Arithmetical rank of Gorenstein squarefree monomial ideals of height three ^{1 2}

Kyouko Kimura³

Department of Mathematics, Graduate School of Science, Shizuoka University

Naoki Terai⁴

Department of Mathematics, Faculty of Culture and Education, Saga University

1. INTRODUCTION

Let S be a polynomial ring over a field K and I a squarefree monomial ideal of S. The arithmetical rank of I, denoted by ara I, is defined as the minimum number u of elements $q_1, \ldots, q_u \in S$ such that $\sqrt{(q_1, \ldots, q_u)} = \sqrt{I}(=I)$. When this is the case, we say that q_1, \ldots, q_u generate I up to radical. By the result of Lyubeznik [13], we have the following inequalities:

height $I \leq \operatorname{pd} S/I \leq \operatorname{ara} I$,

where $\operatorname{pd} S/I$ is the projective dimension of S/I (over S). If ara I = height I holds, then I is said to be a set-theoretic complete intersection. By the inequalities, it is natural to ask which ideal I satisfies ara $I = \operatorname{pd} S/I$ or which (Cohen-Macaulay) ideal I is a set-theoretic complete intersection. Many authors have studied this problem and proved ara $I = \operatorname{pd} S/I$ for some ideals I, see e.g., [2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14]. However, counterexamples for the equality were also found; see [15, 11], though the projective dimensions of those are depend on the characteristic of the base field K.

Among the above references, we note [7] and [15]. In [7], the first author proved that ara I = pd S/I holds (and thus, I is a set-theoretic complete intersection) for a Cohen-Macaulay squarefree monomial ideal I of height 2. On the other hand, in [15], Yan found a counterexample for the equality among Cohen-Macaulay squarefree monomial ideals of height 3: let Δ be the triangulation of the real projective plane with 6 vertices. Then the Stanley-Reisner ideal I_{Δ} is of height 3, pd S/I_{Δ} is 3 if char $K \neq 2$; 4 if char K = 2. Yan [15] proved that ara $I_{\Delta} = 4$ for any characteristic K.

Then it is natural to ask whether the equality holds for a Gorenstein squarefree monomial ideal of height 3. The following theorem is the main result of this article.

¹This paper is an announcement of our result and the detailed version will be submitted to somewhere.

 $^{^2 {\}rm This}$ work was partially supported by JSPS Grant-in-Aid for Scientific Research (C) 23540053 and JSPS Grant-in-Aid for Young Scientists (B) 24740008.

³E-mail: skkimur@ipc.shizuoka.ac.jp

⁴E-mail: terai@cc.saga-u.ac.jp

Theorem 1.1. Let $I \subset S$ be a Gorenstein squarefree monomial ideal of height 3. Then I is a set-theoretic complete intersection. That is, $\operatorname{ara} I = \operatorname{pd} S/I = \operatorname{height} I = 3$.

Remark 1.2. It follows that any Gorenstein monomial ideal is a set-theoretic complete intersection since the radical of a Gorenstein monomial ideal is Gorenstein.

In order to prove Theorem 1.1, we must construct 3 elements which generate the ideal up to radical. We will explain the construction by an example instead of complete construction.

2. Gorenstein squarefree monomial ideals of height three

Bruns and Herzog [5] proved that a Gorenstein squarefree monomial ideal of height 3 is essentially I_r (see below). In this section, we recall their result.

Let $r \ge 1$ be an integer and I_r the ideal of $K[x_1, \ldots, x_{2r+1}]$ generated by 2r + 1 monomials u_1, \ldots, u_{2r+1} :

$$u_i = x_i x_{i+1} \cdots x_{i+r-1}, \qquad i = 1, 2, \dots, 2r+1,$$

where we consider x_j as $x_{j-(2r+1)}$ if j > 2r+1.

Remark 2.1. I_r is the Stanley–Reisner ideal of the boundary complex of cyclic polytope C(2r+1, 2r-2).

