Arithmetical rank of Gorenstein squarefree monomial ideals of height three ${ }^{12}$

Kyouko Kimura ${ }^{3}$
Department of Mathematics, Graduate School of Science, Shizuoka University
Naoki Terai ${ }^{4}$
Department of Mathematics, Faculty of Culture and Education, Saga University

1. Introduction

Let S be a polynomial ring over a field K and I a squarefree monomial ideal of S. The arithmetical rank of I, denoted by ara I, is defined as the minimum number u of elements $q_{1}, \ldots, q_{u} \in S$ such that $\sqrt{\left(q_{1}, \ldots, q_{u}\right)}=\sqrt{I}(=I)$. When this is the case, we say that q_{1}, \ldots, q_{u} generate I up to radical. By the result of Lyubeznik [13], we have the following inequalities:
height $I \leq \operatorname{pd} S / I \leq \operatorname{ara} I$,
where $\operatorname{pd} S / I$ is the projective dimension of S / I (over S). If ara $I=$ height I holds, then I is said to be a set-theoretic complete intersection. By the inequalities, it is natural to ask which ideal I satisfies ara $I=\operatorname{pd} S / I$ or which (Cohen-Macaulay) ideal I is a set-theoretic complete intersection. Many authors have studied this problem and proved ara $I=\operatorname{pd} S / I$ for some ideals I, see e.g., $[2,3,4,6,7,8,9,10,11,12,14]$. However, counterexamples for the equality were also found; see $[15,11]$, though the projective dimensions of those are depend on the characteristic of the base field K.

Among the above references, we note [7] and [15]. In [7], the first author proved that ara $I=\mathrm{pd} S / I$ holds (and thus, I is a set-theoretic complete intersection) for a Cohen-Macaulay squarefree monomial ideal I of height 2. On the other hand, in [15], Yan found a counterexample for the equality among Cohen-Macaulay squarefree monomial ideals of height 3: let Δ be the triangulation of the real projective plane with 6 vertices. Then the Stanley-Reisner ideal I_{Δ} is of height $3, \operatorname{pd} S / I_{\Delta}$ is 3 if char $K \neq 2 ; 4$ if char $K=2$. Yan [15] proved that ara $I_{\Delta}=4$ for any characteristic K.

Then it is natural to ask whether the equality holds for a Gorenstein squarefree monomial ideal of height 3 . The following theorem is the main result of this article.

[^0]Theorem 1.1. Let $I \subset S$ be a Gorenstein squarefree monomial ideal of height 3. Then I is a set-theoretic complete intersection. That is, ara $I=\operatorname{pd} S / I=$ height $I=3$.
Remark 1.2. It follows that any Gorenstein monomial ideal is a set-theoretic complete intersection since the radical of a Gorenstein monomial ideal is Gorenstein.

In order to prove Theorem 1.1, we must construct 3 elements which generate the ideal up to radical. We will explain the construction by an example instead of complete construction.

2. Gorenstein squarefree monomial ideals of height three

Bruns and Herzog [5] proved that a Gorenstein squarefree monomial ideal of height 3 is essentially I_{r} (see below). In this section, we recall their result.

Let $r \geq 1$ be an integer and I_{r} the ideal of $K\left[x_{1}, \ldots, x_{2 r+1}\right]$ generated by $2 r+1$ monomials $u_{1}, \ldots, u_{2 r+1}$:

$$
u_{i}=x_{i} x_{i+1} \cdots x_{i+r-1}, \quad i=1,2, \ldots, 2 r+1,
$$

where we consider x_{j} as $x_{j-(2 r+1)}$ if $j>2 r+1$.
Remark 2.1. I_{r} is the Stanley-Reisner ideal of the boundary complex of cyclic polytope $C(2 r+1,2 r-2)$.

Before stating the result by Bruns and Herzog [5], we define a terminology. Let I be a squarefree monomial ideal of $S=K\left[x_{1}, \ldots, x_{n}\right]$. Let $x_{i 1}, x_{i 2}$ be new variables. Set $S^{\prime}=K\left[x_{1}, \ldots, x_{i-1}, x_{i 1}, x_{i 2}, x_{i+1}, \ldots, x_{n}\right]$. Then by substitution $x_{i} \mapsto x_{i 1} x_{i 2}$ for each monomial generator of I, we obtain the new ideal $J \subset S^{\prime}$. We call this transformation a 1-vertex inflation.
Theorem 2.2 (Bruns and Herzog [5]). Let I_{r} be the ideal defined above.
(1) I_{r} is a Gorenstein squarefree monomial ideal of height 3 .
(2) Any Gorenstein squarefree monomial ideal of height 3 is obtained from I_{r} for some r by a series of 1-vertex inflations.
By Theorem 2.2, if we prove that I_{r} is a set-theoretic complete intersection, then Theorem 1.1 follows.

