A COMPUTATION OF BUCHSBAUM-RIM MULTIPLICITIES IN A SPECIAL CASE*

FUTOSHI HAYASAKA ${ }^{\dagger}$

1. Introduction

Let (R, \mathfrak{m}) be a Noetherian local ring with the maximal ideal \mathfrak{m} of dimension $d>0$ and let C be a nonzero R-module of finite length. Let $\varphi: R^{n} \rightarrow R^{r}$ be an R-linear map of free modules with $C=\operatorname{Coker} \varphi$ as the cokernel of φ, and put $M:=\operatorname{Im} \varphi \subset F:=R^{r}$. Then one can consider the function

$$
\lambda(p):=\ell_{R}\left(\left[\operatorname{Coker} \operatorname{Sym}_{R}(\varphi)\right]_{p+1}\right)=\ell_{R}\left(S_{p+1} / M^{p+1}\right),
$$

where S_{p} (resp. M^{p}) is a homogeneous component of degree p of $S=\operatorname{Sym}_{R}(F)$ (resp. $\left.R[M]=\operatorname{Im} \operatorname{Sym}_{R}(\varphi)\right)$. Buchsbaum-Rim [2] first introduced and studied the function of this type and proved that $\lambda(p)$ is eventually a polynomial of degree $d+r-1$, which we call the Buchsbaum-Rim polynomial. Then they defined a multiplicity of C as

$$
e(C):=\left(\text { The coefficient of } p^{d+r-1} \text { in the polynomial }\right) \times(d+r-1)!,
$$

which we now call the Buchsbaum-Rim multiplicity of C. They also proved that the multiplicity is independent of the choice of φ. The multiplicity $e(C)$ coincides with the ordinary Hilbert-Samuel multiplicity when C is a cyclic module R / I.

Buchsbaum and Rim also introduced the notion of a parameter matrix, which generalizes the notion of a system of parameters. A matrix (a linear map of free modules) φ over R of size $r \times n$ is said to be a parameter matrix for R, if the following three conditions are satisfied: (i) Coker φ has finite length, (ii) $d=n-r+1$, (iii) $\operatorname{Im} \varphi \subset \mathfrak{m} R^{r}$. Then it is known $([2,4])$ that there exists a formula

$$
e(C)=\ell_{R}(C)=\ell_{R}\left(R / \operatorname{Fitt}_{0}(C)\right)
$$

for the Buchsbaum-Rim multiplicity, if R is Cohen-Macaulay and φ is a parameter matrix. Brennan, Ulrich and Vasconcelos observed in [1] that if R is Cohen-Macaulay and φ is a parameter matrix, then in fact

$$
\lambda(p)=e(C)\binom{p+d+r-1}{d+r-1}
$$

for all $p \geq 0$. In general, for any $p \geq 0$ the inequality

$$
\lambda(p) \geq e(C)\binom{p+d+r-1}{d+r-1}
$$

always holds true even if R is not Cohen-Macaulay, and moreover the equality for some $p \geq 0$ characterizes the Cohen-Macaulay property of the ring R ([3]).

[^0]Kleiman-Thorup [7, 8] and Kirby-Rees [5, 6] introduced another kind of multiplicities associated to C, which is related to the Buchsbaum-Rim multiplicity. They consider the function of two variables

$$
\Lambda(p, q):=\ell_{R}\left(S_{p+q} / M^{p+1} S_{q-1}\right),
$$

and proved that $\Lambda(p, q)$ is eventually a polynomial of total degree $d+r-1$. Then they defined a sequence of multiplicities, for $j=0,1, \ldots, d+r-1$,

$$
e^{j}(C):=\left(\text { The coefficient of } p^{d+r-1-j} q^{j} \text { in the polynomial }\right) \times(d+r-1-j)!j!
$$

and proved that $e^{j}(C)$ is independent of the choice of φ. Moreover they proved that

$$
e(C)=e^{0}(C) \geq e^{1}(C) \geq \cdots \geq e^{r-1}(C)>e^{r}(C)=\cdots=e^{d+r-1}(C)=0,
$$

where $r=\mu_{R}(C)$. Thus we call $e^{j}(C) j$-th Buchsbaum-Rim multiplicity of C. Then it is natural to ask the following.