Before stating the result by Bruns and Herzog [5], we define a terminology. Let I be a squarefree monomial ideal of $S = K[x_1, \ldots, x_n]$. Let x_{i1}, x_{i2} be new variables. Set $S' = K[x_1, \ldots, x_{i-1}, x_{i1}, x_{i2}, x_{i+1}, \ldots, x_n]$. Then by substitution $x_i \mapsto x_{i1}x_{i2}$ for each monomial generator of I, we obtain the new ideal $J \subset S'$. We call this transformation a 1-vertex inflation.

Theorem 2.2 (Bruns and Herzog [5]). Let I_r be the ideal defined above.

- (1) I_r is a Gorenstein squarefree monomial ideal of height 3.
- (2) Any Gorenstein squarefree monomial ideal of height 3 is obtained from I_r for some r by a series of 1-vertex inflations.

By Theorem 2.2, if we prove that I_r is a set-theoretic complete intersection, then Theorem 1.1 follows.

Next we modify I_r by renumbering variables. Let r_o be the largest odd integer with $r_o \leq r$ and r_e the largest even integer with $r_e \leq r$. Let us consider the following 2r + 1 variables:

 $x_1, x_3, \ldots, x_{r_o}, x_{-r_e}, x_{-(r_e-2)}, \ldots, x_{-2}, x_0, x_2, \ldots, x_{r_e-2}, x_{r_e}, x_{-r_o}, \ldots, x_{-3}, x_{-1}$. Let S_r be the polynomial ring over K in the above variables. Recall that I_r is generated by the 2r + 1 products of continuous r variables. Thus we may assume that the order of variables are as in (2.1). Then $I_r \subset S_r$ is generated by the following 2r + 1 monomials:

$$n_{+r}^{(0)}, n_{-r}^{(0)}, \qquad n_{+r}^{(s)}, n_{-r}^{(s)}, \quad s = 1, 3, \dots, r_o - 2, m^{(r-1)}, \qquad m_{+r}^{(t)}, m_{-r}^{(t)}, \quad t = 0, 2, \dots, r_e - 2, 2$$

where

$$n_{+r}^{(0)} := x_r x_{-(r-1)} \cdots x_{\pm 3} x_{\mp 2} x_{\pm 1}, \qquad n_{-r}^{(0)} := x_{-r} x_{r-1} \cdots x_{\mp 3} x_{\pm 2} x_{\mp 1},$$

and where for an odd integer s,

$$\begin{cases} m_{+r}^{(s)} \coloneqq x_{r}x_{-(r-1)}\cdots x_{\mp(s+3)}x_{\pm(s+2)}\cdots x_{\pm s}x_{\pm(s-2)}\cdots x_{\pm 1}, \\ m_{-r}^{(s)} \coloneqq x_{-r}x_{r-1}\cdots x_{\pm(s+3)}x_{\mp(s+2)}\cdots x_{\mp s}x_{\mp(s-2)}\cdots x_{\mp 1}, \\ m^{(s)} \coloneqq x_{s}x_{s-2}\cdots x_{1}x_{-1}\cdots x_{-(s-2)}x_{-s}, \\ n_{+r}^{(s)} \coloneqq \sqrt{m_{+r}^{(s)}m^{(s)}}, \qquad n_{-r}^{(s)} \coloneqq \sqrt{m_{-r}^{(s)}m^{(s)}}, \end{cases}$$

and where for an even integer t,

$$\begin{cases} m_{+r}^{(t)} := x_r x_{-(r-1)} \cdots x_{\pm(t+3)} x_{\mp(t+2)} \cdot x_t x_{t-2} \cdots x_2 x_0 x_{-2} \cdots x_{-(t-2)} x_{-t}, \\ m_{-r}^{(t)} := x_{-r} x_{r-1} \cdots x_{\mp(t+3)} x_{\pm(t+2)} \cdot x_t x_{t-2} \cdots x_2 x_0 x_{-2} \cdots x_{-(t-2)} x_{-t}, \\ m^{(t)} := x_t x_{t-2} \cdots x_2 x_0 x_{-2} \cdots x_{-(t-2)} x_{-t}. \end{cases}$$

Example 2.3. I_4 is generated by the following 9 monomials:

Example 2.4. I_5 is generated by the following 11 monomials:

$x_5 x_{-4} x_3 x_{-2} x_1,$	$x_{-5}x_4x_{-3}x_2x_{-1},$	$x_5 x_{-4} x_3 x_{-2} x_0,$	$x_{-5}x_4x_{-3}x_2x_0,$
$x_5 x_{-4} x_3 \cdot x_1 x_{-1},$	$x_{-5}x_4x_{-3} \cdot x_1x_{-1},$	$x_5 x_{-4} \cdot x_2 x_0 x_{-2},$	$x_{-5}x_4 \cdot x_2 x_0 x_{-2},$
$x_5 \cdot x_3 x_1 x_{-1} x_{-3},$	$x_{-5} \cdot x_3 x_1 x_{-1} x_{-3},$	$x_4 x_2 x_0 x_{-2} x_{-4}.$	

3. Key Lemmas and 3 elements which generate I_r up to radical

In this section, we explain the idea of the proof of Theorem 1.1. The cases r = 1, 2 are easy.

Example 3.1. Since $I_1 = (x_0, x_{-1}, x_1)$, there is nothing to prove for the case r = 1.

Let us consider the case r = 2. I_2 is generated by the following 5 monomials:

$$x_2x_{-1}, x_{-2}x_1, x_1x_{-1}, x_2x_0, x_{-2}x_0.$$

Actually, I_2 is the Stanley–Reisner ideal of 5-cycle. This ideal is known to be a set-theoretic complete intersection; see e.g., [2, 4]. For example, following 3 elements generate I_2 up to radical:

$$x_1x_{-1}, x_2x_{-1} + x_{-2}x_0, x_{-2}x_1 + x_2x_0.$$

In what follows, we assume $r \geq 3$. We divide the minimal monomial generators of I_r by the divisibility by x_0 . We denote by J_r , the ideal of S_r generated by the minimal monomial generators of I_r which are not divisible by x_0 . Let J'_r be the ideal of S_{r+1} obtained from J_r by substitutions $x_k \mapsto x_{k+1}$ and $x_{-k} \mapsto x_{-(k+1)}$ (k = 1, 2, ..., r). **Lemma 3.2.** Let $r \geq 3$ be an integer. Then $I_r = J_r + x_0 J'_{r-1}$.

We first construct 2 elements which generate $x_0 J_r$ up to radical. Set

$$\begin{cases} g_{1r}^{(1)} := x_0 ((m_{+r}^{(r_o-2)})^{r+3} - (m_{-r}^{(r_o-2)})^{r+3}) ((m_{+r}^{(r_o-4)})^{r+3} - (m_{-r}^{(r_o-4)})^{r+3}) \\ & \cdots ((m_{+r}^{(1)})^{r+3} - (m_{-r}^{(1)})^{r+3}) ((n_{+r}^{(0)})^{r+3} - (n_{-r}^{(0)})^{r+3}), \\ g_{2r}^{(1)} := x_1 x_{-1}, \end{cases}$$

and for $s = 3, 5, ..., r_o$,

$$\begin{cases} g_{1r}^{(s)} := x_0 (g_{2r}^{(s-2)})^{r+3} ((m_{+r}^{(r_o-2)})^{r+3} - (m_{-r}^{(r_o-2)})^{r+3}) ((m_{+r}^{(r_o-4)})^{r+3} - (m_{-r}^{(r_o-4)})^{r+3}) \\ & \cdots ((m_{+r}^{(s-2)})^{r+3} - (m_{-r}^{(s-2)})^{r+3}), \\ g_{2r}^{(s)} := g_{2r}^{(s-2)} x_s x_{-s} + g_{1r}^{(s-2)}. \end{cases}$$

Put $g_{1r} := g_{1r}^{(r_o)}, g_{2r} := g_{2r}^{(r_o)}.$

Proposition 3.3. x_0J_r is generated by x_0g_{1r}, x_0g_{2r} up to radical. Moreover, $g_{1r}, g_{2r} - m^{(r_o)} \in x_0(J_r)^{r+3}$.

