(e—1) =de.

Hence e = 2 = 24 a5 required.




(2) <= (3) : Note that e is equal to the number of facets of A. Since each facet of A is a
(d — 1)-simplex, we have n < de by counting the vertices of A. Furthermore, equality holds
if and only if A is a disjoint union of all facets.

We omit the proof of (3) = (1). O

Proof of Theorem 4.1. (1) Put I; =: link »({z:}), and let m; be the homogeneous maximal
ideal of k[T;] for all 5. Then k[T] is a (d — 1)-dimensional Cohen-Macaulay ring since Ais
Buchsbaum. Also, codim k[I';] = ¢ and indeg k[I';] > ¢ — 1 by the assumption. By [EiGo,
Corollary 1.11], we get
fc+(@—1) -1\ _ (c+q-2)

(-1 -1 -2
On the other hand, counting the number of facets of A, we have

d-e(d) =3 2 (e+a) T 1P,

i=1

e(k([ly]) >

as required.
(2) If we suppose that the equality holds, then e(k[Ty]) = (°7%;?) for all i. Thus k[';] has

q-2
(g — 1)-linear resolution by [EiGo]. In particular, a(k([l';]) =¢—1— (d-1)—-1=¢g—-d-1.
Also, indeg A = ¢ since indeg A > g and indeg k[[';] = ¢ — 2. Thus the assertion follows from

Theorem 4.3 below. O

Theorem 4.3. Let A = k[A] be a d-dimensional Buchsbaum Stanley-Reisner ring of A on
V. Put indeg A = q. If a(k[link p{z;}]) = ¢ — d — 1 for all i, then A has g-linear resolution
and a(A) =q—d—2.

Proof. If we put I'; = link o ({z;}) for alli = 1,...,n,

then k[I;] is Cohen-Macaulay for all i and HE(A) = [HE(A)o = 'ﬁp_i(A;k) for all
p < d — 1. By Hochster’s formula, we have

~ . / t—l \#(F)

F(H(A),t) = > dim Hyg(p)-1(link aF; k) = ;
Fea

i P ) [ t! \#(G)

FHE(K[T)),Y) = Y dimg Hipo)2(linkr,Gik) " 7= * -
Ger;

First we compute the a-invariant of A.
Claim 1: [H(A)); =0forall j=-1,...,q—d,g—d -1

Since a(k[Ty]) = ¢ —d — 1 < —1, we have [HE*(k[[:])lo = [Hia; ' (k[['])]g-a = 0 for all
i=1,...,n. Now let F be a face of A with 1 < #(F) <d—g+1. As F contains a vertex
of A (say z;), if we put G = F'\ {z;}, then G € I; and linkp,G = link o F. If G # 0, then
1< #(G)=#(F)—1<d—gq. Then

Hy_yiry-1(link aF; k) = Hy_g(c)-2(link r,G; k) = 0
because [HZ1(k[[}])]q—a = 0. If G =0, then F = {z;} and thus
Hy_ -1 (link o F; k) = Hy_o(Ti k) = [Ha*(k[T3])]o = 0.

Hence ﬁd_#(p)-l(link aF;k)=0forall Fe Awithl< #(F) <d— g+ 1. This yileds that
[HE(K[A])]; =0 for all j = —1,...,¢ —d — 1 by Hochster’s formula.



Claim 2: [H%(A)]o = Hy_1(A; k) = 0.
Let K4 be the graded canonical module of A, that is, [K4]; = Hom x([HZ(A)]-;,k). Then
[Ka]1 = 0 by Claim 1. Thus

[Kalo C m(O) 'k, Ti = Hom 4(A/m, K4) =0,
=1
where the last vanishing follows from depth K4 > 0. Thus [H%(A)]o = 0, as required.

By virtue of the above two claims, we get a(4) < ¢ —d — 2. Hence we have regA <
a(A)+d+1 < g—1 by Hoa-Miyazaki theorem. On the other hand, reg A > indeg A—1 = ¢—1.
Therefore A has g-linear resolution and a(A) =q¢—d—2. O

Note that we can prove an improvement of Hibi’s criterion ([Hi]) using the similar method
as above.

Theorem 4.4 (An improved version of Hibi’s criterion). Let A = k[A] be a d-
dimensional Buchsbaum Stanley-Reisner ring of A on V. Put indegA = q. Then A has
g-linear resolution if and only if the following two conditions are satisfied:

(1) H,_1(A;k) = 0.

(2) a(kllink a{z;}]) < g—d foralli=1,...,n.

When this is the case, H;(A; k) =0 for all i # q — 2.

For any Buchsbaum Stanley—Reisner ring A with minimal multiplicity of type g, we have
that dimy HZ !(A) = hcqq. In fact, we have the following characterizations.

Theorem 4.5 (Characterizations of minimal multiplicity). Let A = k[A] be a d-
dimensional Buchsbaum Stanley-Reisner ring such that codim A = ¢ and indeg A = q. Then
the following conditions are equivalent:
(1) A has minimal multiplicity of type g, that is,

c+dfc+q—2\

d qg—2
(2) A has g-linear resolution and dimy HZ (A) = hegyq-
(3) The h-vector of A is

( c+g-2\ _(d d g1 /(d
/:zl , — q\h’ /q+1\h’”"(_1)d + /d\h\’

e(4) =

l,¢,---, where b = heg,q.

(4) kllink a{z;}] has (¢ — 1)-linear resolution for all i.

(5) a(A) =q—-d-2.

(6) k[A*], where A* = {F C V|V \ F & A} is the Alezander dual of A, is Cohen—
Macaulay with pure and almost c-linear resolution and with a(k[A*]) = 0, that is,
the graded minimal free resolution of k[A*] over S = k[z1,...,z,] (n = c+d) can be
written as follows:

0— S(—(c+d)fs = S(~(c+g—2)%1 = --- 5 S(=c)i =S = k[A*] = 0.

When this is the case, 8] = hcayq-




Proof. It suffices to show the following implications: (1) = (2) = (3) = (1), (1) = 4) =
(5) & (2) and (5) < (6).

We first show that (1) = (2) = (3) = (1). If we suppose (1), then A has g-linear
resolution by Theorem 4.1. Putting h = dim I:Tq_Q(A; k), by Theorem 3.2, we get

c+dfc+q—2\ _ _fe+q-2\ _, [d—1)\
7 g—2 =e(A) = 0—2 —h g—1"

This implies that b = heaq. In particular, we get (2). Also, (2) = (3) = (1) follows from
Theorem 3.2.

(1) = (4) = (5) = (2) follows from the proof of Theorems 4.1 and 4.3. To complete the
proof, we must show (5) = (6) = (2). In order to do that, we need the following theorem,
for which we do not give a proof here.

Theorem 4.6. Let c,d,q be integers withc > 2,2 < q <d. Let A= k[A] be a d-dimensional
Stanley-Reisner ring with codim A = ¢ and indeg A = g, and let A* denote the Alezander
dual of A. Put A* := k[A*]. Then the following conditions are equivalent:
(1) A is Buchsbaum with g-linear resolution.
(2) A* is Cohen-Macaulay with almost c-linear resolution and the graded minimal free
resolution of A* over S can be written as follows:

0— F, = Fp1 = S(—(c+q—2))%1 —}---—)F1=S(—c)ﬁf -8 —= A" =0,

where Fy = S(—(c+ d))*" & S(—(c +q—1))*".
When this is the case, f* = dimy HZ"1(A) and B* = dimg H(A)g—a-1-
Remark 4.7. A is Cohen-Macaulay if and only if A* has a linear resolution; see [EaRe].

We return to the proof of Theorem 4.5. If we suppose (5), then A has g-linear resolution
with 3* = 0 by Theorem 4.3. Thus by Theorem 4.6, the graded minimal free resolution of
the Alexander dual k[A*] becomes the required form. Conversely, suppose (6). By Theorem
4.6, A = k[A] has g-linear resolution. On the other hand, since k[A*] is a Cohen-Macaulay
homogeneous k-algebra with pure resolution of type (c1y---1¢q) = (c,c+1,...,c+q—2,c+d),
we have

* q+1 9 G
g =(-1) H = heaq

j=1 cj - Cq

by Herzog-Kiihl's formula. Combining with h = f;, we obtain that h = hcqq, as required.
O

Now let us gather several examples of Buchsbaum Stanley-Reisner rings with minimal
multiplicity of some type.

Example 4.8 (The Alexander dual of cyclic polytope). Let g, d be integers with
2<qg<d Putn=2d—q+2and f =2(d—g+1). Let ' =Tyy be the boundary complex
of the cyclic polytope C(n, f), that is, C(n, f) be the convex hull of any distinct n-points
over the algebraic curve M C R defined by parametrically by z(t) = (2, 2., th,teR
Also, let A = T* be the Alexander dual of I. Then k[A] is a d-dimensional Buchsbaum
Stanley-Reisner ring with minimal multiplicity of type q.

In particular, Conjecture 4.1 is true for hegq = 1.




Example 4.9 (Hibi [Hi] ). Let d > 2 be an integer, and let k be a field. Put n = 2d — 1
and V = {1,2,...,n}. Let A be the simplicial complex which is spanned by

S={{{,i+1,...,i+d—1}|i=1,2,...,2d — 1},

where P stands for ¢ € V with p = ¢ (mod 2d - 1).
Then k[A] is a d-dimensional Buchsbaum Stanley—Reisner ring with minimal multiplicity
of type 3.

Example 4.10 ([Tel, Theorem 3.3]). Let n be an integer such that n > 3, and suppose
that 2n + 1 is a prime number. Let A be the simplicial complex on V = {1,2,...,n} which
is spanned by
S={{a,bya+b}|1<a<b a+b<n}
U{{a,b,c}|1<a<b<c<n,a+b+c=2n+1}.

Then A = k[A] is a 3-dimensional Buchsbaum Stanley—Reisner ring such that e(A) = ﬂn3_—22
In particular, A has a minimal multiplicity of type 3.

Example 4.11 (Hanano [Ha]). Let n be an integer with n > 5. Let A be the simplicial com-
plex on V which is spanned by the following set S. Then k[A] is a 3-dimensional Buchsbaum
Stanley-Reisner ring with 3-linear resolution of maximal homology. Furthermore, k[A] has
minimal multiplicity of type 3 if and only if n =0 or =2 (mod 3).

(1) The case of n # 1 (mod 3). Put V :={0,1,...,n — 1} and

S = {{ii+ki+2k}0<i<k-1} : .
U{{i,i+ki+35}|0<i<3k-1,k+1<j<2%—1},

when n = 3k and
S={{i,i+1,i+3j+2}|0<i<3k+1,0<j<k-1},

where n = 3k + 2. Here P stands for ¢ € V with p = ¢ (mod n).
(2) The case of n =1 (mod 3). Put V := {0,0,1,...,n — 2} and

S = {{c0,5,i+1}|0<i<3k—1}
U{{5,i+ 1,7 +3;}|0<i<3k-1,1<j<k-1},

when n = 3k + 1. Here p stands for ¢ € V with p=g¢ (mod n —1).

1 9 4
A K[A] = klz,y,z,w,u
(zyw, zyu, T2u, yzw, 2WU)
v (n=5,d=¢=3,c=2,h=1)
4 2 3 1




5. APPROACH TO THE CONJECTURE IN CASE OF ¢ = d

In this section, we put an idea to attack to the conjecture in case of ¢ = d. Namely, we
introduce the notion of Cohen-Macaulay cover as follows:

Definition 5.1. Let A be a (d — 1)-dimensional pure simplicial complex on V. A simplicial

complex A is said to be a Cohen-Macaulay cover of A over k if Aisa (d — 1)-dimensional
Cohen-Macaulay simplicial complex on V which is d-linear and it contains A.

Now suppose that ¢ = d. Let A™" be a (d — 1)-dimensional Buchsbaum simplicial com-
plex with d-linear resolution and dimg H&™*(k[A™"]) = |hcda]. Then one can reduce our
conjecture to the existence of A™®. In fact, we have

Theorem 5.2 (Existence of Cohen-Macaulay cover). If k[A] is a d-dimensional Buchs-
baum Stanley-Reisner ring having d-linear resolution, then there ezists a Cohen—Macaulay

cover A of A over k.

Theorem 5.3. Let A~ C A C A+ be simplicial complezes on V. If both k[A™] and k[A¥]
are Buchsbaum Stanley-Reisner rings with d-linear resolution, then so is k[A].

Now suppose that d = 3. Let ¢, h be integers with ¢ > 1 and 0 < h < Lhess] =
ﬁc—sﬂ =: ho. Then for any integer ¢ > 1, we have a Buchsbaum Stanley-Reisner ring k[AT]
with 3-linear resolution and dimy H2(k[A~]) = ho by virtue of Hanano’s examples. Take
a Cohen-Macaulay cover A* of A~. Then we note that the difference of facets, that is,
e(k[A*] — e(k[A7]) is equal to hg. Choose any distinct (ho — h) facets Fy, ..., Fro_p of
A*\ A~ and consider A := A~ U {Fy,...,Fao-n}. Then k[A] is a Buchsbaum Stanley—
Reisner ring with 3-linear resolution and dimy HZ(k[A]) = h, as required. Thus we can
prove the following theorem.

Theorem 5.4. Conjecture 3.3 is true in the case of ¢ =d = 3.
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BGG CORRESPONDENCE AND ROMER’S THEOREM
ON AN EXTERIOR ALGEBRA

KOHJI YANAGAWA

This article is edited from my recent paper [14].

ABSTRACT. Let E = K(yi,. .. ,yn) be the exterior algebra. The (cohomological)
distinguished pairs of a graded E-module N describe the growth of a minimal
graded injective resolution of N. Romer gave a duality theorem between the
distinguished pairs of N and those of its dual N*. In this paper, we show that
under Bernstein-Gel’fand-Gel’fand correspondence, his theorem is translated into
a natural corollary of Serre duality for (complexes of) graded S = K [z1,--- s Zn)
modules. Using this idea, we also give a Z™-graded version of Romer’s theorem.

INTRODUCTION

In this section, to introduce a background of the present article, we summarize
results of Aramova-Herzog [2] and Romer [11].

Let S = K|[z1,... ,Zn] be the polynomial ring over a field K, and M a finitely
generated graded S-module. The ijth Betti number Bij(M) = dimg Tor} (K, M);
of M is an important invariant. Following Bayer-Charalambous-Popescu [4], we
say a Betti number Sxm(M) # 0 is estremal, if Bi;(M) = 0 for all (i,7) # (k,m)
with i > k and j — i > m — k. This notion has two remarkable properties. First, a
homogeneous ideal I C S has the same extremal Betti numbers as its generic initial
ideal Gin(I). Another important property is the following.

Theorem A (Bayer-Charalambous-Popescu, [4, Theorem 2.8]) Let A C 2{Ln}
be a simplicial complez, and K[A] = S/Ia the Stanley-Reisner ring. And let AV be
the Alezander dual complez of A. Then Bi;+;(K[A]) is extremal if and only if so
is Bjiyi(Iav). Moreover, if this is the case, then Bii+i(K[A]) = Bjivi(Iav)-

In the sense of combinatorial topology, this duality corresponds to the Alexander
duality and its generalization using iterated Betti numbers (c.f. (5]).

Let E = K({y1,...,yn) be the exterior algebra. To understand Theorem A,
Aramova-Herzog (2] introduced distinguished pairs for a graded E-module N. See
Definition 1.6 below. (We use a different convention to describe these pairs. See
Remark 1.7.) The distinguished pairs of N roughly describe the growth of the
minimal graded (infinite) injective resolution of N. Let K {A} = E/Ja be the
exterior face ring of A. Then [2, Corollary 9.6] states that (d, 1) is a distinguished
pair for K{A}* := Homg(K{A}, E) if and only if Bari-na(K[A]) is extremal.

Romer proved that (d, ) is distinguished for N if and only if so is (d,2n—d—1)
for N*. Since k{A}* = Jav, his result implies Theorem A. (Their argument can
also manage the value of extremal Betti numbers 5;;(K[A]).)



Bernstein-Gel’fand-Gel’fand correspondence (BGG correspondence, for short) is
a well known theorem which states that the derived category D®(grS) of finitely
generated graded S-modules is equivalent to the similar category D®(gr E) for E. In
this paper, we give a new proof of the result of RGmer using BGG correspondence.
More precisely, under this correspondence, R6mer’s theorem is translated into a
statement on D°(gr.S) which is a natural consequence of the local duality (Serre
duality). A key point is that the duality functor Homg(—, E) on D%(gr E) corre-
sponds to the duality functor R Homg(—,w®) on D%(grS), where w* is a dualizing
complex of S.

The original paper [4] states Theorem A in the Z"-graded context, while the ar-
guments in [2, 11] are hard to work in this context. But, since BGG correspondence
also holds for Z™-graded modules, our method is powerful in this context too. See
§2. This part of the present paper is a continuation of my previous paper [13].

1. Z-GRADED CASE

Let W be an n-dimensional vector space over a field K, and S = @,,Sym; W
the polynomial ring. We regard S as a graded ring with S; = Sym; W. Let Gr S be
the category of graded S-modules and their degree preserving S-homomorphisms,
and gr S the full subcategory of Gr S consisting of finitely generated modules. Then
there is an equivalence D*(gr S) & D}, 5(Gr S). (For derived categories, consult [9].)
So we will freely identify these categories. For M = ;. M; € Gr S and an integer
4, M(j) denotes the shifted module with M(j); = M;,. For M* € D*(Gr S), M*[j]
denotes the jth translation of M*, that is, M*[j] is the complex with M°*[j]} = M+,
So,-if M € GrS; M[j] is the cochain complex -+- —+0 - M — 0 —---, where M
sits in the (—j)th position. If M € gr S and N € Gr.S, then Homg(M, N) has the
structure of a graded S-module with Homg(M, N); = Homg, s(M, N(z)).

Let w* € D’(gr S) be a minimal graded injective resolution of S(—n)[n]. That is,
w*® is a graded normalized dualizing complex of S. Then Dg(—) := Homg(—,w*)
gives a duality functor from D°(grS) to itself. The ith cohomology of Ds(M*) is
Exty(M*,w*). For M* € D*grS) and i € Z, set di(M*) := dimg H*(M®*). Here
the Krull dimension of the 0 module is —co.

Definition 1.1. We say (d,i) € N X Z is a distinguished pair for a complex M* €
Db(grS), if d = d;(M*) and d;(M*) < d+1i — j for all j with j < i.

Let M* € Db(grS) and d = d;(M*) > 0. If d = max{d;(M*) | j € Z}, then
(d,7) is distinguished for M*. On the other hand, if ¢ = min{j | H(M*) # 0},
then (d, ) is also distinguished. Thus M* has several distinguished pairs in general.

In this paper, degg(M) denotes the multiplicity of a module M € gr S (i.e., e(M)

“of [6, Definition 4.1.5]).

Theorem 1.2. For M* € D%(gr S), we have the following.

(1) A pair (d, 1) is distinguished for M* if and only if (d, —d — i) is distinguished
for Dg(M?*).

(2) If (d,1) is a distinguished pair for M*®, then

degg H'(M*) = degg Extgd'i‘(M', w*).




Proof. (1) Since the statement is “symmetric”, it suffices to prove the direction =

From the double complex Hom$(M*,w®), we have a spectral sequence EP =
Ext§(H™9(M*),w*) = Extt9(M*,w*). For simplicity, set et := dimg EP7. Since
Exty(M,w*) = Exty™(M,S(-n)) for M € grS, the following inequality follows
from argument analogous to [6, §8.1, Theorem 8.1.1].

-p if p=—d_,(M"*),
(1.1) b9 = dimg Ext}(H Y(M*),w*) = { < —p if —d_(M*) <p <0,
—o00  otherwise.

(I) By (1.1), we have e; 4=i — d. On the other hand, we have e5? < d for all
(p,q) # (—d,—1i) withp+¢g=—-d—i In fact, the assertion follows from (1.1) if
p > —d. So we may assume that p < —d and ¢ = —d —1i—p > —i. Since (d,1)
is distinguished, we have d_q(M*) < d+i+ g = —p. Thus E%? = 0 in this case.
Anyway, we have e < d for all (p, q) # (-4, —i) withp+¢g=—-d—1.

(II) Since d;_j+1(M*) < d+j—1 < d+j forall j > 2, we have that B, ©07 7 =
0. So we have E-4=#=#*i-1 = 0 for all r > 2. Next we will show that d = e, =
e;%" = ... = ¢;%* by induction on r. Recall that E_ fi_' is the cohomology of

—d—r,—i+r—1 —d,—t —d+r,—i—r+1
E; — E; — E; .

But we have seen that E-¢~"~#"=1 = 0. Moreover, ey ~*~"+! < et <

d—r < d by (1.1), and e;%~* = d by the induction hypothesis. Thus e,'_f’l_i =d.
Hence ez%~* = d. From this fact and (I), we have that dims Extg? (M*,w*) = d.

(II) Finally, we will show that dims Extg™" 7 (M*®,w") < d+ j for all j > 0.
To see this, it suffices to show that e5? < d + j for all j > 0 and all (p,q) with
p+q=—-d—i—j lfp>-d—-y the assertion is clear. If p = —d — j,
then ¢ = —i and d_g(M*) = d < —p. So Ef? = 0 in this case. Hence we may
assume that p < —d —j and —¢ =d + i+ j +p < 1. Since (d, %) is distinguished,
d_g(M*) < d+ (i+¢q) = —j —p < —p. So we have E5? =0 in this case too.

(2) Since degg E;%™* = degg Ei 47" for all r > 2 by the argument in (II) of the
proof of (1), we have degg Ey* ™ = degg E*™". Hence

degs Extg? (M, w*) = degg Ex™ = degg By *™* = degs Ext*(H'(M*), "),

where the first equality follows from (I) and (II). But, since dim(H*(M*)) = d, we
have degg Extg¢(H!(M),w*) = degg H'(M?*). O

Remark 1.3. For the above theorem, only (1.1) and the fact that inj. dimgw® < 00
are essential. So the theorem holds in much wider contexts.

(1) Theorem 1.2 (1) also holds for a noetherian local commutative ring R admit-
ting a dualizing complex. The part (2) also holds for R, if we replace degg(—) by
lr,(— ®r Ry) for a prime ideal p C R with dim R/p =d.

(2) Let A be an associative ring with 1. For a left (or right) A-module M, set
7(M) := min{ | Exty(M, A) # 0}. We say A is Auslander Gorenstein if A is left
and right noetherian, inj.dim 44 = inj.dim A4 < oo, and satisfies the following



condition: For every finitely generated left (or right) A-module M and for all 4 > 0,
we have j(N) > i for all submodule N C Ext% (M, A).

Familiar examples of Auslander Gorenstein rings include commutative Gorenstein
local rings (in this case, j(M) = dim A — dim M), Weyl algebras, and universal en-
veloping algebras of finite dimensional Lie algebras. See [3] for further information.

If A is Auslander Gorenstein, then —j(M) is an exact dimension function. If
we use this “dimension” to define distinguished pairs for objects in D?(mod,) or
D®(mod 4»), Theorem 1.2 also holds for the duality functor R Homu (—, A) between
Db(mod,4) and Db(mod 4 ). More generally, the theorem holds for rings with Aus-
lander dualizing complezes (see [15]).

Next, we assume that A = @,,, A; is a graded K (= Aq)-algebra satisfying the
following conditions. -

(a) There is a polynomial f(t) € Q[¢] such that f(i) = dimg A; for i > 0.

(b) A is Auslander regular (i.e., A is Auslander Gorenstein and gl. dim A < o).

(c) A is Cohen-Macaulay with respect to Gel’fand-Kirillov dimension (c.f. [3]).

Then a finitely generated graded A-module M has the Hilbert polynomial, and
we can define the multiplicity deg,(M). If we use Gel'fand-Kirillov dimension to
define distinguished pairs, both (1) and (2) of Theorem 1.2 hold for A. So the under
the additional assumption that A is Koszul, it might be interesting to generalize
Corollary 1.8 below and related results to the quadratic dual ring A'.

Let V' be the dual vector space of W, and E = AV the exterior algebra. We
regard E as a negatively graded ring with E_; = A\'V (this is the opposite conven-
tion from [2, 11]). Let gr E be the category of finitely generated graded E-modules
and their degree preserving E-homomorphisms. Here “E-module” means a left and
right module N with ea = (—1)(d%6¢)(de8a)ge for all homogeneous elements e € E
anda € N.

Let {z1,...,z,} be a basis of W, and {y1,...,yn} its dual basis of V. For a
complex N* in gr E, set L(N*) = €, S ®x N* and L(N*)™ = Di_j=m S ®k N;.
The differential defined by

L(N)" D S®kN;31®2z— » zm®@yz+(—1)"(1®8(2)) € L(N*)™!

1<i<n

makes L(IN*) a cochain complex of free S-modules. Here &' is the sth differential
map of N*. Moreover, L gives a functor from D®(gr E) to D*(gr S).

For M € grS and ¢ € Z, we can define a graded F-module structure on
Homg (E, M;) by (af)(e) = f(ea). Then Homg(E,M;) & E(-n) ®x M;. Set
R(M) = Homg(E, M) and R* (M) = Homg (E, M;). The differential defined by

RY(M) = Homg(E,M;) 3 f +— [e — Z z,f(yse)] € Homg (E, Miy,) = R (M)

1<j<n

makes R(M) a cochain complex of free E-modules. We can also construct R(M*)
from a complex M* in natural way. Then R gives a functor from D%(grS) to
D*(gr F). See [7] for details. The following is a crucial result.




Theorem 1.4 (BGG correspondence, c.f.[7]). The functors L and R give a cate-
gory equivalence D*(gr S) = D*(gr E).

For N € gr E, then N* := Homg(N, E) = Homg (N, K)(n) is a graded E-module
again. (—)* gives an exact duality functor on gr E, and it can be extended to the
duality functor Dg on D%(gr E).

Proposition 1.5. For N* € D%(gr E), we have
- DgoL(N®) 2 LoDg(N*)(—2n)2n].
Proof. Since L(N°®) consists of free S-modules, we have
Dg o L(N*) & Homg(L(N*), S(—n)[n]).
It is easy to see that
HomZ(L(N*),S(-n)[n) = € S(-n)@x V)",
j—i=m+n

where (—)¥ means the graded K-dual. On the other hand,
LoDp(N')" = @ SoxDs(N); = D Stn)ex (NZ)"

i—j=m i—j=m
= P smexm;)".
j—i=m-n
So we can easily construct a quasi-isomorphism DgoL(N®) — LoDg(N*®)(~2n)[2n].

a

For N* € D¥(gr E), we have H*(L(N*)); & Ext}" (K, N*); by [7, Theorem 3.7].
So the Laurent series P;(t) = 3¢z (dimk Ext} (K, N*),)-t’ is the Hilbert series of
the finitely generated graded S-module H*(L(N*)). If H*(L(N*)) # 0, there exists
a Laurent polynomial Q;(t) € Z[t,t™"] such that

Qi(t)
1-¢
where d = d;(L(N*)) = dimg H*(L(N®)). Set &;(N*) := Qi(1) = degg H'(L(N*)).
So d;(L(N*)) and e;(N*) measure the growth of the “(—1)-linear strand” of a min-
imal injective resolution of N°®. ’

A (cohomological) distinguished pair for a module N € gr E was introduced in
[11, Definition 3.4] (see also [2]). Here we generalize this notion to a complex.

P(t) =

Definition 1.6. Let N°® € D’(gr E). We say (d,i) € N x Z is a distinguished pair
for N* if and only if it is distinguished for L(N*®) (in the sense of Definition 1.1).

Remark 1.7. (d, 1) is a distinguished pair for a module N € gr E' in the above sense
if and only if (n + 1 — d,1) is a “cohomological distinguished pair” for V in the
sense of [11]. (Recall that E is a positively graded ring in [2, 11}.) (2] also use the
term “distinguished pair”. But this is “homological distinguished pair” of [11], and
(d,1) is a distinguished pair for N in our sense if and only if (n+1—d,n—1)isa
distinguished pair for N* in the sense of [2].




Corollary 1.8 (c.f. [11, Theorem 3.8]). Let N* € D(gr E). A pair (d,i) is dis-
tinguished for N* if and only if (d,2n — d — i) is distinguished for Dg(N°®). If this
is the case, we have e;(N*) = ean_q_;(Dg(N*)).

Proof. For the first statement, it suffices to prove the direction =>. By Theorem 1.2,
(d, —d — i) is a distinguished pair for Dg o L(N*®) & L o Dg(N*)(-2n)[2n]. For
a complex M* € D%(grS), we have H’(M*(—2n)[2n]) = H?"*/(M*)(-2n) and
d;j(M*(—2n)[2n]) = dany;(M*). Thus (d, 2n—d—1) is distinguished for LoD g(N*®).
The last equality follows from Theorem 1.2 (2). O

For amodule N € gr E, d;(L(NN)) can be 0 quite often. But we have the following.

Proposition 1.9. Assume that a module N € gr E does not have a free summand.
If (d,1) is a distinguished pair for N, then we have d > 0.

Proof. Let 0 - N = I° - I' — --- (resp. -+ = I"' = I %+ N — 0) be
a minimal injective (resp. projective) resolution of N. For j > 0, set Q;(N) :=
(ker(I? — I7*1))[—j]. Obviously, 0 — Q;(N) — I/ — [#*! — ... is a minimal
injective resolution. On the other hand, since N does not have a free summand,
v TP I 5 ... — 71 5 Q4(N) — 0 is a minimal projective resolution.
If d;(L(N)) > 0, then d;(L(Q;(N))) = d;(L(N)) for all j > 0. But, if d;(L(N)) =
0, then d;j(L(©;(N))) = —oo for j > 0. On the other hand, since a minimal
injective resolution of N* is the dual of a minimal projective resolution of N, we
have d;(L(N*)) = di(L(Q;(N)*)) for all i and all j > 0. So N* and Q;(N)*
have the same distinguished pairs. For a contradiction, we assume that (0,1) is a
distinguished pair for N. Then (0, 2n—1) is a distinguished pair for N* and Q;(N)*.
So (0,1) is a distinguished pair for Q;(N) for all j > 0. This contradicts the above
observation. 0

We say a distinguished pair (d,4) is positive, if d > 0. Since [2, 11] study a
distinguished pair for a module, they only treat a positive one.