Problem 1.1. Let $\varphi: R^{n} \rightarrow R^{r}$ be a parameter matrix with $C=\operatorname{Coker} \varphi$. Suppose that R is Cohen-Macaulay. Then
(1) does there exist a simple formula for the Buchsbaum-Rim multiplicities $e^{j}(C)$ for $j=1,2, \ldots, r-1$?
(2) Does the function $\Lambda(p, q)$ coincide with a polynomial function for all $p \geq 0$ and all $q>0$?
In this note, we will try to calculate the function $\Lambda(p, q)$ and multiplicities $e^{j}(C)$ in a special case where C is a direct sum of cyclic modules R / Q_{i} where Q_{i} is a parameter ideal in a one-dimensional Cohen-Macaulay local ring R. Especially, in the case $C=R / Q_{1} \oplus R / Q_{2}$, we will determine when $\Lambda(p, q)$ is polynomial for all $p \geq 0$ and $q>0$. As a consequence, we have that there exists the case where the function $\Lambda(p, q)$ does not coincide with the polynomial function. This should be contrasted with a result of Brennan-UlrichVasconcelos [1] as stated above: the ordinary Buchsbaum-Rim function $\lambda(p)=\Lambda(p, 1)$ coincides with the Buchsbaum-Rim polynomial for all $p \geq 0$ in the case where R is CohenMacaulay and φ is a parameter matrix.

2. A computation in a special case

In what follows, let (R, \mathfrak{m}) be a one-dimensional Cohen-Macaulay local ring with the maximal ideal \mathfrak{m}. Let $r>0$ be a fixed positive integer and let $Q_{1}, Q_{2}, \ldots, Q_{r}$ be parameter ideals in R with $Q_{i}=\left(x_{i}\right)$ for $i=1,2, \ldots, r$. We put $a_{i}=\ell_{R}\left(R / Q_{i}\right)=e\left(R / Q_{i}\right)$ for $i=1,2, \ldots, r$. Let $\varphi: R^{r} \rightarrow R^{r}$ be an R-linear map represented by a parameter matrix

$$
\left(\begin{array}{cccc}
x_{1} & 0 & \cdots & 0 \\
0 & x_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & x_{r}
\end{array}\right) .
$$

Then we consider the module $C=\operatorname{Coker} \varphi=R / Q_{1} \oplus R / Q_{2} \oplus \cdots \oplus R / Q_{r}$ and compute the following:

- the multiplicities $e^{j}(C)$ for $j=1,2, \ldots, r-1$
- the polynomial $\Lambda(p, q)=\ell_{R}\left(S_{p+q} / N^{p+1} S_{q-1}\right)$ for $p, q \gg 0$
- the function $\Lambda(p, q)=\ell_{R}\left(S_{p+q} / N^{p+1} S_{q-1}\right)$ for $p \geq 0, q>0$
where $S=\operatorname{Sym}_{R}\left(R^{r}\right)$ and $N=\operatorname{Im} \varphi=Q_{1} \oplus Q_{2} \oplus \cdots \oplus Q_{r}$. If we fix a free basis $\left\{t_{1}, t_{2}, \ldots, t_{r}\right\}$ for R^{r}, then $S=R\left[t_{1}, t_{2}, \ldots, t_{r}\right]$ is a polynomial ring and $N=Q_{1} t_{1}+$ $Q_{2} t_{2}+\cdots+Q_{r} t_{r} \subset S_{1}=R t_{1}+R t_{2}+\cdots+R t_{r}$. Then for any $p \geq 0, q>0$,

