
The Picard and the class groups of an
invariant subring

Mitsuyasu Hashimoto

Department of Mathematics, Okayama University
Okayama 700–8530, JAPAN

mh@okayama-u.ac.jp

1. Introduction

The purpose of this paper is to define equivariant class group of a locally
Krull scheme (that is, a scheme which is locally a prime spectrum of a Krull
domain) with an action of a flat group scheme, study its basic properties,
and apply it to prove the finite generation of the class group of an invariant
subring.

In particular, we prove the following.

Theorem 1.1. Let k be a field, G a smooth k-group scheme of finite type,
and X a normal variety over k on which G acts. Let ϕ : X → Y be a
G-invariant morphism such that OY

∼= (ϕ∗OX)G. Then

(1) If Pic(X) is a finitely generated abelian group, then so is Pic(Y ).

(2) If Cl(X) is a finitely generated abelian group, then so is Cl(Y ).

If X = Spec B, Y = Spec BG, and ϕ : X → Y is the canonical map, then
the condition OY

∼= (ϕ∗OX)G is satisfied. Results similar to (2) for connected
G are proved by Magid and Waterhouse.
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2. Equivariant Picard group

The first part of Theorem 1.1 uses the equivariant Picard group.
Let Ord be the category of ordered sets and order-preserving maps. Let

∆ be the full subcategory of Ord with Ob(∆) = {[0], [1], [2], . . .}, where
[n] = {0 < 1 < · · · < n}. Let ∆+ be the subcategory of ∆ such that
Ob(∆+) = Ob(∆) and Mor(∆+) = {φ ∈ Mor(∆) | φ is an injective map}.

Thus ∆+ looks like

[0]

δ0
0 //

δ0
1 // [1]

δ1
0 //

δ1
1 //

δ1
2 //

[2]

//
//
//
//

· · · ,

where δn
i : [n] → [n + 1] is the unique injective monotone map such that

i /∈ Im δn
i .

Let S be a scheme, and Let G be an S-group scheme acting on X. Then
we associate B+

G(X) ∈ Func((∆+)op, Sch/S) as

B+
G(X) := X G × Xd0

0oo

d0
1oo

G × G × X
d1
0oo

d1
1oo

d1
2oo

· · ·
oo
oo
oo
oo

,

where Sch/S denotes the category of S-schemes, Func denotes the functor
category, and

dn
i = B+

G(X)δn
i

: B+
G(X)[n+1] = Gn+1 × X → Gn × X = B+

G(X)[n]

is defined by

dn
i (gn . . . , g0, x) =


(gn, . . . , g1, g0x) (i = 0)
(gn, . . . , gigi−1, . . . , g0, x) (0 < i < n + 1)
(gn−1, . . . , g0, x) (i = n + 1)

.

The categories of modules Mod(Zar(B+
G(X))) and quasi-coherent modules

Qch(Zar(B+
G(X))) are denoted by Mod(G,X) and Qch(G,X), respectively,

where Zar denotes the Zariski site [Has, (4.3)]. An object of Mod(G,X) is
called a (G,OX)-module.

If G is S-flat, then Qch(G,X) is closed under kernels, cokernels and
extensions in Mod(G,X), and it is an abelian category and the inclusion
Qch(G,X) ↪→ Mod(G,X) is exact.
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Let C be a site. Let Ps(C) and Sh(C) denote the category of presheaves
and sheaves over C, respectively. For M ∈ Ps(C) and N ∈ Sh(C), we write
H i

p(C,M) := Exti
Ps(C)(Z,M) and H i(C,N ) := Exti

Sh(C)(a Z,N ), where Z is
the constant presheaf and a Z its sheafification.

For M ∈ Ps(Zar(B+
G(X))), we denote H i

p(Zar(B+
G(X)),M) by H i

alg(G,M),
and call it the ith algebraic G-cohomology group of M.

Lemma 2.1. H i
alg(G,M) is the cohomology group of the complex

0 → Γ(([0], X),M)
d0−d1−−−→ Γ(([1], G × X),M)

d0−d1+d2−−−−−−→
Γ(([2], G × G × X),M) → · · · .