Remark 1.10. When N* is a module, Corollary 1.8 was proved in 11, Theorem 3.8].
On the other hand, for positive distinguished pairs, we can prove the corollary
from [11, Theorem 3.8] directly: Let I* be an injective resolution of N* and P*
a projective resolution of I*. From the quasi-isomorphism f : P* — I*, we have
the exact complex (7*,9°) := cone(f). Then N := ker §y (resp. N*) has the same
positive distinguished pairs as N* (resp. Dg(N*)).

A variant of BGG correspondence gives an equivalence grE = Db(Coh(P™!))
of triangulated categories, where gr E' is the stable category, and Coh(P") is the
category of coherent sheaves on P"~! = ProjS. More precisely, the composition of
the functor L : gr E — D®(gr S) and the natural functor D*(gr S) — D?(Coh(P™1))
induces this equivalence. Note that the functor grS 3 M — M € Coh(P™1)
ignores modules of finite length. Hence if d;(M*®) = 0 then H*(M*) = 0. In this
sense, the duality in [11] corresponds to a duality on D®(Coh(P"1)).

In the rest of this section, we assume that K is algebraically closed. Let N € gr E.
Following [1], we say v € E_; = V is N-regular if Anny(v) = uN. It is easy to




see that v is N-regular if and only if it is N*-regular. We say Vg(N) = {v € V|
v is not N-regular} is the rank variety of N (see [1]). [1, Theorem 3.1] states that
Vg(N) is an algebraic subset of V = Spec S, and dim Vg(V) = max{ d;(L(N)) | i €
Z}. By the above remark, Vg(N) = Vg(IN*). We can refine this observation using
‘the grading of V.

Recall that S can be seen as the Yoneda algebra Exty(K, K), and Exty (K, N)
has the S-module structure. By the same argument as [1, Theorem 3.9] (see also
the proof of 8, Corollary 3.2 (b)]), we have that

Ve(N)={veV|&w)=0forall £ € Anng(Exty(K,N))}.

But [Ext}™(K,N)]. = Djcz Ext} (K, N), is an S-module which is isomorphic
to H'(L(N)) (see the proof of [7, Proposition 2.3]), and we have Exty(K, N) =
@]ez[Ext*“(K N)].. Set

VE(N) = {v eV |&(v) =0 for all £ € Anng( [Exty(K,N)].) }.

We have Vg(N) = |J; VE(V) and d&;(L(N)) = dim VE(N). For an algebraic set
X C SpecS of dimension d, set Top(X) to be the union of the all irreducible
components of X of dimensions d.

Proposition 1.11. If (d,4) is a distinguished pair for N € grE, then we have
Top(VE(N)) = Top(VE"**(N*)).

Proof. By the proof of Theorem 1.2, Anng( H*(L(N))) has the same top dimen-
sional components as Anng( H~4"{(Dg o L(N))). O

In the above situation, we have VE(N) # V2""%"*(N*) in general.

2. SQUAREFREE CASE

In this section, we regard S = K|[z1,... ,z,] as an N"-graded ring with degz; =
(0,...,0,1,0,...,0) where 1 is in the sth position. Similarly, F = K(yi,... ,¥n) is
a —N"-graded ring with deg y; = — deg z;. Let *grS (resp. *gr E) be the category of
finitely generated Z"-graded S-modules (resp. E-modules). The functors L and R
defining the BGG correspondence Db(gr S) = D®(gr E) also work in the Z"-graded
context. That is, the functors L : D*(*gr E) — Db(*grS) and R : Db(*grS) —
Db(*gr E) are defined by the same way as the Z-graded case, and they give an
equlvalence D*(*gr S) = Db(*gr E), see [13, Theorem 4.1]. Note that the dualizing
complex w*® of S is Z"-graded, and Dg(—) = Homg(—,w*) is also a duality functor
on D’(*grS). Similarly, Dg(—) = Homg(—, E) is a duality functor on D®(*gr E).
As Proposition 1.5, for N* € Db(*gr E), we have DgoL(N*) = LoDg(N*®)(—2)[2n]
in D(*gr S). Here we set j := (4,7;....,j) € N* for j € Z.

For a = (ay,...,an) € Z", set supp(a) := {i | a; > 0} C [n] := {1,...,n} and
la| = 3%, a;. We say a € Z™ is squarefree if a; = 0,1 for all i € [n]. When a € Z"
is squarefree, we sometimes identify a with supp(a).

Definition 2.1 ([12]). We say a Z"-graded S-module M is squarefree, if the fol-
lowing conditions are satisfied.



(a) M is N"-graded (i.e., M, =0 if a ¢ N") and finitely generated.
(b) The multiplication map M, 3 y — ([Jz¥) -y € M.y is bijective for all
a,b € N" with supp(a + b) = supp(a).

For a simplicial complex A C 2[", the Stanley-Reisner ideal I := ( [Lerpzi| F &
A) and the Stanley-Reisner ring K[A] := S/I are squarefree modules. Note that if
M is squarefree then M, = M as K-vector spaces for all a € N with supp(a) = F.
Let Sqg be the full subcategory of *gr S consisting of squarefree modules. In *gr .S,
Sqg is closed under kernels, cokernels and extensions ([12, Lemma 2.3]), and we
have that D*(Sqg) = D§, (*gr S). If M* € D’(Sqg), then Ds(M*) € Dg,_(*gr S)
(see [13]). So Dg gives a duality functor on D°(Sqg).

Definition 2.2 (Rémer [11]). A Z"-graded E-module N = @, ;. N, is squarefree
if N is finitely generated and N = € Fein N-F-

For example, any monomial ideal of E is a squarefree module. Any monomial
ideal of E is of the form Jo = ([[;cp%i | F & A) for some simplicial complex
A C 2" We say K{A} := E/Ja is the exterior face ring of A.

Let Sqg be the full subcategory of *gr E consisting of squarefree E-modules.
Then there exist functors S : Sqz — Sqg and £ : Sqg — Sqg giving an equiva-
lence Sqg = Sqg. Here S(N)r = N_p for N € Sqg, and the multiplication map
S(N)r 3 z+ ziz € S(N)pugy for i ¢ F is given by S(N)r = N_p 3 2z —
(—1)2®Pyz € N_pugy = S(NV)pugsy, where a(i, F) = #{j € F | j < i}. For
example, S(K{A}) = K[A]. See [11] for further information. Of course, S and &
can be extended to the functors between D®(Sqg) and D%(Sqg).

If N € Sqg, then N* = Homg(N, E) is squarefree again. So (—)* gives the
duality functor Dg on D%(Sqg). For example, K{A}* = Jav, where AV = {F C
[n] | [n]\ F ¢ A} is the Alexander dual complex of A. We have the Alerander
duality functor A := §oDg o € on Sqg (or D*(Sqg)). Of course, A(K[A]) = Iav.
In general, we have A(H(M*))p = (H*(M*)pmpr)"-

An associated prime ideal of M € *grS is of the form Pr = (z; | ¢ & F) for
some F' C [n]. Let M € Sqg be a squarefree module. A monomial prime ideal
Pr is a minimal prime of M if and only if F' is a maximal element of the set
{G C [n] | Mg # 0}. The following is a squarefree version of Definition 1.1.

Definition 2.3. We say (F,i) € 2" x Z is a distinguished pair for a complex
M* € D*(Sqg), if Pr is a minimal prime of H'(M*) and H(M*)g = 0 for all j
with j < ¢ and G D F with |G| < |F|+i—3j.

Theorem 2.4. Let M* € D%(Sqg). A pair (F,1) is distinguished for M* if and only
if (F,—|F| —1) is distinguished for Dg(M?*). If this is the case, dimg H'(M*)p =
dimg H-1F1={(Dg(M*))F.

Proof. Like the proof of Theorem 1.2, we consider the spectral sequence E¥? =
Ext}(H 9(M*),w*) = Exti"9(M*,w*). Then EPY is squarefree for all p,q and




r > 2. When we consider a distinguished pair (F,1), we set

—00 if Mg =0forall GDF
max{ |G| |G D F, Mg #0} otherwise

for M € Sqg. Set di(M*) := dimp H'(M*) and §? := dimp Ext}(H™9(M*),0")
for M* € D*(Sqg). We also remark that dimg Mp = s, (M ®s Sp;) for M € Sqs.
The equation (1.1) holds in this context, and the proof of Theorem 1.2 works
verbatim.

If N* € D*(Sqg), then it is easy to see that L(IN*)(—1) € D*(Sqs). So L(-) :
L(=)(—1) gives a functor from D’(Sqg) to D"(Sqs). Moreover, we have L
A oDgoS by [13, Proposition 4.3].

Definition 2.5. Let N* € D*(Sqg). We say (F,1) is a distinguished pair for N°® if
it is a distinguished pair for £(N*) € D?(Sqg) in the sense of Definition 2.3.

The next result can be proved by the same way as Corollary 1.8 using Theo-
rem 2.4.

Proposition 2.6. Let N* € D%(Sqg). A pair (F,i) is distinguished for N*® if and
only if (F,2n — |F| — i) is distinguished for Dg(N*). If this is the case, we have
dimg H(L(N*))r = dimg H?* FI=(L o D(N*))F-

If M* € Db(*gr S), then Tor] (K, M*) := H*(K ® P*) is a Z"-graded module,
where P* is a graded free resolution of M*. Set f3;.(M*) := dimg Tor} (K, M*)a
for a € Z". We say B;a(M*) is the (3,a)th Betti number of M*. If M* € D*(Sqs)
and B; 2(M*®) # 0, then a is squarefree (see [13]). o
Definition 2.7 (c.f. [4]). A Betti number 3, (M*) # 0is estremalif f;,c(M*) =0
for all (j,G) # (5, F) with j >4, G D F, and |G| — j > |F| —i.

Proposition 2.8 (c.f. [2]). Let M* € D*(Sqs) and N* := £(M*) € D*(Sqg). 4
pair (F,4) is distinguished for Dg(N*®) if and only if Bit|r|—n,r(M *) is an extremal
Betti number. If this is the case, then Biy|p|-n,p(M*®) = dimg H(LoDg(N®))r.
Proof. For j € Z and G C [n], we have the following.
Bic(M*) = dimg[H®=""(Dso A(M*))]m\e (by [13, Corollary 3.6])

= dimg[H"71%(A o Ds o A(M*®))]c

= dimg[H"7 (Lo 0 A(M?))]e

= dimg[H"19(L o Dg(N*))]e-
The assertion easily follows from this equality. O
Corollary 2.9. Let M* € D*(Sqg). A Betti number (;p(M*) is extremal if and
only if 50 is Bypy—i,r(A(M®)). If this is the case, Bi,r(M*) = Bipi-i,r(A(M")).
Proof. If B p(M*) is extremal, then (F,n+1i—|F]) is a distinguished pair for Dg o
£(M*) by Proposition 2.8. By Proposition 2.6, (F,n — 1) is a distinguished pair for
E(M*) = DgoEoA(M?*). So Bir|-i,r(A(M*)) is extremal. The converse implication
can be proved by the same way. The last equality follows from Proposition 2.6. [

dimp M= {

d

>~



This corollary generalizes results of Bayer-Charalambous-Popescu [4], Rémer [11]
and Miller [10]. Roughly speaking, the above proof is a “complex version” of [11].
But, his argument itself does not work in the Z™-graded context, since he use a
generic base change of V = E_;.

For M* € D*(Sqg). Set proj.dim(M*) = max{3 | B;r(M*) # 0 for some F } and
reg(M*) = max{ |[F|~i| B;#(M*) # 0}. Since Betti numbers 3; »(M*) which give
proj. dim(M*®) or reg(M*) are extremal, the next result follows from Corollary 2.9.

Corollary 2.10 (c.£.[10, 11]). If M* € D*(Sqg), then proj. dim(M*) = reg(A(M?*)).
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A FEW REMARKS ON
A GENERALIZATION OF TIGHT CLOSURE

JR R
FRALKRFERF BB LH R

Hochster-Huneke [HH1] iZ &> CEA S h =& &S (tight closure) DEFRIZE
W, HIEA T 7 IV (test ideal) —EEHDOR R DHETOEEICL > TERIND
A4 FT7 N r(R)—IEERFREEZREZLTND. ZOAT TV, BHROICRBITHF
#AFTNITR) &, EHODD p>0 ~OBTEZBELTHIETHI LBAMONT
WABR, BEICEL T, FBEDOAF TV a C R LHERH t > 0 T 2R K
A4 FTN J(a) BEBENTRY, ThIC L V4 RERRVICABTREL 125,

PLEEBE 2T, SRE—K (&KX - ZEEE) L OFFEFTE [HY] IZBWTHRL L,
EEROY - BERAOESIT—RILL, 2hERAVTHEAS T TLVO—IETH
BATTN 7(af) EEE L. TORBE, BEODDS p> 0 ~OETEE LICREA
F7N J(at) EAF TV 1(at) ORGP, B0 ORREIFFHE L HBERFZAV
TELNIREA T T NVOEL DMHHE (Skoda DERE, IERIIRIZEK T S subadditivity
ZYRAFT N 1(at) KL THRY IO Z LRSI

O, BEORE (HY), [HT]) I FAchn I, o BHREA L 4 771 1(d)
DEBRB—BILE LT, FBDOATTADT A NVF—a, \ICHEELTEE D ||a.||-#
EAALATTN 7(||el) ZEEL, TOKA L LT, Ein-Lazarsfeld-Smith [ELS),
Hochster-Huneke [HH3] 23, ERIRBTRICEIT 54 7 7 VORI F ROEHE
B L CEREERICT A MEARBIEER%Z (H) 55/ 5. [BIEERA] LidzoT
LREEEME, A TT N 7(||a.]]) & [HHESREA 77 V] T(|la.|]) DRDY I
T [ELS| DEROERIET 72120 T, ERE L 2 2EEREAO—BLOBBTIC
WSk TN TEIT A LI T L.

1. a-BBEEABEALTTIL 7(a)

AHTH, [HY) CER L o-BERBE AT TV 7(a) OEBNFHRZE DT
B, BERADER L o mBERAICOVWTIY, [HH2], [HH3|, [Hu 23Ry

PIF T e B B2 VIRY, R1ZESK p © (Thbb, B p > 0 ORKEE
Te) Xx—&—BL L, XF q B p O % p* ZRTHDETH. £, P TR
DENBBINRATTNMCOBERVWTOLE, F:R > Rz - 22 TRO7®A
Rew2RBEBEPET. I, BREZ eE7u_X=UXER F*: R—> R Z#@L
T RIMBELHI-HDE R LEL. ZHIETHRVI L THIN, R BPBHR LI
R° = R\ {0}, £7z, R 23872 51 F*: R— R AR RAEEH R — R/ LA
—HENBZ LICEBLTEL. RINEE R (E72ik RV?P) RERERDN L &, R X
F-HERTHD Ebhb.

M % RMBELTS. K eecNRIFLTE(M) =R@rM &B%, Zh#
R=°RDENLOIERICEY RIMBELART. T2L, MO eE7u~"=0RE
BFe:M=R®rM - F(M)=R@g M BOEBIENDH, ZTOFRICLD
ze€M DBY 27 := F(z) e Fo(M) LB Z LT 5. £7c, M O R-ERSINE
N CM It LOEBT S35 F(N) —» F(M) 0% N Lx¥. &<
BROAFTADEER [A =]l = (at|ac)CR TH3.




EE 1L REEHp>0DF—F—R aCREZaNR AP RBAFTTNLEL,
FHRFEH >0 2EETD. R-NEM L ZOEIMBE N C M XL, N O M
IR 2 o-EEBAE (at-tight closure) N3 C M 2R TEHETS: z€ M oL

z € N3 <= 3c € R° such that cal®dl27 C N["] for all ¢ = p° > 0.

Z i, [tq] THEEK tq O 910 EF) %Y. A FT7VICROD -BERAIT
=T LEDB.

EE 1.2, (1) LOERT, AT T7 )V a DFBEEAF of IERHARTELER, EEO
ATTNE LTOBEANFLEMNTS. Thbb, FABM IZHL b=a" &3¢
L E V-EEAL = -BERALTHD. Zhit, A TTAOEE anltdl C gm0
2] "% ce R°ICRRENDINLTHD. T T, t=10DLED J-EXEHD
ZHIZ o BEAD L EL.

(2) a=R BE A TT7LDL & D R-EEME Nif 1%, Hochster—Huneke [HH1]

IZ Ko TERS N FEPAE (tight closure) N}, (272 B7eus. L LAz 5, a N
BAA FTVTROVERES N ¢ (V)i 3% Z 9 83 O T, Hochster-Huneke
DEHERELLEST, a-BHPLIE LT RSB 25270

(3) BEL.LiL, #EEDOAFT TV ay,...,a, CR EHEEH ty,... ,t, > 0iZxtL

THIIREND. T72bb, N O M B3 o - ar BEBE NS sikc
EREIND:

z€ N;;‘lma:r <= 3c € R° such that cz%[" ... al"" € NI for all g = p* > 0.
WIZET 2 - BEADOERMEEOGERITSH L.

il 1.3 (HY]). CARBIRATTNVZOEENRNAT TNV a, b C R LEE
Bt>0 R, R-NEE M LEDESIMEE N xt L TRBKY L.

L Nif 12 N 288 M O REHMEET, Nif' /N 2 032
2. N*u‘h C (N*a’ . ) |
3.6 CaZbiE N CNiF T, &5HI2 b 2% a O 5, Njg' = N2

EH 14 REEBEH p>0DR—F—R,aCREZaNR #DRBAFTTNEL,
t>0 2HBFEKLTS. Tce R B, EBEDATTNVICRE ze I, R p
DIEBDRF ¢ =p° IZX LT, caltlz? C I Z2Hiz4 L &, ¢ 1% at-HET (ai-test
" element) THB L.

a = R BEfA TT VDL & D R-HFETTIE Hochster-Huneke [HH1] OFBRTD
HIETT (test element) (TR HRVAS, EDER 1.4 ITITERXFTANRH 5. 2F D, at-
BERABZOLDOLITEST, FABE n IZXHL b=a" B L&, BYETE
CLHETEBR L LIRARL L BT I Y AV ITIIEZ AR (of. HE 1.2 (1)). L
L, (ab-) HEFIZOWTIX [FET D Z L] REET, BBEORRE TIIKROERIC X

,TARTO a &t IZH ULTHER R [HE] HET B LEND0T, &5 LM
u\ ZERRIZLANWZ LTS, (X BIC [HT)] Tk, #4240 T < [HHL OF
TOHETLY [EEN] HETICRD I LATRINTND.)

EHE 1.5 ((HY], cf. [HH2]). RZEH p> 0 DEFFHARLL, TceRRILLDHF
Tk R. 7 Gorenstein 2283 F-IERI2 THB L T5. T5L,cDHBF " 1%, T
RTD aNR#DPRBATTNaCRETRTOFEt > 0K LT, a-HE
JTTHD.
1z i, [HH1] \2381) % universal test element & (ZEKRMSE I DT, ZZ KT OHAETHS.
2R DTRTOATTIV I BREHEEREA, 1'7317}9‘6 =1 Tﬁ)ék% ‘R IIF F-EERITHBH L\
. EEROERRILES F-ERITHS.




TE-EE% 1.6 (HY]). R 288 p> 0 OBKNREFR, aCREaNR #0725
AFFALEL, t>0 2EAEEKELTS. ROTNTOBRAT TV miL2NT
RIStk R/m OASAKOEME Loz bDE E = @, Ep(R/m) L. Ok
X KD1,2, 30 FTMIEWVITHEELY. 2077 vE 7(af) TRY.

1. ﬂAnnR(o;;'), T, M T RTOBRER R-MEEZDIZD.
M
2. ()Anna(03), T2, M i3 E OFSTORMER RESMEE DD

MCE
3. (1), 22, TR DFRTDAFT Vbbb,
ICR

& 51z, R 7% Q-Gorenstein ERIR ThHiLiE, 7(a") = Anng(0%") ALY 3L0.

SEE 1.7, o = R BEfIA FTADL &, 7(a) = 7(R) (ZHEA 77 /v (test ideal) &
YiEna [HHL). Zhu, 7(R)NR° 3 R OHETLEORE L —&T D NHThHD
A, 7(at) N R° E—ICH: o HETEEORE L H—HLRVOT, 7(a¥) & o4
EAFTNEE (DR EBEEFR) ZDRV.

HE13NDRD 7(at) DEARMEES LS.
&85 1.8, = p> 0 DX—F—8 R DL ARBNEATTMCHEENRNAT
FAa,bC R EEER >0 IR L TRBELY L.

1. 7(a*)b C 7(a’b).

9. b C a7z biE r(bt) C7(at) T, EHIT, b 2% a OEIEZAR BT (b*) = 7(a’).

3. R NP F-ERIZ2 5, a C 7(a).

FERAOERICET 2 EERKRBRIEO—IC, BEFLE OTHRIERDHS.
DRIEEIIE R 2 F-ERAP 7253 E@0EEMREIC OV TIARILZ>TLE ) #,
BB OWTIZE ) THEAY. X B0rRMEREL LTI, WESATT
ARA FT IV 7(at) DRFHLE DTN H D, ROFBRILZND Zxt3 2 E4THY
fREZ 5 X TWD.

%% 1.9. (R,m) 28 p>0 OX—F—RHHR, aC R aNR#QRBDATT
LEL, >0 ZFAFEKLTD.
1. (FA[Y)): R RERRZDE, $_XTDOATTVICR LT RTOEBAES
W C R IZxt LT, I* Rw = (IRw)*CBwW). & <IZ, 7(a")Rw = T((aRw)").
2. ([HT]): R »3 F-AMR7%2 Q-Gorenstein EFR7E O, 7(at)Rw = 7((aRw)?).

T, BETHLRA L 5 1T, BERLOMAE - BEEARIC—RILLEOE, A
F7 0 r(at) i FREEA 7T v J(a) DEARSIR] & LTOEA BRI LENDLT
b5 BEATTAOERELOND p> 0 ~OBTKELIREA T TV J(o)
LAFT A () & ORISR OVTIL [E), [La], (HY] #BB L TEH 2L
LT, #EATTN I@) AT TNV 7(at) DEBOMEEHATEL T LI L&S.
CIFOEBIEA FT7 N 7(at) OHE L L TR B8, 0 OREA 77V J(a) I
SNT b FREDRER AR Y 322 ([DELY, [La), [Li]).

£ 1.10 (Subadditivity [HY], cf. [DEL)). (R,m) Z%%p >0 D FEHEIERIRTR
L4+5LE, ROEBOATT Ve b(#(0) LREE L, 20 2Rt L TR Y
AN ,
7(a%) C (a7 (6").
S F <SP ® F-ERIRBE F-ERIE &5, b2 b IO X I F-EAIL B F-ERIE KA
L,fm‘m:t‘tcEm\a)li&."‘%%ﬂ(‘:EFﬁ%bfbﬁﬁﬁﬁﬁibmorv\t;:b\z‘;:ef*&;zs.




EHE 1.11 (Skoda ZUFEH [HT), cf. [La], [Li]). (R, m) Z1E%p >0 OBFERE L, R
D5 TH DD, 72l F-HMR: Q-Gorenstein ERBTH S LIRETS. a, bC R
Z R DENBBINEATTNVEHGEENROATT N, >0 2EAEEM LT 5.
ATTNa B rBAOTLTERSNAHERE L OET L, IRBEKY .

7(a"b*) = 7(a""1b%)a.

% 1.12 ([HT]). (R, m) B R/m SEBETHBER p> 0 © d KT BFR
L L, EBIT, RBERTH DD, £72iX F-HIRZ Q-Gorenstein FREBTH 3 LR
ETD. §25L,aNR£DRBEBEDATTNVaCR EEBEDES n>dIicstL
THRDBELY 3.

7(a™) = r(a®1)a1-4,

. Skoda B EFR DFERRIIBEIZ B ERT T8 L TV 5 O Tl LW, ffE 1.8 2)
XY a BER rfATERSNTNILELTEL, £5T5L% ¢ =p° IKXLT
a?" = alda?=D PR YD LV D INEETH D) S (7) FEL o T EHH
IRENS. ZOMBAS, ELTENCHI LT, KETTRNB & 5 RREAFT L
LRZFEDISABTRETHDIZ LD, AT TNV 1(at) DERFFIELEHITEZB.

2. T4NE—ITHELE-BEERAS EBRANRFRAOGH

BEODREA TT N, EXONATT N a KHBET B bDIEF TR, 47
TADTANVE— a KIS Db DZHERT D LN TES. IR (ELS], [La] &
TRINHE BENREAA T 7] L J(||a]]) ERLTWS. TR, 5
TNDRIRIL, ZANE—FTROBLRENRATTNVE a, BT HERBOATT
NOBREMICET 2 H2EOERB o Te—2DA TT NV J(||al]]) ICFEE > TV 3
Z L THDEWVWZ K. Ein-Lazarsfeld-Smith [ELS] i3 Z 5 L7 %18 %, EH 0 DE
RIRIZBT 24 T T NVORRER I ROREVICET R LR T ABICHDIC
EoTWD. F7z, £DF<RIT Hochster-Huneke [HH3| i3 % E A O R % it A
LCZDORFBEROEEBIREEHA L T3,
FE T, BEAREA 7T VICHIET 24 T 7 7(a) OEBEEHL, O
A ¥ LT, Exio [ELS], [HH3] DRI 2 3EERAZ 52 5. = ORIZERIE [HH3|
LRI EFROHMRATOEGTHAICHHO T, FOXEHRER L FHEITEKO
DOHF T [ELS] PAVWEBDLRILTHB L EoT LV,
LT TR, R—F—BR RDATTNVE a0 = {a, | n € N} TROEHEEZL=TH
D% R DATTNDT 4 V% — (filtration of ideals)® & & 5
1. a; N R 75 @
2. Ay c Ap C Appyp for all m,n > 1.
I THREMNRDIIFM2TH- T, £ 1L g, THBEL-BERQ2EHT S
DOMHEHFREITRER. BARFIE LTIE, aNR #0 RB3AFT7VaCR®D
BEONFNLRLT4NVE—a*={a" |neN} 3. AFETHALEZVODIE,
o DEEMHRIRDORE T ANF— alk®) = {ab™) | n e N} THBA, o BIHERE
ATTNDEE, ZOREHFRIX

™= () @RNR (p RAFTN a DFT_RCOBNKRTF % b 3)

peMin(R/a)

ERINDZEICEELTED Y.

KD a-EEADO—BRILITEBED 7 A VT —IZMHBELTERTE 3.

RBLTIMRVAL BB, ‘ _
S[ELS] T graded family of ideals 723 fgE &> T\ 3.




% 2.1. R %88 p> 0 DX—4—R, 0, # RO FTADTANE—LT
5. RANEE M LZOMWSMBEN C M KL, N © M <8I 5 |a|-8350AE
(||aa||-tight closure) Nl C M 2R CEHET 5: z€ M TR L

zZ € N;,,““’” <= 3c € R° such that ca,2? C N}&]‘ for all ¢ =p® > 0.

EOEETT AN —% a, = alt*] (HOBERAZL>Ta, =al) L LZHD
2N -EEARTHD.

% 2.2 (cf. [La]). a, 21 p>0 DF—F—& R OA FTNADT 4 NE—ETF
%. +5&, R DA FTVORYEENS, 4 F T NVOEE {T((ar)V/*) | k€ N} 1%
AEBRICE L TEATE b, ZOBATIIHE—D LAvaw. X BHE k1> 0
Log=p° IKHLTTAAE—DHEDS (ap) V¥ C (an) /¥ L2220, EED

RANBE M TR LT Ol C 030" Uieto T, EBD k1> 0 IZRHLT

7((ax)"/*) € 7((ar) ™)

BERD 2. EoT, 7((0)V%) & r((a)V') BIBR THIE, mEIE 7((an)/*)
WC—ET B LRy, BRTEDO—BHENR LR D.

THEFEOBRBIEL O DREA T T NMIHLTHRILE, AT T VD
T4 NB— a, \ATBET B THRERREA T 70 T(lad) 23, A 7T VORE
(T (a)*) | k € N} O¥e—DRERTE LTEREN T2 ((La]). —%, ERHK
EBWCIHER 1.6 1Ko T, 21 TEB L ||o.|-BEHBOEIATTVELT
r(lal) EERTHOBKGERTHD Z LICERRERORMIDHLIE. O B
REERIC LB 7(||a.||) 25 THRES 7] $72bb {r((ak)*) | k € N} OHE—DHEK
Te—FKT B L ERETEON [BEMN] HETOFETH DI L EZRICHLD.
HE-T% 2.3. (R,m) 28 p> 0 DEFRHR, E = Eg(R/m) & X ORIRED
AREHEL L, a0 Z ROATFTADT A NE—LF5. Z0LE, AT TN 7(||adl)
PR CEETD:

r(lla.l) = [ Anna(05"),
MCE

Z DI, EDOLEESE E 0T R TOHBER R-BIMBHI Do TEDS bDL
+5. 5L, 7(||al]) 131 FTAOEE {r((ax)V/*) | k € N} OBEBIRICKT S
ME—DBRITTEZE L.

SEBR. ((ar)*) = Ny Annp(Oi0)"") BERE 2D L DI keNE Lo THL. B
2 r((@)¥*) € 7({laul) 1, ()91 C o, (V) &9 05" 203! ThBZ LMD
FRBIC LIRS . MOBEEATIDIC, ERORIRESASME M C £ LEE
LT, z€ 0 L35, B OBSMBEORSIEMED bES {03 " |l e N} 1M
PR LD, FRA O ThB LRELTEN. 5, 2050 (Vo)
S%, EHE L5 CHEMBESN TS [EEN] HET ce Rk end, ¢ 2¢7%
% p OFRTORF q,¢ KALT, ¢(a,)7/929 =0 BRI LD, < g=¢ &L
T cag2® =0 (Vg), LEB-T, z € O 2785, O

4 FT N (||a]|) % THRER 7] & LCRETZ 2 EICEY, 7(||a])) OV <22
OHEE (o) PREICRET B2 LNTRL RS, FIAE, RE 192D 7(|al)
b BEFHLOAHMER RS L, EE 110 & A 77 AVORRMREEEXICHET S
BLrodk LMY v 72 BORBEZIITIEIND.



@ 2.4 (Subadditivity). (R,m) 2 p > 0 OEHEERFBHFTE, oo # R DA F
TNDTANZ—LTHL FEEDOne NITHLTERIRY L.