$$
\begin{aligned}
N^{p+1} S_{q-1} & =\left(\sum_{\substack{|j|=p+1 \\
j \geq \mathbf{0}}} Q^{j} t^{j}\right)\left(\sum_{\substack{|k|=q-1 \\
k \geq 0}} R t^{k}\right) \\
& =\sum_{\substack{|\ell|=p+q \\
\ell \geq \mathbf{0}}}\left(\sum_{\substack{|k|=q-1 \\
\mathbf{0} \leq \boldsymbol{k} \leq \ell}} Q^{\ell-k}\right) t^{\ell} \\
& \subset S_{p+q}=\sum_{\substack{|\ell|=p+q \\
\ell \geq \mathbf{0}}} R t^{\ell} .
\end{aligned}
$$

Here we use the multi-index notation: for a vector $\boldsymbol{i}=\left(i_{1}, \ldots, i_{r}\right) \in \mathbb{Z}_{>0}^{r}$, we denote $\boldsymbol{Q}^{i}=Q_{1}^{i_{1}} \cdots Q_{r}^{i_{r}}, \boldsymbol{t}^{i}=t_{1}^{i_{1}} \cdots t_{r}^{i_{r}}$ and $|\boldsymbol{i}|=i_{1}+\cdots+i_{r}$. For any vector $\boldsymbol{\ell}=\left(\ell_{1}, \ldots, \ell_{r}\right) \in \mathbb{Z}_{\geq 0}^{r}$ such that $|\ell|=p+q$, we define the ideal in R as follows:

$$
J_{p, q}(\ell):=\sum_{\substack{|k|=q-1 \\ 0 \leq k \leq \ell}} Q^{\ell-k} .
$$

Then for any $p \geq 0, q>0$,

$$
\Lambda(p, q)=\ell_{A}\left(S_{p+q} / N^{p+1} S_{q-1}\right)=\sum_{\substack{|\ell|=p+q \\ \ell \geq \mathbf{0}}} \ell_{R}\left(R / J_{p, q}(\ell)\right) .
$$

To compute the function $\Lambda(p, q)$, it is enough to compute the colength $\ell_{R}\left(R / J_{p, q}(\ell)\right)$ of the ideal $J_{p, q}(\ell)$. In the special case where the ideals $Q_{1}, Q_{2}, \ldots, Q_{r}$ becomes ascending chain, we can easily compute it as follows.

Proposition 2.1. Suppose that $Q_{1} \subseteq Q_{2} \subseteq \cdots \subseteq Q_{r}$. Then

$$
\Lambda(p, q)=\left(a_{1}+\cdots+a_{r}\right)\binom{p+r}{r}+\sum_{i=1}^{r-1}\left(a_{i+1}+\cdots+a_{r}\right)\binom{p+r-i}{r-i}\binom{q-2+i}{i}
$$

for all $p \geq 0$ and all $q>0$, where $\binom{m}{n}=0$ if $m<n$. In particular, the function $\Lambda(p, q)$ coincides with a polynomial function and

$$
e^{j}(C)= \begin{cases}a_{j+1}+\cdots+a_{r} & (j=0,1, \ldots, r-1) \\ 0 & (j=r)\end{cases}
$$

Proof. Let us fix any $p \geq 0$ and $q>0$. We may assume that $r \geq 2$ and $q \geq 2$. Suppose $Q_{1} \subseteq Q_{2} \subseteq \cdots \subseteq Q_{r}$. Then the ideal $J_{p, q}(\ell)$ coincides with the ideal of the product of last ($p+1$)-ideals of a sequence of ideals

$$
\overbrace{\underbrace{\overbrace{1}, \ldots, Q_{1}}_{\substack{p+q \\ 3}}, \overbrace{Q_{2}, \ldots, Q_{2}}^{\ell_{1}}, \ldots, \overbrace{Q_{r}, \ldots, Q_{r}}^{\ell_{r}}}^{\ell_{2}} .
$$

