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1. Introduction

Let (R, m) be a Noetherian local ring with the maximal ideal m of dimension d > 0 and
let C be a nonzero R-module of finite length. Let ϕ : Rn → Rr be an R-linear map of free
modules with C = Cokerϕ as the cokernel of ϕ, and put M := Im ϕ ⊂ F := Rr. Then
one can consider the function

λ(p) := `R([Coker SymR(ϕ)]p+1) = `R(Sp+1/M
p+1),

where Sp (resp. Mp) is a homogeneous component of degree p of S = SymR(F ) (resp.
R[M ] = Im SymR(ϕ)). Buchsbaum-Rim [2] first introduced and studied the function of
this type and proved that λ(p) is eventually a polynomial of degree d + r − 1, which we
call the Buchsbaum-Rim polynomial. Then they defined a multiplicity of C as

e(C) := (The coefficient of pd+r−1 in the polynomial) × (d + r − 1)!,

which we now call the Buchsbaum-Rim multiplicity of C. They also proved that the
multiplicity is independent of the choice of ϕ. The multiplicity e(C) coincides with the
ordinary Hilbert-Samuel multiplicity when C is a cyclic module R/I.

Buchsbaum and Rim also introduced the notion of a parameter matrix, which general-
izes the notion of a system of parameters. A matrix (a linear map of free modules) ϕ over
R of size r × n is said to be a parameter matrix for R, if the following three conditions
are satisfied: (i) Cokerϕ has finite length, (ii) d = n − r + 1, (iii) Imϕ ⊂ mRr. Then it is
known ([2, 4]) that there exists a formula

e(C) = `R(C) = `R(R/Fitt0(C))

for the Buchsbaum-Rim multiplicity, if R is Cohen-Macaulay and ϕ is a parameter matrix.
Brennan, Ulrich and Vasconcelos observed in [1] that if R is Cohen-Macaulay and ϕ is a
parameter matrix, then in fact

λ(p) = e(C)
(

p + d + r − 1
d + r − 1

)
for all p ≥ 0. In general, for any p ≥ 0 the inequality

λ(p) ≥ e(C)
(

p + d + r − 1
d + r − 1

)
always holds true even if R is not Cohen-Macaulay, and moreover the equality for some
p ≥ 0 characterizes the Cohen-Macaulay property of the ring R ([3]).

∗This paper is an announcement of our results and the detailed version will be submitted to somewhere.
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Kleiman-Thorup [7, 8] and Kirby-Rees [5, 6] introduced another kind of multiplicities
associated to C, which is related to the Buchsbaum-Rim multiplicity. They consider the
function of two variables

Λ(p, q) := `R(Sp+q/M
p+1Sq−1),

and proved that Λ(p, q) is eventually a polynomial of total degree d + r − 1. Then they
defined a sequence of multiplicities, for j = 0, 1, . . . , d + r − 1,

ej(C) := (The coefficient of pd+r−1−jqj in the polynomial) × (d + r − 1 − j)!j!

and proved that ej(C) is independent of the choice of ϕ. Moreover they proved that

e(C) = e0(C) ≥ e1(C) ≥ · · · ≥ er−1(C) > er(C) = · · · = ed+r−1(C) = 0,

where r = µR(C). Thus we call ej(C) j-th Buchsbaum-Rim multiplicity of C. Then it is
natural to ask the following.

Problem 1.1. Let ϕ : Rn → Rr be a parameter matrix with C = Cokerϕ. Suppose that
R is Cohen-Macaulay. Then

(1) does there exist a simple formula for the Buchsbaum-Rim multiplicities ej(C) for
j = 1, 2, . . . , r − 1?

(2) Does the function Λ(p, q) coincide with a polynomial function for all p ≥ 0 and all
q > 0?