T([ane|1) S 7({lad]])™.

FE 2.5, ZZETOHRDS, EEBOERRBFTBROATTADT 4 LF—q, IZ
HRET 214 77V 7(||a.]]) 13, BEKO0ICRT B [WHERREA 7T A] T(||ad]]) &
BAR, LTFTOMEZHRZLTNWAZ EBbnd.
L 7(||a.]]) IXBAMLLFIRTH Y, rBOTTERINDIA FTT IV a D_IHND
RBERART 4 NVF— a® IZOWVTITRD Skoda DEENBRK Y 7o:

7(la™|) = 7(a") S a.

2. EED n>11TH L, a, C 7(||an]]).

3AEEBD n > 11X, 7(||an]) € 7(||al])™
N0 5L, HE 1ICBWTUIROEAMREIAREN TRL, HE 2120 T ERIM
& VS5 F-IEREZ (RE SIS+ TH 5 2% (MR 1.8 (3)), HE 3 (subadditivity)
WL TIXERIMESAEMNRRETH . .

Ein-Lazarsfeld-Smith i1 7 7 LV OERBRFROFHE IS 3 ER—%ED
EE 26— E BICAWE (BHER) REA T TNAOHEMEEEME 1-3 L LTAE
BICHH LT, Z2OXSR2EEEZ b2 [REATTANAR] A F7AORAIKE
HIEZ R 5 TV 3 [ELS, Remark 3.1]. Z ORI+ 3 — o DMERKBOTET
HOBAEMABO—RILLAT TN 7(||a.]]) THEEEIDITTHER, ZhiEHE
2.6 12X DR 0 DREA T TNV ERAWIZIEHR [ELS] L EEED 7 = 25
Z F\VZEERA [HH3] OO “missing ink” 2 8RTFHEMY L2322 L2 L.

BEIBRS RokM, ZZETRTKROEHEOIER I [ELS| o %577
TTHB.

T 2.6 ([ELS], [HH3)). (R,m) #RIR4& R/m NERKTH 38T p > 0 D=l
ERIFATER, a # (0) ZEDHEEATTNEL, a DEINERFOBIDORKIES
h:=max{htp | p € Min(R/p)}P L I<. TE2L, EEDPEBMEL>h & n>1ITHL,
a(kn) - (a(k+1-h))n
MR YLD, &I, EED n > 1IZRL,
a(hn) C a”.
SR, 25 DHEE2LE 3 LY,
) € ([la® ) € 7(lla)"
THB00, 7(|[a®)]|]) C alt+l=h) ZREIT IV, p % a OEEORIERF LT3
&, a* R, = (aR,)™ T dimR, <h 755, HE1 LY
7(||a*1)) S 7(la®)Ryl) = T((aR,)*) C (aR,) 17" = a*+1 4R,

L3> T, 7(|[a®]]) S N, ek "R, N R = a1 Ly FEARENE. O

723, Hochster-Huneke [HH3, Theorem 1.1] {28V TiX, a AFEEBEA T 7L TR
WHAES h=max{htp | p € Ass(R/p)} &BFITERDAERIE al*™) C (ak+1-h))n
BEVIULDIEPRRENTND. BRICBVD TIRBRAIRFROERICE LREN
b VREDSERE L TVE L7e S, SEEE R 4 RMERESH> & L3R 0 Hochster-Huneke
ICE D &) —fRIERERIC OV THEMEV - Z L 2B#HELET.

SHuneke /% Z 1% big height & FEA T3,
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Fogarty D7 1 T 712 L % “Geometric
quotients are algebraic schemes”

B JtiE
A BRFERER S TR R

hasimoto@math.nagoya-u.ac.jp

1. F
[1] KB W T Fogarty RO LZERL TS,

EHE 1 (Fogarty). S RL IV MAF—A, G BERKT7 7 A N—2FD
S LEREZ S BAF—LLT S, XTS5 LABEE GAF—ALETSD,
HL (Y,0) G D X ~DIEMD strict orbit space 251X, Y id S LA
BTHd, 6T, bl F RNEER (G,0x)-module (H#E72 G-linearlized
Ox-module) THNIL, (o, F)C 1FHEER Oy-module TH 5.

CONXOHERZZOARERBICBILEERTEAZEMTIZECH
b5, BEEREFBEOTHAZERTETVARNDY, HOT7A T TIEATHO,
G 2% S T, ¢ W% universally submersive &RE §NIEH DIEHDHE
EZTBHIERIFIEORBIIELS, OV ONDREENTILIATE
35, TROEBLITKERT,

EE 2. SNR—FAF—LT,GRBEEZERY SHAF—LETD. X
XS EABER G AF—ALETS, BL (Y,9) B G D X ~NDERADLE
SREIE 25/ (universal strict orbit space, [1] ZH) ThHHE, v id S LHR
BTHD, E5HIKHL F MWEER (G, Ox)-module THINUL, (p,F)C 13
7% Oy-module TH 5.

(G, Ox)-module DEID G FEE Ox MBEOHOBLHENEBY (G, Ox)-
module 2722 Z L2 ANSEDT, G NEHTH 5 E WS REIZERL DFEHIC
WBEETHS, FHEZFESHSIVEDDA Yy MILBEHEZER D universal
openness [8, p.6] TH 5.




BEE S MIZEL Y FTHBEJMRELEV. BAE G AVELER AT
T AN—EEDERRELRV., EBE X =G THHBEDBEY. M
5 Xpea NG RETHDERRELIZNL, X DEKIRAD G FETH D
EBFRELRN,

Ho L bAHMRBEETHD Y BMENT S BLI LY FOHEDIE
BIEAEc BN TH D (B 5). sEPI3 Fogarty [1] &/NEFH [9] DTAT
FICEKELTWS, S MTZEL > NOREZERICE, NFHORR
[9, (2.20)] ZRW3.

ERETEDNET =y 7 ZFIFL, BHER LEEICZEROBRWERE
RAEICE T AR BIENT 5. UTHFXDOKRDET, S ME—FAF—ALT
¢:X =Y M S-schemes DEFHT X XS EABRMET S,

bl o BEEASFY BERETHD (%7. BL S BT ELF
T o BMEARTY Nxr—yThhdYy IERETH 2 (EH 10).

/NEFH [9] WEKRER L. S AVKHT S EAERICERBRTRTOER
BFERSETER A E s Bz ) T Y ME—FIEHT, X O
EEOEMRSDERSE Y QBRI OERRICEINDET D, A5
3 Y \EBMTH B, Fogarty [2] bEUKERERITHIICERL TR,

PLER AT Z 213 (5] ICEERIAtHT W D, FDE, R¥gFholz.

X = Spec B, Y = Spec A 13 &£ ®IT affine T,A—+ B & pure &9 %, C
OB Y IZERRTH S, FHICIE IR T LITMAT Gruson-Raynaud
O flatenning 215,

ABONBICEU CTEERBE 2T I >/ NIERIRE, INEFH{EREE,
mFEEEE, 5] DL 7 U —ICE#MEL 7.

2. EEHE — HHLKRE

TOEEBLT, SREX—FAF—Lh,p: X2V &S AF— LD DL
<55 SHT, X 13 5 FHBRET S, Kid Fogarty [1] KL B,

#%8 3. S = SpecR M7 74> T,Y = SpecBB774>TB pt 3%
LT3, $5& B O R EEBERSEIRE A NEELTHEINIH
n:Y =SpecB — SpecA=: Z WA BN DRMERICHEN L35,

HEA. (U,) & X DHRY 71 VHEELET D, T X % [[,U; TEESR
%7T, X =SpecC 137 74 > ELTRW,
J AHARER CQrC > C®pC DHET B, §5&b,...,0r€B
TJ M :
bh®l—1Q®by,...,0,®1-1®b,



TERSNDRIBHONEND, Ay = Rby,...,b] £B<L, y,i € Y(E)
Y OHRAERS geometrlc points £ 9%, ZIIT £ BREFAGKTH 2. o

BERTERUEZNS, 2,2' € X(§) THoTp(z) =y DD o) =y ’CE'Y’)
BLOBEET 5. (2,0)) € (X x X)(€) \ (X xy X)(6) THBHE, $5 i
WEEL T bi(z) # bi(z) THB. Ty & ¢ D (Spec o) (€) ITBF3
BANRIED I EERT., WO T Y — Spec Ay 1 IEAIZHICHFNTH S, H
%) ay,...,a; € B ﬁ§§'3‘tA = Ao[al,., .,at] 7b§ B ‘:ﬂﬁﬁ‘:f;é :&&iﬂﬂ
HTHSD., $5LY — Spec A [ZEZEBTERITHEFTZ NS, A 13RD D
TRETHB. o

RiL [1, Lemma 3] TH 5,

WE4 YU ZDBAF—LOMOT 74 OHNEBRHETS, BL Z
X —FERT y(U) 28 Z OBRBIEARSE, v BREBATH S,

AR EIR T B,
K& Fogarty (1] & /NEFH [9] DT 1 F7IEDTW T3S,

BE 5. S IERERDPDKBABRF—AL (DED S OEBDT 74 VHES
U = SpecR KA LT, R MWHRERMDKE) T o: X — ¥ REHTH
universally open 7% S AF—LD S HETSH, BL X B S LHEBMTY
DEKTEBIE, Y 12 S LERMTH B,

AEEA. IO Y 3¥EONT FTH B, Lo TRHEIZ S IOV THh Y I2
DUTHRAMTHY, Ko TS =SpecR BLKUY = SpecB IE7 714 >
KELTRW, (U) 2 X OERT 7+ VHEEEEX, §5& X 2 [LLU
TEZEMZA T, X =SpecC b7 74 2 ELTRWN,

X NEBRBEOBIRS LIERET, ¢ 75‘%59"(’&575“9 B 3ABRED
BINRA T 7V U2, B - HPGMm ) B/P ﬁfﬁﬂﬁfﬁlﬁtmb
P € Min(B) XDWT B/P WERBETH S Z &:’&bsx.&iﬂh B % B/P
TEEMAT, BIIBETHHELTHN,

A BZ @E3DELSICHMY, n:Y = SpecB — Spec A = Z &
MERICERPONERT, Z R LEBUTHBLIICTS, 3T, 4
it A DERLEL, B' = B[A] £B<L. ROBKETHBM5, (T DH
a:Z' =SpecA’ > SpecA=Z iZAMRTH S, Y =SpecB’, X' = X xy Y’
EBL.

N
0

!
n
S

8

!

— >
!
N

a

P
ls
~
la
N




Y'I3Y x5 7' OBRFFAF—LTHSBC EIRBEETS. BT o CEHE
AREBRENS B TSI TH 5. RAKIC, n BRMLHNICHATHS. 5
MIZ v 13ERT ¢ 13 universally open TH 5.

e X ¥k yl = (p,(l"), Z' = n’(y’), F = Oxl’zl, E = Oyr,yl, D=
Oz EBL. THE ¢ 13 open %5, F @ minimal prime Q IR LT
QNE=0Td%. .

7 IRSRED S, NEFHOKTAR (9, (1.11)] IKLD, $% n >0
ELT

dim E(ty, ..., tn) —dimD = - |
trans.degp(zy R(Y")(t1, - . ., tn) — trans.degy k(W) (1, ... tn)
LB, ZTIt, ... t, REKEEL, BFR (0,m) IKNLT, O, ..., ta)
BRI Oy, . - - talmjts, . tn] T2 T« 7 DEAFH] ICBIBZ DT, [3, (3.5.8)]
& D, k(y) 1 k(2) DRIFESBEREIERTH 2. R(Z') = R(Y) Thah
5 LOROAARX0 L7125,
P % dim F ®g &(y) = dimF/P THBEL 57 myF OBNRRF LY
B, ¢ x1: X' x A" 5 Y x A" BREREN 5, 4
ht P = ht Plty, ..., ts] > dim E(ty, ..., ts) = dim D
 THB. o Ty NEMFNICERTSHB LD,

dim F > dim D + dim(F ®g £(y')) = dim D + dim(F ®p &(2'))
Lins, FORERIIROVILDONS (7, (15.1)], dim F = dim D + dim(F ®p
k(z')) TH5B.

r> 01 LT X'(r) 2 (UX)\(UXL,) EEET B, ZII X (RER
X1,) W X' OEERIRLSY (ICBAISHEE W2 D D) Ttrans.degpy) R(X!) =
r (£7213 trans.degpyr) R(XL,) > 1) ThrbDLhEED. 7' € X'(r) &
T3, KL [6, (14.C)] KLD,

dim OX/(,-),;,_-I =dimOx o = dim Oz, + dim Ox o ®Oz',,/ K,(Z')
> dim OZI,ZI + dim OX/(,.)’I/ ®oz,'z, K,(ZI)

THB, ZIK 2 =) (@) THB. #€>T

dim Oxi () o = dim Oz + dim Ox(r) o ®0y k(z")




THB. X'(r) DT NTORFRIIKITARIC L o TERITED S, 1¢' | x0r)
BIRTD r KOWTHERITTH S [4, (13.3.6)]. 2’ IZERZDT, Chevalley
DHTEIE [4, (14.4.4)] LD, ¢ |x1(y 1BTXTD 7 1Z% LT universally
open THD. X' =J,5,X'(r) THBH5, ¢’ iZ universally open T 3.

¢ BERTEDS, 7(Y") = () (X) & 2 KBWTHTH 5. o 137
T4 TRERE, 2 3x—F TERENS, BB 412X0, o 3EBATH
2. LOoTY RBREAMRETH S, B BWERERT B —» B WHBTEHFEH,
5, BI3ARERTH 5. O

6. SUTIELVYFAF—LT G REEFREL SMAF—LEL, X
S LAREE GIERETS. BL ¢p: X - Y PBERBEZET Y 28
BB 5E, Y BERETH B, '

A, 13 (8, p.6] IC& D £HT universally open TH B 5 EENEAT
2. : a

RT.SHR—FAF—AT,0: X 5V I3 S AF—LADHEFHAL S &
ET5, X 'S LAEBREASIE Y I3 S LEBETH S,

GEPA. S = SpecR, Y = SpecB, X = SpecC 3T XTT7 74 > EREL
TRV, B A C OMBERAERT C NX—F NS, BbX—9TH5. B
DOMFIRENERERA T T IVIENS, By WEHBRE L REBITRAW, B %
Bred T, C % C ®p Breg TEEMA, B RENELFEEL TRV, £oT
[lpeminy B/P BWEBRBZ LREIERY. B %2 B/P TEBE®RAT, B 3%
BELEUTRW, C3BE B O LICEEWALENS, $5 C DEAFTTI
QMHFHELT QNB =0 Tdh3, [9, (2.11) and (2.20)] Ic& YV, R 3B
REREL THEW, Descent [4, (2.7.1)] K& D, R IZEHEARELTEN,
BEIESE BELI—EROEBEXT, KRELT BRERERELTRN,
RWBIIELV Y NT B NEEENS EEICE>TBRAEBRHETHSZ, O

3. —RRODIBS

COETIIER 2 Z2HHAT . ETRETHT 5,

Wl 8. SEFXR—FAF—ALT, G RIFHEAREAL S BAF—LETSB, X
i3S LAREZ G AF—LET 2. £ED X OB G HIAF—4 X, &
TOREBRPUEZEM ¢ : X, - Y, ITHLUT, ¥ 2R725E Y, AR (f
A& S ML &L > FOFA. Corollary 6 ZRK) £T 5. HL (V,p) At
G DERITNT 2 HERHEEMAE5E, Y 1 S LABRMTH S, 2512




&L F R (G,Ox)-module 7251, (0. F)¢ 1¥%—4 Oy-module T
H5.

SEER. S =SpecR & Y =SpecB &7 7 4 SELTRW,

FPREOEREZEEA F7 V@ ann F := Ker(Ox — Homg, (F, F)).
BT B X — FREEIC K S THEHATH LT B, F#0THD ELTR
Ve BEE V(F) = Yy lengthy,  F KHTZRMEDAND. 0V
i supp F = V(ann F) OERIRDY ZED, v XV OERRTH D,

G % (psG)¢ A% —%F Oy-module ThdLOIRF OHEE (G,0x)-
submodule DHTEHAZHDET B, (¢ BERERBDT, F &2 F/G
TERERADIEIIED,G=0 THBHELTRN, HIEED 0 TRW F
DEE (G,0x) 58I}, F LFAU annihilator EZFED.

U (0. )C = 0 78 5IERERT < E T EHTBE, £oTHY(X, F)O =
(0. F)° £0 CHABEEERS, a € HY(X, F)°\ {0} = Homg 0, (Ox, F)\
(0} £HB. T5& a0y 13 F © 0 THVWMLE (G,0x) BAHTHD. &2
T v(aOx) £ 0 THB. bL v(F) > v(aOx) 15 51F, RHIEDEIEI &2

TGO a0x #£0 ERVFETHB. Lo T v(F) = v(aOx) TH5B. K>

T v(F/aOx) =0 THV, &2 T supp(F/aOx) G supp F TH 3. WML
e Lo T ou(F/a0x)C BF—F ThB., F#0=0 ELTNBOT, £°
T .(a0x)C 13X —F T2,

JEa:0x o FOBEL, Z & Ox OEERE GATTIVE J TE
£IN5 X OG FEHBHAF—LET D, BREBBAMS F=0z &
LTBW., bl HY(X,0z)¢ R THENESIE, be HY(X,02)¢\{0} T
BoTH =0 ChBbONEET S, THE 0#b0; COz THDT, b0z
® annihilator 1 ©; DEFNKDEIIKEN, RAEDOREICK D 2T
EhB, LiedioT B = H(X,07)¢ BHATRFNIZRSE.

Y, :=Spec B, &L, By 3HRLERE B = B, D EL, Yy = Spec By
BY, oY OAF—ABRBERETS. o :Z % &Y oY, ZH
RirEHREREE, Z WG FEBBAEGT e MEEEREN S, EERAIIT
Yy = ¢(2) = Im(n'p1) THB. REWHNT e l(Yo) = Z THENH5, A
Z < ¢ 1(Y,) & universal homeomorphism THD. HoT g, FENT
universally open T3, &2 T (Yo,7¢1) BALHRPEEBTH D, Yo i
EREOT, Yy REECES> THRH TS 5.

[1, Proposition 1] IZ& D, (Y1, ¢1) & universal 7 geometric quotient T
» D, 7 iX universal homeomorphism THD. B Y BRECXVAR
BMTHDH, £2oTrn 1 =Y 3R — ZAF— LA DB DA BRL7L universal
homeomorphism TH 2. £2T 7 BEBTH S, £oT B, i& B, B#RM
BTH5D. By 13 R PEBEENS B, 3F—% Bo MBETHB, 2T




((,0*02)0 bj:;"( 5 Oy ﬂﬂﬁf%%

RIZ, Y = SpecB WARETHS Z t?&r@” F—YRMEERN, G
2%7‘;5%*“553\7\# AX, CX EXEDEERIELEH ¢, : X, - Y IRt L
TY, 3EBETHS t{ﬁﬁ LTRW, bL Y BEKNELE MbRTE
FidaWn., EITbe B\ {0} TH =022 bDONEETSELTHRN,

REICED, BC B:= H'(X,0%)¢ THV, B 3EIHEHALEZ &L
D, *—% BM#ETHS. Bid BD B EAMBEENS, BIdx—yBTH
Do KD T By WERBEITH D Z EERITFZIFTTRN,

X, 2 bOx TEEIND X O G REBHARSAF—LEL, 1, E
X1 XY ODAF—LHHNBEET S, T5& X, - Y, BETE®RE
Fﬁﬁ‘C&D %‘DTEMEOJW &P )/1 @iﬁlﬁﬂ’f&%% ‘fi?f Y;ed = (Yi)red
LRODEOARUTHS, m

B 2 OFERA. #ifE 8 DIREZHMDNITRWN, Ko T, Y 3HENE LIRE
L,V WEBRETHBZEE2NAIEEW, S =SpecR & Y = SpecB 137
T4 ELTRNY,

HEOFHE R RE R ITHL, EEH ¢ . X' - V' BEVEESRHNEZ
MIC/E® Z LT 5., mﬁm@iﬂp(an)md@m]kxo Rz
RFBRELTARWN, RiIZTrEL > MeDT, BUEE 8 ITXD R®RY i
R FABARITH 5. Descent [4, (2.7.1)] KD, ¥ ZARRTH 5. O

4. BEBEH

RWE*—FBT,0: X 5> Y 13 R AF—LDOMDOEHTHS RHT, X 13
EHRETHD LT 5.,

fE 9. ROHEIRT, o X 5 Y EANT, Y BR—%&ET3, 20k
Y 3B (DD, Y OTXRTORFARSHER) THB.

GERA. Y 2 Y LABBABIAF—ATEEIMADIEICLD, EORE
DFT, BL Y = SpecB M7 714 TET, Q,P € SpecB T Q C P,
ht(P/Q) =1 TH 35 htP=htQ+1 THB I EZREERN, X 2
Y CENTEIND X OFHRSITENZHEEEZV OO TEERE T,
X BEBIXF—AKEELTRERN,

WME3ICED, FRER REBSIRKACB THoTn: Y = SpecB -
Spec A ﬁ\iXﬁEb\')%ﬁ%B‘Jkﬁ%‘Cﬁ% HbOMEET D, ¢ IEHZD
T, KTRABHILL [9, (1.11)], ht P =ht(PNA) TH Y, ht Q = ht(Q N A)
ThH5,




o BEHZOT, X O zo,2p,39 THD Tz & generic fiber DR,
zq W& 3o D specialization T f(zg) = @, zp & zq D specialization T
f(zp) =P THHLONEET 5. §5ERTHARITLD,

dim Ox,, = htP + trans.deggy)R(X) — trans.deg,(p) k(zp)
dim Oxz, = htQ + trans.degpy) R(X ) — trans.deg,q) #(zq)
dim Oz5,5p, = ht(P/Q) + trans.degyq k(zq) — trans.deg, p) k(zp)

THD. Oxg, FEHRBOT,
dim Ox 4, = dim Ox z, + dim Ozg.er

TH 5. > T, RDBED ht P=htQ+ht(P/Q) =htQ+1 THd. O

FHE 10. RVI7EL Y IRT, f: X 2 Y B RAF—LOENTHIHE
EHETS, bL X R LABMTY MR —FAF—LRBLE, Y ER
LERETH S,

ZIBH. Y = SpecB 137 74 > TETHHEL TRV, X HEETHHELT
B\, HEE 9 OIEHA & FA#EIZ LT, Spec B — Spec A AMBTEHNICHA TH
5E51 B DEMBAER R BHREK A &2ED. KRN A & B ORT
(BFRRA T 7IVIERHLUT) BRILL, B RHSRTH 5. [9, (4.9)] KELOT,
BREBETHZ. O

5. Pure ZE9R

Kid Raynaud-Gruson I &> TR Nz BB OKAIZHETH S [11), (10]

T 11. A > BBF—FBOABRRLERBMEL, o: X - Y BMETZY
T4 VAF—ADEETD, U CY RERAMERT o: o7 }(U) - U IFHEL
RET . 2O, 2 ADAF7IVIDBEELT, V(I)NU =0 THD, Rees
BORICHEI NS RENBOXERE R,y (I) := Alt]) - Rp(BI) := B[tBI]
M5EESHH &: Proj Rp(BI) — ProjRa(I) BHHETH 2 bOVEFET 5.

FEOLS7T & & ¢ D flattening EFESR,

FE 12. R % —F8 A B3 R REDOUERE, A M B OMSHIR
TH0D, BN R LABERZSE, AR R EERERTH S,



FPA. B R EARERZENSX—FTHD, Al B OMARIHPBRENS
F—FTHB. A% Ay CIEBEMWA, B % By Arg TEEHRIT, A1
BRIE LU TRV A - [Tpepinay A/P REFNTERLZOT, & A/P 2R
ERTHEIEZVNAERRLS, BEERL T AMNERELTRY, ARBOD
MZERDBRIZDT, B OW/INKRATT7IV P THHOTPNA=0THDHD
NEET S, EESH LD TRIFNIE, A BBEZNS B OTXTOM/NE
ATFTIVZEENDS 0 TRVWIEVEND TN, 0L S RTIEMERLH
SFETHB. o T/NEFHDERE 9, (2.11) and (2.20)] LD, R IZRFT
RELU TRV, Descent Did [4, (2.7.1)] 1KLY, R BEMBAAREL TR
Ve ZORMKERSITEE A ZRVELT, M A BBRTHBELTRN,

p: X > Y 2 A—> BIAHETZT 74 AF—LDHET S, ¢ 1
F=FAF—LDOBOERYLHFTH S, Flat(p) T ¢ D flat locus ZF
T LI 5. o(X \Flat(p)) BAHEAT Y OERRZEERN. K25
U=Y\o(X\Flat(p)) £BFRE U R Y OREBELHESTHST, ¢ 1X
eI (U) LB THS. EH11ICL2T, H5 A D0 TREWSIFTIINT
WHEFEL T, &: ProjRp(BI) — Proj Ru(I) A EETH 5,

J W RA(I) DERAFTTINETBE J =@, o0 Jnt” (Jo C I") EXED
%o JR(BI) = @, .¢(JuB)t" D5, A D B DREARTH B LIck
D JLBNI"=J, iBDT, JRg(BI)N Ra(I) = Jo P A% Ry(I) DHEFKRFEA
F7N&E&. PRp(BI) DH/NRETF Q TH>T QN Ry(Al) =P TH
BYHONEFET D, BB LEDS TRWE, PR(BI) DT RTOB/NERTF
KEENDN P IZEENRWTE a € (VPRs(BI) N RA(I))\ P BB B2,
zhi '

V/PRg(BI)N R4(I) = /PRg(B)NR4(I) = VP =P

KRUTFETHS. UEITED, &: ProjRp(BI) — Proj Ry(I) I3EEE
HTHS,

ProjRp(BI) 1¥ R LARBLEMNS, R 7I12&D, ProjR4(I) ® R LA
RETHD, HRRH ProjRy(I) = Y BEHOBEEHTH S, RIZTI+
VRS, B 101I2KD, Y BEREATHD, A3 R LARERTH
%, O
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1 F

kZGEEL, GE—RGREGL, (k) OMABETS. G, k LOnTHREERER
KREERELUTHERTS. Z0LE, FERR RC RARERT L RKICRZM?

. OB ([15] TIX the original fourteenth problem of Hilbert & MM TW3) 12X 19
HHEREDOREICEIETE ORFEENELKEITEE. BETY, LEOMEE
IZBEE LT < DO DRARREIE ([3, 4, 5, 10, 11] 2BH8) Ao TN S,

20 BHEATHE, BRIV L (8] Ik o THREEE G BBBIIKICONT, Tyt Y I~y
7 [19] &K > Tk OIMiEEE G, 12DV T the original fourteenth problem of Hilbert 3%
ERCRIT B EBMBNTVE. ZOXSREENRERICKL, KH [14] iX 1958 #Ei
the original fourteenth problem of Hilbert IZ%9" 2 K #il & MM L7z. LAME, the original
fourteenth problem of Hilbert IdBEEMNCMRBR I NIz EAREN, LTS IKERIZAS T
LIZ72%. RITENREHEDIE 1990 £0/X—Y [16] HAEILR)L k DE 14 BEIZ KT 2
KRGl ZEkL7=E % TH%. LML, ON—YORHIZ the original fourteenth problem
of Hilbert X4 5 REATRM M. £TT, THSHE /AT [I] B, ON—YD
FHCH 5N 2 1EBSERR L RANEEWDOMICHL, KROL S iy EE
ERE, VAR EARE 2EORFINEEBHEHMS OMDTE X 5N DEH 17 K
(the original fourteenth problem of Hilbert IZ 33 K i) £ #4& L 7=.

WRIALERE ik LOnERSERBRICBIIZ bk LORFREEM5 D IZHLT, k%
BIeT k EORBMELERRA L, AITBI 3k LORTNEBHREMS Dy, . D,
&, REOTEW HEhs.




(1) RIZ A DREAE £ BAREITIZD.

(2) D1|R=D-
(3) Mioy A% = RP[W].
770U, RP:={f € R| D(f) =0}, A% = {f € A| Di(f) =0} £T 3.

 OMEE G CEE IR REERZ, FASNHE DAFEK]L KREFK1RAL
BLTHARNELTS, AEREATHNE(2) OFRHLD BB 5 DRIBRICIZ ST

BLnSCEichB. (3) D&M, RO Ak REEUTERERTRINE, M, A

b kAR ELTHBERTRVEND ZEZEKRTS.

t)l/’.\'}l/ NOE 14 BEICHT R & RRHI (L, 2, 4, 9, 10, 11, 12, 13, 14, 16, 17] A
NN TVWANERITTH DD, BRIV hOFE14 RIS 5 RAIOHRIL, X
DEEDPREBOKREEETFRHRATITATRS. 20 iR, LEAROERZH
ST ENSEET, 704 FIN—FRFATIV[2, 4 BEIRVEOF14 RIS
LREIE#R L. LL, Zn 5o REZa/N—Y DK FiFEE the original fourteenth
problem of Hilbert e E B RN TWRWL., £IT, TOHRBRTHE, TH R-7
A TIDEX BHLHEEMR) 2RATHILIELD, FERE KB S BRETR R
AR T 2. 2T, FATNETOATIN-TORH 2] EIXRDESBHDT
»H5.

FLHNETOALT U R—IORB R:=k[X,S,T,U,V] &k LD S5EHREZHAREL,

0 0 0 7]
D= Xagg + S'éf +Tb—(7 +X23—V' € Der ¢(R),

LB, TDEE, RO kMREEUTHERERTRN.

w211, COFAFNETOATIN—F DB (R, D) EHIALT S Eicky, 13
%ﬁ@ﬁﬁﬁt@p&hﬁﬁﬂnﬁmbfwf,%oxﬁiﬁﬁﬁmiﬁfmw%mé
B (EE2). £k, TORS NFEAEERAIZERBOLEN 13K THD, BRiE

il SNTWABAERFIDOF TRADEREHFDHDOTHS.

AR VRV LTR, %< ODANLBERCEREVWEEE, BIBHLTS
3



2 FATINETOAATF YN DOREIDSERTE DI
IEREICDNT

UF, kEER0OKET S, kRERICBITS k LOMS DABHRERTHS &
i, EEORDTaICHLT, H3ERMn HEELT D) = 0EBBIETHS.
E7, R=@%, R WRENE k RETHBEE, RICBITS k LOMS D HRRT
HBERD(R) C R EBBTETREDS.