Hence its colength $\ell_{R}\left(R / J_{p, q}(\ell)\right)$ is the sum of last ($p+1$)-integers of a sequence of integers

$$
\begin{equation*}
\underbrace{\overbrace{a_{1}, \ldots, a_{1}}^{\ell_{1}}, \overbrace{a_{2}, \ldots, a_{2}}^{\ell_{2}}, \ldots, \overbrace{a_{r}, \ldots, a_{r}}^{\ell_{r}}}_{p+q} . \tag{1}
\end{equation*}
$$

To compute the sum

$$
\sum_{\substack{|\ell|=p+q \\ \ell \geq 0}} \ell_{R}\left(R / J_{p, q}(\ell)\right),
$$

we divide the sequence (1) at the $(p+2)$ th integer from the end. If the $(p+2)$ th integer from the end is a_{i}, then the sum of all last ($p+1$)-integers of such sequences can be counted by

$$
\binom{i+(q-2)-1}{i-1}\left(\sum_{\substack{u_{1}+\cdots+u_{r}=p+1 \\ u_{1}, \ldots, u_{r} \geq 0}}\left(u_{i} a_{i}+u_{i+1} a_{i+1}+\cdots+u_{r} a_{r}\right)\right) .
$$

Therefore

$$
\begin{aligned}
\Lambda(p, q) & =\sum_{\substack{|\ell|=p+q \\
\ell \geq \mathbf{0}}} \ell_{R}\left(R / J_{p, q}(\ell)\right) \\
& =\sum_{i=1}^{r}\binom{i+(q-2)-1}{i-1}\left(\sum_{\substack{u_{1}+\cdots+u_{r}=p+1 \\
u_{1}, \ldots, u_{r} \geq 0}}\left(u_{i} a_{i}+u_{i+1} a_{i+1}+\cdots+u_{r} a_{r}\right)\right) \\
& =\sum_{i=1}^{r}\binom{i+(q-2)-1}{i-1}\left(a_{i}+\cdots+a_{r}\right)\binom{r-i+1)+(p+1)-1}{r-i} \frac{p+1}{r-i+1} \\
& =\sum_{i=1}^{r}\left(a_{i}+\cdots+a_{r}\right)\binom{i+q-3}{i-1}\binom{r-i+p+1}{r-i} \frac{p+1}{r-i+1} \\
& =\sum_{i=1}^{r}\left(a_{i}+\cdots+a_{r}\right)\binom{r-i+p+1}{r-i+1}\binom{i+q-3}{i-1} \\
& =\left(a_{1}+\cdots+a_{r}\right)\binom{p+r}{r}+\sum_{i=1}^{r-1}\left(a_{i+1}+\cdots+a_{r}\right)\binom{p+r-i}{r-i}\binom{q-2+i}{i} .
\end{aligned}
$$

Corollary 2.2. Let (R, \mathfrak{m}) be a DVR and let C be a module of finite length. Then the function $\Lambda(p, q)$ associated to the module C coincides with a polynomial function. Moreover we have the formula

$$
e^{j}(C)=\ell_{R}\left(R / \operatorname{Fitt}_{j}(C)\right)=e\left(R / \operatorname{Fitt}_{j}(C)\right)
$$

for any $j=0,1, \ldots, r-1$.
Remark 2.3. In [5], Kirby and Rees computed the multiplicities $e^{j}(C)$ in the case where C is a module of finite length and R is a DVR. Proposition 2.1 and Corollary 2.2 gives more detailed information about the function $\Lambda(p, q)$.

The case where the ideals $Q_{1}, Q_{2}, \ldots, Q_{r}$ does not become an ascending chain is more complicated. However the case where $r=2$ can be computed as follows.

