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Abstract. Takahashi[6] classified the thick subcategories of the stable category of maximal Cohen-
Macaulay modules over a hypersurface local ring. By his classification, we can see that if the base ring
has an isolated singularity, then the thick subcategories are trivial. On the other hand, if the base

ring is graded, then there exist non-trivial thick subcategories even if the base ring is of finite Cohen-
Macaulay representation type. In this talk, we will classify the thick subcategories of the stable category
of graded maximal Cohen-Macaulay modules over a graded Gorenstein rings of finite Cohen-Macaulay
representation type.

1. Preliminaries

Throughout this talk, let k be an algebraically closed field of characteristic zero. We set R = k[t2, t2n+1]
with deg t = 1. Then R is a graded Gorenstein ring of finite Cohen-Macaulay representation type (cf.[1]
or [7]). Since R is isomorphic to k[x, y]/(y2 − x2n+1), R also has a type A singularity. We denote by
modZ R the category of finitely generated Z-graded R-modules with degree preserving morphisms, by
CMZ(R) the full subcategory of modZ R consisting of all graded maximal Cohen-Macaulay modules, by
indCMZ(R) the set of isomorphism classes of indecomposable graded maximal Cohen-Macaulay modules,
and by Γ the Auslander-Reiten quiver of CMZ(R).

We remark that indCMZ(R) = {R(j), Xi(j) | j ∈ Z, i = 1, 2, . . . , n} where Xi := t2iR + t2n+1R
(i = 1, 2, . . . , n) (cf.[1] or [7]).

Example 1.1. Let R = k[t2, t7]. We put Xi = t2iR+ t7R for i = 1, 2 and 3. Then Γ is following:
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In this case, we see Γ is a translation quiver ZA8. In general, Γ is ZA2n+2.

We write X ≺ Y if there exists a path from X to Y in Γ. One can easily check the following lemma
by using the Auslander-Reiten theory.

Lemma 1.2. For X,Y ∈ indCMZ(R), the followings hold.

(1) If HomR(X,Y ) ̸= 0, then X ⪯ Y .
(2) dimk Ext

1
R(X,Y ) ≤ 1.

This paper is an announcement of our result and the detailed version will be submitted to somewhere.
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(3) Ext1R(X,Y ) ̸= 0 if and only if ΩX ⪯ Y ⪯ τX. Here, ΩX is the syzygy module of X and τ is the
Auslander-Reiten translation.

The following proposition plays key role in this talk.

Proposition 1.3. Let X,Y1, Y2, Z ∈ indCMZ(R). The exact sequence 0 → X → Y1 ⊕ Y2 → Z → 0 does
not split if and only if X, Y1, Y2 and Z make a parallelogram in Γ.

This propotision comes from the next lemma.

Lemma 1.4. Let 0 → X

(
f1
f2

)
−→ Y1 ⊕M

( g1 φ )−→ N → 0 and 0 → M

( φ
f3

)
−→ N ⊕ Y2

( g2 g3 )−→ Z → 0 are exact

sequences. Then 0 → X

( −f1
f3f2

)
−→ Y1 ⊕ Y2

( g2g1 g3 )−→ N → 0 is exact.

By watching Γ in Example 1.1, we can see that X3(−1), R(−1), R and X3(6) make a parallelogram.
Therefore we have 0 → X3(−1) → R(−1)⊕ R → X3(6) → 0 is an exact aequence. In particular, we see
ΩX3(6) = X3(−1) and Ω−1X3(−1) = X3(6). Thus, we can easily find the syzygy (cosyzygy) module of
arbitrary maximal Cohen-Macaulay modules.

We denote by CMZ(R) the stable category of CMZ(R) and by Γ the Auslander-Reiten quiver of

CMZ(R). Since the free modules are isomorphic to zero in CMZ(R), we obtain Γ from Γ by deleting free
modules and arrows whose one of end point is free module. Therefore, we have Γ = ZA2n. We put Σ
the suspension functor of CMZ(R). We remark that ΣX ∼= Ω−1X for all X ∈ CMZ(R). The following
proposition comes from Lemma 1.2.

Proposition 1.5. For X,Y ∈ indCMZ(R) and l ∈ Z, the followings hold.

(1) HomR(X,ΣY ) ∼= Ext1R(X,Y )
(2) The following conditions are equivalent

(a) HomR(X,ΣlY ) ̸= 0,
(b) Σ−1X ⪯ Σl−1Y ⪯ τX in Γ,
(c) Σ−lX ⪯ Y ⪯ τΣ−l+1X in Γ.

We fix a triangle area ∆ in Γ and add an index for each maximal Cohen-Macaulay modules as follows:
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X1 2n−1

X1 2n

X2n−3 2n−1 X2n−2 2n

X2n−2 2n−1X2n−1 2n

In this situation, for any X ∈ indCMZ(R), there exists i, j and l such that X ∼= ΣlXi j . Therefore we

get indCMZ(R)/Σ ∼= ∆ = { Xi j | 0 ≤ i < j ≤ 2n }.