TEE (FE) TRERREE, REBG L, GOBEER ) CORATISERE A
EEHTD.

G = {(t, po, b1, Ha, B3, 114, pis, pi6) € k°}
KEEZROLIICEDD. COWATG I3k LOREBITS.
(t, o, v, B2, i3, Ha, K5, pis) * (E, oy 11, Moy Hs, By, Hs, He)

= (t+ 1, o+ pg, g+ B, pa + ey + ph, ps + 820 + tuh + ph,

e py, ps b+ s, e + 58700 + tug + g).

ZDGIFRDE S sEE=FFD.

fhiRE1
H = {(t0,0,0,0,0,0,0)€ G |t € k},
Gi = {(0,"',0,/1.,',0,"',O)GGI,U/,;EIC}, 05256,
N = {(0, mo, i1, 2, i3, pias 5, i6) € G | pi €k, 0 <4 < 6}

EBL. TOEE, HG, GG, N2GI THB. 351, NIXG OERBAE
T, GRHDNICEBEERAS. TADE, GGl %G,

EIB. REBBEEGOEHEE, 09N -G — H-0IINHTHIELFITHIIELINE
BITRES. ENLE S

K‘:, G @ﬁﬁ-{iﬁp 7&%523-5 ﬁ' (t, Ho, [J1,M2,,U:3,[l4,ll,5,ﬂe) €EG GZ%]‘L'C, IERIJ
ﬁiﬂ p(t7 Ho, K1, K2, 43, ’1'4:“5:”6) %»{?ﬁbé




110
0|1
pe |t |1 00
ps |32t 10
pe |5t |5t° t 1

—H1| M4 100
—H2 | s t 10
—u3 | Mo ot 1
0 [ m 1 00
0 | pe t 10
0 | us : 12t 1
Ho

0

t 10
Ho 01

w L. EEORSRETOET S, ~NERRKE G p 2EE L THRIC K L0 13
EHEERE A = kW, X, S1, Ty, Us, S, Ta, Uz, 53, T, Us, Vi, Vo KAERI S 5. T2 B,
p(t, o, 11, 2, 13, fhas 15, He) 1BFIRY RIVYW, X, S, T1, U, Sz, Tz, Uz, S3, T3, Us, V1, Vo) IZ
EMBERTS.

ZOHRAEDEERIIROERTH .

W 2 FROTEDDHET, RERRACKE, T/ E&T04 FUN—T OBERER
THWREREB RP L0 1 EHFERREFARMIIRS. Lo T, ACIIERERTR .
W EREICRS. .

EH 2 OERAE T BHIC, ROBEEZHAET 5. COBEIEE20IHAT, G, AL
REE FHRNEZEWS OB TERT D EETLERTRRS.

WE 3 p: G, — GL. (k) EREBSERREERLETS. G, kL0 n ZHBEX
B R = Kz, ... 5o NERIERLTWBET S, TDB, pt) WERSFINY b

fon... o) LTS, M= Sp0)| 8% =Y Mz, 1<i<n&
[ 7

t j=1



B EEL, M, 3TFIM D (,) RFET . 51T,
A= Zaz G Der (R)

LB ZDEE, ARBAINEEMS T, RAVKDILD.
A(f)
(1) t-f= Z 7 — e

=0

(2) RSe=RA

R 3 DAL p HERB LD, p(t) = exp(tM) 7125, BIRK A(z) = Y7, Mijz;
Z2AT(@-1)EBTNE, Alz) = 37 (M) 25, £>1%HB2. BRI,

n n o M‘i~
P ML ) Zl(ez( 7 ’]tex")
j= =1 \=
) n(ME T o Al y
= Z(E( e)!J-TJt£> S é!z)tz
=0 \j=1 £=0

L35, pRBERERLD, MIINERTINIY, ARRFEBMANBS. 1,
p:R— Rl &ar Z A’ ("‘)tf TRDDE, ok RROBERRIAS. LEstoT,
BOD fe RITHLT, go(f) = flo(z1), ... ,0(xn)) = ft-21,-.. ,t-zp) =t f(T1,- .., Tp).
Lo T()ARE. 5T, fERC & EBDLeG,IMLT, t-f = fl & A(f) =

L LS
THE2OME. BELILD, &H G 3G, Lk LORKEE LTAKNTSHS. HES3
ID, BH GIEMLT, RDOLSBREFHREEUAIHET 3.

A= Xaz +5162., +T136U +Szaz, +Tzag, +536§_, +T3633 Xaivl,

A0:=X5%+Waivl, A1:=—WaiS2+Xaisa, JAVS W%+X82“3

A3:=—W%+X%, A4:=X£;+Waisl, As —X%+W82“
A6:=Xa%2+WaiUl.

—82—




GIREHBEH £ G, (0<i<6) TERSINTNZDT,

AC = A% N ﬁA““
=0
E71B. A DAL, EREELT, W, X,5,Th, S, Tp, U = XUy — WU, 53, T3, Us, V1, Vo
CHREN, kLD 10 EMESERE A 25, (ERORMIL, TH R A T (]
D LemmaZRE). AEA; (0<i<5) & 12EESEAR A AHRLT, BRU Z
AT, ThoORBINAMs 2EETTEROISITRS. LKL, A= Alya,
AL = Al (0 <8 <5) £B<.

0 0 0 0 0 0

I-—— c—— —— c—  —
A “"asl +S‘aT1 +5 25T, +(XTy - ”T'~’)3U+533T +T33U3 Xavy
) 8 ) ) ) 9
/ —_ JR— —_— / —_— = G — / —r — —_—
A X3V2+W6V1, A, Wasﬁxasa’ Ay =-W !’2+X9T3’
o ) o .8 ) ]
2.._ ! = _— [’v-—— d ”
Ba=W 6U+X6U A X652+ 39Sy’ As = X6T2+ SOy

AB 0 k12 = (K12)A" ;D AB N k1A = (K1), 0< i <5 KD,

5
AG = (k[12])A' N n(k[12])A§

=0
2E5. KT, A, OEERDBE, 1 EREERREE, TOLICA LA (0<i<Y)
RERTS. ThEE A" = Ay, A := Al (0<i<4) &EBL. T3,

4
AS = (k[II])A” N n(k[ll])Aé’

=0
BED. COBEE, A As, Doy Ay, Ng DET AS = (KO)2he 12732 X THIT 2.
+2E, KOtk LD 6 THRBERE KW, X, S,T,U, V], (S = X285, — XW S, — W?S;,
T = XTy — XWTy — W2T3, U = X2U, — XWU, — W2Us, V = XVi —WV,) K720, A
D Ko ADHIRRIL

] 0 d 3
Alya = X"5g 531 T30 Xov

TEALNS. ELEESS
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3 7% AR FEEEMT BT ERT)

CITEREEL L, REBEG 2, n KT C-7 MVER V IC C-EREBIZERL
TWBET5. V A#EERE S :=Clry,...,z,) D—RERREEKLRA—HRITDHZ
Lickh, Gt SWHERTS. Zokx, REH G IEISERR S ~REICERT
LS. SC TIOERCEAIRERLENLRD S OMAREKRT. TORR
<, IRERS SC 12 C LABERD? &\ ) L AEO Hilbert DO 14 B8
(original Hilbert’s 14th problem)! V5. Z ORIREICBILKME [N1] i 1958 i
BEflaE -, Chnb®giE, FEXBAERERICED (BDVITHRERTRYY)
FEDDOBWELEERRD D EHNEELE 2o, I EH#ES Lk Hilbert D% 14 &
(advanced Hilbert’s 14th problem) &\ >5.

1 Hilbert % 14 [SZE—Hilbert OHREKETEE L
K EBE{ER

= Z T3, Hilbert % 14 BIREIZET 5 Hilbert BHIC L5 EERRRE, B 14
RIBEORBNZOVWTEBET 5.

T 1.1. G 2REEELT 5. £ED G-MBEO2KE V - W I L TIhAEL
B V6 5 WS bR THD L X, G IIHAEMK (linearly reductive) &1 5.

Bl 1.2. (1) RIERE G, CEHBREREEE SL, (IRAEBNTH 5.

01
PEXD. THCE-oTV =C i GIBECRS. TSRV %, 2Kt
~ % BFR B (unipotent representation) &\)5. ZD& &, G-MEEDTELS

(2) MHERE Q, VR TIAR. ¢ o ( Lt ) CEEBERE G, - GL,

0—wC—V—C—0
DEL G-AREEHH D5

0—C—C—C

UN1) OF XS,
HETI3 2 BEVER TORBIIE Roberts [R] Db ORELTHSD. b L BET DHRELHER
DFIHAL T, TOREECHIBREOBERER W&,




IIEL2ThH5. Lrl, BEROBEHRIIEHTIIRY. Ko TG, FAMHT
X7z,

BAER R REBEOERIC L D2 RERIZ OV TIE, (RE/IC) Hilbert (2 X 2RO
BENRD .

EIE 1.3 (Hilbert 1890). G AHAMH 2 SIEAERR S 12 C EARERT
»5.

1.1 Hilbert DG
R% C koL L, GIZT RIZEHALTWAHLDET S,

B 1.4. G IIBAEHWEL TS, ZDLE, RIX—F—BRAZLIE R bx—
BRTHD. ~

SEEA. (M1) I % RS DA FTNETH. [ & 1 TARENE ROATTALT
5. RIIX—F—BRENS, ARBEOTIGRD I OEKFR yi,...,yvn € [ C R
Ens. G-, R-MEEOLNH

RN (y1 - yN) T

FEZD., ZhZXvEMN S RC-MEDERBER

(RG)@N (Lﬂ, I

i, G SEEBHIC L) 2 ThS. 8 10 =N kRS C I Tha. 1CI0 i3
BASH»ENS, [=3N wRE ThH5. m]

RG 23 R ® pure SR THD L EFRT I LIZLY, REBX—F—RTH2D
ZEEFTEVIHEEALSH 5.

REHE G BEEAR S KHRBIERAL T2 L &iT, SO BRERITRD. Z
DZEILEY, SO RX—F—RThHIE, 59130 KEREY ERRERL 25,
Lo, ﬁ%14u;0mﬁ13mbmé

1.2 kEZER

Vi,....Vo % G, ® 2 RE_RZHKBLT5. B C° = G iZEF P, Vi 12fE
A5, Zhicky, B Cr =Gt XEERE Son = Cloy, ..., Tn, y1,.- .,yn] /S
DRRIZIERT 5.

C" ~ S2n = C[xl,"'axn)yla"'ayn]
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X C EAMRAEMD?

1.3 EE 1.6 O (1) = (2) DA

(A) S DA T EfE-> TEEAT 5. CEREDFEARERMEIFESED.)
i-degree = z; & y, KEATIEREOM (i=1,---,n)
r-degree = Ty, T, ..., Tn BT A RE O
y-degree = Y1, Y, ..., Yu (BT HDREDT
f € S O i-degree, z-degree, y-degree & ZH LN i-deg(f), z-deg( f), y-deg(f)
LR,
(1) i=1,...,n #—DBHE. ZDLE, t€Gy IKHLT
z;, yi — tr, ty
Ti, Y = T Y; (7#1)
LEDBHILICLY, RIEFE G, X SIEATS. ZOERZGOS
~DER AR THS. LoT, EBED e Gy, IHLTHI) C S &
2% DDtk Y, SCiTi-degree X o TRERIZARD EVI T L
BHOND.




(2) te Gp ITHLT

TlyeoyTy > 1Ty,...,1x,

Yis-ooyYn = Yiyee oy ¥n
EEDDTLIZRY, RIERE G, (X S ITEAT 5. "@Vﬁﬁ}_’(tl, ctn) €
G DA LIZAHRTIIR WA, FED t € G, I LT (14t,. )t

t~@V”mJﬁ&ﬁ?5.:@:&KIUtG%CSG£&D,§”i
z-degree (Z& > TREBRIZRD L WD Z L Mbhrb.

R Y0 i-deg = z-deg + y-deg BRI T HZ & XY, SC i3 y-degree IZ
Lo THHRERIZRD.

deg(f) = (1-de(f), ..., n-deg(f), y-deg()) € 2"

EERTD. Zhizdy, S ZW-RERERD. CoLkx, Eo(1),(2)
DFERIZL->T ST S 0 ZrH-REMBORERDZ L RbM5B.

(B) (tl,...,tn) EGIZEY r; — x;, Yi =y + L LEXNA. XoT, y,'/zt,' —
Yilzi+t 72D T LITER.

7 < (s om) flans

=1

_ i, %\ 1T, | (@,,a) €CM X VY(h,... 1) €G
- {Gb{* +%%>£P” IRLT YN ait; =0 kil
EBL. GRA|KT r THHNTAmT =r ThA.
i &
deg(z:) = (0,...,0, "1°,0,...,0:0),

deg(J) = (1,...,1;1)
IHEE.

EBE1.9. (fi,.--, f;q) X, BRFERD r KTBHZER q & n @BOEWIC
RRBRAERX fi,.... fn OMTHBETH. || <r 2B-THEEOELT
A IC{l,...,n} ITHLT,

codim{g € q | fEED i € [\ZHL gix i THV NG } = |1
B ILDE X, (fr,..., fa;q) HEIR LATHE (reversible) THDH L E .
B 1.10. (21,...,2,;0) HEELATHETH 5.




FIR L FERDEAZERE O/ (..., fo9) 1L, BELTETHE LTS
1<i<riZ®LT, g &1 KK M VZER]

{geql f,’llg vj:'l?"'?;:?""r}
DERTLETS. g BEEBEERVTRES. 22T, X T B 2B
T AbNDETH.
fl= ey (1<isr)
_ ' fi F DAL
EBE, JIXC L

{gl...”i...gr
T A
CELND SC OWMHEMETS. B (fl,.... fud) B (fi,-.., fri9) NE

IR L (reversion) &5, FEHL MAERMOMTEERLARETH D bOLE
% R LBL. RHNOKBE

(1) Z:%ic fl)"')f'n OE&
(i) BiRL
pEx s T M (.. o) (LR (1), (i) ORMERRY BRI
FE0ELTELNSMDOEEE Ry, LBL. (i), (i) DBRIEIZ X » TRED
1751
deg(f1)
deg(fy)
deg(q)
BB LTWL. TREEERT 57201 M O D = (a1,...,an;0) &

wy = (a),...,ay;b) LT, WNEE

(1)

<w,,wp> =(r—2)bb’—za.~a§
=1
TEoTEETD.
j=1,...n—1IXLT, 2" OF
j&B j+1%8
—~~

~ =
@ =(0,.,0, 1., =L ,0,...,0;0)

i, (=2)-<27 hATHB. 2FD, <ul,u>=-2ERD. TOL—FicH
+ % reflection ¥, Z™! OF j S LE j+1 BIOBRTHS. Ro to
(i) DBE, BIZIE f; & fi OFBETD &, WEOTFI (1) OF jTEH




JH1IITOBBRBEIS. 2%V, T, ONE <, > 12T 3 reflection @
TH1%, 1780 (1) KEMLLT L DONRELNRS.
wiz, Zv Ox
r &
T =(=1,...,=-1,0,...,0;1)

ZRD. b, (-2)-N7 M THD. Ry ET (i) OBMER{TRoT2 & &3,
REDITF (1) 1Z, T D reflection DITFIHENLINF=bD L —FKT 5.
EORNE <, > L nflOA— R G, ..., Ghoy, U IZXAST B Dynkin K
i Topr THD. V=LK U, ..., U, T O reflection ETERIN B
GLnt1(Z) OB (ZE, Topn, DUANEBEEND) BNERBETH D0
DREFZEML, TRI16ORMHF 2 DL+l+ L > 1 THhrZLeBmb
nTns [K].

IIT, 3+ 1+ 5 <1 LRETS. T5&, VALBITERETHY, Hic

n—r —

Ro DFICHTL 5 f; IZXI5T 5 deg(f;) € Zr IHEMED B = L b5,

2%V, EREO T € Zv 2 deg(f;) (BL, (fi,..., fn;q) € Ro) & LTH
na.

ZIT, RIRENB.

ER 1.11. G P —ROLBHEMOL &, BRLAFERIETITES. &b

LIS, Ro MBHT B f IKX LT, deg(fi) 123 Supp(S©) DBEWTE T
5. 72U, Supp(SY) IARERR S DA {V € 2 | (5% £ 0} Th5.

2D & 5 IZBERITT 2 BEMRE b DD THFE Supp(S°) IXARAER TIIARWV. Ko
T, ROMELRHEICZLY, SCITFRERTIIANI L23bas.

fARE 1.12. A X ZM-REBMERTEIRL TS, ZDlx, AN A EBRE
LTHBRERMZOIX, Supp(A) IXT¥BEE LTHRERTH 3.

2 KEORE-—KBEDHEZE (n = 16), TOEBIR (n =
9) &kHAFAE

Z ZTiX, Hilbert % 14 BRI T A2XKBICEARAICELT, &b EDk
H DfmiE [N1] (n = 16), Steinberg [St] 12X 2T DR (n = 9), FHZRIE L7
KEFROBNZITS.

Voik, IEREG, D2 RTDONEERBTHH LT 5. 2D, te G, iL, V= C?

iz é I) CE->THAT LTS, 2k, i=1,. nlciLTRIb eSS



Lizky,

C"mél/;

2B%5. G % Ct D—RORKRKTr @ﬂ‘ll’\"“ﬁﬂ&#‘é &, EofER%E G IZHIRY
I LICEY GiX2n BERLERR Son ([CRORITIEAT S,

G ~~ 52n=C[zl""azn,yh"'ayn]

T T (1<i<n)
th,... tn) €G '
4 )€ {yi'——*tiivi-l-y; (1<i<n).
21,y Tn REOEATRERDOT, G Son & o1,y 20 TRFHELER
5';"=C[;zlil)"'vzflayla-“,yn]=C[$¥:1,...,$:I,Z—l,...,—?{1]
1

Tn

CHERT B, (t,.. t) €EGIX, L B4t CERTAILICER. S or K
TTER ST ZE

(C +.-4CE )Hz,ﬂSG'

v, Yn - . (al,...,an)EC"liV(tl,...,tn)EG
{(alz1+ +anmn)‘_]-=:[$' LT YL, ait; =0 ZRCY
OREEEX JO, . J0 kL4,

>l 3= = Sllemo)

i=1

J

Il

G={(t1, ,t,) € C"

ko T a? e C BEDNIT,

n n n
Z my Z @Y Z nY a G
g a; ; ) - a; z; Yttt - a; ; S 5211

<HY, FlxiE IO = (z"_l 5”1.) oz, ERHIE IO, IO T ORE
IZhBZ EDNDID
DLk E,
a ¢ +1 +1
SZn = C[xl yeeaTn Y1, 7yn]
Y Yn
= C[a::fl,. ,.tfl,zl,. . ]G
1 = r) Yi
= C[Il}i‘zl, .y " ,Z (l)y ...,Zag )z
=1 1=1

Clett,. .., 22! ,J(U,.,.,J(f)]



Thd. Lo,

~G
S2Gn = S2n 0527,
= C['J:lﬂ,‘..,wfl,J(l),...,J(’)]ﬂC[wl,...,zn,yl,...,yn]
= Rlzi',..., 2205, (2)

Thd. 2L, CEJW, . JO) TERESNE SS OMSERE R LBV R
X C LD r EEOZERRLEAR TH B Z LIZEET 3.

Ji={feJ|fxaz CRVOND} LB, L % J CERSNEZ ROAFT
NETH ZDLE, feRIZHLT,

fel = fiie, TEIVEYND — f

L 488
13,‘6 2n

BV D. LYV —&IZby,....b, €2 izxtL

f€I°‘ﬂ---ﬂI""=>h—f—b"€Sﬁ

zl ...zn

BEYIELD. BL, b<0RBITIP=RET 3. PE-T, L,..., I, {28+ 3IEKE
&H Rees IR '

Do (Brn-nBe)athort C Rl o2 G
b140esbn €2
X, S5 OWMDRTHDI ENDNB. (21, ..., 2, 1X, R EREBMSICTHB D &

IZHEE. )
KL, KBWIIL->TW 5B,

il 2.1. FEXR S5, LIEKLE Rees & (3) 13—%K7 5. T4bb,

58 = Z (I{"ﬂ-nﬂ]ﬁ")x;b‘-ux;b”

ASREY L.
Zhid, FXK (2) LROEERMILHED.

FR 2.2. fERIZOVT, fFell THaHI L fAiz" CRVEING Z LiIZFAET
H5.

2.1 BEFIFHER

CLEJW, IV CERSNDMAR R 1T r BHESEAR LA ChoT. R
PATT N L KEHIET 5 Proj(R) = P! OR% pi £35. G it C" O—BOE



SEETHS1ZDT, n A py, ..., po E—BOMEBELZHD. P Dpy, ..o pa *
MLETBIBEREE 1 X=X o Pl 235, FINRTF ri(p) e &L, 0 %
BEFmNF|XHREL LT, X O Picard B Pic(X) X hyer, ..., e, DEZE ZHEK
Wb oM n+ 1 OBBR7T—ILHTHD. ZIT,

TC(X) = @ H° (OX (ah - ib,ﬁ,‘)) ;L‘l—bl v ;L';b"

a,b1,.-,6n€Z i=1

P H(X.L)

LePic(X)

LEEX, Ik X OLEBERELES. (ARBEERED, WRERIZ2D. )2
T, H°(Ox (ah — Y% bie))) 1, A piy ..., pn KBV TENENERE by, ...,
b, ¥ H, WEH a ’Czﬁ;églﬁﬁéﬁm \572 B R D a RERS DRIZERTH
5. DED, ZOREER TC(X) IEKEERees R (3) LRAMTHS. #-T,
A 21 LV REFS.

BHE 2.3 (r = 3 DFAIE [N1] [2&B). FERS SS, 1k Xo OLIEER TC(Xa)
LRAMTHS.

T, REERTC(Xg) NE

1

Supp TC(Xg) = {L € Pic(X) | H°(Xs, L) # 0} = Efi(X¢) C Pic(Xs)
*%Ex%5. 2T, Efi(Xg) 1L, BEAIERR (effective line bundle) I2 & > TAERL
Ehi= Pic(Xg) DBSERTHE LT 5. B 1 BRI HHRITL,

! (Xo) HREE L CHIRAR TR

—  LJEHER TC(Xg) = S 13 C EHRAER TR

EWnHZLEThoT.

2.2 |/ART3IDEFES

SRTr=3 DPEEEETH. EEBROEH

1 1 1
AT
Hn>9 EMETHS. TERR SS IHEFE P2 2 n RCRELTAONDA
FE X OSEER TC(X) LRAETHS. [N2] TROISRENEDIIZ, n>9
BoiE, HEFRO—BOMBIZH D n A TOBRE X X, ERMEOFE 1 EEIS
ﬁ(E~P1W0£?=—1%ﬁt¢%®)%%o.iot%?ﬁ%&ﬁ3ﬁ~&%t
DESSZERDOBE, n > 9 25T Ef(X) XL L TARAERTIERL, -




TSH 12 C EARERTIIRNZ E3b25d. Zhir=3DRACBTsE 1 &=
D&Fwm THDH. LrL, kB[N ObLblOERILINEITRRY, TC(X) D
xR B :

TCA(X) = D H°(Ox(ah =be)), e=) e
a,b€Z i=1

EEZD. ELT, RERLTHS.

BiZ 2.4 (n =16). Supp(TC4(X))® Q = {(a,b) |a >0, a>4b} C Q? .

& <IZ, Supp(TCA(X)) IX¥BE L L THIBAR TIZAR. XoT, Ry #E1.12
ED TCAX) FARERTIZRY. ZOZ LIy TC(X) b C LHEBRERKRTIZ
ROWZERDIYER 1.5 BREIN5.

F#8 2.5 (kA). P2 O—ROZHBEICHD n ATOBREE X LT3, n>10 D
L x,
Supp(TC4(X))® Q= {(a,b) | >0, a > Vnb}

DR Lo (BEBEE D 2 RIS LLV.)
n REFERO & EFARBICLVRENTOER, 25 TROE X TRARTH 5.

3 Hilbert OF 14 BIE—BHTHEVVESOEEMLE
ReEFHE

CGEIREREL L, ZEAR S = Clzy,. .., z,) ICHREIZEALTWAB D LT 5.

ZDEE, IRERR SO 12 C EABERD?] L5 DOMEKD Hilbert D 14 B

BTholz. ZOETIE G BHEHTRVEEDNL DD S ERRERIZ-
WTEET S,

3.1 G N1 REMEBRDIFS
KRBHLN TS,

B 3.1 (Weitzenbock 1932 [N3][Se] ). MIERE G, BNLERE S (ZHEIER
LTS L&, EDOFRERR SC TARERTH 5.

COEBOFERADT I v T A B BARB.
G = G, 28, n RIL7 PVER V CHBEIERTHLLES. 0%, p

Ga = GL(V) BEABNTVB LT, teG, % (é i ) €SL, LA—HT5




LIZED, G, i SL, DIMABEL RS, Yand rOBREROHERICLY SL, OK
] 5:SLy = GL(V) T, plg, =p &M T DB H 2. standard £ SL, — GL,
2k, CP L SLyMEEL 5. ko, SL, B Ve CPItfEATS. £-oT, G,
iX Clzi,...,za) WEAL, SLy X Clz1,- - Tny Y1, y2) WIEATD. DL x,

Clzy, ..., )0 ~ C[a:;, e Ty Y, yg]SLZ

BB, SL, AR CThoenb, FE 13 LY LORIARERTHD.

S¥%  {Ef SL, ~ C? I%, prehomogeneous vector space ThD. D%V, ZOfF
FiX open dense orbit Z¥fD. F7z, stabilizer group i Go = (1) 11: teG,
<hBH. iz, LORBERIIEEMICE 2 TS D 3#*25@‘: HER OIS

%5 % % Robert OEEIZMAZ LRV,

3.2 JEEREADEZE

::ﬂi FE 16D (2) = (1), TRbb, [GCC 2RKE r DK
EHEME L, 2n BHSEXR S, ~KBETHERATHLE, J+145>1%
B2 BIEARERR 5SS RARERTHD) KHEBTD. _@; L&, RO
WL ONDBAITEELTAHL .

3.2.1 r=3,n<8 = TC(Blypis P?) [FHMBERL

Z :'—C“li, r= 3, n==~6 0)’7‘—'7( ’5_’%177‘4: 5 . Dynkm ﬁ? Es = T2,3‘3 75§E§'€‘
b5

B<HLATWSE
1) X = Blg.pts P? & RERMERER | — K| = [3h - SO el ik oT PR ITED
AEND. ~

2) X hicit, HERAHEHS -1 TH5 27 KOHEER 6, ..., b = P! DIFFE
+5. Es DUANBEE, Z0 2T ZAOBEMRICAIBEIIERT 5.

3) X X 72 @0 P OBFEL LTRENS. TIT, 12=#{E D root} T
H5.

HEYHOATLENE

4) EE(X) 1 £y, ..., by CHEREN TS, (Castelnuovo O termination of ad-
junction FIEZED. —K REETHHDT

|ID| - |D+ K| = |D+2K|—=---=|D+nK|=0



ERBEBAND 0 BB, $5H5L, Ce|D+(n-1)K| BFELT, C~P!
BO|IC+K|=0 &5, )

5) EEOHBR ECX I LT (D.E)>0 THHEXIZ, BT D iZnef THSD
LS. nef RF2E2 5725 Pic(X) OFsr¥8E% Nef(X) LEL.

S4B Nef(X) C Pic(X) 12K D 100 = 27 + 72 + 1 MOBEFI X > TERSH
T3,

a) M = =K —¢; (1<:<27). 22T, |M;| iXEAERBH (base point
free) T P! ~® conic bundle H% 52 5.

b) Ny =m0(1). SZTm:X - PP ED3) 0720 D% (1<j <
72) L5, N bAERBEHTHD.

o) RIRERT —K. TOMYR|- K| BEERABTHS.

Z D —ATiE, Nef(X) C Bff(X) BHI LT3,
ZIT, TC(X) = @, HO(X,L) C TC(X) &£8<. |
Stepl. nef &4 TC™ (X ) IZHBARTHS. UTF, MEICHEE RS, 100

DY MVIR
27 72
€= (@ OX(M;)) @ (@ Nj) ® Ox(—K)
=1 1=1
EREL L PP-KR
Z=P (&) — X

#%%%. ZIT, tautological line bundle Oz(1) iXED 5) @ a), b), ¢) 2L Y
EFRHABATHD. X-5T, Zariski DER IZL- T,

P H°(0z(n)) = P HO(S™E) -
n>0 n>0
BABRERTHD. @, HU(S™E) 12D TCH(X) ~DERPIFET HDTTC™(X)
LHBERCTHD 2 LRbMD,
Step2. TC(X) i%, EAH TC™(X) £ 27 KOBEMR (; C X O 1) € H(Ox(4:))
X o THEKREINTNS.
XoT, TC(X)IXARERTH 5.

3.2.2 n—r=dimG =2 D&

ZOB/AER, FERRSS 252 2FBEHRAEX TP P On AR THS. A
FRAREMEDEERRIZ L, n mAHHEER (P py,.- .- ,pa) £D parabolic rank 2-bundle
DG ([B]) 26 5. Nef(X) C Mov(X) C Eff(X) %i#7=¥ movable cone Mov(X)
< flip, flop R EEEIFBRALETH DD, T Z TR :




3.3 Sylvester 2{EADIZE

-
— — 3y

B, = {f(z,y) | K m O 2 EHFEKRLEN }
LB n>m ELEH. HBOME

B,_pn X B, — Bn

2R#$D. h€ Bom W&, (f,9) € Bn®Bn & (f,9+hf) € B ® Bn WCESZEET
5%, G = B, ., 1t B, ® B, \Z{ERT 2. “hk, MER G BEE
88 Clao, - - -, Gm, boy - - - bn] WHRIRITAERT 2. ZOERICET A RERRIINE
Bl THRINTEY, ARERERDZLEPRINTVD.
BRIEBE DR B Sylvester BIORBUL, EH O H rigid Thb. £»oT, KD
HARLBENREEIND. .