Theorem 2.4. Assume $r=2$ and put $I:=Q_{1}+Q_{2}$. Then
(1) The Buchsbaum-Rim polynomial is

$$
\Lambda(p, q)=\left(a_{1}+a_{2}\right)\binom{p+2}{2}+e(R / I)\binom{p+1}{1}\binom{q-1}{1}-e_{1}(I)(p+q)+c
$$

for all $p, q \gg 0$, where $e_{1}(I)$ denotes the 1 st Hilbert coefficient of I and c is a constant. In particular, we have that

$$
\left\{\begin{array}{l}
e^{0}(C)=\ell_{R}\left(R / \operatorname{Fitt}_{0}(C)\right)=\ell_{R}\left(R / Q_{1} Q_{2}\right) \\
e^{1}(C)=e\left(R / \operatorname{Fitt}_{1}(C)\right)=e(R / I) \\
e^{2}(C)=0
\end{array}\right.
$$

(2) The function $\Lambda(p, q)$ coincides with a polynomial function if and only if the equality $\ell_{R}(R / I)=e(R / I)-e_{1}(I)$ holds true. When this is the case,
$\Lambda(p, q)=\left(a_{1}+a_{2}\right)\binom{p+2}{2}+e(R / I)\binom{p+1}{1}\binom{q-1}{1}-e_{1}(I)(p+q)+e_{1}(I)$
for all $p \geq 0$ and all $q>0$.
(3) The function $\Lambda(p, q)$ coincides with the following simple polynomial function

$$
\Lambda(p, q)=\left(a_{1}+a_{2}\right)\binom{p+2}{2}+e(R / I)\binom{p+1}{1}\binom{q-1}{1}
$$

if and only if there exits an inclusion between Q_{1} and Q_{2}.
Proof. Let $p \geq 0, q>0$ and let $\ell=\left(\ell_{1}, \ell_{2}\right) \in \mathbb{Z}_{\geq 0}^{2}$ such that $|\ell|=p+q$. Let $\delta=\delta(\ell)$ be the number of elements of the set $\Delta=\Delta(\ell)=\left\{\ell_{i} \mid \ell_{i}>q-1\right\}$. Then the ideal $J_{p, q}(\ell)$ can be computed as follows directly.

Claim 1

$$
J_{p, q}(\ell)= \begin{cases}I^{p+1} & \text { if } \delta=0 \\ Q_{i}^{\ell_{i}-q+1} I^{\ell_{j}}(i \neq j) & \text { if } \delta=1 \text { and } \Delta=\left\{\ell_{i}\right\} \\ Q_{1}^{\ell_{1}-q+1} Q_{2}^{\ell_{2}-q+1} I^{q-1} & \text { if } \delta=2\end{cases}
$$

Let $h_{n}=\ell_{R}\left(R / I^{n}\right)$ be the Hilbert-Samuel function of the ideal I. Then, by Claim 1, the function $\Lambda(p, q)$ can be computed as follows.

Claim 2

$\Lambda(p, q)= \begin{cases}\left(a_{1}+a_{2}\right)\binom{p+2}{2}+2\left(h_{1}+\cdots+h_{p}\right)+(q-p-1) h_{p+1} & \text { if } p+1 \leq q-1 \\ \left(a_{1}+a_{2}\right)\binom{p+2}{2}+2\left(h_{1}+\cdots+h_{q-2}\right)+(p-q+3) h_{q-1} & \text { if } p+1>q-1\end{cases}$
Let p_{0} be the postulation number of I, that is, $h_{p}=e(R / I) p-e_{1}(I)$ for all $p \geq p_{0}$. To compute the Buchsbaum-Rim polynomial, we may assume that $p \geq p_{0}$ and $q-1 \geq p+1$. Then, by Claim 2, we can compute the function $\Lambda(p, q)$ explicitly as follows.

$$
\Lambda(p, q)=\left(a_{1}+a_{2}\right)\binom{p+2}{2}+e(R / I)\binom{p+1}{1}\binom{q-1}{1}-e_{1}(I)(p+q)+c
$$

where $c=2\left(h_{1}+\cdots+h_{p_{0}-1}\right)-e(R / I) p_{0}\left(p_{0}-1\right)+e_{1}(I)\left(2 p_{0}-1\right)$ is a constant. This proves the assertion (1).