Next we modify I_{r} by renumbering variables. Let r_{o} be the largest odd integer with $r_{o} \leq r$ and r_{e} the largest even integer with $r_{e} \leq r$. Let us consider the following $2 r+1$ variables:
$x_{1}, x_{3}, \ldots, x_{r_{o}}, x_{-r_{e}}, x_{-\left(r_{e}-2\right)}, \ldots, x_{-2}, x_{0}, x_{2}, \ldots, x_{r_{e}-2}, x_{r_{e}}, x_{-r_{o}}, \ldots, x_{-3}, x_{-1}$.
Let S_{r} be the polynomial ring over K in the above variables. Recall that I_{r} is generated by the $2 r+1$ products of continuous r variables. Thus we may assume that the order of variables are as in (2.1). Then $I_{r} \subset S_{r}$ is generated by the following $2 r+1$ monomials:

$$
\begin{array}{cc}
n_{+r}^{(0)}, n_{-r}^{(0)}, & n_{+r}^{(s)}, n_{-r}^{(s)}, \quad s=1,3, \ldots, r_{o}-2, \\
m^{(r-1)}, & m_{+r}^{(t)}, m_{-r}^{(t)}, \quad t=0,2, \ldots, r_{e}-2,
\end{array}
$$

where

$$
n_{+r}^{(0)}:=x_{r} x_{-(r-1)} \cdots x_{ \pm 3} x_{\mp 2} x_{ \pm 1}, \quad n_{-r}^{(0)}:=x_{-r} x_{r-1} \cdots x_{\mp 3} x_{ \pm 2} x_{\mp 1},
$$

and where for an odd integer s,

$$
\left\{\begin{aligned}
m_{+r}^{(s)} & :=x_{r} x_{-(r-1)} \cdots x_{\mp(s+3)} x_{ \pm(s+2)} \cdot x_{ \pm s} x_{ \pm(s-2)} \cdots x_{ \pm 1}, \\
m_{-r}^{(s)} & :=x_{-r} x_{r-1} \cdots x_{ \pm(s+3)} x_{\mp(s+2)} \cdot x_{\mp s} x_{\mp(s-2)} \cdots x_{\mp 1}, \\
m^{(s)} & :=x_{s} x_{s-2} \cdots x_{1} x_{-1} \cdots x_{-(s-2)} x_{-s} \\
n_{+r}^{(s)} & :=\sqrt{m_{+r}^{(s)} m^{(s)}}, \quad n_{-r}^{(s)}:=\sqrt{m_{-r}^{(s)} m^{(s)}}
\end{aligned}\right.
$$

and where for an even integer t,

$$
\left\{\begin{array}{l}
m_{+r}^{(t)}:=x_{r} x_{-(r-1)} \cdots x_{ \pm(t+3)} x_{\mp(t+2)} \cdot x_{t} x_{t-2} \cdots x_{2} x_{0} x_{-2} \cdots x_{-(t-2)} x_{-t} \\
m_{-r}^{(t)}:=x_{-r} x_{r-1} \cdots x_{\mp(t+3)} x_{ \pm(t+2)} \cdot x_{t} x_{t-2} \cdots x_{2} x_{0} x_{-2} \cdots x_{-(t-2)} x_{-t} \\
m^{(t)}:=x_{t} x_{t-2} \cdots x_{2} x_{0} x_{-2} \cdots x_{-(t-2)} x_{-t} .
\end{array}\right.
$$

Example 2.3. I_{4} is generated by the following 9 monomials:

$$
\begin{array}{llll}
x_{4} x_{-3} x_{2} x_{-1}, & x_{-4} x_{3} x_{-2} x_{1}, & x_{4} x_{-3} x_{2} x_{0}, & x_{-4} x_{3} x_{-2} x_{0}, \\
x_{4} x_{-3} \cdot x_{1} x_{-1}, & x_{-4} x_{3} \cdot x_{1} x_{-1}, & x_{4} \cdot x_{2} x_{0} x_{-2}, & x_{-4} \cdot x_{2} x_{0} x_{-2}, \\
x_{3} x_{1} x_{-1} x_{-3} . & &
\end{array}
$$