PSEE 3.2. G-INEE V A% rigid © & &, FEXR S ITAMAERDT

&35 XXk

[B] Bauer, S.: Parabolic bundles, elliptic surfaces and SU(2)-representation spaces
~ of genus zero Fuchsian groups, Math. Ann. 290 (1991), 509-526.

[D] Dixmier, J.: Solution négative du probléme des invariants, d’apres Nagata,
Sém. Bourbaki, 175 (1959), 97-107.

[Go] #%MEMIER (fA%K) : Blow-up rings DR RAOTTIE, BHTRZCER, 801 (1992).

[Gr] Grosshans, F. D.: The invariants of unipotent radicals of parabolic subgroups,
Invent. Math. 73 (1983), 1-9.

[Ha] Haboush, W.: Reductive groups are geometrically reductive, Ann. Math., 102
(1975), 67-83.

[HK] Hu, Y. and Keel, S.: Mori dream spaces and GIT, Michigan Math. J. 48
(2000) 331-348.

[K] Kac, V.: Infinite dimensional Lie algebras, 3rd ed., Cambridge Univ. Press,
1990.

[M1] Mukai, S.: An Intoduction to Invariants and Moduli, Cambridge Univ. Press,
2003. '



[M2]

[M3]

[M4]

[M5]

[Mé]

[N1]

[N2]

[N3]

[R]

[Se]

[Sh]

[St]

—: On Nagata’s example of an infinitely generated ring of invariants, % 46 [E]
REFEL RV AHREE, KRR, 2001 4, pp. 140-151.

—: Counterexample to Hilbert’s fourteenth problem for the 3-dimensional
additive group, RIMS preprint, 1341 (2001).

—: Geometric realization of T-shaped root systems and counterexamples to
Hilbert’s fourteenth problem, RIMS preprint, 1372 (2002), to appear in ‘Al-
gebraic Transformation Groups and Algebraic Varieties’ed. V. L. Popov),
Springer-Verlag, 2004.

—: AERR EWAEET —kKBARAERR L TO—BLiz >0 T—, ¥
I RO T LBEER (BRTEKEK, EEFK EOFEEZPLE LT), 2003
F1 A8, UNKE, pp.11-17.

—: Hilbert’s 14th problem, quiver and Dynkin diagram, 55 48 B ECEY v
ROU LABER, A EHBKF, 2003 4, pp. 84-96.

Nagata, M.: On the fourteenth problem of Hilbert, Int’l Cong. Math., Eding-
burgh, 1948.

—: On rational surfaces, Mem. Coll. Sci. Univ. Kyoto. Ser. A, 33 (1960),
271-293.

—: The fourteenth problem of Hilbert, Lecture Notes (1961-62), Tata Institute
of Fundamental Research, Bombay.

Roberts, P.: An infinitely generated symbolic blow-up in a power series ring
and a new counterexample to Hilbert’s 14th problem, J. Algebra, 132 (1990),
461-473.

Seshadri, C. S.: On a theorem of Weitzenbock in invarinat theory, J. Math.
Kyoto Univ., 1 (1962), 403-409.

Shioda, T'.: Mordell-Weil lattices and Galois representation, Proc. Japan Acad.
65A (1989), 267-271, 296-299, 300-303.

Steinberg, R.: Nagata’s example, in ‘4lgebraic Groups and Lie Groups’, Aus-
tral. Math. Soc. Lect. Ser. 9, Cambridge Univ. Press, 1997, pp. 375-384.

AR R B ARAT I FE T
606-8502 AR A R XL B)IB4ET

e-mail : mukai@kurims.kyoto-u.ac. jp

(Note by EREFFIZ - BIHKK)



Arithmetical rank of monomial ideals

Naoki Terai (Saga University)

1 Arithmetical rank of monomial ideals

We consider the arithmetical rank of monomial ideals. Let R = k[x;, x, . .., X,] be the
polynomial ring over a field k. Let I be an ideal of R. We define the arithmetical rank aral

of I by

aral : = min{r; 3a;,a,,...a, € I such that y/(ay,a,...a,) =vI}.

In general, aral > ht I. And ] is said to be a set-theoretic complete intersection, if aral = htl.
Let Hi(R) be the i-th local cohomology module of R with respect to I. The cohomological
dimension cd I of I is defined to be cd I := max{i; H;(R) # 0). It is easy to see aral >cd I.

When I is a squarefree monomial ideal, the following theorem is known :

Theorem (Lyubeznik [Lyl). Let I be a squarefree monomial ideal. Then we have

projdim (R/I) =cd 1.

Corollary. Let I be a squarefree monomial ideal. Then we have
ara [ > projdim (R/I).

In particular, if I is a set-theoretic complete intersection, then R/I is Cohen-Macaulay.

Problem. Let I be a'squarefree monomial ideal. Under what conditions do we have

ara I = projdim (R/I)?

We do not always have ara I = projdim (R/I) as the following example shows.



Example (Yan [Ya]). Let / be the ideal in R = ku,v,w,x,y,z] generated by
UVW, UVY, VWX, UWZ, UXy, Uxz, vxz, vyz, wxy,wyz. Then I is the Stanley-Reisner ideal of a
triangulation of P2(R) with six vertices. In this case, aral = 4, which is proved by Yan,
using the étale cohomology. On the other hand projdim (R/I) = 3 if char (k) # 2.

Proposition.  Let I be a squarefree monomial ideal. If
projdim (R/I) < u(l) - 1,

then
aral < p(l)-1,

where u(I) is the number of minimal generators of 1.

Corollary. Let I be a squarefree monomial ideal. If u(I) — projdim (R/I) < 1, then we

have
ara I = projdim (R/I).

Proof. Since we have projdim (R/D < aral < u(I), we may assume u(I) — projdim (
R/I) = 1. By the proposition, we have

projdim (R/I) < ara I < p(I) — 1 = projdim (R/I).

QE.D.

Corollary. Let I be an almost complete intersection squarefree monomial ideal. Then we

have
ara I = projdim (R/I).

For an ideal I in R, we define the deviation d(J) of I by d(I) = u(I) - ht I.

Corollary. Let I be a squarefree monomial ideal of deviation 2. If R/I is not Cohen-

Macaulay, then we have
ara I = projdim (R/I).

Proof. Since R/I is not Cohen-Macaulay, we have

ht I < projdim (R/I) < ara I < u(I).
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Then we have u(I) — projdim (R/I) < 1. Q.E.D.

For the Cohen-Macaulay case, we classify the Cohen-Macaulay squarefree monomial ide-
als of deviation 2 (see the next section). And by one-by-one checking we can show that they

are set-theoretic complete intersections. Hence we obtain the following result:

Theorem. Let I be a squarefree monomial ideal of deviation 2. Then we have

ara I = projdim (R/I).

We pick up some examples.

Example. Put I = (abc, abd, acf,bde). Then I is Cohen-Macaulay ideal of height 2 in the
polynomial ring R = k[a, b, c,d, e, f]. Then we have I = +/(ab(ac + bd), af (ac + bd) + be(ac +

bd) + abc), and I is a set-theoretic complete intersection.

Proof. Since we have I D (ab(ac + bd), af(ac + bd) + be(ac + bd) + abc), We have only to
check V(I) c V(ab(ac + bd), af (ac + bd) + be(ac + bd) + abc) by Nullstellensatz, where V(I)
is the algebraic set defined by I. Suppose (a, b,c,d,e, f) € V(I).

Case 1. Suppose a = 0. Since bde = 0, we have (a,b,¢,d, e, f) € V(ab(ac + bd), af(ac +
bd) + be(ac + bd) + abc).

Case 2. Suppose b = 0. Since acf = 0, we have (a,b,c, d,e, f) € V(ab(ac + bd),af(ac +
bd) + be(ac + bd) + abc).

Case 3. Suppose a # 0,b # 0, and ac + bd = 0. Since ¢ = 0, we have d = 0. Then we have
(a,b,c,d, e, f) € V(ab(ac + bd), af (ac + bd) + be(ac + bd) + abc). Q.E.D.

Example. Put I = (abf, acd, aefh, bcg,de). Then I is Cohen-Macaulay ideal of height 3
in the polynomial ring R = k[a, b, c,d, ¢, f, g, h]. Then we have I = y/(b(af — bcdg), he(af —

bedg) + acd, beg + de), and I is a set-theoretic complete intersection.

Example. Put I = (abcfgi, abd, aeg j, bef, cdh). Then I is Cohen-Macaulay ideal of height
3 in the polynomial ring R = k[a, b,c,d,e, f, g, h,i, j1. Then we have I = +/(abd,abcfgi +
aegj + bef,bef + cdh), and I is a set-theoretic complete intersection.
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2 Classification of squarefree monomial ideals of deviation
o | .,

In this section we explain how to classify equidimensional squarefree monomial ideals of
deviation 2 using hypergraphs. .
By a hypergraph H on a vertex set V, we mean H is a family of subsets of V such that

UregF = V.

We call F € H aface of H. We define the dimension of F by dim F = §(F) — 1, and of H by
dim H = max{ dim F;F € H }.

Let I be a squarefree monomial ideal in R = k[x1,x2,...,%,]. Putl = (my,my,...,my,),
where {my,ma, ..., m,} is aminimal set of monomial generators. We define the hypergraph
H(I) on the vertex set V = {1, 2,..., u} by the follwing way:

F e H(I) & thereexists i (1 < i < n) such that
forall jeV,
m; is divisible by x; if j € F
and m; is not divisible by x; if j € V\ F.

Since {my,my, ... ,m,} is a minimal set of generators, for a squarefree monomial ideal  the
hypergraph H = H(I) satisfies the following condition:

For all i, j € V(i # j), there exist F,G € Hsuchthatie FN(V\G)and je GN(V\F).

Conversely, a hypergraph H with the above condition can be written as H = H(I) for a
squarefree monomial ideal I in a polynomial ring with enough variables. We call a hyper-
graph with the above condition a smi-hypergraph.

A subset C € H is called a cover of H if UpccF = V. A cover C of H is called minimal if
no proper subset is a cover of H.

Proposition. The following condition is equivalent for a squarefree monomial ideal I:

(1)The ideal I has a prime component of height h.
(2)The hypergraph H(I) has a minimal cover of cardinality h.
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Corollary. The following condition is equivalent for a squarefree monomial ideal I:
(1)The ideal I has height h.
(2)The hypergraph H(I) has a minimal cover of cardinality h, and all the minimal covers of

H(I) have at least cardinality h.

Corollary. The following condition is equivalent for a squarefree monomial ideal I
(1)The ring R/I is equidimensional. |
(2)All the minimal covers of H(I) have the same cardinality.

For clsssifying the equidimensional squarefree monomial ideals of deviation 2, it is enough
to classify all the smi-hypergraphs H on the vertex set V whose minimal covers have the same
cardinality (V) — 2.

In this case, we have dim H < 2 and H contains either pf the following type: (1){{x,y,z}}
or (2){{x, w}, {y,z}}, where w, x, y, z are distinct. Moreover, H does not contain neither of the
following type: (){{, v, w}, {x,, 2}, @{{u, v, w}, {1, x,y}}, 3){{u, v, w}, {x, y}}, nor ({{u, v},
{w, x}, {y, z}}, where u, v, w, x,y, z are distinct.

We introduce some notion on hypergraphs. Let H be a hypergraph on a vertex set V. The
hypergraph H is called disconnected if there exist hypergrphs H; # H on a vertex set V;
(i=1,2)suchthat Hy UH, = H,HiNH; = 0,ViuV, =V,and Vi NV, = 0. If H is not
disconnected, H is called connected.

Let H be a conected hypergraph on the vertex set V. The shadow of H is defined to be
{{x,y} € V;{x,y} C F for some F € H} and is denoted by sh(H). The shadow sh(H) is also a
hypergraph on the vertex set V.

A connected hypergraph H is of suspension type if sh(H) satisfies the following condition:

There exist x,y € V such that for all F € sh(H),x€ Fory€ F.
A vertex x € V is called an end vertex of H if there exists a unique F € sh(H) such that
x € F. If x is an end vertex of H and that F = {x,y} € H, then x is called an end vertex

conncting with y. A connected hypergraph H has multiple twigs if there exist x,y,z € V such

that x and y are end vertices conncecting with the common z.

We may just concentrate our attention on hypergraphs with less than six vertices by the

following lemma. Then we can classify them with the complete list of the graphs less than
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seven vertices in [Ha], for examples.

Lemma. Let H be a connected hypergraphs H on the vertex set V whose minimal covers
have the same cardinality (V) - 2. Suppose H does not have multiple twigs and that H is not
of suspension type. Then we have §(V) < 5.

Sketch of a proof. Case (1). Suppose sh(H) does not contain a cycle. In this case, dim H =
1, and sh(H) must be a segment with §(V) = 4, 5.

Case (2). Suppose sh(H) contains a cycle of length 5. In this case there exists no other
vertex than those of a cycle of length 5.

Case (3). Suppose sh(H) contains a cycle of length 4, but none of length 5. In this case
there may exist one more vertex at most. -

Case (4). Suppose sh(H) contains a cycle of length 3, but none of length 4 nor 5.

(a) The case that sh(H) contains

In this case there exists no other vertex than these 5 vertices.

(b) The case that sh(H) does not contain

If H have more than five vertices, then each vertex ot: cycle connects with an end vertex,
since H isnot of suspension type. But it is impossible since there must exist three independent
edges.. - : . - - -QE.D.
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THE ASSOCIATED PRIMES OF TOP LOCAL COHOMOLOGY
MODULES

MORDECHAI KATZMAN
THE UNIVERSITY OF SHEFFIELD

1. INFINITELY MANY ASSOCIATED PRIMES.

Let (R,m) be a local Noetherian ring, let I C R be any ideal and let M be a
finitely generated R-module.

Conjecture (Craig Huneke, 1990): Do the local cohomology modules H}(M)
have finitely many associated primes for all i?

In this lecture we construct a counter-example to this conjecture.

The example: Let k be any field, let Ry = k[z,y,s,t] and let S = Ry[u,v].
Define a grading on S by declaring deg(z) = deg(y) = deg(s) = deg(t) = 0 and
deg(u) = deg(v) = 1. Let

f = sz?v? — (t + s)zyuv + ty*u®
and let B = S/fS. Notice that f is homogeneous and hence R is graded. Let S
be the ideal of S generated by u and v and let Ry be the ideal of R generated by
the images of u and v.
Consider the local cohomology module H3 . (R): it is homogeneously isomorphic

to H, (S/fS). The graded short exact sequence
0— S(-2) L5 5 — 5/fs—0

induces the graded exact sequence
HE,(9)(=2) L HE,(5) — H,(S/£5) —0

of graded R-modules. 3
What is H, (S)? Take cohomology of the Cech complex

0S5 S5,885, = Suw =0
Now H% . (5) as the module free Ry-module with free generators u=*v=". It is
graded and the part of degree —d has free basis
—a, —f
(v™*v7") @,8>0, a+f=—d"

We study the graded components of H_ (S/fS) by considering the cokernels of
the Ro-homomorphisms

f-a: Ro[u™,v7]-g-2 — Ro[u™,v7]_a (d>2)

given by multiplication by f. To represent these by matrices, we specify an ordering
for each of the bases by declaring that

w11 < 2P

(where a3, 81, a5,82 <0 and a; + 81 = as + B2) precisely when a; > as.
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If we use this ordering for both the source and target of each fq, we can see that
each fi (d > 2) is given by multiplication on the left by the tridiagonal d — 1 by
d + 1 matrix

sz? —xzy(t+s) ty? 0 .- 0
0 sz’ —zy(t+s) ty? 0... 0
Agq = 0 0 sz? —zy(t + ) ty?... 0
0 ... sx? —zy(t+s)  ty?
We also define
s —(t+s) t 0 .. 0
0 s —(t+s) t 0... 0
A, =10 0 s —(t+s) t... 0
0 s —(t+s) t

obtained by substituting z =y =1in A4-1.

Lemma: (i) Let B; be the submatrix of A; obtained by deleting its first and

last columns. Then

det B; = 7 := (=1)'(t + st' 1 + -+ + s+ )
for all i > 1.
(ii) The (k[s, t]-)irreducible factors of {;};5, form an infinite set.

Theorem: For every d > 2 the Ro-modl_xle.H}zQ . (R)—4 has 74_;-torsion. Hence
H}_ (R) has infinitely many associated primes.

Proof: Introduce a bigrading in Ry by declaring deg(z) = (1,0), deg(y) = (1,1)
and deg(t) = deg(s) = (0,0).

We also introduce a bigrading on the free Ro-modules Rg by declaring deg(z>yPs°tbe;) =
(a+ 8,8 + j) for all non-negative integers a,B,a,band all1 < j<n. '

R? is a bigraded Ro-module when Rj is equipped with the bigrading mentioned
above.

Consider the Ro-module Coker A4_1; the columns of A4_; are bihomogeneous
of bidegrees

(2,1),(2,2),...,(2,d+1).

We can now consider Coker Aq_; as a k[s,t] module generated by the natu-
ral images of z*yPe; for all non-negative integers a,fand all1 < j <d-1
The k{s, t}-module of relations among these generators is generated by k[z, y]-linear
combinations of the columns of A4_;, and since these columns are bigraded, the
k[s, t]-module of relations will be bihomogeneous and we can write

Coker Ayg_1 = @ (Coker Ad_l)(D,j) .
' 0<D, 1<)
Consider the ks, t]-module (Coker Aa—1)(4,q)- It is generated by the images of

d—1 2, d—2 d-2,2 d—1
TyY® e, 7Y “ey,..., T "Y' €d—2,T° Ye€d—1
and the relations among these generators are given by k[s, t]-linear combinations
of

d—2 d—3 d—3 d—2
Yy C2,TY C3,..-,7T YCd—1,T Cd4
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where ¢y, ..., cq441 are the columns of 44_;. So we have
(CokerAd_l)(d,d) = Coker By_,

where By_; is viewed as a k[s, t]-homomorphism k[s, t]*~! — k[s, t]%-1.

Using the previous Lemma. we deduce that for all d > 2 the direct summand
(Coker Ad_l)( 4,d) of Coker A4—; has 74_; torsion, and so does Coker A4_; itself.

The second part of the Lemma shows that there exist infinitely many irreducible
homogeneous polynomials {p; € k[s,t] : ¢ > 1} each one of them contained in some
associated prime of the Ro-module ®4>2 Coker Ag_;. Clearly, if i # j then any
prime ideal P C Ry which contains both p; and p; must contain both s and ¢.

Since the localisation of (Coker Ad-1)(4,4) 3t s does not vanish, there exist
P;, P; € Assp, Coker A4_; which do not contam s and such that p; C P, p; C P;,
and the previous paragraph shows that P; # P;.

The second statement now follows from the fa.ct that Hfz (R) is Ro-isomorphic
to ®a>2 Coker Ag_;.

Corollary: Let T be the loca.hsatlon of R at the irrelevant maximal ideal m =
(s,t,z,y,u,v). Then H ( 1w)T(T) has infinitely many associated primes.

Proof: Since 7; € mfor alli > 1, HY, +(T) = (H{, »)r(R))m has 7i-torsion for
alli > 1.

2. NO ASSOCIATED PRIMES.

Let Ry.be any doma.in, let R = Ro[Uy,...,U,]/I, where Uy,...,U, are indeter-
minates and I C Ry[Uy,...,U,] is a homogeneous ideal.

[When is Hy (R) zero"] ,

N otatlon Rp an a.rbltra.ry commutative Noetherian doma.m Uy, ..., U, indeter-
minates (of degree 1,) S = Ro[U4,...,U,], I C S an homogeneous 1deal, R=2S5/1,
Ry =(U,...,U,). For \ € Z* we write M =X+--+X,and U := UM -....U>

Lemma: Let I be generated by homogeneous elements fi,...,f. € S. Then
there is an exact sequence of graded S-modules and homogeneous homomorphisms

f1ye0fr)
@HS+ (S)(— deg fi) L=, gra (5) — Hp (R) — 0.
=1
Proof: The functor Hg L 18 right exact; apply it to the graded short exact
sequence

0-»@5( deg fi) Lof o LR 0.

to obtain
f1seeafr) 1rs s
P 3, (5)(— deg £) L2220 By, (5) — Hp, (B) —>o.
i=1
Hg, (S) is the (graded) module Ro[Uy,...,U; ] of inverse polynomials:
For each d € D, Ro[Uy,...,U;]-q is a free Ro-module with base B(d) :=

(UA)—)‘EN'JM:—d N
Ro[U7T,...,U;] vanishes beyond degree —s.
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We endow Ro[U,...,U;] with the structure of an S-module by defining for
any U® € S, UP € Ro[Uy,...,U;] the product U*U? € Ry[Uy,...,U;] to be
zero if o + B has a non-negative coordinate, and Uat? otherwise.

Assume that I is generated by one homogeneous element f of degree é. For any
d € D we have a graded exact sequence

Ro[UT, . Ur)—des 2% RolUT ..., Uy l-a — H, (R)=a — 0.

The map of free Ry-modules ¢4 is given by multiplication on the left by a #B(d) x
#B(d + 6) matrix: denote this matrix with M(f;d).

If I is generated by homogeneous elements fi,---, f~ € S, the previous lemma
shows that the Ro-module Hg (R)-4 is the cokernel of a matrix M(f1,..., fr;d)
whose columns consist of all the columns of M(f1,d), ..., M(fr,d).

For any )\, u € Z° with negative entries we declare that U* < U* if and only
if U™ <pex U™* where “<pex” is the lexicographical term ordering in S with
Uy > --- > U,. We order the bases, and by doing so also the columns and rows of
M(f;d), in ascending order. Notice that the entry in M(f;d) in the U* row and
UP column is the coefficient of U* in fUP.

Lemma: (multiplication reverses order) Let v € Z° have negative entries and
let A1, A2 € N°. If UM <pex U2 and UYUM, UYU* € Ry[Uy,...,U;] do not
vanish then U*UM > U* U2,

Lemma: Let f # 0 be a homogeneous element in S. For all d € D, the matrix
M(f; d) has maximal rank.

Proof: We exhibit a non-zero maximal minor of M(f;d). Write f = 3,5 au?
where ay € Ro\ {0} for all A € A. Let Ao be such that U is the minimal member
of {U* : X € A} with respect to the lexicographical term order in S.

Let & be the degree of f. Each column of M(f;d) corresponds to a monomial
U* € B(d + §); its p-th entry is the coefficient of U” in fU* € Ro[Uy,..., U ]-a-

Fix any U* € B(d) and consider the column ¢, corresponding to Uv—> ¢
B(d + §). The v-th entry of ¢, is obviously ay,-

By the previous lemma all entries in ¢, below the vth row vanish. Consider the
square submatrix of M (f;d) whose columns are the ¢, (v € B(d)); its determinant
is clearly a power of ay, and hence is non-zero.

Definition: For any f = 3.,cs @xU> € Ro[Ui, ..., U] we define the content
c(f) of f to be the ideal (ax : X € A) of Ro generated by all the coefficients of f.

If J C Ro[Ui,...,U,) is an ideal, we define its content ¢(J) to be the ideal of R
generated by the contents of all the elements of J.

It is easy to see that if J is generated by fi,..-, fr, then

o(J) =c(fr) +--- +c(fr)-

Lemma: Suppose that I is generated by homogeneous elements fi,--, fr€S.
Fix any d € D. Write t = rank M(f1,..., f-;d) and let Ia be the ideal generated
by all ¢ x ¢ minors of M(f1,...,fr;d). Then c(I) C V1.

Proof: It is enough to prove the lemma when r = 1; let f = fi. Write f =
Y xea arU?. Assume that ¢(I) € v/Is and pick Ao so that U is the Lex-minimal
element in {U* : A € A} for which a) ¢ V7a.

Fix any U¥ € B(d) and consider the column ¢, corresponding to U~ €
B(d + 6). The v-th entry of ¢, is ax,- For any other \; € A with UM <pex U,
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either U¥~%0+M1 = ( or U¥=*+A1 5 /¥ So all the entries below the v-th row of
¢, are in /1.

Consider the matrix M whose columns are ¢, (v € B(d)) and let ~ : Ry —
Ro/v/I; denote the quotient map. We have

0 = det(M) = det(M) = @yt

and, therefore, ay, € v/Tz, a contradiction.

Theorem: Suppose that I is generated by homogeneous elements fi,.., fr €
S. Fix any d € D. Then each associated prime of H} , (R)-a contains ¢(I). In
particular Hg (R)-q =0 if and only if ¢(I) = Rp.

Proof: Let M = M(fy,..., f;d), so that H§+(R)_d 2 Coker M.

The ideal ¢(I) is contained in the radical of the ideal generated by the maximal
minors of M so the localization of Coker M at any z € c([) is zero and we deduce
that c¢(I) is contained in all associated primes of Coker M. .

If ¢(I) is not the unit ideal, the ideal generated by all maximal minors of M is
contained in c(I) and cannot generate the unit ideal, so Coker M # 0. If c(I)=Ry
then Ass Coker M = {), i.e., Coker M = 0.

Corollary: The following statements are equivalent:

1. ¢(I) = Ry;

2. Hy, (R)—a =0 for some d € D;

3. Hp (R)-a=0foralldeD.

Corollary: The R-module H, . (R) has finitely many minimal associated primes,
and these are just the minimal primes of the ideal ¢(I)R + R,

Proof: Let r € c(I). The localization of Hj .(R) at r is zero. Hence each
associated prime of Hy (R) contains ¢(I)R. Such an associated prime must contain
R,, since Hy (R)is Ry-torsion. . = : : -

On the other hand, H &, (R)-a = Ro/c(I) and it is killed by R, ; therefore there
is an element of the (—A)-th component of H, . (R) that has annihilator (over R)
equal to c(I)R + R,.

Conjecture: Every local cohomology module (with respect to any ideal) of
a finitely generated module over a local Noetherian ring has only finitely many
minimal associated primes.

Some further evidence:

Theorem: (Gennady Lyubeznik) Let R be any Noetherian ring of prime char-
acteristic p and let I C R be any ideal generated by fi,..., f, € R. The support
of H{(R) is Zariski closed.

DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF SHEFFIELD, HiCKs BUILDING, SHEFFIELD

S3 7TRH, UNITED KINGDOM, Faz number: 0044-114-222-3769
E-mail address: M.Katzman@sheffield.ac.uk

—110—




hEFHORBFRMEAB/PIVLT « VERADIGA
EEEA (UEAY) EUH= (REAR)

LFFBEORT—oOMEFFIZEET S L ¥, ZOXBTFREBRETES. TN
i, LHICBCTHoTHRIZIRI LROXEN, WHEEROEEESP@ET 57
B, CHAZEELCRD EFCo s TRBEROBREI AV L) . ARTIR, AR
PNF 4 VEBA~OGEEEEL LS, MBFHOXBRTFREOEERZFHL CFN
2. 7L, SEIZE S THRFREET 2K, 2O, XEIOWHBRERGRY v R
LTHRATBFER.

K #EEDOEL L, M(n) TR n O K LORTHIRERT. X n OMEFFIOH
EEI, n O 8 TRTILNTES, Thbb, JeM(n) 2mEFETE, M
%, VarFvICSRL, ZOMBEOREE n,ng, -0 ETHUT, WR n DOE
n=ng+ng+---+n, BBOH, M, n DTEDPS, ZOXREDY a vy UikaE R
SHBFFINERTES. fE-T, JOARE tEREnOB#n=n1+n+ - +n,
H—— B LTS, TBET = T(ny,ng,-+,nr) Tn ODHZRTY, Wio 2 \WERD
n>n>-->n >0 F5 E, K{AOoNTRS rEh. ALEST, YvI/H
WELET. Thbb, T=T(n,,n -, n) BY Y IR THSEE276,n 13, T D
B n, BD TH) »poRoTwBIERRT. %, T=T(m, --,n) % "H
i, T EHERT 5.

JeM(n) —20fFlL T3 L&, ¢(J) TJ ORBTFREERT. ThdD, #EH5L
LT3

¢(J) = {X € M(n)|XJ = JX}

TH5., CJ)iE 1 EROBENRETH 3.
BFLOEATREVFAX = (z;;) ikcowT, TEE=ZAB (A, & v Favy
2 v+ (T5l)) ZERORRICERT 5. .

EHE 1 mxn Tl X = (z;) 20T,
1 XD EEEAT o5, =0forj<i+a kL, a=Mn(0,n-m) T3
2. XMWY R AvAI VY @aj=zpy forj =j+1andi =i+1

ROMIZEE=Z/H, OV F-avAY VP THS.

8

0o T1 T2 I3

g T1 T2
(1)

0 To T1

0 0 To

o O © o
o O O O
o O o o
o O O
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To T3 Ty I3
0 zy 1 =z
0 0 Ty I
0 0 0 =z
0 0 0 O
0 0 0 O

&T, JeM(n) 2 HBFFIOY a NS VL L, 2 OAREORE T = T(ny, -, ny)
ETBE, ) RRDE I IKEIND.

2 M= (M;)ZRDBYDTuy I3RET S,

(2)

My | My |-+ | My, | I
Moy | My | --- | My, | }ng
M= o s ®3)
Moy | My |---| M, }nr
~ ~~ =~
ni n2 Ny

ZDLE,
Me&(J) e MDEDTO Y 7 M; ik E¥=AF Y Farzxy v 75l

@H 3 MBI J € M(n) OF v VBBET = T(ny,---,n,) &L, WEFF J €
Mn—r) D Y 7REZ2T =T(ni—lng—1,---,n,—1) T3, (ni—1=0 %5,
ZOHEEBERS.) 0L E BOLes ¢(J) — (J) BEEL, MORTIZr TH 3,

GEER. J & T BYa NS VBEERTHELRELTHRYL. KL, J D &0 7u vy 70
BRYID 1T ERBED 1TER ZLICE ) JBBoNED6, ZOEKT, J % J DTS
TALRS. ¢U)DETuy ik, G®E2LY, E¥E=FART D Ny F.avzyy
FTHB, Xe€ln) TNLT X' 2 XDETuy 720 0RAD1FEEBED 1 T2B
WTRLNZWITIITH 2 L THUL, X e M(n—r) BBSN, ABIC, X' € ¢(J) T
HBEILBODE, (ZOFEETIE, HEX — X' PBROERBICE->TWS LR
VLR LHNRY. THCEL T, B4R RTHRLY)

RiZ, 'Y a vV VIERR, 2IEEBRT 2. 44 XnoY v /HE
T=T(nl)n2)"'7nr)

DETDFEIT1 D6 n ETOFESEIRY, 75 M = (ay;) 2RO E ) IKEHET 3.
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aij;_{ljihio)ifi%@ké’, @

0 znBist.