We consider the circle with 2n + 1 points labeled 0, 1, 2, · · · , 2n counter clockwise on it. We put
c(i, j)(= c(j, i)) the chord whose end points are i and j. We denote by C2n = {c(i, j) | 0 ≤ i < j ≤ 2n}
the set of chords.
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Note that the map F : indCMZ(R) ∋ ΣlXi j 7→ c(i, j) ∈ C2n is bijection. F gives a nice following
properties.

Lemma 1.6. Let X,X ′ ∈ indCMZ(R).

(1) The following conditions are equivalent:
(a)

⊕
l∈Z HomR(X,ΣlX ′) = 0 and

⊕
l∈Z HomR(X

′,ΣlX) = 0.
(b) F (X) does not meet F (X ′).

(2) The following conditions are equivalent:
(a)

⊕
l∈Z HomR(X,ΣlX ′) ̸= 0 and

⊕
l∈Z HomR(X

′,ΣlX) = 0.
(b) F (X) meets F (X ′) at the end point of chords.

(3) The following conditions are equivalent:
(a)

⊕
l∈Z HomR(X,ΣlX ′) ̸= 0 and

⊕
l∈Z HomR(X

′,ΣlX) ̸= 0.
(b) F (X) meets F (X ′) at interior of the circle.

2. Main result

The following theorem is the main result of this talk.

Theorem 2.1. For thick subcategory X in CMZ(R), we set F(X ) = {F (X) | X ∈ indX}. Then there
exists a following one-to-one correspondence:

{thick subcategories of CMZ(R)}
F ↓ ↑

{disjoint union of complete subgraphs in C2n}

Proof. Let X,X ′ ∈ indCMZ(R). We set XXX′ the smallest thick subcategory of CMZ(R) which contains
X and X ′.
Case 1. The case of

⊕
l∈Z HomR(X,ΣlX ′) = 0 and

⊕
l∈Z HomR(X

′,ΣlX) = 0.
By Lemma 1.6 (1), we have F (X) does not meet F (X ′). Thus, we can easily check that XXX′ =

add{ΣlX, ΣlX ′ | l ∈ Z } and F(XXX′) = { F (X), F (X ′) }.
Case 2.

⊕
l∈Z HomR(X,ΣlX ′) ̸= 0 and

⊕
l∈Z HomR(X

′,ΣlX) = 0.
There exist integers 0 ≤ i < j < t ≤ 2n such that { F (X), F (X ′) } = { c(i, j), c(i, t) }, { c(i, j), c(j, t) }

or { c(i, t), c(j, t) } by Lemma 1.6 (2). Thanks to Proposition 1.3, Xi j → Xi t → Xj t → ΣXi j is an exact
triangle. Thus, we have XXX′ = add{ΣlXi j , ΣlXi t, ΣlXj t | l ∈ Z } by Lemma 1.2 (2) and Proposition
1.5. Note that F(XXX′) gives a triangle.
Case 3.

⊕
l∈Z HomR(X,ΣlX ′) ̸= 0 and

⊕
l∈Z HomR(X

′,ΣlX) ̸= 0.
Lemma 1.6 (3) says that there exist integers 0 ≤ i < s < j < t ≤ 2n such that { F (X), F (X ′) } =

{ c(i, j), c(s, t) }. It comes from Proposition 1.3, we see that Xi j → Xi t ⊕ Xs j → Xs t → ΣXi j is an
exact triangle. This gives that XXX′ contains Xi t and Xs j . Moreover, XXX′ contains Xi s and Xj j by
Case 2. Thus we have XXX′ = add{ΣlXa b | l ∈ Z, a, b ∈ {i, s, j, t} } Lemma 1.2 (2) and Proposition 1.5.
We remark that F(XXX′) is a complete 4 graph.

For any thick subcategory X in CMZ(R), we remark that X = add
X,X′∈indX

XXX′ . This yields a proof. □
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Example 2.2. Let R = k[t2, t7]. We shall find the smallest thick subcategory X which contains X1(8),

X2(−3), X2(2) and X2(3). One can check that ΣX = X(7) for any X ∈ CMZ(R). Hence, X contains
{X1(8 + 7l), X2(−3 + 7l), X2(2 + 7l), X2(3 + 7l) | l ∈ Z }. We set a triangle area ∆ with X0 1 = X1(−5),
X0 6 = X1 and X5 6 = X1(5).
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∆

In this situation, we see that X contains X3 4 = X1(1), X0 2 = X2(−3), X1 6 = X2(2) and X3 5 = X2(3).
On the other hand, F(X ) is the smallest graph in C2n such that F(X ) is a disjoint union of complete
subgraphs by Theorem 2.1 and that F(X ) contains c(3, 4), c(0, 2), c(1, 6) and c(3, 5). Therefore on e can
see that F(X ) = { c(0, 1), c(0, 2), c(0, 6), c(1, 2), c(1, 6), c(2, 6), c(3, 4), c(3, 5), c(4, 5) }.

•

•

•

• •

•

•

0

1

2

3 4

5

6

Thus we have X = add { X1(−5+7l), X1(−3+7l), X1(7l), X1(1+7l), X1(3+7l), X2(−3+7l), X2(2+
7l), X2(3 + 7l), X3(4 + 7l) | l ∈ Z }.
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