Example 2.4. I_{5} is generated by the following 11 monomials:

$$
\begin{array}{llll}
x_{5} x_{-4} x_{3} x_{-2} x_{1}, & x_{-5} x_{4} x_{-3} x_{2} x_{-1}, & x_{5} x_{-4} x_{3} x_{-2} x_{0}, & x_{-5} x_{4} x_{-3} x_{2} x_{0} \\
x_{5} x_{-4} x_{3} \cdot x_{1} x_{-1}, & x_{-5} x_{4} x_{-3} \cdot x_{1} x_{-1}, & x_{5} x_{-4} \cdot x_{2} x_{0} x_{-2}, & x_{-5} x_{4} \cdot x_{2} x_{0} x_{-2} \\
x_{5} \cdot x_{3} x_{1} x_{-1} x_{-3}, & x_{-5} \cdot x_{3} x_{1} x_{-1} x_{-3}, & x_{4} x_{2} x_{0} x_{-2} x_{-4}
\end{array}
$$

3. Key lemmas and 3 elements which generate I_{r} up to radical

In this section, we explain the idea of the proof of Theorem 1.1.
The cases $r=1,2$ are easy.
Example 3.1. Since $I_{1}=\left(x_{0}, x_{-1}, x_{1}\right)$, there is nothing to prove for the case $r=1$.

Let us consider the case $r=2 . I_{2}$ is generated by the following 5 monomials:

$$
x_{2} x_{-1}, x_{-2} x_{1}, x_{1} x_{-1}, x_{2} x_{0}, x_{-2} x_{0}
$$

Actually, I_{2} is the Stanley-Reisner ideal of 5 -cycle. This ideal is known to be a set-theoretic complete intersection; see e.g., [2, 4]. For example, following 3 elements generate I_{2} up to radical:

$$
x_{1} x_{-1}, x_{2} x_{-1}+x_{-2} x_{0}, x_{-2} x_{1}+x_{2} x_{0} .
$$

In what follows, we assume $r \geq 3$. We divide the minimal monomial generators of I_{r} by the divisibility by x_{0}. We denote by J_{r}, the ideal of S_{r} generated by the minimal monomial generators of I_{r} which are not divisible by x_{0}. Let J_{r}^{\prime} be the ideal of S_{r+1} obtained from J_{r} by substitutions $x_{k} \mapsto x_{k+1}$ and $x_{-k} \mapsto x_{-(k+1)}(k=1,2, \ldots, r)$.

Lemma 3.2. Let $r \geq 3$ be an integer. Then $I_{r}=J_{r}+x_{0} J_{r-1}^{\prime}$.
We first construct 2 elements which generate $x_{0} J_{r}$ up to radical. Set

$$
\left\{\begin{aligned}
& g_{1 r}^{(1)}:=x_{0}\left(\left(m_{+r}^{\left(r_{o}-2\right)}\right)^{r+3}-\left(m_{-r}^{\left(r_{o}-2\right)}\right)^{r+3}\right)\left(\left(m_{+r}^{\left(r_{o}-4\right)}\right)^{r+3}-\left(m_{-r}^{\left(r_{o}-4\right)}\right)^{r+3}\right) \\
& \cdots\left(\left(m_{+r}^{(1)}\right)^{r+3}-\left(m_{-r}^{(1)}\right)^{r+3}\right)\left(\left(n_{+r}^{(0)}\right)^{r+3}-\left(n_{-r}^{(0)}\right)^{r+3}\right), \\
& g_{2 r}^{(1)}:=x_{1} x_{-1},
\end{aligned}\right.
$$

and for $s=3,5, \ldots, r_{o}$,

$$
\begin{cases}g_{1 r}^{(s)}:=x_{0}\left(g_{2 r}^{(s-2)}\right)^{r+3}\left(\left(m_{+r}^{\left(r_{o}-2\right)}\right)^{r+3}-\left(m_{-r}^{\left(r_{o}-2\right)}\right)^{r+3}\right)\left(\left(m_{+r}^{\left(r_{o}-4\right)}\right)^{r+3}-\left(m_{-r}^{\left(r_{o}-4\right)}\right)^{r+3}\right) \\ & \cdots\left(\left(m_{+r}^{(s-2)}\right)^{r+3}-\left(m_{-r}^{(s-2)}\right)^{r+3}\right), \\ g_{2 r}^{(s)}:=g_{2 r}^{(s-2)} x_{s} x_{-s}+g_{1 r}^{(s-2)} . & \end{cases}
$$

Put $g_{1 r}:=g_{1 r}^{\left(r_{o}\right)}, g_{2 r}:=g_{2 r}^{\left(r_{o}\right)}$.
Proposition 3.3. $x_{0} J_{r}$ is generated by $x_{0} g_{1 r}, x_{0} g_{2 r}$ up to radical. Moreover, $g_{1 r}, g_{2 r}-m^{\left(r_{o}\right)} \in x_{0}\left(J_{r}\right)^{r+3}$.

Remark 3.4. If we remove x_{0} on the construction $g_{1 r}^{(s)}$, we obtain two elements which generate J_{r} up to radical. (We may also omit the power $r+3$ in each $g_{1 r}^{(s)}, g_{2 r}^{(s)}$.) Combining this with Lemma 3.2, we have ara $I_{r} \leq 4$.