Let (C,O) be a ringed site. An O-module L is called an invertible sheaf
if for any c ∈ Ob(C), there exists some covering (cλ → c) of c such that for
each λ, L|cλ

∼= O|cλ
, where (?)|cλ

is the restriction to C/cλ. An invertible
sheaf is quasi-coherent.

The set of isomorphism classes of invertible sheaves on C is denoted by
Pic(C), and called the Picard group of C. It is an additive group by the
addition

[L] + [L′] := [L ⊗O L′].

Lemma 2.2. There is an isomorphism Pic(C) ∼= H1(C,O×).

For the proof, see [dJ, (20.7.1)].

Definition 2.3. Pic(B+
G(X)) is denoted by Pic(G,X), and is called the G-

equivariant Picard group of X.

There is an obvious map

ρ : Pic(G,X) → Pic(X)

forgetting the G-action. The image of ρ is contained in

Pic(X)G := Ker(Pic(X)
d0−d1−−−→ Pic(G × X)) =

{[L] ∈ Pic(X) | a∗L ∼= p∗2L},

where a = d0 : G × X → X is the action, and p2 = d1 : G × X → X is the
second projection.
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From the five-term exact sequence

0 → E1,0
2 → E1 → E0,1

2 → E2,0
2 → E2

of the Grothendieck spectral sequence

Ep,q
2 = Hp

alg(G,Hq(O×)) ⇒ Hp+q(Zar(B+
G(X)),O×),

we get

Lemma 2.4. There is an exact sequence

0 → H1
alg(G,O×) → Pic(G,X)

ρ−→ Pic(X)G →
H2

alg(G,O×) → H2(Zar(B+
G(X)),O×).

Theorem 2.5. Let k be a field, G a smooth k-group scheme of finite type, and
X a reduced G-scheme which is quasi-compact and quasi-separated. Assume
that there is a k-scheme Z of finite type and a dominating k-morphism Z →
X. Then H1

alg(G,O×) = Ker(ρ : Pic(G,X) → Pic(X)) is a finitely generated
abelian group.

Note that a reduced k-scheme X of finite type is reduced, quasi-compact
and quasi-separated, admitting a dominating map from a k-scheme of finite
type, that is, id : Z = X → X.

Lemma 2.6. Let ϕ : X → Y be a G-invariant morphism. If OY → (ϕ∗OX)G

is an isomorphism, then ϕ∗ : Pic(Y ) → Pic(G,X)is injective.

Proof. Note that the canonical map L → (ϕ∗ϕ
∗L)G is an isomorphism for

any invertible sheaf L on Y . Indeed, to check this, as the question is local on
Y , we may assume that L ∼= OY . But this case is nothing but the assumption
itself. So if ϕ∗L ∼= OX , then

L ∼= (ϕ∗ϕ
∗L)G ∼= (ϕ∗OX)G ∼= OY ,

and the assertion follows immediately.

Combining Theorem 2.5 and Lemma 2.6, we immediately have the first
part of Theorem 1.1.
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Corollary 2.7. Let k, G, X and Z → X be as in the theorem, and let
ϕ : X → Y be a G-invariant morphism such that OY → (ϕ∗OX)G is an
isomorphism. If Pic(X) is a finitely generated abelian group, then Pic(G,X)
and Pic(Y ) are also finitely generated.

We outline the proof of Thereom 2.5.
Case 1 First, consider the case that G is a finite (constant) group, and

X = Spec B is also finite.

(1) The case that G ⊂ Aut(B/k). Then H1
alg

(G,O×) = H1(G,B×) = 0

(Hilbert’s Theorem 90).

(2) The case that the action of G on X is trivial. Then H1(G,B×) is the
group of homomorphisms from G to B×. This is finite.

(3) General case. Let N be the kernel of the map G → GL(B). Then there
is an exact sequence

0 → H1(G/N, B×) → H1(G,B×) → H1(N, B×).

As H1(G/N, B×) and H1(N,B×) are finitely generated, H1(G,B×) is
also finitely generated.