Z ORI LTERINLFHINHIBTH Y, B2 B5MT» BN, £T
HBTH D ERERCOD S, ROEFMORICHEAAICESE2MTS L, EEDOY aV
PRSBSOS NG, —H, ROGHOKLRHEAAOESHI»6R62T5%, 22
T, Va NS VETEEGEES C LiCT 5. (FROBIROMED L, KAIT B LEH
HoBEEIR, BFEERLEI LTS, )

2]3]4]5] 4]6]8]9]

1
67]8 :
9]

1
2
3
SalF VB EEYE BENICERT 20k, I8 T ORNEEZ 5 LR
&%, YVIEMT = T(n,ng, -, n,) EBEITERL 723, Ry /72T =
Ploy,va, - vp) L OET. TOBKIEBT 0 jBEHOFID y; MO S%>TRBILR
FT. foT, Zo0PEn=ntn=)y BRATH3.
J % MEFFIOE—FER L L, 2 0HAEHORE

T=T(nlan2”“$n1’) ='f(V17V21"')Vp)
rF5. COLE JOETEEY RS TTEELLILIRTE)BRROENTHS.

O I]_ O tee O O }1/1
(0] 0 I, <10 0 }1/2
olo]o O] O | }u
J=| : : : . : : (6)
01010 | 0T}
ololo]|-[olo]
~ =~ = ~~
V1 v2 V3 Vp
7’::'/}3 L, I,' 1 Vi X Vig1 O)ﬁ‘ﬂf‘
E | Win
Ii =| O }l/i — Viy1 (7)
N~~~

Vitl
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25HD k‘g-% ZZIZE X :Kﬁlh#l @ﬁﬁiﬁﬁﬂ, ifC, 0 &i, ﬁ& (Ui - I/«;+1) X Vi1
DETINTH 3.

T DFGIKFHEICES 21 72 b O (tableau EFFRITRVDE S ) 38, T 2 TlkAM
BICRFEbRV) 2 T, &L B ARICT, 2 T KHAACES 2T D ET 2, i
ZIE, ,

1]2]3 4]5] 1/4]6]8]9]
Th={6|7|8 — T,=2]|5]7
5] 5]

ZDLE,
T iCBF2HEF i OMIX T, T, BF 7)) 2FD.

EFRTZIEICED, nldn XFEE(L,2,-- - n} DEBR - 2EETS. Zor2HEZL
i, T=P WP k%%, (%L, Pi3 r LALBMTI) f#->T, Ple()P =c()) T
H35.

H£AELLTR, ) 202D RTLDEN BELTOC(J) oliEE R 312k, ¢ D
HOEEs ke, —iz 7y 2750% M = (z“")) LECREL, ), (k1) Tay
D 6GH)RIERTOIDOET S, COLE, MAROBICERET 5.

(z(”))
(EE: 22T, TORELFIONENRALBEZ K> TV 3bITEY, LBOERK

(@) o (28

BREBD 7oy 775 L TEKRE RO, TOFELHNOREHBAL TH 2 LEiZ:
v, i?’c,ﬁ%ﬂvbfjtd\@lﬂﬁkjt}u'tw%az\ﬁb73:\:). )

T =T(n,ng,-,n) = (l/l,llg, Vp) ETE3. MOTay 758 M= (1:(“)) € M(n)
n= z:'i;n, KEBbDTHNE, M = @) ix, n= Yy ik 370y 75H
THb. BITEok T LD, J@x&?ﬁ&@%ﬂ@ﬁ&& LToOE%R R 570213,
C(J) &0 b ¢J) DADELICOHEDRT V. €J) BT Uy ZEBIC LESHRE N £
HELTaE, ZAEISRLDPTENL DR, —F, ¢(J) i}, 2% FE=mRIC
BI)EWITtiLns, zofRbhic, &E7ay 78I, ZARL L TORDPTXIR
BWHEICk 3.

ROGETIE, LBROBEY DFEF2MHEI. MecJ) L, B, Mee() 55, 2
EHZT, Ny, Ny, -, N, CMORAT Ry 2 KT, (ROBICERNETE, M i, /7
L5k, T=T(ny, -,n,) KE>THRLT, 7uy 25l RAELTw3, —h Mik
fTEHZE T=T(n, - ,1p) IKCE>THRLT, 70y 75l L AT\ 3,
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&E 4 M e c(]) owT, ROGEHHR Y 3.

() FFIM 37y 7 LEZARITHS. ?‘&:b*a i>j ThHhhL, M@(zj)7U/
21 0TH5.

(i) TIRT DY a Ly VEBRERTH?.
(sii) T ORBHTFREC(T) C M(n) 13, &L LT{MIM € &(J)} BT 3.

() T'=T(i—1Lmp—1,---,n,—1) T 3. 0DEN~S, ZhEERTZ. TV DD
Biin—rThbs. (HARBEERD n >1THBERETS.) Y v %
T Ofiic, BERAEHEICL 25 n—r FTESEMTS. T 2#4BHORLET
2 a Ny VE—EERE J L, ¢J)cMn-r1) 2] OXBFRELTS.
M@%@J@M@@nk BHID r BOFI% M2 6B £ 74751% (M) TET.
COLE Mo U(M) K ko TERS NS 24

¥ e() — ()
GEERARTHS. AUCEESVEERS L. MIZ#EYE M e () 2AVT
N1 * ‘
o | M

M= LEIND, ZOLE Y(M)=M TH3.

(v) M€ EU)IDVT. =1, THhE, Ny=N, TH5,
(vi) 11 > 1y THNE, N ERDOE D ICHET B,

Ny | G |}r—m,
M=l 0| G |}m, (8)
-~

¥7:, G DETTIE M DU 2L bMIDEZ L DES.
(vid) Ny RRD & 9 IKHBET 3,

M

*
0 101G -]+ \Im ©)
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. (i) j<iTHBERETS. z:=20 % M D (i5) 7uy ZRD (k) BH TH
LT3, z=0THBILETEITHRL,

MEMOBFEEEZIL, 23 MO (k) 70y 2AD (i5) B TH 22 L 2Sbir b,
EIAH, Mee(J) i, 7uy 2B BESHRERS 2 =0ThH 5.
(i3) BEIT 5 7z,
(173) (i5) L HEAS D,
(iv) (i) X DEED M e ¢(J) e LT, M IZRD X 5 e RT 5.

N1 * }'l"
M=012Z |}n-r (10)

Y
(ZDZ 2 U(M) EBOTR3) —ARRE LR D, BOSH ¢(J) — ¢(J') BEFE
5. I, Me () DL 220fTLIRZBRWTHRSZBITII~ND T2
YavThol, MYBRKITLIDBENTE, T OFE—FD HOBSICHIGEL TV 3
ZLICERTNE, GEANKD B,
W)= THBLEEII LR, M OVThDTay 2b £ b 2fFE 251% KD
EEITLE DS, MOED7uyrdb (2,2 Ba2F->Tw3, Lid, $XRTD
kD120 TaE) =2 Lz, fEoT, MickwTix, (1,1) 7uy 2 & (2,2) 70y
21, BUTAITH 3. Thbb, N =N, DEAHE:.
W)IREv >ve YD 1 —vy=m, THBZ L, BLY, f,=1THBIEDBRES. ko
T, MiZ1fT15»6%257ny 72 m2AETZ. M 2P x2 )y 2IcBLL, 2Om?
ORI, BICHYTHSE, ChhEE-T, G, %%, N ItBIF3, G, DEMAIZSH
BRODTRTO L2 3BHE, MOTay V5RIcBWT, T1178%, Tay 70%E
—HaB0THBILickD. (ZITED ™1, Lid T2FIBlE) LEHT L)
(vit) 24U (v) & (v) RSEBIIHED . (FEAK)

HIZEH LI,
GI,GZ,"',Gs

ENONATOY 7, (N;ONA7Tay 7 bFEKROERE T 3)
Ny, Ny, ---, N,
EMoBeHBETaY 2,
(diagNy, diagMNs, - - -, diagN;)

 MOMbuRETa Y 70w,
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Bls5 T=T(322%t75 Z0LE ) D—BTOHBIIROBED TH 5.

a a a'|b b|lc ¢
0 a a0 b|0 ¢
00 0 0(0 O
M=|04d d]e ¢|f [
0 0 d{0 e|O0
0 g ¢g|h Wit ¢
0 0 g|0 R|O 3
FrAloBERICED M ik 3:
a b cld V d|ad
0 e fld €& f|d
0 hilg W V|4
M=|000[a b c|d
000/0 e f|d
0000 h i|g
\000[0 0 0|a
ajd ¢
MOFLIOHENE T=3+3+1,%3. Ny=Ny=| 0]e f
0(h 2

F7, G1=(a),G2=(Z f) LES.

(N11N2)N3)
DM OB Ta Y 7 THY,
(Gl, GZaG11G2)G1)

M O VHATOY 7 THB.

ﬁﬁ&ﬁ]ﬁ, T=T(n1,n2,---,n,) %"V‘/7“|§I%E—§‘5 ﬁﬁUT(nl,ng,---,

FITHROLMPVDDE fi, fo,- -, fs EEL. TDLEE,

nla T —( 1" f11f27 7f2: * yfsv"')fs)

ms

LELZLDHEKS.
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(12)

N3=((1) &E(

n,) DHFRPE
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EE6CJ)CMn) 2 J OTHTFREETS. p2 ¢J) DV Ya TV V-5F4h1L
E¥%, ZDLE,

€(J)/p = M(m1) x M(my) x --- x M(m,).

S Mee(J)&53. Ny MoBHWHAT Y 70E—DbDEL, Gy,---,C, ®
N, ONETuy 2 LT 5. BE&

®:¢(J) — M(my) X --- x M(m,)

ZO(M)= (G, +,Gs) WEOTEETS. ZOLE, ZNPBOERETH S LITH
SR, Lrd, ZOEBNETHEILEHESOLPS. LoT, OB ra Ty v-
FT4ANTDS. (FEHK)

VX7 INVERETS. VOREKZEZETHUIEnd(V) = M(n) (%2721, n = dim V)
EEZOoND. LD BREEELZFEORVTEVELTAL ).
J €End(V) #hEE L, ¢(J) = {X € End(V)|XJ = JX} L BE,

y; = dim(imJ“l/imJ‘), i=1,2,---,p.

LB, KL, p it imJPl £ 0 20, imJP = 0 RBbDET S, Xbic, T =
T(n1,ng,---,n.) = T(vr,va, -+, vp) I K h, YYIRET, 8LV, 5 ny,---\n, %
EEBTS. (fi,forr fo) & (Mg, n,) DIWIFITRLMLVEFRPINET 5. H#iL
AR,

(nly"')nr)=( 17"'f1)f27"'7f27"'» aa"':fs) (14)

LEL.
J DMOEE XTEIZ ¢(J)-MBETH Y, > T2 OMELBHNIIRIERD ¢(J)-MBET
HHZEICERL LS.
2,
U; = (kerJ% +imJ)/(kerJ%+! +imJ)
EES. EL,i=1,2,---,sTHB, (FEHNICfn=0LLTEL.) 20t E B
)
@ : &€(J) — End(U;) x End(U3) x - - - x End(U,)
BHEZ DD, ker B EC(N) DY ATV V-5 F4 ANVTH 3,
CDIZLERRBEDIC, T, BEZEN, JRERHBICRT L 2EZ 3,

y; = dim(imJ*"! /imJ*)
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LB, By 1, T DY 3 N VETEEREEZ, BFln - n. BT DY 2
VYL E B E SRS ICEERELLY. KEL, p &, P =0%2BRHTH
2 YU IEMTOREV OEEDOTLERA—HL TR, ¥, BRI IZ T—O0F%
ZOEROBICESD ) LELDI LMK, AROMBETNL, TN, J DIEDTT
<53 o7, ker DEER T OEFOBRBOMETROND. T, AROEFRTL
»5, imJI BEPS (j+1) ZHOHE X U2 NUBEDOFICEN S FETRONDINY
FLEETH S, COREERMSTEd(V) = M(n) LRBEEM € ¢(J) KHLT,
&(M) 58 M D s R 7 E Yy 7 ORFER—DTOMYHLEHD (HiDTETEAE,
&(M) = (G1,Ga,--+,G,) THBZ LD B,

R 7 §i L FAROLS 2HE).

(@) M ecd) i, ruafray 7 Egrsnsty s (TEHS, Mg T
oy ZBHIOTHBETS. ) IDLE

rank(M + J) = rankJ + rankG{* + rankGf* + - - + rankG/’
(i) Kt (G) OFVBETHB. FIETHRCALRHFEMTS.
corank(M + J) = corankJ — (rankGY* + rankGf? + - - - + rankGJ*)

(i) Meeld) kL, L& Mofipefs7ay 7 ZYpo52HAETS. (T4D
4 D12 M OB eRf 7Ty 788 0 L Lb D, Lee()) iz LA
DLee)) THHILEESDYS, ) IDEEFREALETOAE KIZDWT
rank(L + \J) < rank(M + \J).

SERR. (i) 13, 7 L S EAER T, BBATAIICE S T 7K. (@) I2EIE (=52 4FE) v
VRIS Y MREEICE T, TETFID “Deformation” (B8 LEERMED.

— o, AT VT 4 YRENDIGAZTT. (4,m) ZRFNTNT 4 v KRB
¥%. zem\m? REEDOTLETS. G =Grp(4) LB 7L, Grp(4) i3, BIRA T
7 (2) icB¥ 5B (“associated from ring”) THB. ZOD LE,

% 8 1. Rees number of (A) < Rees number of (G)

2 AREERRREOEBRLTSEE, HE5 RN 2 DOWTGEHBHL 7Y = VER
(L 7> V&) 2ARTEE, A LB/L 7Y VG (BL7Y 2 VEE) 2R
77,

9 FRTDi=12,-.-,s D%, xz € End(U;) DEBAREHE & 54551, ARHV
Fy 2 VEERERET, (220, ARBEREOE KREETS)
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4. KOBE»ERS, EFERX, THL 7oyt 2 TRL 7Y 2 V&M, °BE

#zions,
FLVEEH, & D BAERRIGH, —B(L, BL 7> x VEELOBRR LR, (12 %22
FITLTHIRL .

SE 3

[1] T. Harima, J. Watanabe, The commutator algebras of a nilpotent matriz and an
application to the theory of commutative Artinitan algebra, To appear

(2] T. Harima, J. Watanabe, The finite free extension of Artinian K -algebra and the
Strong Lefschetz property, 56 24 BIAHABRGRY Vv R T L fiGE
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EAIST IS B 5 0% B & filtered blowing-up
(T4 & D)

i B# (Masataka Tomari)
HARE SR - BFH

Introduction. (V,p) Z#E$ 0 OREEAE LD d(> 2) RTLESFRERLL, 2D
BEEEEE ¢ (V,A) > (V,p) T3, COLE, SREV (FR3BNEE A
) DRIFHEFAERZEEL M. BPR Oy, ORENAELRSED L) LHll%z
2. FEINBZPEVI LI, B2ED, REROTBERROMEL L TR(R
kAN TR EBVET,

Z OATIRERD 5 b, B p,(V,p) = R4 1.(0y) &, LT, Oyyp D
Hilbert function & BRIz, B2 5. 2ORVELNLZbOLLBbONET, i
# [8] Tix. BT 2 XTTHRRICOWVTIZ, FHED Hilbert function IZ& % py D
HEARD (p, BREL R BHELRADE) HAERRIOBELRRNEELHA
RBZLRESNTHEZLEHASHLIILTVLET, 25 —H, &< —RITiFLED
po-formula OFHEOHRICH ZHERIBONALI LD (8] TRRRINTLET
([10] ZEDB),

% 7 BRSP4 [9) Tk, Hilbert function X7:i3 tangent cone D
YD TF—F 8 p, KEb B39 5 L) RIERRS S, tangent cone O FEAT
akERY—Ic ks p, DT oHEICET 2RERE/TVET, 20%, BEIH—

et L pEFEAWE T, RE% filtered blowing-up IZJA 5 T LT, BAIEKICOW

TH ISP L —BRRERIB SN TV E T [11]§4. blowing-up % filtered ¥ THRER
FT2HEIZ, BEOUULDIKBELELALIIKIRTALETH, 2RDECHRR
PRHICE T 2RUEZEZ T B I LITBD ET,

Z O, BAEROKRL RS BELIEBRTRRRERARZOENTHE I L2 &
WUARK, AHERFEAREZRI LD L LS OMBEFICL>TREINE L, £
OFAH S bHRIC, 18 EMCELTCOLITEEZSELLEICH L W RANLER
BEohALLE, SEZOFERICHY ¥ Lk, MECT 25EEHL, INIRER
(V,p) KR LTHERBE m>1IK20T, UTOL)ITEZY T ¢

Y (V,p) = dimef /6. (w5) (Knller)
om(V,p) = dim w{;" ]/ o (wg" }((m —1)Ayeq)) (Kimio Watanabe)
Anm(V,p) = dimwg" ] /b (wg" | (mAreq)) (Morales)

7L, BD 22T, ¢: (V,A) = (V,p) Tl&. A ¥ normal crossing divisor
B ERRELET, SO OFERICEKL EIX. BHOBEHE 5] kE2S
BRI,

LT, B Oy, KDL TBRRNZRENER Oy, 3 d RILERMVKERR, F =
{F*} % [11] DEBRTD Oy, D ideal IZ X 5 filtration £ 5. T%bS5, FIC Rees
B @rsoFFTF HERER Oy palgebra THB LT B, ity MrBREDORER
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B Ik I BT, filtration D topology ZED D FN M ht(FN)=d Lo TWn5L
RET 5, LA [11)§4 Tk, associated graded ring G @ Cohen-Macaulay #
ZREL T, REROLMER p, 2 G OFAEBT T L6l L. F5HILOBIC
filtered blowin-up #® rationality 23 U 7z, Z I TlX. G D Gorenstein % EIC
KETHZ LIk, ETCEALZLERER v, (by Knéller), 6,,, (by EARK) &
DERTRD & 9 BREREZ/ .

Theorem 1. G %% Gorenstein TH2>T a(G) =a £T 5 [1], DK, ROAEFER

MENFNRIALT 5,
ma+(m-—1) ma ma—1
Tm(Ovp) = Y. UGK), m(Ovp) =D UGK), Am(Ovpm)> Y UGh).
k=0 k=0 k=0

ERRILIBIL T Yo, O KDV TENZHRIRILT 3.,

Theorem 2. Theorem 1 DEHTE 512 a=a(G) 21 L ¥ 5, JOK, RD55K
HIZEWICRETH 5,

(1) 6m(Ovp) = Y _U(Gy) for all m > 1,

k=0
ma-—1
(2) Am(Ovp) = Y U(Gy) forallm > 1,
k=0
(3) lim_ (n?;’m) hm(l— A)¢P(G, \).
(a) ,,}Pw—f—f”—”) 2 lim (1 - X)*P(G, ).

(5) F iz &% filtered blowmg—up ¥ : X — Spec(Ov,p) D352 KA D log canonical

model 25%%, $4hbb, X IZEHTHY E = Proj(G) I3 reduced T. X i
Kx +FE 2% LT log canonical TH Y, X 52 Kx+ F |3 y-relative ample TH 3,

Theorem 3. EE 1 DEBAFTEIS5ICa=a(G) >0 LT3, O, XD 3IEHIR

BWIZFEETH 3,
ma+m—1 :
(1) Y7m(Ov,p) = Z I(Gg) for all m > 1,
k=0
. ’Ym(OV,p) (a+ 1) Y
(2) Tim =5 = lim (1= )P(G, })

(3) F I & % filtered blowing-up ¥ : X — Spec(Oy,p) »4FRREMIH D canonical
model 252 %, Tibb, X IEEFENDAERFDL I SIC Ky 1 ¢-relative
ample TH 5,

Remark. [3,4] THFHHIE hypersurface case I minimal embedding DEEERD
weight 2> 5 E % 3 filtration IZ2W T, BAT— LBEETIHEH ZHERE VA
VWAHRTWS,

Key points. B 1 T3, resolution 7: X — X %L T normal I3RS %RV X
Ck)T. “Kx +E” ICHET 5 sheaf & X 2>5 D sheaf & T 3 HICER%
By, EH23 D (2) — (1) Tid. "ROEH, [6] A7 [12] DFEFRZH P
FTLLAAHOME 2] A5, (R84 (2)-AHO lemma) 2 5~NAIR,
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r oo filtration \cB7 5 BHEH—BL 7 & ¥, filtration 23— L TL ¥9, &
WHIBDEEE AL UL VD EOORRTH B, AHRERRNICIZED X ) BERRHE
Z5NBDEVIRELRADTHALILVER).

Z DIMELETIE, Theorem 1,2 DFFH%ZFTH.  Theorem 3 DA, Theorem
9 LREEFNTREDS BV TR—VROBFRLH D, EHEY 5,

§1. Proof of Theorem 1: Oy Yms Am-

3 oOTRIZIFAMCEREE NG, ZITH, RELESF [11] L RVVCRA
ChkoT, BEHLTELY,

¥ : X = Proj(R) — V = Spec(Ov,p) : the filtered blowing-up with E = Proj(G)
<HoT. 7: (X, A) = (X, E) & aresolution of singularity ThHoT . Yyr: X - W
% good resoliution §7%b 5, FIFHEEGDS simple normal crossing ZiBbDET B,

Claim 1. 7.(O % (K¢ + A)) C Ox(a(G)) as Ox-modules.

H. Ox(n) = R(n) & (So) &Mz T DT, EoFERIZ, X D codimension
9 ® closed scheme % B\ 7= 84y CIEBA T LT L\,

Lz, X — X 13 (E®D & % codimension 2 DEEZERY »T) normalization
THBEREL TN,

7.(0 g (m(K g + A))) Ox(ma) 7z £, locally constant sheaf K(X) = KX)A”
@ subsheaf & L TOEAEHEFETH S,

G %5 Gorenstein 725, wo,,, = Oy, PA—ED b & T, by [11] Theorem(3.5) (1)
wx 2 0x(a(G) +1)

BLU
wg = 0x(Kg)

TH 5,
canonical sheaf FlE® natural trace morphism DBifR& L T\

Te(wg) Cwx
#DT, K(X) D subsheaves & L T,
m.(0%(Kx)) C Ox(a(G) +1)

<% %. scheme theoretic sense T ZIg = Ox(1) C Ox 7% IgOx C Ox(—4) (4
13 reduced struct ure TEZ T\ 5%, ) BDT,

0x(1) € .(0x(1)0x) = 7+(Ze0%) C 7+(0x(=4))

—123—



TH3, 3T, TTHHZBERE
(0% (Kx + A)) = u(Homg (0% (-A),0%(Kx))
THb, 2FIC, Ox(-A4) BL O4(Ky) ix. normalization 7: X — X i\
T, X DERDEFIZOVTHSB LKL D EDD global section THERIN TV 3
(principal 7.(O ¢ )-module) D TRAHRILT 5.
Tu(Homg(0%(-A),0%(K3)) = Homx(r.(0z(—A4), 7.(0% (K %))
HEALEIER
Homx (7.(0%(-A), (03 (Kx))) C Homx(0x(1),0x(a(G) +1))
LhbeT,
(0% (K% + A)) C Homx(0x(1), Ox(a(G) + 1))
BRoNFZ, I T, BRL map
b : Ox(a(G)) — Homx(0x(1),0x(a(G) + 1))

BH5B, LT, Ox(a(G)+1) 2 wx TH5 I L L Cohen-Macaulay 2T p
%3 isomorphism TH 3 Z & #FEHHT 3, S

HAWN TR,
' 0-0x(1)>0x - 0g—0

i Homx (= wx) = Homx(~, Ox(a(G) + 1)) LT,
0 — Homx(Ox,wx) — Homx(0Ox(1),wx) — Ezt%x(Op,wx) — 0
0 — Ox(a(2)+1) — Oxgal(tG)) — OE(Ta7(’G)) - 0
TH %, duality D—H@wD S

Dg = RHomx(Og, Dx)
TH 50, E, X It Cohen-Macaulay scheme DT,

wg = Exty (Op,wx)

TH5, LED 19 RAREHRTHS, 5lemma £, Tp bABELTH 3,

MEZHbHET
(0% (K + A4)) C Ox(a(G))

»Es N,
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Claim 2. B m > s > 0 KOV T, 7 (0g(mK g +sA)) C Ox(ma(G) + (m—s))
as Ox-modules.

S Bx kT T, (05 (K + A) C Ox(a(G)) BETK. (0x(Kx)) C
Ox(a(G) + 1) as Ox-modules. 2% T\>%, Claim 1 DIAHDOBHICAR 1 EE %
Builz ),

Ox(n) = R(n) & (Sp) &HrZ M= TOT, EOFERIE, X D codimension 2 D
closed scheme Z B\ E CHBATIUT LV, E LIS, T8 X=Xz (kokd
% codimension 2 DA%\ >T) normalization TH 5 LREL T\,

¥7c. Ogx(Kg) BLU Ox(Kx+A) 13, normalization 7 : X Xikowt, X
DEEDFEIZOVTHRB L&KL T EDD global section TAHERL T 71 Tv> 5 (principal
7.(O¢)-module) DT, K(X) O subsheaves & L CRBILT %,

7.(0g(mK g + sA)) = . (0 (Kx + A)) ? sTEOH - 7.(04(Kz)) D (a—s) BHOR

x5, B0, Ox(a(G)) D s BO - Ox(a(G) +1) D (a—s) BOW Ic&EN
3. —RIc. Ox(n)-Ox(m) C Ox(n+m) ZDOT, ERILIDT,

Claim 3. B8 m > s> 0 220V T,
dimwly) /6.(0x(mKx + 54)) > dimwf) /1.(0x(ma(G) + (m - 5))

#REL. 6: X > W id ¢ =yr THESN S good resolution TH 5,
B, Claim 2 X DHIS

ES2. Claim 3 DEIDOHIE. s =0,m —1,m DI, good resolution M & h H
kS FTIREZBTH S, (Z0OMD s DRIZ, YD X) REFCE-o TR 22I2A
572v,)

CCETRBE. BUNCHBART: Theorem 1 £ THU L,

Claim 4. (G i* Gorenstein & 13RS %A Y) HE, (G) =057 H; (G)=0
751, FF =1,(0x(k)) for any kK TH %,

SR a C AUk, [11] K BHNTw B, (ROBID LETRVIT L) HE (G) =
0% 513, R'.(Ox(k)) — H2(Ov,p) 1 injective for any k € Z. &2°C,
$2(0x (k))/(Ox (k + 1)) = H*(Og(k)) for any k € Z. F7c, H, (G) =027
HL (G) =0 k5. G = OrezH(Op(k)) £ b, FF = 4,(0x(k)) for any k T
b5, ,

BRI ED4DOD Claim 2 LD B E,
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G %% Gorenstein 2 5 13,

ma+(m—1)

7m(0V,p’m) > Z I(Gk)

k=0

Sm(Ov,pm) 2 Y U(Gy)
k=0
ma—1

m(Ov,p,m Z 1(Gy)

TH5,

§2. FHMILORKETIF: Theorem 2 DIFRH

Introduction ® Theorem 2,3 i3> D DHEEZHAAS LY TIAHL & H, T
Am T BFERMEL LTREZ S, Z4Ud, Theorem 2 D (2) — (5) IKWIET 3,

Theorem (2.1). Let (Ov,p,m): Gorenstein isolated singularity, {F*}: a filtration
such that G is a Gorenstein ring with a(G) > 1. Suppose the equalities
ma—1

An(Ovpym) = Y UGy)
k=0

hold for all m > 1. Then X is normal, E = Proj(G) is reduced, X is log canonical
with respect to Kx + E and Kx + E is relative ample with respect to the filtered
blowing-up by F.

it TR o N TV 2 RER L, EEBHR (Claim 2)
7(0%(mK  +mA)) C Ox(ma(G))
for m > 1 56 BRICE» N 2%
Am(Ovp) = dimwly /¢.(0g(mKg +mA))

ma—1

> dimwGy | /$.(0x(ma(G)) = Y UGK)

form>1 tWIHIFBTRONTOE, LEL, ¢: X > W ik ¢ =yr TBENS
good resolutio n T 3,

S WAL for m > 1 13,

Yu(m(Ox (mKx +mA)))) = ¥.(0x(ma(G))))

—126—




form>1 LFEETHZ, 5. N>1%, [11]icH B &) % filtration D topology *5E
b BEIE T 5. PN = (V) for k> 1 DBALT 5 LRET 5. Ox(N) = FNOx
13 locally principal Ox-ideal T& 9. the filtered blowing-up ¢ : X — W IR LT
relative ample 1% %, ¥k >0 ZEET 5, m=NL+k 2% mITHLT,

Ox(ma(G))) = Ox (ka(G) + Na(G)€) = Ox(N)®*D*0x (ka(Q))

¥ b, ampleness ICk D, WYL L>10BH>T, £>L LT, Ox((NE+
k)a(G)) i& ¢ IZX L T global section THEREN B, (2T, a(G) 21 ZFEoTw
%, ) XD commutative diagram WCEBHL & 7.

¢*(T‘(0x(mfi£+mA))))0x — T*(O)'{(’ranx-FmA)
£:0.Ox(ma@))0x  —  Ox(ma(G)

m = Nl+k with £ > L OB, £ d3surjective DT v b surjective KFiZ isomorphism
THB, DI Em=NL+EITHLT

7.(0%(k(Kg + A) + NU(K 3 + A))) = (FN)(©)X0x (ka(G))
TH 3, T(N(Kz + A))) C Ox(Na(G)) = F*CONOx I2KE M T, ideal sheaf

J C Ox %
J =1 (N(Kg + A))(F*ON)~ c Ox

L 8. X D codimension 2 DEENZE X — X (3 normalization TH % L{RKE
T&%, ZOLT, (FEROTEHATHRL LI ID)

7.(Ox(k(K% + A) + N{(Kx + A)))
= T*(Ox-(k(Kx + A)) - T*(O)'((KX +A) D NHE DR

THHDT,

Ox (ka(G)) = 7 (O (k(K g + A) + NO(K g + A)))(FONE)~!
= 1.(0g(k(Kx + A)))J¢ C (O (k(Kx + A)))
THb, £oT. X D codimension 2 DEEDE T, Ox(ka(G)) = 7(Ox (k(Kx+

A)) THB, k=0 DHBEIHEAT 5 L. X i codimension 2 DEEZFR>T normal
THrENbP B, /. X It Cohen-Macaulay %D T, X i normal TH %,

X OESELY, H570 T, ETRLEEZRRZALUL,
(e (O (k(Kg + A))™ = Ox (k(Kx +7(A))) = Ox(ka(G))

X ETHRILY 5 for all k > 0,
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0x(1) = Ox(-E) TH Y.