In this note, we will try to calculate the function Λ(p, q) and multiplicities ej(C) in a
special case where C is a direct sum of cyclic modules R/Qi where Qi is a parameter ideal in
a one-dimensional Cohen-Macaulay local ring R. Especially, in the case C = R/Q1⊕R/Q2,
we will determine when Λ(p, q) is polynomial for all p ≥ 0 and q > 0. As a consequence,
we have that there exists the case where the function Λ(p, q) does not coincide with
the polynomial function. This should be contrasted with a result of Brennan-Ulrich-
Vasconcelos [1] as stated above: the ordinary Buchsbaum-Rim function λ(p) = Λ(p, 1)
coincides with the Buchsbaum-Rim polynomial for all p ≥ 0 in the case where R is Cohen-
Macaulay and ϕ is a parameter matrix.

2. A computation in a special case

In what follows, let (R, m) be a one-dimensional Cohen-Macaulay local ring with the
maximal ideal m. Let r > 0 be a fixed positive integer and let Q1, Q2, . . . , Qr be parameter
ideals in R with Qi = (xi) for i = 1, 2, . . . , r. We put ai = `R(R/Qi) = e(R/Qi) for
i = 1, 2, . . . , r. Let ϕ : Rr → Rr be an R-linear map represented by a parameter matrix

x1 0 · · · 0

0 x2
. . .

...
...

. . . . . . 0
0 · · · 0 xr

 .

Then we consider the module C = Cokerϕ = R/Q1 ⊕ R/Q2 ⊕ · · · ⊕ R/Qr and compute
the following:

• the multiplicities ej(C) for j = 1, 2, . . . , r − 1
• the polynomial Λ(p, q) = `R(Sp+q/N

p+1Sq−1) for p, q � 0
• the function Λ(p, q) = `R(Sp+q/N

p+1Sq−1) for p ≥ 0, q > 0
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where S = SymR(Rr) and N = Im ϕ = Q1 ⊕ Q2 ⊕ · · · ⊕ Qr. If we fix a free basis
{t1, t2, . . . , tr} for Rr, then S = R[t1, t2, . . . , tr] is a polynomial ring and N = Q1t1 +
Q2t2 + · · · + Qrtr ⊂ S1 = Rt1 + Rt2 + · · · + Rtr. Then for any p ≥ 0, q > 0,

Np+1Sq−1 =

 ∑
|j|=p+1

j≥0

Qjtj


 ∑

|k|=q−1
k≥0

Rtk



=
∑

|`|=p+q
`≥0

 ∑
|k|=q−1
0≤k≤`

Q`−k

 t`

⊂ Sp+q =
∑

|`|=p+q
`≥0

Rt`.

Here we use the multi-index notation: for a vector i = (i1, . . . , ir) ∈ Zr
≥0, we denote

Qi = Qi1
1 · · ·Qir

r , ti = ti11 · · · tirr and |i| = i1 + · · ·+ ir. For any vector ` = (`1, . . . , `r) ∈ Zr
≥0

such that |`| = p + q, we define the ideal in R as follows:

Jp,q(`) :=
∑

|k|=q−1
0≤k≤`

Q`−k.

Then for any p ≥ 0, q > 0,

Λ(p, q) = `A(Sp+q/N
p+1Sq−1) =

∑
|`|=p+q

`≥0

`R(R/Jp,q(`)).

To compute the function Λ(p, q), it is enough to compute the colength `R(R/Jp,q(`)) of
the ideal Jp,q(`). In the special case where the ideals Q1, Q2, . . . , Qr becomes ascending
chain, we can easily compute it as follows.