On the proof of Proposition 3.3, the following result, which is essentially due to Schmitt and Vogel [14, Lemma p. 249], is useful.

Lemma 3.5. Let R be a commutative ring with unitary and I an ideal of R. Suppose that $a, b \in R$ satisfy $a b \in \sqrt{I}$. Then $a, b \in \sqrt{I+(a+b)}$.

Proof. Put $J=I+(a+b)$. Since $a^{2}=a(a+b)-a b$ and $a b \in \sqrt{I} \subset \sqrt{J}$, we have $a^{2} \in \sqrt{J}$. Hence $a \in \sqrt{J}$.

Instead of proving Proposition 3.3, we see the case where $r=4$.
Example 3.6. When $r=4$, the construction is done by 2 steps:

$$
\begin{aligned}
& \left\{\begin{array}{l}
g_{14}^{(1)}=x_{0}\left(\left(x_{4} x_{-3} x_{-1}\right)^{7}-\left(x_{-4} x_{3} x_{1}\right)^{7}\right)\left(\left(x_{4} x_{-3} x_{2} x_{-1}\right)^{7}-\left(x_{-4} x_{3} x_{-2} x_{1}\right)^{7}\right), \\
g_{24}^{(1)}=x_{1} x_{-1},
\end{array}\right. \\
& \left\{\begin{array}{l}
g_{14}=g_{14}^{(3)}=x_{0}\left(g_{24}^{(1)}\right)^{7}\left(\left(x_{4} x_{-3} x_{-1}\right)^{7}-\left(x_{-4} x_{3} x_{1}\right)^{7}\right), \\
g_{24}=g_{24}^{(3)}=x_{3} x_{1} x_{-1} x_{-3}+g_{14}^{(1)} .
\end{array}\right.
\end{aligned}
$$

It is easily to see that the product of two summands of g_{24} is in $\sqrt{\left(g_{14}\right)}$. Then we have $x_{3} x_{1} x_{-1} x_{-3}, g_{14}^{(1)} \in \sqrt{\left(g_{14}, g_{24}\right)}$ by Lemma 3.5. Since the product of 2 terms in each bracket of $g_{14}, g_{14}^{(1)}$ are divisible by $x_{3} x_{1} x_{-1} x_{-3}$, we conclude that $x_{0} g_{14}, x_{0} g_{24}$ generate $x_{0} J_{4}$ up to radical by repeated use of Lemma 3.5.

Now we return to the ideal I_{r} and explain the construction of 3 elements $q_{0 r}, q_{1 r}, q_{2 r}$ which generate I_{r} up to radical.

Set

$$
q_{0 r}:= \begin{cases}n_{+r}^{(0)}-n_{-r}^{(0)}, & \text { if } r \text { is odd } \\ n_{-r}^{(0)}-n_{+r}^{(0)}, & \text { if } r \text { is even. }\end{cases}
$$

The construction of $q_{1 r}, q_{2 r}$ is done inductively. Let $h_{1 r}, h_{2 r}$ be elements obtained from $x_{0} g_{1 r-1}, x_{0} g_{2 r-1}$ respectively, by substitutions $x_{k} \mapsto x_{k+1} ; x_{-k} \mapsto$ $x_{-(k+1)}(k=1,2, \ldots, r-1)$, which is the same ones we used to obtain J_{r-1}^{\prime} from J_{r-1}.

Starting with $q_{0 r}, h_{1 r}, h_{2 r}$, we construct $q_{i_{t} r}^{\left(r_{o}-t\right)}$ for $t=0,2,4, \ldots, r_{o}-1$, where i_{t} is 1 if t is a multiple of 4 ; otherwise 2. For $t=2,4, \ldots, r_{o}-1$, we set

$$
M_{r_{o}-t}:= \begin{cases}x_{r_{o}-t+2} m_{+r}^{\left(r_{o}-t\right)}-x_{-\left(r_{o}-t+2\right)} m_{-r}^{\left(r_{o}-t\right)}, & \text { if } r \text { is odd, } \\ x_{r_{o}-t+2} m_{-r}^{\left(r_{o}-t\right)}-x_{-\left(r_{o}-t+2\right)} m_{+r}^{\left(r_{o}-t\right)}, & \text { if } r \text { is even. }\end{cases}
$$