 0x(a(G)) = Homx (0x(1), Ox(a(G) + 1)) =
Homx(Ox(—E),wx) = Ox(Kx + E)

kY. k=1 D8B&EDOERLY
Ox(Kx + 7(A)) = Ox(Kx + E)
DEV>, E=1(A) &% Y, E i reduced TH 3,
Ox(N(Kx + E)) = Ox(Na(G)) = Ox (N)®*®

THH, HilZ I LT, relative ample 7% invertible sheaf TH 5, Kx + F 28
Q-Cartier THB I EDFHATE, BHDERIZ, Kx + E KWL T X 2% log
canonical CTHEELIHT 2HTH 3,

£>LITxLT
7.(O% (NU(K + A))) = Ox(Nta(G)) = Ox (¢N(Kx + E)))
Thd, £oT
Ox(¢EN(Kx + E)))Ox C Ox(NE(Kx + A))
T®H Y. log canonical 23R X iz, |
Theorem (2.1) DK DL h

(2.2) COFDEHE, T7bb Theorem 2 D (5) — (2) X, §1 DFEHRLLE LD E
RITL7d3), ¥7-, Theorem 2 D (5) — (1) bEAKTH 3,

Theorem 2 DEY DERZ R 3 -Hic, ROBERICERL L5,

lim 5m(OV,pam) = lim Am(OV,p)Tr")

m—o00 md m—o0 md
BEU
1 1 ma-—1
#@mm—ZI(Gk)— lim — kz_o I(Gy)

HEREHORX 2] 2o bbb h £F, EABEIBEROEENLERL VIS,

d
512, limmoe dZﬁ%“%) Zlmuﬂu—AFHGJ)bb#5®T\
(3) & (4) HIFBDB BB TRBHDERTS &V, (1) — (3), (2) — (4) 135
5HTY,
EERIRo T8I, 3) — (1) £713 (4) — (2) T, EbodiREId,
SWIEECRD T | :
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(2.3) BT, (4) — (2) OFEH : bW 3, © TROEH, AVkia-EL ()
DIE” ORI X ZICAOHERNLERTT

MEERLET.

B2 mo 1PV T, Ay > Sm L I(Gr) THok ET 5. T2 LAABR

$+(0x(mo(Kx + A)) C ¥2(0x(moa(G)))

HESHRILL BV, w € B (Ox(moa(G))) — (O (mo(Kg + A) T3 &,
wé O)'((mo(Kx + A) & UR

divg(w) + (mo(Kz + A)

12 not effective 7 X L divisor T#% %, map 0 : Ov,p — ¥, (Ox (m - moa(G))
% O(g) =g-w™ EED, ideal IM C Oy, %

I0m = 621 (. (Ox (m - (mo(K 1 + A)))
L9435, ZIT,
I = ¢,(0%(m(divg (W) + mo(Kx + 4)))

THLIENERICbPS, ZLT

m ’l/J,. (OX (m . moa(G)) _ mmoa—1 ]
l(OV,p/I( )) < l ((¢*(05{(m . mO(KX + A))) = /\m.mo(OV,p) — Z l(Gk)

Ths, ELETOOFHEL 2\,
S. Ishii [2] ® Lemma (1.5) (Tomari-Watanabe 12 kz, tw)mEd»rHs) 2E
WHE J,

Lemma [2, (1.5)] Assume that ¢ : X — Spec(Ovy,p) ( with the exceptlonal set
_,A;) factors through the blowing up by the maximal ideal. Then there exist
posxtlve numbers 3 € R and b € N as follows:

For an Oy p-ideal T = obu(— Z: 1 6 A ) with a; > b for some i, the inequalities
dim Ov,,/Z > B(a;)™ hold for i = 1,2,
(I%®{E~Eﬁ}momfoﬁﬁ a; >b &b, EEOERFHHETL X 9 &:b)’)
CAE BoEE) ., TCTFTTR3 &I, IM = ¢ (-m ¥ ad ) Lul
D 1deal OFIDIEEEETIc OV TEAT 3101}, a; > b L DTS, ik\ a; > 0 for
some i THICEZ 5,)
xT. bbb IM 22w Tk, divg(w) + mo(Kx + A) 7% not effective
divisor TH B EVWHZ L LD, ZD lemma ZAWVT,

7(m)
lim sup ﬂ%——) >0
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VS, Lo T,

tiz5,
(4) — (2) DAHEKD Y,
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Recent Deveropments on Hilbert-Kunz multiplicities

Kei-ichi Watanabe (Nihon University)

and
Ken-ichi Yoshida (Nagoya University)

1. BACKGROUND

Throughout this talk, let A be a commutative Noetherian ring containing an infinite field
of characteristic p > 0. Also, we assume that A is excellent and is a homomorphic image of
a Gorenstein ring of finite Krull dimension.

In [Kul], Kunz proved that a local ring A is regular if and only if 14(A/m9) = ¢¢ for any
g = p",n > 1, where ¥ = (a?|a € I). Based on the idea of Kunz, Monsky proved that
there exists a constant ¢ = c(A) such that l4(4/mi) = cg®+ O(¢*™"). In particular, we can
define the following notion.

Definition 1.1 (Kunz [Kul, Ku2], Monsky [Mol]). Let (4, m,k) be a local ring of char-
acteristic p > 0, and I an m-primary ideal of A. Then the Hilbert-Kunz multiplicity
enk (I) of I is defined as follows:

o1 A/Ild
enx(I) = qlil{.loi(T{t'_)'

By definition, we put exk(A) = enx(m).

In 1990’s, Han and Monsky [HM] have given an algorism to compute the Hilbert-Kunz
multiplicity for any hypersurface of Briskorn-Fermat type k[[Xo,- -, Xall/ (X +- -+ X3)-
Also, Hochster and Huneke [HH1] have given “Length criterion for tight closure”, which
means that for any pair of ideals I C J, I* = J* if and only if enk(I) = euk(J), and
indicated the close relationship between the tight closure and the Hilbert-Kunz multiplicity.

As a starting point of our study on Hilbert-Kunz multiplicities from the viewpoint of
commutative algebra, we have proved a theorem which gives a characterization of regular
local rings in terms of Hilbert-Kunz multiplicity:

Theorem 1.2 ([WY1]). Let (4, m,k) be an unmized local ring of positive characteristic.
Then A is reqular if and only if enx(A) = 1.
Many researchers have given several theorems as improved versions of this theorem. For

example, Blickle and Enescu recently proved the following theorem:

Theorem 1.3 (Blickle-Enescu [BE]). Let (A, m, k) be an unmized local ring of characteristic
p > 0. Then the following statements hold:

(1) If A is not F-rational, then enx(4) > 1+ i-
(2) If A is not regular, then exx(A4) > 1+ ;}—,ﬂ-

It is natural to pose the following conjecture (after Huneke etc.).
1
Conjecture 1.4. If (A4, m, k) is a non-regular unmized local ring, then enx(4) > 1+ I

The main purpose of this talk is to introduce some partial results to the following problem.
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Problem 1.5. Let d > 2 be any integer. Determine the lower bound of Hilbert-Kunz
multiplicities for d-dimensional non-regular unmixed local rings of characteristic p (with
multiplicity €). Also, characterize the local rings A for which ey (A) is equal to the lower
bound. »

2. MAIN RESULTS AND CONJECTURE

Now consider the above problem. In case of 1-dimensional local rings, it is easy to answer
to the problem. Indeed, euk(A) = e(A) is always an integer in this case.

In case of 2- dlmensmnal local rings, a complete answer to the problem has been a.lready
given. Namely, we have

Theorem 2.1 (cf. [WY2, Section 2]). Let (4, m, k) be a 2-dimensional unmized local ring of
positive characteristic. Put e = e(A), the multiplicity of A. Then the following statements
hold:
(1) emcd) 2 2. _
(2) Suppose that k = k. Then enk(A) = &L holds if and only if the associated graded
ring gy (A) = @, 5o m"/m™*! is isomorphic to the Veronese subring k[X,Y]().

In particular, if A is not regular, then exx(A) > -3-. Also, suppose that k = k and

chark # 2. Then the equality holds if and only if A = k[[Xo, Xy, Xa])/(X2 + X2 + X2).

The following theorem is the main result in this talk.

Theorem 2.2 (cf. [WY4]). Let (A, m, k) be a 3-dimensional unmized local ring of charac-
teristic p > 0. Then the following statements hold:
(1) If A is not regular, then enk(A) > +
(2) Suppose that k =k and p # 2. Then the follo'wmg conditions are equwalent
(a) emc(4) = -+
(b) A= Ek[[Xo, X1, Xs, Xa]]/(XE + X? + X2 + X3).
(c) grm(A) = k[Xo, X1, X2, Xs]/(X§ + X + XF + X3).

Now we put Ap g4 = Fp[[Xo, X1, .., X4]]/(X3 + --- + X3) for any integer d > 1 and any
prime number p # 2. Then it is known that
20p? + 15

ek (k[[Xo, ..., X/ (X3 + -+ X)) = P+ 12

Using a similar method as in the proof of the above theorem, we can prove the following .
theorem:

Theorem 2.3 (cf. [WY4]). Let (A, m, k) be a 4-dimensional unmized local ring of charac-
teristic p > 0. Also, suppose that k =k and p # 2. Then
(1) enx(A4) > = if e(4) > 3.
(2) If A is not regular then epx (A) > 2—25;‘%2-
(3) The following conditions are equivalent:
(a) Equality holds in (2).
(b) eHK(A) < %
(c) A is isomorphic to A, .

see e.g. [BC, BCP, HM].
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For ek (Ap,4), Monsky proved the following surprising theorem.

Theorem 2.4 (Monsky [Mo2]). Under the above notation, we have

oo

lim exk(Apa) =1+ c—d, where secz +tanz = G d (lzl < 1—) .
p—r00 ’ d! s d! 2
TABLE 1
d of1l 2|3 |45
Cd 111} 1 2 | 51|16
3 | 4 |20]| 11
1+502]2| 5|35 |2l

Now it is natural to pose the following conjecture.

Conjecture 2.5. Suppose that k = % and p # 2. Let (A, m,k) be a d-dimensional unmized
local ring of characteristic p > 0. Then

(1) If A is not regular, then enk(A) > enx(Apa)-

(2) Equality holds in (1) if and only if AxA d-

(3) If A is not regular, then enx(A) > 1+ 5

One can easily see that cg is an integer and ¢y T 00 if d + oo. Thus the above new
conjecture implies Conjecture 1.4.

3. SKETCH OF THE PROOF OF THE MAIN RESULT

In this section, we give a sketch of the proof of Theorem 2.2. But we omit the proof of

Theorem 2.3 here.

In the following, let (A, m, k) be an excellent unmixed local ring of characteristic p > 0,
and put e = e(A), d = dimA > 1. Let J be a minimal reduction of m, that is, J is a
parameter ideal and mn*+l = Jm" for some integer n > 0. Let J* denote the tight closure
of J; see e.g. [Hu. Then A is F-rational if and only if J* = J. Also, e(J) =e(m) =e.

First we need the following lemma.

Lemma 3.1. Under the above notation, we have pa(m/J*) < e —1. Also, if A is not
F-rational, then pa(m/J*) <e—2.

Proof. By Goto-Nakamura theorem ([GN]), we have
pa(m/J?) <la(A)J7)—1<e(J)-1=e—1,
and the equality holds in the second inequality if and only if A is F-rational. |
The following lemma is the key of the proof of Theorem 2.2.

Lemma 3.2. Let © be an integer with r > pa(m/J*), and let s be a real number with
1< s<2. If we put

d
Zzi S 3})
=1

vg = vol {(zl,... ,Zq) € [0, 14
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then we have

b1t}

enx(A4) > e {vs T

(Rough sketch; see [WY4, Section 2] for details). In what follows, for any positive real
number a, we put I¢ := I", where n is the minimum integer which does not exceed a.
Also, we put L = J* for simplicity.

In the proof, we may assume J9 = L9 by Length criterion for tight closure by Hochster—
Huneke ([HH1] or [Hu]). Furthermore, we may assume that J*¢ = L7 = m® since J is a
reduction of m. Then we have

la) sq Jlal 4 gsa

ldl / ylal m”+m7 ST
La(m®/TE) < La ( i+ ) T 7@

By the assumption, we can write as m = L + (ay, ... ,a,) for some a; € m. Then since

mG—4a C m*9, we get

) +O0(* Y =l + 1, + O(qd"l).

_1\d
I <7-lg(A/mE) = %q“ +0(¢*).

On the other hand, since ek (J) = e(J) = e, we have
re(s—1)¢ Jal + g d
im0 [

Moreover, since the last term is equal to e(1 — v,), we obatin the required inequality. O

e —enk(4) <

Applying Lemma 3.2 to the case where r = e—1 and d = 3, we have the following corollary.

Corollary 3.3. If (A,m, k) is a 3-dimensional unmized local ring of characteristic p > 0,
then

enk(A) > e - max {%3— (e+2)(3_61)3}.

1<s<2

Proof. Indeed, we can take 7 = e — 1 by Lemma 3.1. Also, if 1 < s < 2, then we have

s (s—1)3
Vs = —6— -3 6 .
Hence the assertion follows from Lemma, 3.2. O

Proposition 3.4. Let (A, m, k) be a 3-dimensional unmized local ring of characteristic p>
Q. If e > 3, then eHK(A) > %

Proof. Put f(s) := % — (e +2)23. If e > 13, then enx(4) > f(1) = & > 22 > 2 by
Corollary 3.3. Similarly, if 4 < e < 12, then egx(4) > f(%) = % > —g— If e = 3, then
enk(4) > f() =& >+ g

In the following, we consider the case of e = 2. By Corollary 3.3, we have egx(4) >
f(2) = —g—. Thus in order to complete the proof of Theorem 2.2, we focus the case where
ek (A) = %. Then we may assume that A is a hypersurface by the following lemma.

Lemma 3.5. Let (A, m, k) be an unmized local ring of characteristic p > 0. Suppose that
e = 2. Then A is F-rational if and only if eux(A) < 2. When this is the case, A is an
F-rational hypersurface.
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Proof. Since any Cohen-Macaulay local ring of multiplicity 2 is a hypersurface, it suffices
to prove the first statement.

We may assume that A is complete. First, suppose that egx(A4) < 2. By Goto-Nakamura
theorem ([GN]), we have 2 = e(J) > l4(A/J*). If equality does not hold, then J* = m. Thus
enk(A) = enx(J*) = enx(J) = e(J) = 2. Thisis a contradiction. Hence e(J) = l4(A4/J*).
By Goto-Nakamura theorem again, we obtain that A is Cohen-Macaulay, F'-rational.

Conversely, suppose that A is F-rational. Then since A is Cohen—-Macaulay and J* = J #
m, we have ek (A) < exx(J) = e(J) = 2 by Length criterion for tight closure. O

In the following, suppose that A is a 3-dimensional complete F-rational hypersurface local
ring of multiplicity 2. Furthermore, we assume that k = k and chark # 2. Then A can be
written as the form k[[X,Y, Z, W]|/(X? — o(Y, Z,W)).

To study Hilbert-Kunz multiplicities for these rings, we need to improve Lemma 3.2.
Namely, we prove the following proposition (see also [(WY4)).

Proposition 3.6. Let A be as above, and let ¢ be an integer with ¢ > 3.

Suppose that there ezists a function ord : A — QU {oo} which satisfies the following
conditions: _

(1) ord (@) > 0; and ord (a) =00 <= a=0.

(2) ord(z) = ordy = ordz =1/2, and ordw = 1/c.

(3) ord(p) = 1.

(4) ord (@ + B) > min{ord (), ord (8)}-

(5) ord (af) > ord (@) + ord (B).
Then we have

3 2 4

.
enk(4) 2 5"~ 37> 3

Proof. First, we define a filtration {Fy}neq as follows: Fy, := {a € A|ord (@) > n}. Then
every F, is an ideal and Fi, F;, C Fpip holds for all m, n € Q. Using F, instead of m", we
shall estimate 1 4(ml/J9).

Set J = (y, z,w)A and fix a sufficiently large power ¢ = p. Put

1 1 1
s +C, 2+C( )

Since J is a minimal reduction of m and zy?'z9"'w?"! generates the socle of A/ JUl, we
have F,, C JU. Also, since B = A/J! is an Artinian Gorenstein local ring, we get
FgN-'z-QqB Q 0 ‘B Fﬁng = KB/Fy!lB7

where K¢ denotes a canonical module of a local ring C. Hence, by Matlis duality theorem,
we get

Fwing + Jld
lA R R —

i ) < 1p(Kp/ry,5) = 1s(B/FB).

On the other hand, since =7 € F% by the assumption, we have
.’l:qF%g Q FgN-H)q .
2

Therefore by the similar argument as in the proof of T heorem 3.2, we get

—135—



14(mlel/ gldl)

A

Azd + Jla 4 Fviyg Fving + Ju
la + 14

7 2
Fm+J[q] Jldl
2

IA

I (A/(J["] + Forsns) a:") +1p (B /Flle)
214 (4/79 + Fy, ).

IN

In fact, since

lim ~ 1, (A/JM +F_1g21)

g—o0 g8
B 1 2|y 2w _Ng
= e(d)- lim % vol {(sn) € 0P| L+ S L < BT
= .2-vol ¢ (z,y,2) €[0,1] i+i+——ui<ﬂ
- e e T T =
o1 s o ef. 2V _ 1, 1
- 2?{7N‘7(N c)}-ﬂscz’
we get
11 3 2
>2-2(—+4+——)=—-2
enx(4) 2 2 2(4+3c2) 5 32’
as required. 0

We do not have any example of non-F-rational unmixed local rings A with epx(A) < 2.
In fact, in the case of 3-dimensional local rings, we can prove the following proposition using
the similar method as above.

Proposition 3.7. Let (A,m, k) be a 3-dimensional unmized local ring of characteristic p >
0. If enx(A) < 2, then A is F-rational.

4. SOME EXAMPLES

Example 4.1 (Rational normal scrolls). Let k be a field, and let A, be the completion
of a rational normal scroll: A4, = k{[z™"T,z~""'T,... ,T,zT,yT, zyT]], where z,y,T are
variables and n is a non-negative integer. Then A, is a 3-dimensional Cohen-Macaulay -
F-rational local domain with e(A,) = n + 2, and

In particular, e(4;) = 3 and egk (4;) = -+

Example 4.2 (Veronese Subrings). Let A = k[[X} -+ X} [41,... ,ia > 0,3 4; = r]] be
the Veronese subring of k[[X1,... , Xg4]]. Then e(A) = r? and

eHK(A)=i<d'+r—l).

T r—1

In particular, if d = 2, r = e(A), then epx(4) = %. Also, if d = 3 and r = 2, then
e(A) =4 and egx(A) = 2.
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If A is not F-rational, then we obtain more strict inequality. For example, in case of d = 2,
if A is not F-rational unmixed local ring with e(A) = e, then
2
e
A) > ——.
enx(4) 2 3777y

The following is an interesting example which takes the value of the right-hand side.

Example 4.3 (Elliptic curve by Fakhruddin-Trivedi [FT, Corollary 3.19]). Let E be an
elliptic curve over a field k = k of characteristic p > 0, and let £ be a very ample line bundle
on E of degree e > 2. Let R be the homogeneous coordinate ring (the section ring of L)
defined by
R=(pH(E,L®).
n>0
Also, put A = Ron, where 901 be the unique homogeneous maximal ideal of R. Then we have
2
e
A =——.
eHK( ) 2 ( e — 1)
In higher-dimensional case, there are many open problems. For instance, it seems that
the following question is still open.

Question 4.4. Let (A,m,k) be a 3-dimensional unmized (resp. non-F-rational unmixed)
local ring with multiplicity e. What is the smallest value of egx(A)?

5. MINIMAL RELATIVE HILBERT-KUNZ MULTIPLICITY OF NORMAL TORIC RINGS

" In the 20th symposium on commutative algebra (1998, Kashikojima), the first author
introduced the notion of minimal Hilbert-Kunz multiplicity to investigate the difference of
Hilbert-Kunz multiplicities between two ideals; see [Wa2]. Also, in the 23th symposium on
commutative algebra (1999, Kurashiki), we gave a formula for the minimal Hilbert-Kunz
multiplicity of quotient singularities; see [WY5).

In [WY4], we have changed the name of the minimal Hilbert-Kunz multiplicity to the
minimal relative Hilbert-Kunz multiplicity by the advice of the referee. Also, Yao [Ya] re-
cently proved that the notion of minimal relative Hilbert-Kunz multiplicities coincides with
that of F-signature which was introduced by Huneke-Leuschke in [HuL] from the different
viewpoint.

Definition 5.1 ((WY4]). Let z be a generator of the socle Soc(E4) = {z € Ea|mz = 0}
of E4. Then we put '
14(A/ann 4(2%"))

ped ’
where 27" = F§(2) € F§(E4). We call muk(A) the minimal relative Hilbert-Kunz
multiplicity of A.

mpyk (4) = li}}r_l) g)lf

In this section, we give a general formula for muk(A) of a normal toric ring A. For
simplicity, we write the minimal relative Hilbert-Kunz multiplicity of the local ring at the
unique graded maximal ideal simply by mux(A). To formulate our result, let us fix our
notation.

Let M, N = Z¢ be dual lattices, and denote the duality pairing of Mg = M ®z R with
Nz = N®zRby( , ): Mg®Ng = R. Let o be a strongly convex rational polyhedral cone,
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and denote ¢V = {m € Mg | (m,n) > 0 for alln € o}. Let A = k[o¥ N M] be a normal toric
ring, and let ny, ... , n, be primitive generators of o. Then 4 = k[z™ | (m,n;) >0 for all i].

Theorem 5.2 (cf. WY4]). Let k be a field of characteristic p > 0, and let A = k[o¥ N M ]
be a normal toric ring. Under the above notation, we have
myx (4) = vol{m € Mg |0 < (m,n;) <1 for all i},
vol (W) denotes the relative volume of an integral polytope W € Mg (see [St, pp.239)]).
Proof. By [HaY, Section 4], we have
Ba=Hy(Ka)®2 P k™,
- (m,n;)<0 (Vi)
where the socle is generated by z =1 and
Es@ A= HIKD)= P k™

. (m,ni)<g-1 (Vi)
Since the Frobenius action is given by F® : E4 — F§(E4),z™ — z™, the annihilator of
z? =1 is given by

@ kx™.

0<(m,n;)<g—1,m#0
whose length is f{m € M |0 < (m,n;) < ¢ —1(¥i),m # 0}. We get the desired result
dividing by ¢% and tends ¢ to oo. O

Remark 5.3. In [Wal], the first author gave a formula for Hilbert-Kunz multiplicities of
normal toric rings.

Example 5.4. Let k be a field and A, = k[z™"T,z"*\T,... | T,zT,yT, zyT), where z,y, T
are variables and n is a non-negative integer. Then the generators of ¢ and oV are given
respectively by ’
o = ((0,1,0),(-1,0,1),(0,-1,1),(1, —n,n)),
a¥ {(-n,0,1),(1,0,1),(0,1,1),(1,1,1)).
Since the volume of the region given by

{(z,4,2) ER|0<y<lz<z<z+lLy<z<y+lny<z+nz<ny+1}

is s(ns—+1)’ we have myugk (A4,) = 6(n5+1)'
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Morphisms represented by monomorphisms
Kiriko Kato
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Sakai, Osaka 590-0035, JAPAN
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1 Introduction

For any homomorphism f : A — B of R-modules, (f pp): A®Ps — B is surjective
with a projective cover pp : P — B. Thus every morphism can be embedded into
an epimorphism with adding some projective modules. And the short exact sequence
where f is embedded into the epimorphism is unique up to projective modules. The
kernel of (f pp) is called the pseudo-kernel of f and denoted by Kerf, which is
determined by a stable equivalence class of f. (See Lemma 2.4).

On the other hand, embedding into some monomorphism is not always possible.
Dually to the pseudo-kernel, the pseudo-cokernel Cokf of f is determined. But C Cok f
is not always a cokernel of a monomorphism, while @f is a kernel of an epimorphism.

Finding a condition of a given map to be embedded into some monomorphism is the
problem posed by Auslander and Bridger. Treating the problem again in this paper,
we focused on the fact that mod R is categorically equivalent to some subcategory
of the homotopy category K(mod R) of R-complexes [[6] Theorem 2.6]. Due to this
method, we describe the obstruction of being embedded into monomorphisms by a
homology of a complex associated to the given map. And we get Theorem 4.10 :

If a ring R is Gorenstein, A morphism f can be embedded into monomor-
phisms if and only if Ker f is torsionless.

Our standpoint is that ”embedding into monomorphisms” problem is closely re-
lated to the theory of ” perfect exact sequences” exact sequences whose R-dual are also
exact.

To sum up; every morphism cannnot be embedded into monomorphisms. Even
if a given morphism can be embedded into some monomorphism, there are various
embeddings. But in this case there uniquely exists a "perfect” exact sequence where
a given map is embedded into the monomorphism. ( See Theorem 3.9.)

2 Preliminaries

We shall fix the notations and give some review on the correspondence between stable
module category and homotopy class category of complexes. All the contents in this
section are included in [6].

Throughout the paper, R is a complete semiperfect ring, equivalently a finite
direct sum of local rings; that is, each finite module has a projective cover ( see [7] for
semiperfect rings). The category of finitely generated R-modules is denoted by mod R, )
and the category of finite projective R-modules is denoted by proj R. By an R-module
we mean "a finitely generated R-module”. For an R-module M, pp : Py - M
denotes a projective cover of M. For an abelian category A, K(.A) stands for the
homotopy category of complexes where a complex is denoted as

1 d n—1 dp™
F*.. .. prml o, prh pril
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A morphism in K(A) is a homotopy equivalence class of chain maps. T<nF®, T F*
are truncations;

TeaF* i FP 2 FP L FP 505000

TonF* i 00— F* o F* S P2
and F? is the cocomplex such as Fi = (Fa)", di = (dr""')" where * means
Homg( ,R). The projective stabilization mod R is defined as follows.
o Each object of mod R is an object of mod R.
e For AB € modR, a set of morphisms from A to B is
Homgr(A, B)/P(A,B) where P(4,B) := {f € Homr(A,B) |
f factors through some projective module}.  Each element is denoted as
f = f modP(4,B). A morphism f: A — B in mod R is called a stable

t
isomorphism if f is an isomorphism in mod R and we write A ~B.

For an R-module M, define a transpose Tr M of M to be Cok¢" where P N Q-
M - 0 is a projective presentation of M. The transpose of M is uniquely determined
as an object of modR. If f € Hompg(M,N), then f induces a map TN -> Tt M,
which represents a morphism Tr f € Homp(Tr N, Tr M ).

Let £ be a full subcategory of K(mod R) defined as

£={F" €K(projR) | H'(F*) =0 (i <0), H;(F')= 0(j2 0)}.

Lemma 2.1 ( [6] Proposition 2.3, Proposition 2.4 ) 1) For A €
mod R, there exists Fa® € L that satisfies
st

H(r<oFa®) 2 A.

Such an Fa® is uniquely determined by A up to isomorphisms. We fiz the
notation Fa* and call this a standard resolution of A.

2) For f € Hompg (A, B), there exists f* € HomK(modR)(FA',FB°) that
satisfies

H(r<of*) = {-
Such an f°* is uniquely determined by f up to isomorphisms, so we use
the notation f* to describe a chain map with this property for given f.

Theorem 2.2 ( [6] Theorem 2.6) The mapping A — F4° gives a functor
from mod R to K(mod R), and this gives a category equivalence between mod R
and L.

For A,B € modR, put A* = Fs*, B® = Fg*. For f € Homgr(A4, B), consider
the chain map f* : A* — B°® with H(r<of*) = f. Putting C* = C(f*)", we get a
triangle '

i oAt BB S e (2.1)
In general, C* does not belong to £ any more but it satisfies the following:

H(C*)=0(<~-1), H;(C")=0(>-1)
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Definition and Lemma 2.3 ([6], Definition and Lemma 3.1) As objects
of mod R, Ker f := H™!(1<_1C®) and Cok f := H(r<oC") are uniquely de-
termined by f, up to isomorphisms. We call these the pseudo-kernel and the
pseudo-cokernel of f. And we have

Cok f = Tr Ker Trf.
From (2.1), we have an exact sequence

0—Kef+A40P Y Boo

with some projective module P. This characterizes the pseudo-kernel.

Lemma 2.4 For a given morphism f : A — B, suppose both A® P (f—f) B and

f U
Ao P ( —5) B are epimorphisms where P and P' are projective. Then there

are homomorphisms j : B — P' andl: P — P' such that fj +p'l = p. And
these maps induce stable isomorphism & : Ker (f p) — Ker (f p):

0 — Kerjfp) 4 o4eP UP B 4 o
" o

0+ Ke(fp) » 40P I B 4 o

Lemma 2.5 ([6] Lemma 3.6) 1) There is an ezact sequence 0 — Ker f —
Ker f — Q%(Cok f)— 0.

2) There is an ezact sequence 0 - L — Cok f — Cok f — 0 such that Q4 (L)
is the surjective image of Ker f.

. st
Lemma 2.6 A morphism f € Homg(4, B) satisfies Kerf = 0 if and only if
then QL (f) is a stable isomorphism.

3 Representation by monomorphisms and per-
fect exact sequences

Definition 3.1 A morphism f : A & B in mod R is said to be represented
by monomorphisms if some monomorphism f' : A' — B’ in mod R is stably
equivalent to f, that is, there ezist stable isomorphisms a : A - A' and 3 :
B — B' such that fo f = f'oa. '

Each morphism is not always represented by monomorphisms.