Proposition 2.1. Suppose that Q1 ⊆ Q2 ⊆ · · · ⊆ Qr. Then

Λ(p, q) = (a1 + · · · + ar)
(

p + r

r

)
+

r−1∑
i=1

(ai+1 + · · · + ar)
(

p + r − i

r − i

)(
q − 2 + i

i

)
for all p ≥ 0 and all q > 0, where

(
m
n

)
= 0 if m < n. In particular, the function Λ(p, q)

coincides with a polynomial function and

ej(C) =
{

aj+1 + · · · + ar (j = 0, 1, . . . , r − 1)
0 (j = r)

Proof. Let us fix any p ≥ 0 and q > 0. We may assume that r ≥ 2 and q ≥ 2. Suppose
Q1 ⊆ Q2 ⊆ · · · ⊆ Qr. Then the ideal Jp,q(`) coincides with the ideal of the product of last
(p + 1)-ideals of a sequence of ideals

`1︷ ︸︸ ︷
Q1, . . . , Q1,

`2︷ ︸︸ ︷
Q2, . . . , Q2, . . . ,

`r︷ ︸︸ ︷
Qr, . . . , Qr︸ ︷︷ ︸

p+q

.
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Hence its colength `R(R/Jp,q(`)) is the sum of last (p+1)-integers of a sequence of integers

(1)
`1︷ ︸︸ ︷

a1, . . . , a1,

`2︷ ︸︸ ︷
a2, . . . , a2, . . . ,

`r︷ ︸︸ ︷
ar, . . . , ar︸ ︷︷ ︸

p+q

.

To compute the sum ∑
|`|=p+q

`≥0

`R(R/Jp,q(`)),

we divide the sequence (1) at the (p + 2)th integer from the end. If the (p + 2)th integer
from the end is ai, then the sum of all last (p+1)-integers of such sequences can be counted
by (

i + (q − 2) − 1
i − 1

)  ∑
u1+···+ur=p+1

u1,...,ur≥0

(uiai + ui+1ai+1 + · · · + urar)

 .

Therefore

Λ(p, q) =
∑

|`|=p+q
`≥0

`R(R/Jp,q(`))

=
r∑

i=1

(
i + (q − 2) − 1

i − 1

)  ∑
u1+···+ur=p+1

u1,...,ur≥0

(uiai + ui+1ai+1 + · · · + urar)


=

r∑
i=1

(
i + (q − 2) − 1

i − 1

)
(ai + · · · + ar)

(
(r − i + 1) + (p + 1) − 1

r − i

)
p + 1

r − i + 1

=
r∑

i=1

(ai + · · · + ar)
(

i + q − 3
i − 1

)(
r − i + p + 1

r − i

)
p + 1

r − i + 1

=
r∑

i=1

(ai + · · · + ar)
(

r − i + p + 1
r − i + 1

)(
i + q − 3

i − 1

)

= (a1 + · · · + ar)
(

p + r

r

)
+

r−1∑
i=1

(ai+1 + · · · + ar)
(

p + r − i

r − i

)(
q − 2 + i

i

)
.

�
Corollary 2.2. Let (R, m) be a DVR and let C be a module of finite length. Then the
function Λ(p, q) associated to the module C coincides with a polynomial function. Moreover
we have the formula

ej(C) = `R(R/ Fittj(C)) = e(R/ Fittj(C))

for any j = 0, 1, . . . , r − 1.

Remark 2.3. In [5], Kirby and Rees computed the multiplicities ej(C) in the case where
C is a module of finite length and R is a DVR. Proposition 2.1 and Corollary 2.2 gives
more detailed information about the function Λ(p, q).
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The case where the ideals Q1, Q2, . . . , Qr does not become an ascending chain is more
complicated. However the case where r = 2 can be computed as follows.

Theorem 2.4. Assume r = 2 and put I := Q1 + Q2. Then
(1) The Buchsbaum-Rim polynomial is

Λ(p, q) = (a1 + a2)
(

p + 2
2

)
+ e(R/I)

(
p + 1

1

)(
q − 1

1

)
− e1(I)(p + q) + c

for all p, q � 0, where e1(I) denotes the 1st Hilbert coefficient of I and c is a
constant. In particular, we have that e0(C) = `R(R/Fitt0(C)) = `R(R/Q1Q2)

e1(C) = e(R/ Fitt1(C)) = e(R/I)
e2(C) = 0.