Put $Q_{r_{o}-t}:=\left(q_{0 r}, q_{i_{t-2} r}^{\left(r_{o}-t+2\right)}, q_{i_{t} r}^{\left(r_{o}-t\right)}\right)\left(t=0,2, \ldots, r_{0}-1\right)$, where $q_{i_{-2} r}^{\left(r_{o}+2\right)}:=h_{2 r}$. We will construct $q_{i_{t} r}^{\left(r_{o}-t\right)}$ so that $q_{i t r}^{\left(r_{o}-t\right)}$ and $Q_{r_{o}-t}$ satisfy the following lemmas:

Lemma 3.7. For $t=0,2, \ldots, r_{o}-1$,

$$
\begin{aligned}
& q_{i_{t} r}^{\left(r_{o}-t\right)}-M_{r_{o}-2} M_{r_{o}-4} \cdots M_{r_{o}-t} m^{\left(r_{o}-t\right)} \\
& \in\left(m^{\left(r_{o}\right)}, M_{r_{o}-2} m^{\left(r_{o}-2\right)}, M_{r_{o}-4} m^{\left(r_{o}-4\right)}, \ldots, M_{r_{o}-t+4} m^{\left(r_{o}-t+4\right)}\right) m^{\left(r_{o}-t\right)} \\
& \quad+x_{0}\left(J_{r-1}^{\prime}\right)^{r-(t / 2)} .
\end{aligned}
$$

Lemma 3.8. $x_{0} J_{r-1}^{\prime} \subset \sqrt{Q_{r_{o}}}$ and $m^{\left(r_{o}\right)}, n_{+r}^{(0)}, n_{-r}^{(0)} \in \sqrt{Q_{r_{o}}}$.
Lemma 3.9. For $t=2,4, \ldots, r_{o}-1, Q_{r_{o}-t+2} \subset \sqrt{Q_{r_{o}-t}}$ and $n_{+r}^{\left(r_{o}-t\right)}, n_{-r}^{\left(r_{o}-t\right)} \in$ $\sqrt{Q_{r_{o}-t}}$. In particular,
(1) $x_{0} J_{r-1}^{\prime}+\left(m^{\left(r_{o}\right)}, n_{+r}^{(0)}, n_{-r}^{(0)}\right) \subset \sqrt{Q_{r_{o}-t}}$.
(2) $n_{+r}^{\left(r_{o}-2\right)}, n_{-r}^{\left(r_{o}-2\right)}, n_{+r}^{\left(r_{o}-4\right)}, n_{-r}^{\left(r_{o}-4\right)}, \ldots, n_{+r}^{\left(r_{o}-t\right)}, n_{-r}^{\left(r_{o}-t\right)} \in \sqrt{Q_{r_{o}-t}}$.

By Lemma 3.9, we can conclude that $q_{0 r}, q_{i_{r_{o}-3 r} r}^{(3)}, q_{i_{r_{o-1} r} r}^{(1)}$, which are generators of Q_{1}, generate I_{r} up to radical.

The key idea of the construction is the following lemma which based on Barile's idea [1] (see also [3, 4, 7]).

Lemma 3.10. Let R be a commutative ring with unitary and I an ideal of R. Take elements $q_{1}, q_{2} \in I$ and $p_{1}, p_{2} \in R$. Suppose $q_{1}, q_{2} \in\left(p_{1}, p_{2}\right)$:

$$
\begin{equation*}
\binom{q_{1}}{q_{2}}=A\binom{p_{1}}{p_{2}}, \tag{3.1}
\end{equation*}
$$

where A is 2×2 matrix whose entries are in R. Then $(\operatorname{det} A) p_{1},(\operatorname{det} A) p_{2} \in I$. Proof. Multiply each side of (3.1) by the cofactor matrix of A from left.

We show the construction when $r=5$.

Example 3.11. In order to construct 3 elements q_{05}, q_{15}, q_{25} which generate I_{5} up to radical, we need 3 steps. The starting 3 elements are

$$
\begin{aligned}
& q_{05}=x_{5} x_{-4} x_{3} x_{-2} x_{1}-x_{-5} x_{4} x_{-3} x_{2} x_{-1}, \\
& h_{15} \in x_{0}\left(J_{4}^{\prime}\right)^{7}, \\
& h_{25}=x_{4} x_{2} x_{0} x_{-2} x_{-4}+\eta,
\end{aligned}
$$

where $\eta \in x_{0}^{2}\left(J_{4}^{\prime}\right)^{7}$.
(Step 1) We first construct $q_{15}^{(5)}$. Since $q_{05}, h_{25} \in\left(x_{-4} x_{-2}, x_{4} x_{2}\right)$, we can write

$$
\binom{q_{05}}{h_{25}}=A_{1}^{(5)}\binom{x_{-4} x_{-2}}{x_{4} x_{2}},
$$

where

$$
A_{1}^{(5)}=\left(\begin{array}{cc}
x_{5} x_{3} x_{1} & * \\
x_{0} \eta_{-}^{(51)} & x_{0} x_{-2} x_{-4}+x_{0} \eta_{+}^{(51)}
\end{array}\right),
$$

and $\eta_{-}^{(51)}, \eta_{+}^{(51)} \in x_{0}\left(J_{4}^{\prime}\right)^{6}$. Therefore

$$
\operatorname{det} A_{1}^{(5)}-x_{5} x_{3} x_{1} \cdot x_{0} x_{-2} x_{-4} \in x_{0}\left(J_{4}^{\prime}\right)^{6} .
$$