Remark 3.4. If we remove x_0 on the construction $g_{1r}^{(s)}$, we obtain two elements which generate J_r up to radical. (We may also omit the power r + 3 in each $g_{1r}^{(s)}, g_{2r}^{(s)}$.) Combining this with Lemma 3.2, we have ara $I_r \leq 4$.

On the proof of Proposition 3.3, the following result, which is essentially due to Schmitt and Vogel [14, Lemma p. 249], is useful.

Lemma 3.5. Let R be a commutative ring with unitary and I an ideal of R. Suppose that $a, b \in R$ satisfy $ab \in \sqrt{I}$. Then $a, b \in \sqrt{I + (a + b)}$.

Proof. Put J = I + (a + b). Since $a^2 = a(a + b) - ab$ and $ab \in \sqrt{I} \subset \sqrt{J}$, we have $a^2 \in \sqrt{J}$. Hence $a \in \sqrt{J}$.

Instead of proving Proposition 3.3, we see the case where r = 4.

Example 3.6. When r = 4, the construction is done by 2 steps:

$$\begin{cases} g_{14}^{(1)} = x_0((x_4x_{-3}x_{-1})^7 - (x_{-4}x_3x_1)^7)((x_4x_{-3}x_2x_{-1})^7 - (x_{-4}x_3x_{-2}x_1)^7), \\ g_{24}^{(1)} = x_1x_{-1}, \end{cases}$$

$$\begin{cases} g_{14} = g_{14}^{(3)} = x_0(g_{24}^{(1)})^7((x_4x_{-3}x_{-1})^7 - (x_{-4}x_3x_1)^7), \\ g_{24} = g_{24}^{(3)} = x_3x_1x_{-1}x_{-3} + g_{14}^{(1)}. \end{cases}$$

It is easily to see that the product of two summands of g_{24} is in $\sqrt{(g_{14})}$. Then we have $x_3x_1x_{-1}x_{-3}, g_{14}^{(1)} \in \sqrt{(g_{14}, g_{24})}$ by Lemma 3.5. Since the product of 2 terms in each bracket of $g_{14}, g_{14}^{(1)}$ are divisible by $x_3x_1x_{-1}x_{-3}$, we conclude that x_0g_{14}, x_0g_{24} generate x_0J_4 up to radical by repeated use of Lemma 3.5. Now we return to the ideal I_r and explain the construction of 3 elements q_{0r}, q_{1r}, q_{2r} which generate I_r up to radical.

 Set

$$q_{0r} := \begin{cases} n_{+r}^{(0)} - n_{-r}^{(0)}, & \text{if } r \text{ is odd,} \\ n_{-r}^{(0)} - n_{+r}^{(0)}, & \text{if } r \text{ is even.} \end{cases}$$

The construction of q_{1r}, q_{2r} is done inductively. Let h_{1r}, h_{2r} be elements obtained from x_0g_{1r-1}, x_0g_{2r-1} respectively, by substitutions $x_k \mapsto x_{k+1}; x_{-k} \mapsto x_{-(k+1)}$ $(k = 1, 2, \ldots, r-1)$, which is the same ones we used to obtain J'_{r-1} from J_{r-1} .

Starting with q_{0r} , h_{1r} , h_{2r} , we construct $q_{i_tr}^{(r_o-t)}$ for $t = 0, 2, 4, \ldots, r_o-1$, where i_t is 1 if t is a multiple of 4; otherwise 2. For $t = 2, 4, \ldots, r_o-1$, we set

$$M_{r_o-t} := \begin{cases} x_{r_o-t+2}m_{+r}^{(r_o-t)} - x_{-(r_o-t+2)}m_{-r}^{(r_o-t)}, & \text{if } r \text{ is odd,} \\ x_{r_o-t+2}m_{-r}^{(r_o-t)} - x_{-(r_o-t+2)}m_{+r}^{(r_o-t)}, & \text{if } r \text{ is even.} \end{cases}$$