Suppose that the function $\Lambda(p, q)$ coincides with the polynomial function. Then, by substituting $p=0$ in the polynomial, $\Lambda(0, q)=\left(e(R / I)-e_{1}(I)\right) q+\left(a_{1}+a_{2}-e(R / I)+c\right)$ for any $q>0$. On the other hand, by Claim 2, $\Lambda(0, q)=h_{1} q+\left(a_{1}+a_{2}-h_{1}\right)$. By
comparing the coefficient of q, we have $h_{1}=e(R / I)-e_{1}(I)$. Conversely, suppose that $h_{1}=e(R / I)-e_{1}(I)$. Then it is known that the Hilbert-Samuel function h_{n} coincides with the polynomial function for all $n>0([9])$. Hence the function $\Lambda(p, q)$ also coincides with the polynomial function with the following form

$$
\Lambda(p, q)=\left(a_{1}+a_{2}\right)\binom{p+2}{2}+e(R / I)\binom{p+1}{1}\binom{q-1}{1}-e_{1}(I)(p+q)+e_{1}(I)
$$

by Claim 2. Thus we have the assertion (2).
For the assertion (3), if the function $\Lambda(p, q)$ coincides with the following simple polynomial function

$$
\Lambda(p, q)=\left(a_{1}+a_{2}\right)\binom{p+2}{2}+e(R / I)\binom{p+1}{1}\binom{q-1}{1}
$$

then $e_{1}(I)=0$ and $h_{1}=e(R / I)$. This implies that I is a parameter ideal for R and hence $Q_{1} \subseteq Q_{2}$ or $Q_{2} \subseteq Q_{1}$. The other implication follows from Proposition 2.1.

Consequently, there exists the case where the Buchsbaum-Rim function $\Lambda(p, q)$ does not coincides with a polynomial function even if the ring R is Cohen-Macaulay and the module has a parameter matrix. This should be contrasted with a result on the classical Buchsbaum-Rim function of a parameter module due to Brennan-Ulrich-Vasconcelos [1].

References

[1] J. Brennan, B. Ulrich and W. V. Vasconcelos, The Buchsbaum-Rim polynomial of a module, J. Algebra 241 (2001), 379-392
[2] D. A. Buchsbaum and D. S. Rim, A generalized Koszul complex. II. Depth and multiplicity, Trans. Amer. Math. Soc. 111 (1964), 197-224
[3] F. Hayasaka and E. Hyry, On the Buchsbaum-Rim function of a parameter module, J. Algebra 327 (2011), 307-315
[4] D. Kirby, On the Buchsbaum-Rim multiplicity associated with a matrix, J. London Math. Soc. (2), 32 (1985), 57-61
[5] D. Kirby and D. Rees, Multiplicities in graded rings. I. The general theory. Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992), 209 - 267, Contemp. Math., 159, Amer. Math. Soc., Providence, RI, 1994
[6] D. Kirby and D. Rees, Multiplicities in graded rings. II. Integral equivalence and the Buchsbaum-Rim multiplicity. Math. Proc. Cambridge Philos. Soc. 119 (1996), no. 3, $425-445$
[7] S. Kleiman and A. Thorup, A geometric theory of the Buchsbaum-Rim multiplicity, J. Algebra 167 (1994), no. 1, 168-231
[8] S. Kleiman and A. Thorup, Mixed Buchsbaum-Rim multiplicities, Amer. J. Math. 118 (1996), no. 3, 529-569
[9] J. Lipman, Stable ideals and Arf rings, Amer. J. Math. 93 (1971), 649-685
Department of Mathematics, Asahikawa Campus, Hokkaido University of Education, HokumonCHO 9-ChOME, AsAhIKAWA-SHI, Hokkaido, 070-8621, JAPAN

E-mail address: hayasaka.futoshi@a.hokkyodai.ac.jp

[^0]: ${ }^{*}$ This paper is an announcement of our results and the detailed version will be submitted to somewhere.
 ${ }^{\dagger}$ The author was partially supported by JSPS Grant-in-Aid for Young Scientists (B) 24740032.