Then since $q_{05}, \operatorname{det} A_{1}^{(5)} \in\left(x_{-4} x_{-2}, x_{4} x_{2}\right)$, we can write

$$
\binom{q_{05}}{\operatorname{det} A_{1}^{(5)}}=A_{2}^{(5)}\binom{x_{-4} x_{-2}}{x_{4} x_{2}},
$$

where

$$
A_{2}^{(5)}=\left(\begin{array}{cc}
* & -x_{-5} x_{-3} x_{-1} \\
x_{0} x_{5} x_{3} x_{1}+x_{0} \eta_{-}^{(52)} & x_{0} \eta_{+}^{(52)}
\end{array}\right)
$$

and $\eta_{-}^{(52)}, \eta_{+}^{(52)} \in x_{0}\left(J_{4}^{\prime}\right)^{5}$. We set

$$
q_{15}^{(5)}:=\frac{\operatorname{det} A_{2}^{(5)}}{x_{0}}+h_{15}
$$

Note that $q_{15}^{(5)}=x_{5} x_{3} x_{1} x_{-1} x_{-3} x_{-5}+\eta^{(5)}$, where $\eta^{(5)} \in x_{0}\left(J_{4}^{\prime}\right)^{5}$. Therefore $q_{15}^{(5)}$ satisfies Lemma 3.7 with $t=0$. We show that $Q_{5}=\left(q_{05}, h_{25}, q_{15}^{(5)}\right)$ satisfies Lemma 3.8.

By Lemma 3.10, we have

$$
\operatorname{det} A_{2}^{(5)} x_{4} x_{2}, \operatorname{det} A_{2}^{(5)} x_{-4} x_{-2} \in \sqrt{\left(q_{05}, h_{25}\right)}
$$

Therefore the product of two terms of $q_{15}^{(5)}$ is in $\sqrt{\left(q_{05}, h_{25}\right)}$. Thus each term of $q_{15}^{(5)}$ is in $\sqrt{Q_{5}}$ by Lemma 3.5. In particular, $h_{15}, h_{25} \in \sqrt{Q_{5}}$. Since h_{15} and h_{25} generate $x_{0} J_{4}^{\prime}$ up to radical, we have $x_{0} J_{4}^{\prime} \subset \sqrt{Q_{5}}$. Then $x_{5} x_{3} x_{1} x_{-1} x_{-3} x_{-5} \in$ $\sqrt{Q_{5}}$ also follows. Moreover, by $q_{05} \in Q_{5}$ and Lemma 3.5, we have

$$
x_{5} x_{-4} x_{3} x_{-2} x_{1}, x_{-5} x_{4} x_{-3} x_{2} x_{-1} \in \sqrt{Q_{5}}
$$

(Step 2) Next we construct $q_{25}^{(3)}$. Since $q_{05}, q_{15}^{(5)} \in\left(x_{-4} x_{-2}, x_{-5}\right)$, we can write

$$
\binom{q_{05}}{q_{15}^{(5)}}=A_{+}^{(3)}\binom{x_{-4} x_{-2}}{x_{-5}},
$$

where

$$
A_{+}^{(3)}=\left(\begin{array}{cc}
x_{5} x_{3} x_{1} & * \\
\eta_{+}^{(31)} & x_{5} \cdot x_{3} x_{1} x_{-1} x_{-3}+\eta_{+}^{(32)}
\end{array}\right),
$$

and $\eta_{+}^{(31)}, \eta_{+}^{(32)} \in x_{0}\left(J_{4}^{\prime}\right)^{4}$. Similarly, since $q_{05}, q_{15}^{(5)} \in\left(x_{4} x_{2}, x_{5}\right)$, we can write

$$
\binom{q_{05}}{q_{15}^{(5)}}=A_{-}^{(3)}\binom{x_{4} x_{2}}{x_{5}},
$$

where

$$
A_{-}^{(3)}=\left(\begin{array}{cc}
-x_{-5} x_{-3} x_{-1} & * \\
\eta_{-}^{(31)} & x_{-5} \cdot x_{3} x_{1} x_{-1} x_{-3}+\eta_{-}^{(32)}
\end{array}\right),
$$