Put $Q_{r_o-t} := (q_{0r}, q_{i_{t-2r}}^{(r_o-t+2)}, q_{i_{tr}}^{(r_o-t)})$ $(t = 0, 2, ..., r_0 - 1)$, where $q_{i_{-2r}}^{(r_o+2)} := h_{2r}$. We will construct $q_{i_{tr}}^{(r_o-t)}$ so that $q_{i_{tr}}^{(r_o-t)}$ and Q_{r_o-t} satisfy the following lemmas:

Lemma 3.7. For $t = 0, 2, \ldots, r_o - 1$,

$$q_{itr}^{(r_o-t)} - M_{r_o-2}M_{r_o-4} \cdots M_{r_o-t}m^{(r_o-t)}$$

$$\in (m^{(r_o)}, M_{r_o-2}m^{(r_o-2)}, M_{r_o-4}m^{(r_o-4)}, \dots, M_{r_o-t+4}m^{(r_o-t+4)})m^{(r_o-t)}$$

$$+ x_0(J'_{r-1})^{r-(t/2)}.$$

Lemma 3.8. $x_0 J'_{r-1} \subset \sqrt{Q_{r_o}}$ and $m^{(r_o)}, n^{(0)}_{+r}, n^{(0)}_{-r} \in \sqrt{Q_{r_o}}$.

Lemma 3.9. For $t = 2, 4, ..., r_o - 1$, $Q_{r_o-t+2} \subset \sqrt{Q_{r_o-t}}$ and $n_{+r}^{(r_o-t)}, n_{-r}^{(r_o-t)} \in \sqrt{Q_{r_o-t}}$. In particular,

(1)
$$x_0 J'_{r-1} + (m^{(r_o)}, n^{(0)}_{+r}, n^{(0)}_{-r}) \subset \sqrt{Q_{r_o-t}}.$$

(2) $n^{(r_o-2)}_{+r}, n^{(r_o-2)}_{-r}, n^{(r_o-4)}_{+r}, n^{(r_o-4)}_{-r}, \dots, n^{(r_o-t)}_{+r}, n^{(r_o-t)}_{-r} \in \sqrt{Q_{r_o-t}}.$

By Lemma 3.9, we can conclude that $q_{0r}, q_{i_{r_o-3}r}^{(3)}, q_{i_{r_o-1}r}^{(1)}$, which are generators of Q_1 , generate I_r up to radical.

The key idea of the construction is the following lemma which based on Barile's idea [1] (see also [3, 4, 7]).

Lemma 3.10. Let R be a commutative ring with unitary and I an ideal of R. Take elements $q_1, q_2 \in I$ and $p_1, p_2 \in R$. Suppose $q_1, q_2 \in (p_1, p_2)$:

(3.1)
$$\begin{pmatrix} q_1 \\ q_2 \end{pmatrix} = A \begin{pmatrix} p_1 \\ p_2 \end{pmatrix},$$

where A is 2×2 matrix whose entries are in R. Then $(\det A)p_1, (\det A)p_2 \in I$.

Proof. Multiply each side of (3.1) by the cofactor matrix of A from left. \Box

We show the construction when r = 5.

Example 3.11. In order to construct 3 elements q_{05}, q_{15}, q_{25} which generate I_5 up to radical, we need 3 steps. The starting 3 elements are

$$q_{05} = x_5 x_{-4} x_3 x_{-2} x_1 - x_{-5} x_4 x_{-3} x_2 x_{-1},$$

$$h_{15} \in x_0 (J'_4)^7,$$

$$h_{25} = x_4 x_2 x_0 x_{-2} x_{-4} + \eta,$$

where $\eta \in x_0^2(J'_4)^7$.