(2) The function Λ(p, q) coincides with a polynomial function if and only if the equality
`R(R/I) = e(R/I) − e1(I) holds true. When this is the case,

Λ(p, q) = (a1 + a2)
(

p + 2
2

)
+ e(R/I)

(
p + 1

1

)(
q − 1

1

)
− e1(I)(p + q) + e1(I)

for all p ≥ 0 and all q > 0.
(3) The function Λ(p, q) coincides with the following simple polynomial function

Λ(p, q) = (a1 + a2)
(

p + 2
2

)
+ e(R/I)

(
p + 1

1

)(
q − 1

1

)
if and only if there exits an inclusion between Q1 and Q2.

Proof. Let p ≥ 0, q > 0 and let ` = (`1, `2) ∈ Z2
≥0 such that |`| = p + q. Let δ = δ(`) be

the number of elements of the set ∆ = ∆(`) = {`i | `i > q − 1}. Then the ideal Jp,q(`)
can be computed as follows directly.

Claim 1

Jp,q(`) =


Ip+1 if δ = 0
Q`i−q+1

i I`j (i 6= j) if δ = 1 and ∆ = {`i}
Q`1−q+1

1 Q`2−q+1
2 Iq−1 if δ = 2

Let hn = `R(R/In) be the Hilbert-Samuel function of the ideal I. Then, by Claim 1,
the function Λ(p, q) can be computed as follows.

Claim 2

Λ(p, q) =
{

(a1 + a2)
(
p+2
2

)
+ 2(h1 + · · · + hp) + (q − p − 1)hp+1 if p + 1 ≤ q − 1

(a1 + a2)
(
p+2
2

)
+ 2(h1 + · · · + hq−2) + (p − q + 3)hq−1 if p + 1 > q − 1

Let p0 be the postulation number of I, that is, hp = e(R/I)p − e1(I) for all p ≥ p0. To
compute the Buchsbaum-Rim polynomial, we may assume that p ≥ p0 and q − 1 ≥ p + 1.
Then, by Claim 2, we can compute the function Λ(p, q) explicitly as follows.

Λ(p, q) = (a1 + a2)
(

p + 2
2

)
+ e(R/I)

(
p + 1

1

)(
q − 1

1

)
− e1(I)(p + q) + c

where c = 2(h1 + · · ·+hp0−1)−e(R/I)p0(p0−1)+e1(I)(2p0−1) is a constant. This proves
the assertion (1).

Suppose that the function Λ(p, q) coincides with the polynomial function. Then, by
substituting p = 0 in the polynomial, Λ(0, q) = (e(R/I)− e1(I))q + (a1 + a2 − e(R/I) + c)
for any q > 0. On the other hand, by Claim 2, Λ(0, q) = h1q + (a1 + a2 − h1). By
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comparing the coefficient of q, we have h1 = e(R/I) − e1(I). Conversely, suppose that
h1 = e(R/I)−e1(I). Then it is known that the Hilbert-Samuel function hn coincides with
the polynomial function for all n > 0 ([9]). Hence the function Λ(p, q) also coincides with
the polynomial function with the following form

Λ(p, q) = (a1 + a2)
(

p + 2
2

)
+ e(R/I)

(
p + 1

1

)(
q − 1

1

)
− e1(I)(p + q) + e1(I)

by Claim 2. Thus we have the assertion (2).
For the assertion (3), if the function Λ(p, q) coincides with the following simple polyno-

mial function

Λ(p, q) = (a1 + a2)
(

p + 2
2

)
+ e(R/I)

(
p + 1

1

)(
q − 1

1

)
,

then e1(I) = 0 and h1 = e(R/I). This implies that I is a parameter ideal for R and hence
Q1 ⊆ Q2 or Q2 ⊆ Q1. The other implication follows from Proposition 2.1. �

Consequently, there exists the case where the Buchsbaum-Rim function Λ(p, q) does
not coincides with a polynomial function even if the ring R is Cohen-Macaulay and the
module has a parameter matrix. This should be contrasted with a result on the classical
Buchsbaum-Rim function of a parameter module due to Brennan-Ulrich-Vasconcelos [1].
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