and $\eta_{-}^{(31)}, \eta_{-}^{(32)} \in x_{0}\left(J_{4}^{\prime}\right)^{4}$. Then

$$
\operatorname{det} A_{+}^{(3)}+\operatorname{det} A_{-}^{(3)}=\left(x_{5}^{2} x_{3} x_{1}-x_{-5}^{2} x_{-3} x_{-1}\right) x_{3} x_{1} x_{-1} x_{-3}+\eta^{(3)},
$$

where $\eta^{(3)} \in x_{0}\left(J_{4}^{\prime}\right)^{4}$. We set

$$
q_{25}^{(3)}:=\operatorname{det} A_{+}^{(3)}+\operatorname{det} A_{-}^{(3)}+\left(h_{25}\right)^{7} .
$$

It is easy to see that $q_{25}^{(3)}$ satisfies Lemma 3.7 with $t=2$. We show that $Q_{3}=\left(q_{05}, q_{15}^{(5)}, q_{25}^{(3)}\right)$ satisfies Lemma 3.9 with $t=2$.

By construction and Lemmas 3.10 and 3.5, we have

$$
\operatorname{det} A_{+}^{(3)}+\operatorname{det} A_{-}^{(3)}, h_{25} \in \sqrt{Q_{3}} .
$$

Then $Q_{5} \subset \sqrt{Q_{3}}$ follows. In particular, $x_{0} J_{4}^{\prime} \subset \sqrt{Q_{3}}$. It then follows that

$$
\left(x_{5}^{2} x_{3} x_{1}-x_{-5}^{2} x_{-3} x_{-1}\right) x_{3} x_{1} x_{-1} x_{-3} \in \sqrt{Q_{3}} .
$$

Since $x_{5} x_{3} x_{1} x_{-1} x_{-3} x_{-5} \in \sqrt{Q_{5}} \subset \sqrt{Q_{3}}$, we also have

$$
x_{5} \cdot x_{3} x_{1} x_{-1} x_{-3}, x_{-5} \cdot x_{3} x_{1} x_{-1} x_{-3} \in \sqrt{Q_{3}}
$$

by Lemma 3.5, as desired.
(Step 3) Finally we construct $q_{15}^{(1)}$. Since $q_{05}, q_{25}^{(3)} \in\left(x_{-2}, x_{-3}\right)$, we can write

$$
\binom{q_{05}}{q_{25}^{(3)}}=A_{+}^{(1)}\binom{x_{-2}}{x_{-3}},
$$

where

$$
A_{+}^{(3)}=\left(\begin{array}{cc}
x_{5} x_{-4} x_{3} x_{1} & * \\
\eta_{+}^{(11)} & \left(x_{5}^{2} x_{3} x_{1}-x_{-5}^{2} x_{-3} x_{-1}\right) x_{3} x_{1} x_{-1}+\eta_{+}^{(12)}
\end{array}\right),
$$

and $\eta_{+}^{(11)}, \eta_{+}^{(12)} \in x_{0}\left(J_{4}^{\prime}\right)^{3}$. Similarly, since $q_{05}, q_{15}^{(5)} \in\left(x_{2}, x_{3}\right)$, we can write

$$
\binom{q_{05}}{q_{25}^{(3)}}=A_{-}^{(1)}\binom{x_{2}}{x_{3}}
$$

where

$$
A_{-}^{(1)}=\left(\begin{array}{cc}
-x_{-5} x_{4} x_{-3} x_{-1} & * \\
\eta_{-}^{(11)} & \left(x_{5}^{2} x_{3} x_{1}-x_{-5}^{2} x_{-3} x_{-1}\right) x_{-3} x_{1} x_{-1}+\eta_{-}^{(12)}
\end{array}\right),
$$

and $\eta_{-}^{(11)}, \eta_{-}^{(12)} \in x_{0}\left(J_{4}^{\prime}\right)^{3}$. Then
$\operatorname{det} A_{+}^{(1)}+\operatorname{det} A_{-}^{(1)}=\left(x_{5}^{2} x_{3} x_{1}-x_{-5}^{2} x_{-3} x_{-1}\right)\left(x_{5} x_{-4} x_{3}^{2} x_{1}-x_{-5} x_{4} x_{-3}^{2} x_{-1}\right) x_{1} x_{-1}+\eta^{(1)}$, where $\eta^{(1)} \in x_{0}\left(J_{4}^{\prime}\right)^{3}$. We set

$$
q_{15}^{(1)}:=\operatorname{det} A_{+}^{(1)}+\operatorname{det} A_{-}^{(1)}+\left(q_{15}^{(5)}\right)^{2} .
$$

It is easy to see that $q_{15}^{(1)}$ satisfies Lemma 3.7 with $t=4$. We show that $Q_{1}=\left(q_{05}, q_{25}^{(3)}, q_{15}^{(1)}\right)$ satisfies Lemma 3.9 with $t=4$.