(Step 1) We first construct $q_{15}^{(5)}$. Since $q_{05}, h_{25} \in (x_{-4}x_{-2}, x_4x_2)$, we can write

$$\begin{pmatrix} q_{05} \\ h_{25} \end{pmatrix} = A_1^{(5)} \begin{pmatrix} x_{-4}x_{-2} \\ x_4x_2 \end{pmatrix},$$

where

$$A_1^{(5)} = \begin{pmatrix} x_5 x_3 x_1 & * \\ x_0 \eta_-^{(51)} & x_0 x_{-2} x_{-4} + x_0 \eta_+^{(51)} \end{pmatrix},$$

and $\eta_{-}^{(51)}, \eta_{+}^{(51)} \in x_0(J'_4)^6$. Therefore

$$\det A_1^{(5)} - x_5 x_3 x_1 \cdot x_0 x_{-2} x_{-4} \in x_0 (J_4')^6.$$

Then since q_{05} , det $A_1^{(5)} \in (x_{-4}x_{-2}, x_4x_2)$, we can write

$$\begin{pmatrix} q_{05} \\ \det A_1^{(5)} \end{pmatrix} = A_2^{(5)} \begin{pmatrix} x_{-4}x_{-2} \\ x_4x_2 \end{pmatrix},$$

where

$$A_2^{(5)} = \begin{pmatrix} * & -x_{-5}x_{-3}x_{-1} \\ x_0x_5x_3x_1 + x_0\eta_-^{(52)} & x_0\eta_+^{(52)} \end{pmatrix}$$

and $\eta_{-}^{(52)}, \eta_{+}^{(52)} \in x_0(J'_4)^5$. We set

$$q_{15}^{(5)} := \frac{\det A_2^{(5)}}{x_0} + h_{15}.$$

Note that $q_{15}^{(5)} = x_5 x_3 x_1 x_{-1} x_{-3} x_{-5} + \eta^{(5)}$, where $\eta^{(5)} \in x_0(J'_4)^5$. Therefore $q_{15}^{(5)}$ satisfies Lemma 3.7 with t = 0. We show that $Q_5 = (q_{05}, h_{25}, q_{15}^{(5)})$ satisfies Lemma 3.8.

By Lemma 3.10, we have

$$\det A_2^{(5)} x_4 x_2, \ \det A_2^{(5)} x_{-4} x_{-2} \in \sqrt{(q_{05}, h_{25})}$$

Therefore the product of two terms of $q_{15}^{(5)}$ is in $\sqrt{(q_{05}, h_{25})}$. Thus each term of $q_{15}^{(5)}$ is in $\sqrt{Q_5}$ by Lemma 3.5. In particular, $h_{15}, h_{25} \in \sqrt{Q_5}$. Since h_{15} and h_{25} generate $x_0 J'_4$ up to radical, we have $x_0 J'_4 \subset \sqrt{Q_5}$. Then $x_5 x_3 x_1 x_{-1} x_{-3} x_{-5} \in \sqrt{Q_5}$ also follows. Moreover, by $q_{05} \in Q_5$ and Lemma 3.5, we have

$$x_5 x_{-4} x_3 x_{-2} x_1, \ x_{-5} x_4 x_{-3} x_2 x_{-1} \in \sqrt{Q_5}.$$

(Step 2) Next we construct $q_{25}^{(3)}$. Since $q_{05}, q_{15}^{(5)} \in (x_{-4}x_{-2}, x_{-5})$, we can write

where

$$A_{+}^{(3)} = \begin{pmatrix} x_{5}x_{3}x_{1} & * \\ \eta_{+}^{(31)} & x_{5} \cdot x_{3}x_{1}x_{-1}x_{-3} + \eta_{+}^{(32)} \end{pmatrix},$$

and $\eta_{+}^{(31)}, \eta_{+}^{(32)} \in x_0(J'_4)^4$. Similarly, since $q_{05}, q_{15}^{(5)} \in (x_4x_2, x_5)$, we can write

$$\begin{pmatrix} q_{05} \\ q_{15}^{(5)} \end{pmatrix} = A_{-}^{(3)} \begin{pmatrix} x_4 x_2 \\ x_5 \end{pmatrix}$$

where

$$A_{-}^{(3)} = \begin{pmatrix} -x_{-5}x_{-3}x_{-1} & * \\ \eta_{-}^{(31)} & x_{-5} \cdot x_{3}x_{1}x_{-1}x_{-3} + \eta_{-}^{(32)} \end{pmatrix}$$