Example 3.2 Let R be a Gorenstein local ring of dimensionn > 3, N an R-
module with pd N = n, and N : N - N** the natural map. Then any map
N@®P - N & Q of the form (‘P:’ :) with projective modules P and Q, is
never be monomorphic.
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It was Aulander and Bridger that were first conscious about "represented by
monomorphisms” property.

Theorem 3.3 (Auslander-Bridger) The following are equivalent for a mor-
phism f: A— B inmod R. -

1) There exists a monomorphism f': A— B® P with a projective module
P such that f = sf' via some split epimorphism s : B & P B.

2) There ezists ¢ monomorphism f': A= B® P with a projective module
P such that f = sf' via some split epimorphism s : B®P - B, and
is an epimorphism.

3) Hompg(B,I) = Homg(4,I) is surjective if I is an injective module.

Lemma 3.4 For a morphism f : A & B in modR, f is represented by
monomorphisms if and only if there ezists a monomorphism f' : A — B®P with
a projective module P such that f = s f' via the split epimorphism s : BOP — B.

For a morphism f: A— B, A® Ps %) Bisan epimorphism with a projective
cover pp : P = B. Thus each morphism is represented by epimorphisms. And
the choice of the representing epimorphism is unique up to direct sum of projective
modules, as we have seen in Lemma 2.4.

On the other hand, we already know an example of a morphism that is not rep-
resented by monomorphisms. And moreover, even if a given map is represented by
a monomorphism, there would be another representing monomorphism. We see it in
the next example.

Example 3.5 Let k be a field and R = K[[X,Y,Z]|/(X* - YZ). Let M be an
R-module defined as Let M be an R-module defined as M = R/(XY,Y%YZ).

The minimal Cohen-Macaulay approzimation of k, 0 — Y —f) Xy 2 k—0is
perfectly ezact since Exth(k,R) = 0. On the other hand, the minimal Cohen-
Macaulay approzimation of M, 0 = Yy 2 Xy = M — 0 is not perfect since
ExtL(M,R) # 0. The map g is decomposed as Yir 2 Yy @R, Xy = Xk @ R
and g = ({ ).

The most remarkable point in Auslander-Bridger’s Theorem is that being repre-

sented by monomorphisms is equivalent to being represented by ”perfect monomor-
Yy P
phisms” whose R-dual is an epimorphism.

Definition 3.6 An ezact sequence 0 - A = B — C = 0 of R-modules
is called a perfect exact sequence or to be perfectly exact if its R-dual 0 —
Homg(C, R) — Homg(B, R) — Homg(A4,R) — 0 is also ezact.

Proposition 3.7 ( [6] Lemma 2.7) The following are equivalent for an ez-
act sequence
9:0>ALBC—0.
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1) 8 is perfectly ezact.

2) 0 Fa* 5 Fg* S Fo® 50 s esact.
3) Fo* ' 5 Fy* 5 Fs* S Fo®isa distinguished triangle in K (mod R).
4) F4* = C(g9)*! in K(proj R).

If these conditions are satisfied, we have the following.

t
5) C & Cokf.
6) Fc* = C(f)* in K(proj R).
For given exact sequence of modules A EAY-EN C, we have a diagram of triangles
Fu* !—.) Fg* — C(f). —  F,*
la' It l-:' la"‘ (3.2)
Cle)*™! = Fs* & Fo* = C(g)° '

which induces a diagram with exact rows

/ c ™
0 - HYCGH)) —» A Q) pers L7 Cokf — 0

1a l" ¥ (3.3)

(g _P)c) c

0 —+ Kerg - B@Fc - 0

‘We observe some facts below.

Lemma 3.8 With the notations above, the following holds.
1) B is a stable isomorphism.
2) C()* = C(y)".

3) a is the composite of natural maps A — Im f and Ker g — Kerg.
So if f is injective and g is surjective, then a is a stable isomorphism,
TS_1C(C(). = 0, and 15_20(7)' =0.

4) If HY(C(f)®) = 0, then the upper row of (3.8) is the short ezact se-
quence

0, - (_’) (es.,m
7:0> A~ BoP = Cokf—0
which is a perfect ezact sequence.

Theorem 3.9 Let f : A — B be a homomorphism in mod R. Then f is
represented by monomorphisms if and only if H-1(C(f)*) is zero. If this is the
case, we have the following:

—144—




1) We have a perfect ezact sequence

5
6,:0 4% Bo P L7 Cokf 0.
2) For any ezact sequence of the form

f
s:0- 4% BaP P ¢ 50
with some projective module P', there is a commutative diagram

!
6: 0 » A4 Y BeR! L7 Ckf - 0

LoD
g: 0 - A (-1)) Be P op c =0
where & and B are stable isomorphisms.

3) There is an ezact sequence with some projective module Q and Q'
0@ = CokfoQ oo

4) If o is also perfectly ezact, then o is isomorphic to 5 up to direct sum
of trivial complezes.

proof. Suppose that f is represented by monomorphisms; there is an exact sequence

f
054 per P oo

Apply Lemma 3.8 3) to this sequence, and we get T<—2C(y)" = 0 as for ~*
C(f)* = Fc*®. From the long exact sequence of homology groups — H™%(C(7)*) =
HY(C(f)*) = H}(F¢*) = -, we get H-1(C(f)°) = 0. Conversely, suppose that
H~Y(C(f)") = 0. Then Lemma 3.9 4) shows that 8y is perfectly exact. Now it remains
to prove 2) - 4) in the case H™'(C(f)") = 0.

2) Applying the argument of Lemma3.8 to the sequence o, we get a similar diagram

as (3.3)
(f

) |
0 - A Y BeP@®Fs) — Cok(f) — 0

|- g K
(¢ p pc)

0 — Ker(gp) — BePeFc - C - 0.

The upper row is the direct sum of 65 and a trivial complex, and the lower row is that
of o and a trivial complex. Hence we get a desired diagram.

! cf ™
0 5 4 Y pert O cor o 0

| s s

(4)

0 » A %Y BeP “p ¢ S5 o0
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Notice that 3 is a stable isomorphism. From Lemma 3.8 3), & is also a stable isomor-
phism.

3) Con51der the exact sequence of complex 0 — C(v)*™! — C( f) Fc -0,
where C( f) = C(f)* in K(projR). Applying the truncatlon T<o, We get

0 (<-1C())" ™! = 7<0C(f)" = T<oFc® =0,

which induces an exact sequence of homology 0 = Q' — Cokf ® Q = C — 0 with
projective modules Q' = C(y)~! and Q.
4) Suppose o is perfect. From Proposition 3.7, Fc*~! — F,* EiN Fp* LN Fctisa
distinguished triangle, hence the induced sequence 6; is isomorphic to o. (q.e.d.)
An exact sequence §: 0 =5 A 4B C—0is perfectly exact if Extk(C, R) = 0.
But the vanishing of Ext}(C, R) is not the sufficient condition for 6 to be perfectly
exact. Notice that the dual of a perfect exact sequence is not always perfect.

4 Representation by monomorphisms and tor-
sionless modules.

In the previous section, we see that a given map f is represented by monomorphisms if
and only if H~ (C(f) ) = 0. If this is the case, Kerf = Cokdc(s) ™! is a first syzygy of
Cokf = Cok de(s)®. So it is natural to ask the converse: is a given map f represented
by monomorphisms if Kerf is a first sygyzy? This section treats the problem. As
a conclusion, the answer is yes if the ring is Gorenstein. We begin with seeing the
equivalent condition for a module to be a first syzygy.

Definition 4.1 An R-module M is said to be torsionless * if the natural map
¢: M — M** is a monomorphism.

Lemma 4.2 ([1], [4]) The following are equivalent for an R-module M.
1) M is torsionless.
2) ExtL(TrM,R) =0

3) M is a first syzygy; there ezists some monomorphism from M to a
projective module.

We begin with investigation of maps whose pseudokernels are projective. There is
a typical map that plays a key-role to solve our problem. For M € mod R, consider
a module J2M = TrQL TrQLM. The identity map on TrQLM induces a chain
map (Fu)" — (Fj2p)" and then a chain map ¥um® : Fy2p — Far. The map ¢ :
J?M — M has the property Q%(¥a) = id, in other words, Keryn is projective and
T<—2C(¥um) = 0.

n (7, 7, ABr] Auslander and Bridger use the term "1-torsion free” for ”torsionless”.

Usually a module M is called torsion-free if the natural map M — M ® Q is injective where
Q denotes the total ring of fractions of R.
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Lemma 4.3 Let R be a Gorenstein ring and f: A — B be a morphism in
mod R. If Kerf is projective, then f is represented by monomorphisms.

proof. The assumption says 1<—2C(f) = 0. From Theorem 3.9, f is represented
by monomorphisms if and only if H1(C(f)*) = 0, which means that dg( ntis
injective. So we have only to show Kerdg( 5t = (Cok (doy H~H" = 0. A triangle
Fa* = Fg* = C(f)" = F4°**! induces an exact sequence

0 o HA(C()") = Hor(F5") = H-1(Fa") = 0.

Note that Cok(dc(f)'l)‘ =~ H_,(C(f)") and H_.1(Fg") = ‘Exth(B,R). If p
is any minimal prime ideal, Extﬁ(B,R)p = 0 since R is Gorenstein. Hence
Cok (dg(s)™")", =0, which implies (Cok (dein™)) =0, (qed)

Corollary 4.4 If an R-module M has Exty (M, R =0, 9m:J?M - M is
represented by monomorphisms.

proof. Apply the argument in Lemma 4.3 for f = ¢um. Since H_1(FJ2 M) =0,
we have Cok (dog~!)" = H-1(C(¥m)7) = H_1((Fm)*) = Exth(M,R). From
assumption, we get (Cok (d_la(“’M))‘)' =~ Exti(M,R)" =0. (ged)

For given morphism of R-modules f : A — B, adding a projective cover ofB to f,
we get an exact sequence

0—>ggi—‘>)AeaPB V) g .

Due to Theorem 3.9, we also have a perfect exact sequence 0., because n is represented
by monomorphisms: :

6.: 0 — Kerf —')) ADF - Cokn — 0

Eol L
0 — Kerf (—3)) A® Pp =

Lemma 4.5 With notation as above, suppose (Exth(Cok_f,R))* = 0. Then the
following conditions are equivalent.

1) f is represented by monomorphisms.

2) Kerf is torsionless and v : Cok n = B is represented by monomor-
phisms.

proof. On the diagram of triangles

FE}_’. 2-.) Fy* — C(n)' - F]_(ﬂiﬂ'l

T T P

cy)t - Fa* = Fs* = c(f)",
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We observe C(a)'*! = C(y)* and H™}(C(n)*) = 0 because 7 is represented by
monomorphisms. And there is an exact sequence

B (Ficers*) = H'(C(f)*) » HH(C()").

2) = 1). Since Kerf is torsionless, H°(Fkers®) = 0. And H™(C(7)*) = 0 be-
cause v is represented by monomorphisms. From the above exact sequence, we have
HY(C(f)) =0.

1) = 2). From the assumption, H™*(C(f)*) = 0 which implies erf QR( okf).

st

We are now to show that H'I(C(’y) ) = H%(C()®) vanishes. The equation Kerf
QR(Cokf) implies Fiers*"" & 72 (Cok 1) On the other hand, C(f) = Fooks®. Vla.

these isomorphisins, a® is regarded as ¢&,, Coks- Hence H%(C(a)*) = H™(C(yc coks)") =
(Extx (C ok f, R))" =0. (qed)

Proposition 4.6 Suppose R is Gorenstein. A morphism f of R-modules is
represented by monomorphisms if and only if Kerf is torsionless.

Example 4.7 In the case R = k[[X,Y, Z])/(XY, X?) with any filed k, con-
sider the map v : k = J*k. We know Keryy is projective because ' =
id (i < —1). We see that v, is not represented by monomorphisms; that is,
H‘I(C(wk) ) does not vanish.

Corollary 4.8 Suppose R is Gorenstein. Let the sequence of R-modules 0 —
ALBScoo 0 be ezact. If A and C are torsionless, then so is B.

proof. From Proposition 4.6, g is represented by monomorphisms; there exists an
exact sequence
(3

0—- B = CGBQ—)Cok_g—)O

with some projective module Q and a map q : B — Q. Since B is a submodule of
some projective module, so is B. (q.e.d.)

Corollary 4.9 Suppose R is Gorenstein. For a given morphism f, Ker f is
torsionless if and only if Kerf is torsionless.

proof. From Lemma 2.5, there is an exact sequence 0 — Kerf — Ker f —
QL(Cok f) — 0. So the ”if’ part is obvious, and the "only if* part comes from
Corollary 4.8.  (q.e.d.)

Theorem 4.10 Suppose R is Gorenstein. The following are equivalent for a
morphism f : A — B in mod R.

1) f is represented by monomorphisms.
2) Ker f is torsionless.

3) Kerf is torsionless.
4) H-Y(C(f)") =0
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5) O (Cokf) & Kerf .

st
6) There exists f' such that f' = f and Ker f' is torsionless.

¢
7) For any f' with the property that f = f, Ker f' is torsionless.

proof. We already showed 1) & 4) in Theorem 3.9, 1) ¢ 3) in Proposition 4.6, and
3)< 2) in Corollary 4.9.

4) = 5). It is obvious since Cokdc(s)° = Kerf and Cok do(sy " = Cokf.

5) = 3). It is trivial. -

3) = 7) . From Lemma 2.5, we have an exact sequence

0 — Ker f — Kerf’' — Qh(Cok f') = 0.

t
Hypothesis says Kerf’ = Kerf is a first syzygy, hence so is Ker f'.
7) = 2), 2) = 6) are obvious.
6) = 3). Consider the exact sequence as in Lemma 2.5:

0 — Ker f' — Kerf' — Qk(Cok ') =0

If Ker f' is torsionless, so is Ker__f' = Kerf because of Corollary 4.8. (q.e.d.)
Acknowledgement. I thank Kazuhiko Kurano who gave me an essential suggestion

that conditions for represented by monomorphisms should be given in terms of Ker
not by Ker.
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1. INTRODUCTION

We assume in this note that all rings are commutative noetherian
rings and that all modules are finitely generated modules.

Auslander [1] has introduced a homological invariant for modules
which is called G-dimension. The finiteness of this invariant character-
izes the Gorensteinness of the base ring: any module over a Gorenstein
local ring has finite G-dimension, and a local ring whose residue class
field has finite G-dimension is Gorenstein.

A Cohen-Macaulay local ring is called to be of finite Cohen-Macaulay
type if it has only finitely many non-isomorphic indecomposable max-
imal Cohen-Macaulay modules. Under a few assumptions, Gorenstein
local rings of finite Cohen-Macaulay type have been classified com-
pletely, and it is known that all non-isomorphic indecomposable maxi-
mal Cohen-Macaulay modules over them can be described concretely;
see [14] for the details.

Over a Gorenstein local ring, a module has G-dimension zero if and
only if it is a maximal Cohen-Macaulay module. Thus we are inter-
ested in non-Gorenstein local rings which have only finitely many non-
isomorphic indecomposable modules of G-dimension zero, especially
interested in determining all non-isomorphic indecomposable modules
of G-dimension zero over such rings.

Now, we form the following conjecture:

Conjecture 1.1. Let R be a non-Gorenstein local ring. Suppose that
there exists a non-free R-module of G-dimension zero. Then there
exist infinitely many non-isomorphic indecomposable R-modules of G-
dimension zero.

For a local ring R, we denote by modR the category of finitely gener-
ated R-modules, and by G(R) the full subcategory of modR consisting
of all R-modules of G-dimension zero.
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The main result of this note is the following theorem:

Theorem 1.2. Let R be a henselian non-Gorenstein local ring of depth
at most two. Suppose that there ezists a non-free R-module in G(R).
Then the category G(R) is not contravariantly finite in modR.

This theorem especially says that Conjecture 1.1 is true if Ris a
henselian local ring of depth at most two.

2. ON PROVING THEOREM 1.2

Throughout this section, let (R, m, k) be a commutative noetherian
local ring. All R-modules in this section are assumed to be finitely
generated. :

First of all, we recall the definition of G-dimension. Put M* =
Hompg(M, R) for an R-module M.

Definition 2.1. Let M be an R-module.

(1) If the following conditions hold, then we say that M has G-

dimension zero, and write G-dimpM = 0.
i) The natural homomorphism M — M** is an isomorphism.

ii) Exth(M,R) =0 for every z > 0.
iii) Exth(M*, R) =0 for every 1 > 0.

(2) Ifnis a non-negative integer such that there is an exact sequence

09 Gp—=Gu1 =G >G> M—0

of R-modules with G-dimgG; = 0 for every ¢, 0 <@ <, then we
say that M has G-dimension at most n, and write G-dimpM < n.
If such an integer n does not exist, then we say that M has infinite
G-dimension, and write G-dimgM = oo.

For an R-module M, we denote by Q"M the nth syzygy module
of M, and set QM = Q*M. G-dimension is a homological invariant
for modules sharing a lot of properties with projective dimension. We
state here just the properties that will be used later.

Proposition 2.2. (1) The following conditions are equivalent.
i) R is Gorenstein.

ii) G-dimgM < oo for any R-module M.
iii) G-dimgk < oo.

(2) Let M be a non-zero R-module with G-dimgM < oo. Then
G-dimgM = depthR — depthp M.

(3) Let0 L —+ M —>N—=0 be a short ezact sequence of R-
modules. If two of L, M, N have finite G-dimension, then so does
the third.
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(4) Let M be an R-module. Then G-dimg(Q"M) = sup{G-dimzM —
n,0} for anyn > 0.

(6) Let M,N be R-modules. Then G-dimg(M & N) =
Sup{G-dimRM, G-dlmRN}

The proof of this proposition and other properties of G-dimension
are stated in detail in [2, Chapter 3,4] and [6, Chapter 1].

We denote by modR the category of finitely generated R-modules,
and by G(R) the full subcategory of modR consisting of all R-modules

of G-dimension zero. Let Fj s Fy - M — 0 be the minimal free
presentation of an R-module M. Then we denote by trM the cokernel
of the dual homomorphism 8* : F§ — F}. The following result follows
directly from Proposition 2.2.

Corollary 2.3. Let M be an R-module. The category G(R) has the
following properties.

(1) If M belongs to G(R), then so do M*, QM, trM, and any direct
summand of M.

(2) Let0— L — M — N — 0 be an ezact sequence of R-modules.
If L and N belong to G(R), then so does M.

Now we introduce the notion of a cover of a module.

Definition 2.4. Let X be a full subcategory of modR.
(1) Let ¢ : X — M be a homomorphism from X € X to M € modR.

i) We call ¢ an X-precover of M if for any homomorphism
¢ - X' - M with X' € X there exists a homomorphism
f: X" — X such that ¢' = ¢f.

ii) Assume that ¢ is an X-precover of M. We call ¢ an X-
cover of M if any endomorphism f of X with ¢ = ¢f is an
automorphism.

(2) The category X is said to be contravariantly finite if every M €
modR has an X-precover.

An AX-precover (resp. an X-cover) is often called a right X-
approximation (resp. a right minimal X-approximation).

Proposition 2.5. [9, Remark 2.6] Let X be a full subcategory of mod R
which is closed under direct summands, and let

0-NAx S M

be an ezact sequence of R-modules where ¢ is an X-precover of M.
Suppose that R is henselian. Then there ezists a direct summand L of
N satisfying the following conditions:
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i) (L) is a direct summand of X.
ii) Let N’ (resp. X') be the complement of L (resp. (L)) in N
(resp. X ), and let

0o NS xS M
be the induced ezact sequence. Then ¢ is an X-cover of M.

Now, let us observe our theorem. Due to lack of space, we shall state
the outline of the proof of our theorem only in the depth two case. For
the details, see [8, Theorem 1.2], [9, Theorem 2.8], and [10, Theorem
1.4].

Let (R, m, k) be a henselian non-Corenstein local ring of depth two.
Then, since Exty(m, R) & Ext%(k, R) # 0, we have a non-split exact
sequence
(1) c:0R—->M—=>m-—0.

Dualizing this, we obtain an exact sequence
0 — m* — M* = R* 5 Exty(m, R).

Note from definition that the connecting homomorphism 7 sends idg €
R* to the element s € Ext;(m, R) corresponding to the exact sequence
o. Since o does not split, s is a non-zero element of Extk(m, R). Hence
n is a non-zero map. Noting that Exth(m, R) & Ext}(k, R), we see that
the image of 7 is annihilated by m. Also noting that m* & R* = R, we
get an exact sequence

(2) 0->R—->M —-m—0.

Using the exact sequences (1), (2), and Corollary 2.3.2, we can show
the following claim.

Claim 1. The modules Homg(G, M) and Homg(G, M *) belong to
G(R) for every non-free indecomposable module G € G(R).

We shall prove that the module M can not have a G(R)-precover.
Suppose that M has a G(R)-precover. Then M has a G(R)-cover 7 :
X — M by Proposition 2.5. Since R € G(R), any homomorphism from
R to M factors through 7. Hence 7 is a surjective homomorphism.
Setting N = Ker, we get an exact sequence

(3) 0NSX5 M0,

where 0 is the natural embedding. We see from Corollary 2.3 and
Wakamatsu’s Lemma [12, Lemma 2.1.1} that Ext(G, N) = 0 for any
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G € G(R) and any ¢ > 0. Dualizing the exact sequence (3), we obtain
an exact sequence

0— M5 x5 N
Put €' =1Im(6*) and let 4 : X* — C be the surjection induced by 6*.
Using Corollary 2.3.1 and Claim 1, we can show the following claim.

Claim 2. The homomorphism p is a G(R)-precover of C.

According to Claim 2 and Proposition 2.5, we have direct sum de-
compositions M* =Y @ L, X* = n*(Y) @ Z, and an exact sequence

0-L—>Z25%5C—0

where v is a G(R)-cover of C. Since Y is isomorphic to the direct
summand 7*(Y) of X*, Corollary 2.3.1 implies that Y € G(R). Waka-
matsu’s Lemma yields Exty(G, L) = 0 for any G € G(R). Using Claim
1 and Corollary 2.3.1, we can show the following claim.

Claim 3. The module Homg(G,Y') belongs to G(R) for any G € G(R).

Here, by the assumption of the theorem, we have a non-free inde-
composable module W € G(R). There is an exact sequence

0= QW - F W0

such that F' is a free module. Applying the functor Homg(—,Y) to
this exact sequence, we get an exact sequence

0 —— Homg(W,Y) —— Homg(F,Y) —— Homg(QW,Y)

—— Extp(W,Y) —— 0.

Since Homg(W,Y), Homg(F,Y), and Homg(QW,Y) belong to G(R)
by Claim 3, the R-module Exty(W,Y’) has G-dimension at most two,
especially it has finite G-dimension. -

We can prove that Exty(W,Y) is a non-zero k-vector space. There-
fore Proposition 2.2.1 and 2.2.5 says that R is Gorenstein, contrary
to the assumption of our theorem. This contradiction proves that the
R-module M does not have a G(R)-precover, which establishes our
theorem.
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Degenerations of modules and openness
of the G-dimension zero property

Yuji Yoshino (Okayama University)

F|ER, MBOBLEGRITICHET 2EHEDORLDOER [4], [5] D survey TH 3.,
FLRTORXZEBEICLTLIEI N,

1 Degenerations of modules

ZOETIEX, k3WVWOb&kEXRL, RII Lk LORARKAET., RIIHTL bAHE
HBENVWER—F—RTHIHBEIRRWN,

Definition 1.1 HMBAR/ZE RNBE M & N ISHLT, M40 N i BBAHER (DVR) 2
o TBET B LRROEHEH/ET EXTH B,

TREBFTIER (V,tV, k) (AL V 12 k-RET, ¢ REORTERT) LARERE Re,V-
mEE Q MEELT, S

(1) Q RFHEZ V-MBTH 3,
(2) £ RMBELTORE Q/tQ = N 7® 3,
(3) % Rey V[L-MBE L TORE QL] = M &, V[}] 215 5.

DR [3] KHBWTIE, BHIT Cohen-Macaulay /FHTER LDOMBEA Cohen-Macaulay
MBICH L THOBBORILEZEX 2. ThE ETEXRBILERMTEEDICKRDL
SREHEEL LD,

Definition 1.2 ZOEERTH, £k LZTDELEDT 74 D EBEZR—ETZ-012, kL
BAKEZRTZLICTS. L, R EBRDITLL—RD k-algebra TH 5., HRAE
BRE RMBEM ENIKHLT, MBNIKT 74 ERCH> TRIET S E13RDE
HEMETEETHS,

ROEZM 2wz THBRERE R @ kt]-BE Q NEET 3.

(1) Q BT k[t]-MBETH 5.
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(@) D cek IKHLT, Q=Q/(t-JQ LEET 5, THIFABERE BB
BB, TOEE, £ RMBEELTORE Q= N 4155,

(3) AL =k DZETRV Zariski BARE U MEELT, ceURBRLEE R-MFEELLTD
A Q. =M MHd.

ROZEN 5] KB BEEETH 5.
Theorem 1.3 AIRARE RIBE M & N KT R0 2 {HEIRAETH 2.
(1) M I3 N i DVR 2> T{ET 2.
(2) HBLRE RMBOEEET :

¢
O—)Z—L)>M€BZ—>N—>AO

WEEELT, 7 LOHCERAR ¢ BER, ic v"=0 (n>1) TH2,

Remark 1.4 G.Zwara 33 [6] OHT, L R WARKTT k-RED & FITH, RD
SHDRETHBIEEZRLTND,

(1) M & N & DVR i2#> TB{ET 2.
(2") HRERE R-MBOEEERF :

¢
0—>Z—*—)>Meaz—>N—>0

BEFET 5,

Z 2T, ¢ DEBSFIIBHETERN, EE Fitting OEBICE->T, BL RNT
T4 SBOEEITIE, &#(2) &4 (2 BRETHS ZEMMBBITRT I EMNTE
BN THD, LMo TRL DERIL Zwara OEBREZZFATNDZ ERbhd, EE
OEHIZEL TIE, REDEEOHD Z 13, Zwara DFNEREFRIZOFZEVAET
3., 2> T—ROBEERKTD Zwara RDEEMNRILT B ERBRLEZDTH S,

FEOFD (2) = (1) OTEHEDREL TRO I LHIDR 2.

Corollary 1.5 M #' N IZ DVR IZ#fio TiB{LT D LIRET B, ZOEE, £0 DVR
vV ELTWD® klt)y MBI ENTE S,
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Remark 1.6 HRERE R-MBEDTELF

0=-NB3MIN >0
WHBLE, MANIIDVRICHO TRLT B I L E2RBITRT T ENTES, &,
RDFELEFINTE B,

0— N’ (—°2 Mo N (°—>1)
ZIT, By : N 5 N 3BERTHIHS, BICEE, Lid-o TEELD MM
N IZ DVR iZ#-> TiB{kd 3,

BOICERL =D OB LOMICIIROEE TR T & S 2 ASEENS 3. HL, Re-
mark 2.2 TRA2XICHEOTEERIILTUGRLLAAVASEZL TIEL W,

Theorem 1.7 k ZREEAK, R %2 k LOFX—¥—RE LT3, HBRERE R-M# M
ENEDOWT, M A NIZDVR K-> TBILT 2751, MIZ N ICT7 74 2 EE
2> TIR{LT 5,

N'@N =0

2 Remarks for commutative Noetherian algebras

BIFTIR, #IT k —ROK, RIETRABY—5— b RETHEET5, CoBal
&, Theorem 1.3 DEFEDFREL TROBENESN S,

Corollary 2.1 M & N BRIPERL R-MBETHZET S, Z0EEROLHEIZF
EHTH 5,

(1) M 2% N iZ DVR 2> TRt T 3,
(2) RSHROMBEN 5725 ROBDELFINEFET 5,

'
0—>ZQ>MGBZ—>N—)O

LIS, M %N 2 DVR Ko TMLT 27251, BXOSR £o(M) = £y(N) AU
LY B,

Remark 2.2 Theorem 1.7 O OAZBERIHIL LWL S 2HI23 % 5,

BIAIE, R = k|[o]] 2REEHE & EORROBIEE, & 5120 EOMBE M = R/(z)
& N=R/(z?) 2EX%. M & NZ RMBELTOEINELZDT, Corollary 2.1
WKEo2T, MW NIZDVR IZH>TBILTZZ E1dd D 270,
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Ui, R{-MBE Q = Rlf)/(a? — tz) EBEXTHES. AsspyQ ={(a), (z =)} C
BBM5, Kt OO0 THMEEOTA Q ETRFERTTHL, Thid, QAT £
CETHD T ERRL TS, EBI, c€k KHLT Q2 R/(z(z—c) THAZ
LrrEIThg,

R/(z*) (c=0)
R/(z) (c#0)

LM TEEKD, Mﬁwvt?74>£ﬁtﬁofﬁk?5:ttméo:@%@
BaTiE, ROELFINHD I EITERLELD.

0= R R/@) @ R R/(2?) =0

EL, OHERAE RS R BRUTEFTRN,

Qe =

3 Openness of the G-dimension zero property

C OETHEIERE, R WAREF—F—REXRT. AREK R-# M ITHLT,
G-dimpM EEERIND [GRT] LD HONH B, “HiE, Auslander-Bridger [1]
ko THABLNLZBODT, TN A EANEIEOF L WREAREEOTOR
BEROBEICERDIELET S, BLE GRITOBEMEIZDWTIE, [4] PHTEERL,
bHo &b —RHIRE TIRROBRZEL.

Theorem 3.1 AMRER R-MBDOEES
05Z—-MedZ—N—0
2KPBEE, GRTOFER G-dimgM < G-dimpN BRI 2o
Z & Theorem 1.3 2&bENIE, KOFENESND.

Corollary 3.2 R 26 k Lox—&—THRE, M & N ZEMRLER R-MBEET D,
L, M 7% N IZ DVR Ko TEBILT S LRET HR5IE, GRTKETHIRER
G-dimgM < G-dimgN DPRILT 2.

BizZOBE, N NGRIT 0 OMBELsss, M HERGRIT0 THD. ZOHHE
ek oT, MEECHET S TGRIT0 2D LS HEIL, TB) BIHHE (open property)
THBHIENDMNB, ZhT, K<HSNIRER:

Gorenstein B EOMEED MK Cohen-Macaulay TH3) EWSHEE TH)
TH>d

LS EDEEBIEEICE D TV,
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