Case 2 Next, let G and X be finite (G is a finite group scheme, and is
not a finite group in general). Let k′ be a finite Galois extension of k such
that Ω := k′ ⊗k G is a finite group (i.e., a disjoint union of Spec k′). Let
Γ := Gal(k′/k). Then there is an equivalence of categories

Mod(G,B) ∼= Mod(Θ, k′ ⊗k B),

where Θ is the semidirect product Γ n Ω. Replacing G by Θ, the problem is
reduced to case 1.

Case 3. The case that G = Spec H and X = Spec B are both affine.
Let H0 and B0 be the integral closures of k in H and B, respectively. Then
G0 := Spec H0 is an affine k-group scheme acting on X0 := Spec B0. Then
the map of complexes

0 // B×
0

//

��

(H0 ⊗ B0)
× //

��

(H0 ⊗ H0 ⊗ B0)
× //

��

· · ·

0 // B× // (H ⊗ B)× // (H ⊗ H ⊗ B)× // · · ·
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is an isomorphism in the quotient category A := Mod(Z)/ mod(Z) by the
next lemma, and the problem is reduced to case 2.

Lemma 2.8 (cf. [Ros]). Let k be a field, and X be a reduced k-scheme. As-
sume that there is a k-scheme Z of finite type and a dominating k-morphism
Z → X. Then there is a short exact sequence of the form

1 → K× ι−→ Γ(X,OX)× → Zr → 0,

where K is the integral closure of k in k[X] = H0(X,OX), and ι is the
inclusion.

Proof. This is proved similarly to [Has2, (4.12)].

Case 4 General case. Let H = k[G] and B = k[X]. Then H is a com-
mutative k-Hopf algebra, and B is an H-comodule algebra, as can be seen
easily. The problem is reduced to that for Spec H and Spec B, and we can
invoke the result of case 3.

Although Theorem 2.5 gives only the finite generation on H1
alg(G,O×

X),
we have more information on H i

alg(G,O×
X) in some cases.

Lemma 2.9. Let k be a field, and G a quasi-compact quasi-separated k-
group scheme such that k[G] is geometrically reduced over k. Let X be a
G-scheme. Assume that k̄ ⊗k X is integral, or X is quasi-compact quasi-
separated and k̄⊗k k[X] is integral. If the unit group of k̄⊗k k[X] is k̄×, then
H i

alg(G,O×
X) ∼= H i

alg(G, k×). In particular, H1
alg(G,O×

X) ∼= X (G) := {χ ∈
k[G]× | χ(gg′) = χ(g)χ(g′)}.

Example 2.10. If a smooth k-group scheme G acts on the affine space
X = An, then H1

alg(G,O×
X) ∼= X (G) ∼= Pic(G, Spec k) ∼= Pic(G,X).

Proposition 2.11. Let G be a connected smooth k-group scheme of finite
type, and X a quasi-compact quasi-separated G-scheme such that k[X] is
reduced and k is integrally closed in k[X]. Then

Hn
alg(G,O×

X) =


(k[X]G)× (n = 0)
X (G)/X (G,X) (n = 1)
0 (n ≥ 2)

,

where

X (G,X) := {χ ∈ X (G) | ∃α ∈ k[X]× ∀g ∈ Gx ∈ X α(gx) = χ(g)α(x)}.
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The following is a slight refinement of Kamke’s result [Kam].

Corollary 2.12. In Proposition 2.11, assume that G and X = Spec B are
affine. If f is a nonzerodivisor of B and Bf is a G-ideal of B, then f is
a semiinvariant. That is, there exists some χ ∈ X (G) such that f(gx) =
χ(g)f(x) for x ∈ X and g ∈ G.

The following is more or less well-known. See [Dol].

Corollary 2.13. Under the assumption of the proposition,

ρ : Pic(G,X) → Pic(X)G

is surjective.

Proof. Follows imeediately by Lemma 2.4 and the proposition.

Next, we introduce the notion of equivariant class group. It is defined for
locally Krull schemes.

A locally Krull scheme is a shceme which is locally the prime spectrum
of a Krull doain by definition.

Let A be a Krull domain. An A-module M is said to be reflexive (or
divisorial), if M is a submodule of some finitely generated module, and the
canonical map M → M∗∗ is an isomorphism, where (?)∗ = HomA(?, A).