and $\eta_{-}^{(31)}, \eta_{-}^{(32)} \in x_0(J'_4)^4$. Then

$$\det A_{+}^{(3)} + \det A_{-}^{(3)} = (x_{5}^{2}x_{3}x_{1} - x_{-5}^{2}x_{-3}x_{-1})x_{3}x_{1}x_{-1}x_{-3} + \eta^{(3)},$$

where $\eta^{(3)} \in x_0(J'_4)^4$. We set

$$q_{25}^{(3)} := \det A_+^{(3)} + \det A_-^{(3)} + (h_{25})^7$$

It is easy to see that $q_{25}^{(3)}$ satisfies Lemma 3.7 with t = 2. We show that $Q_3 = (q_{05}, q_{15}^{(5)}, q_{25}^{(3)})$ satisfies Lemma 3.9 with t = 2. By construction and Lemmas 3.10 and 3.5, we have

$$\det A_+^{(3)} + \det A_-^{(3)}, \ h_{25} \in \sqrt{Q_3}.$$

Then $Q_5 \subset \sqrt{Q_3}$ follows. In particular, $x_0 J'_4 \subset \sqrt{Q_3}$. It then follows that

$$(x_5^2 x_3 x_1 - x_{-5}^2 x_{-3} x_{-1}) x_3 x_1 x_{-1} x_{-3} \in \sqrt{Q_3}.$$

Since $x_5 x_3 x_1 x_{-1} x_{-3} x_{-5} \in \sqrt{Q_5} \subset \sqrt{Q_3}$, we also have

$$x_5 \cdot x_3 x_1 x_{-1} x_{-3}, \ x_{-5} \cdot x_3 x_1 x_{-1} x_{-3} \in \sqrt{Q_3}$$

by Lemma 3.5, as desired.

(Step 3) Finally we construct $q_{15}^{(1)}$. Since $q_{05}, q_{25}^{(3)} \in (x_{-2}, x_{-3})$, we can write

$$\begin{pmatrix} q_{05} \\ q_{25}^{(3)} \end{pmatrix} = A_{+}^{(1)} \begin{pmatrix} x_{-2} \\ x_{-3} \end{pmatrix},$$

where

$$A_{+}^{(3)} = \begin{pmatrix} x_5 x_{-4} x_3 x_1 & * \\ \eta_{+}^{(11)} & (x_5^2 x_3 x_1 - x_{-5}^2 x_{-3} x_{-1}) x_3 x_1 x_{-1} + \eta_{+}^{(12)} \end{pmatrix}$$

and $\eta_{+}^{(11)}, \eta_{+}^{(12)} \in x_0(J'_4)^3$. Similarly, since $q_{05}, q_{15}^{(5)} \in (x_2, x_3)$, we can write

$$\begin{pmatrix} q_{05} \\ q_{25}^{(3)} \end{pmatrix} = A_{-}^{(1)} \begin{pmatrix} x_2 \\ x_3 \end{pmatrix}$$

where

$$A_{-}^{(1)} = \begin{pmatrix} -x_{-5}x_{4}x_{-3}x_{-1} & * \\ \eta_{-}^{(11)} & (x_{5}^{2}x_{3}x_{1} - x_{-5}^{2}x_{-3}x_{-1})x_{-3}x_{1}x_{-1} + \eta_{-}^{(12)} \end{pmatrix},$$

and $\eta_{-}^{(11)}, \eta_{-}^{(12)} \in x_0(J'_4)^3$. Then $\det A_{+}^{(1)} + \det A_{-}^{(1)} = (x_5^2 x_3 x_1 - x_{-5}^2 x_{-3} x_{-1})(x_5 x_{-4} x_3^2 x_1 - x_{-5} x_4 x_{-3}^2 x_{-1}) x_1 x_{-1} + \eta^{(1)},$ where $\eta^{(1)} \in x_0(J'_4)^3$. We set

$$q_{15}^{(1)} := \det A_+^{(1)} + \det A_-^{(1)} + (q_{15}^{(5)})^2.$$

It is easy to see that $q_{15}^{(1)}$ satisfies Lemma 3.7 with t = 4. We show that $Q_1 = (q_{05}, q_{25}^{(3)}, q_{15}^{(1)})$ satisfies Lemma 3.9 with t = 4.