By construction and Lemmas 3.10 and 3.5, we have

$$
\operatorname{det} A_{+}^{(1)}+\operatorname{det} A_{-}^{(1)}, q_{15}^{(5)} \in \sqrt{Q_{1}} .
$$

Then $Q_{3} \subset \sqrt{Q_{1}}$ follows. In particular, $x_{0} J_{4}^{\prime} \subset \sqrt{Q_{1}}$. It then follows that

$$
\left(x_{5}^{2} x_{3} x_{1}-x_{-5}^{2} x_{-3} x_{-1}\right)\left(x_{5} x_{-4} x_{3}^{2} x_{1}-x_{-5} x_{4} x_{-3}^{2} x_{-1}\right) x_{1} x_{-1} \in \sqrt{Q_{1}} .
$$

Note that we also have $x_{5} x_{3} x_{1} x_{-1} x_{-3} x_{-5} \in \sqrt{Q_{1}}$. Then by repeated use of Lemma 3.5, we have

$$
x_{5} x_{-4} x_{3} \cdot x_{1} x_{-1}, x_{-5} x_{4} x_{-3} \cdot x_{1} x_{-1} \in \sqrt{Q_{1}}
$$

as desired.

References

[1] M. Barile, Arithmetical ranks of Stanley-Reisner ideals via linear algebra, Comm. Algebra 36 (2008), 4540-4556.
[2] M. Barile, D. Kiani, F. Mohammadi, and S. Yassemi, Arithmetical rank of the cyclic and bicyclic graphs, J. Algebra Appl. 11 (2012), 14pp.
[3] M. Barile and N. Terai, Arithmetical ranks of Stanley-Reisner ideals of simplicial complexes with a cone, Comm. Algebra, 38 (2010), 3686-3698.
[4] M. Barile and N. Terai, The Stanley-Reisner ideals of polygons as set-theoretic complete intersections, Comm. Algebra 39 (2011), 621-633.
[5] W. Bruns and J. Herzog, On multigraded resolutions, Math. Proc. Cambridge Philos. Soc. 118 (1995), 245-257.
[6] V. Ene, O. Olteanu and N. Terai, Arithmetical rank of lexsegment edge ideals, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 53 (101) (2010), 315-327.
[7] K. Kimura, Arithmetical rank of Cohen-Macaulay squarefree monomial ideals of height two, J. Commut. Algebra 3 (2011), 31-46.
[8] K. Kimura, G. Rinaldo, and N. Terai, Arithmetical rank of squarefree monomial ideals generated by five elements or with arithmetic degree four, Comm. Algebra 40 (2012), 4147-4170.
[9] K. Kimura and N. Terai, Binomial arithmetical rank of edge ideals of forests, Proc. Amer. Math. Soc. 141 (2013), 1925-1932.
[10] K. Kimura, N. Terai and K. Yoshida, Arithmetical rank of squarefree monomial ideals of small arithmetic degree, J. Algebraic Combin. 29 (2009), 389-404.
[11] K. Kimura, N. Terai and K. Yoshida, Arithmetical rank of monomial ideals of deviation two, in Combinatorial Aspects of Commutative Algebra (V. Ene and E. Miller eds.), Contemporary Mathematics, AMS, 502 (2009), 73-112.
[12] M. Kummini, Regularity, depth and arithmetic rank of bipartite edge ideals, J. Algebraic Combin. 30 (2009), 429-445.
[13] G. Lyubeznik, On the local cohomology modules $H_{\mathfrak{a}}^{i}(R)$ for ideals \mathfrak{a} generated by monomials in an R-sequence, in Complete Intersections, Acireale, 1983 (S. Greco and R. Strano eds.), Lecture Notes in Mathematics No. 1092, Springer-Verlag, 1984, pp. $214-$ 220.
[14] T. Schmitt and W. Vogel, Note on set-theoretic intersections of subvarieties of projective space, Math. Ann. 245 (1979), 247-253.
[15] Z. Yan, An étale analog of the Goresky-Macpherson formula for subspace arrangements, J. Pure Appl. Algebra 146 (2000), 305-318.

[^0]: ${ }^{1}$ This paper is an announcement of our result and the detailed version will be submitted to somewhere.
 ${ }^{2}$ This work was partially supported by JSPS Grant-in-Aid for Scientific Research (C) 23540053 and JSPS Grant-in-Aid for Young Scientists (B) 24740008.
 ${ }^{3}$ E-mail: skkimur@ipc.shizuoka.ac.jp
 ${ }^{4}$ E-mail: terai@cc.saga-u.ac.jp