Let Y be a locally Krull scheme. An OY -module M is said to be reflex-
ive if M is quasi-coherent, and H0(U,M) is a reflexive A-module for each
affine open subset U = Spec A such that A is a Krull domain. If, moreover,
H0(U,M) is of rank n for each U , then we say that M is of rank n.

Let Y be a locally Krull scheme. We denote the set of isomorphism classes
of rank-one reflexive sheaves over Y by Cl(Y ) and call it the class group of
Y (again!). Note that Cl(Y ) is an additive group by the addition

[M] + [M′] = [(M⊗OY
M′)∗∗].

Almost by definition, Pic(Y ) is a subgroup by Cl(Y ). If Y is a non-singular
variety, then Pic(Y ) = Cl(Y ).

The definition above agrees with the usual one (the group freely generated
by the set of prime divisors modulo the group of principal divisors) provided
Y is quasi-compact. If this is the case, the map [D] 7→ [OY (D)] gives an
isomorphism from the “usual” class group to Cl(Y ) defined above.
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This definition is immediately generalized to that of the equivariant class
group. Let G be S-flat and X be locally Krull. We say that a (G,OX)-
module M is reflexive if M is quasi-coherent (as a (G,OX)-module), and
is reflexive as an OX-module. The set of isomorphism classes of rank-one
reflexive (G,OX)-modules is denoted by Cl(G,X), and we call it the G-
equivariant class group of X.

Theorem 2.14. Let G and X be as above, and M and N be reflexive
(G,OX)-modules. Then

1. The (G,OX)-modules HomOX
(M,N ) and (M⊗OX

N )∗∗ are reflexive,
where (?)∗ = HomOX

(?,OX).

2. Cl(G,X) is an additive group with the sum

[M] + [N ] = [(M⊗OX
N )∗∗].

There is an obvious map α : Cl(G,X) → Cl(X), fogetting the G-action.
We have a commutative diagram with exact rows

0 // Ker ρ

∼=
��

// Pic(G,X)
ρ //

� _

��

Pic(X)� _

��
0 // Ker α // Cl(G,X) α // Cl(X)

.

Lemma 2.15. Let G be a flat S-group scheme, and X be a locally Krull G-
scheme. Let U be its G-stable open subset. Let ϕ : U ↪→ X be the inclusion.
Assume that codimX(X \ U) ≥ 2. Then ϕ∗ : Refn(G,X) → Refn(G,U)
is an equivalence, and ϕ∗ : Refn(G,U) → Refn(G,X) is its quasi-inverse.
In particular, ϕ∗ : Cl(G,X) → Cl(G,U) defined by ϕ∗[M] = [ϕ∗M] is an
isomorphism whose inverse is given by N 7→ [ϕ∗N ].

Proposition 2.16. Let Y be a quasi-compact locally Krull scheme. Then
Cl(Y ) ∼= lim−→Pic(U), where the inductive limit is taken over all open subsets
U such that codimY (Y \ U) ≥ 2.

Lemma 2.17. Let G be a flat S-group scheme. Let X be a quasi-compact
quasi-separated locally Krull G-scheme, and let ϕ : X → Y be a G-invariant
morphism such that OY → (ϕ∗OX)G is an isomorphism. Then Y is locally
Krull, and the number of connected components of Y is finite. The class
group Cl(Y ) of Y is a subquotient of Cl(G,X).
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Thus we can prove the class group counterpart of Theorem 2.5.

Theorem 2.18. Let k be a field, G a smooth k-group scheme of finite type,
and X a quasi-compact quasi-separated locally Krull G-scheme. Assume that
there is a k-scheme Z of finite type and a dominating k-morphism Z → X.
Let ϕ : X → Y be a G-invariant morphism such that OY → (ϕ∗OX)G is an
isomorphism. If Cl(X) is finitely generated, then Cl(G,X) and Cl(Y ) are
also finitely generated.

Even if X is a normal k-variety, Y may not be locally Noetherian.
Similar results for connected groups are proved by Magid and Waterhouse.
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