By construction and Lemmas 3.10 and 3.5, we have

$$\det A_{+}^{(1)} + \det A_{-}^{(1)}, \ q_{15}^{(5)} \in \sqrt{Q_1}.$$

Then $Q_3 \subset \sqrt{Q_1}$ follows. In particular, $x_0 J'_4 \subset \sqrt{Q_1}$. It then follows that

$$(x_5^2 x_3 x_1 - x_{-5}^2 x_{-3} x_{-1})(x_5 x_{-4} x_3^2 x_1 - x_{-5} x_4 x_{-3}^2 x_{-1})x_1 x_{-1} \in \sqrt{Q_1}.$$

Note that we also have $x_5x_3x_1x_{-1}x_{-3}x_{-5} \in \sqrt{Q_1}$. Then by repeated use of Lemma 3.5, we have

$$x_5x_{-4}x_3 \cdot x_1x_{-1}, \ x_{-5}x_4x_{-3} \cdot x_1x_{-1} \in \sqrt{Q_1},$$

as desired.

References

- M. Barile, Arithmetical ranks of Stanley-Reisner ideals via linear algebra, Comm. Algebra 36 (2008), 4540–4556.
- [2] M. Barile, D. Kiani, F. Mohammadi, and S. Yassemi, Arithmetical rank of the cyclic and bicyclic graphs, J. Algebra Appl. 11 (2012), 14pp.
- [3] M. Barile and N. Terai, Arithmetical ranks of Stanley-Reisner ideals of simplicial complexes with a cone, Comm. Algebra, 38 (2010), 3686–3698.
- [4] M. Barile and N. Terai, The Stanley-Reisner ideals of polygons as set-theoretic complete intersections, Comm. Algebra 39 (2011), 621–633.
- [5] W. Bruns and J. Herzog, On multigraded resolutions, Math. Proc. Cambridge Philos. Soc. 118 (1995), 245–257.
- [6] V. Ene, O. Olteanu and N. Terai, Arithmetical rank of lexsegment edge ideals, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 53 (101) (2010), 315–327.
- [7] K. Kimura, Arithmetical rank of Cohen-Macaulay squarefree monomial ideals of height two, J. Commut. Algebra 3 (2011), 31–46.
- [8] K. Kimura, G. Rinaldo, and N. Terai, Arithmetical rank of squarefree monomial ideals generated by five elements or with arithmetic degree four, Comm. Algebra 40 (2012), 4147–4170.
- K. Kimura and N. Terai, Binomial arithmetical rank of edge ideals of forests, Proc. Amer. Math. Soc. 141 (2013), 1925–1932.
- [10] K. Kimura, N. Terai and K. Yoshida, Arithmetical rank of squarefree monomial ideals of small arithmetic degree, J. Algebraic Combin. 29 (2009), 389–404.
- [11] K. Kimura, N. Terai and K. Yoshida, Arithmetical rank of monomial ideals of deviation two, in Combinatorial Aspects of Commutative Algebra (V. Ene and E. Miller eds.), Contemporary Mathematics, AMS, **502** (2009), 73–112.
- [12] M. Kummini, Regularity, depth and arithmetic rank of bipartite edge ideals, J. Algebraic Combin. 30 (2009), 429–445.

- [13] G. Lyubeznik, On the local cohomology modules $H^i_{\mathfrak{a}}(R)$ for ideals a generated by monomials in an R-sequence, in Complete Intersections, Acireale, 1983 (S. Greco and R. Strano eds.), Lecture Notes in Mathematics No. 1092, Springer-Verlag, 1984, pp. 214–220.
- [14] T. Schmitt and W. Vogel, Note on set-theoretic intersections of subvarieties of projective space, Math. Ann. 245 (1979), 247–253.
- [15] Z. Yan, An étale analog of the Goresky-Macpherson formula for subspace arrangements, J. Pure Appl. Algebra 146 (2000), 305–318.