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1. Introduction

Let S be a polynomial ring over a field K and I a squarefree monomial ideal
of S. The arithmetical rank of I, denoted by ara I, is defined as the minimum
number u of elements q1, . . . , qu ∈ S such that

√
(q1, . . . , qu) =

√
I(= I). When

this is the case, we say that q1, . . . , qu generate I up to radical. By the result
of Lyubeznik [13], we have the following inequalities:

height I ≤ pdS/I ≤ ara I,

where pdS/I is the projective dimension of S/I (over S). If ara I = height I
holds, then I is said to be a set-theoretic complete intersection. By the in-
equalities, it is natural to ask which ideal I satisfies ara I = pdS/I or which
(Cohen–Macaulay) ideal I is a set-theoretic complete intersection. Many au-
thors have studied this problem and proved ara I = pdS/I for some ideals
I, see e.g., [2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14]. However, counterexamples for
the equality were also found; see [15, 11], though the projective dimensions of
those are depend on the characteristic of the base field K.
Among the above references, we note [7] and [15]. In [7], the first author

proved that ara I = pdS/I holds (and thus, I is a set-theoretic complete in-
tersection) for a Cohen–Macaulay squarefree monomial ideal I of height 2. On
the other hand, in [15], Yan found a counterexample for the equality among
Cohen–Macaulay squarefree monomial ideals of height 3: let ∆ be the trian-
gulation of the real projective plane with 6 vertices. Then the Stanley–Reisner
ideal I∆ is of height 3, pdS/I∆ is 3 if charK 6= 2; 4 if charK = 2. Yan [15]
proved that ara I∆ = 4 for any characteristic K.
Then it is natural to ask whether the equality holds for a Gorenstein square-

free monomial ideal of height 3. The following theorem is the main result of
this article.

1This paper is an announcement of our result and the detailed version will be submitted
to somewhere.
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23540053 and JSPS Grant-in-Aid for Young Scientists (B) 24740008.
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Theorem 1.1. Let I ⊂ S be a Gorenstein squarefree monomial ideal of height
3. Then I is a set-theoretic complete intersection. That is, ara I = pdS/I =
height I = 3.

Remark 1.2. It follows that any Gorenstein monomial ideal is a set-theoretic
complete intersection since the radical of a Gorenstein monomial ideal is Goren-
stein.

In order to prove Theorem 1.1, we must construct 3 elements which generate
the ideal up to radical. We will explain the construction by an example instead
of complete construction.

2. Gorenstein squarefree monomial ideals of height three

Bruns and Herzog [5] proved that a Gorenstein squarefree monomial ideal
of height 3 is essentially Ir (see below). In this section, we recall their result.
Let r ≥ 1 be an integer and Ir the ideal of K[x1, . . . , x2r+1] generated by

2r + 1 monomials u1, . . . , u2r+1:

ui = xixi+1 · · · xi+r−1, i = 1, 2, . . . , 2r + 1,

where we consider xj as xj−(2r+1) if j > 2r + 1.

Remark 2.1. Ir is the Stanley–Reisner ideal of the boundary complex of cyclic
polytope C(2r + 1, 2r − 2).

Before stating the result by Bruns and Herzog [5], we define a terminology.
Let I be a squarefree monomial ideal of S = K[x1, . . . , xn]. Let xi1, xi2 be new
variables. Set S ′ = K[x1, . . . , xi−1, xi1, xi2, xi+1, . . . , xn]. Then by substitution
xi 7→ xi1xi2 for each monomial generator of I, we obtain the new ideal J ⊂ S ′.
We call this transformation a 1-vertex inflation.

Theorem 2.2 (Bruns and Herzog [5]). Let Ir be the ideal defined above.

(1) Ir is a Gorenstein squarefree monomial ideal of height 3.
(2) Any Gorenstein squarefree monomial ideal of height 3 is obtained from

Ir for some r by a series of 1-vertex inflations.

By Theorem 2.2, if we prove that Ir is a set-theoretic complete intersection,
then Theorem 1.1 follows.
Next we modify Ir by renumbering variables. Let ro be the largest odd

integer with ro ≤ r and re the largest even integer with re ≤ r. Let us consider
the following 2r + 1 variables:
(2.1)
x1, x3, . . . , xro , x−re , x−(re−2), . . . , x−2, x0, x2, . . . , xre−2, xre , x−ro , . . . , x−3, x−1.

Let Sr be the polynomial ring over K in the above variables. Recall that Ir
is generated by the 2r + 1 products of continuous r variables. Thus we may
assume that the order of variables are as in (2.1). Then Ir ⊂ Sr is generated
by the following 2r + 1 monomials:

n
(0)
+r, n

(0)
−r, n

(s)
+r, n

(s)
−r, s = 1, 3, . . . , ro − 2,

m(r−1), m
(t)
+r, m

(t)
−r, t = 0, 2, . . . , re − 2,
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where

n
(0)
+r := xrx−(r−1) · · · x±3x∓2x±1, n

(0)
−r := x−rxr−1 · · · x∓3x±2x∓1,

and where for an odd integer s,

m
(s)
+r := xrx−(r−1) · · · x∓(s+3)x±(s+2) · x±sx±(s−2) · · · x±1,

m
(s)
−r := x−rxr−1 · · · x±(s+3)x∓(s+2) · x∓sx∓(s−2) · · · x∓1,

m(s) := xsxs−2 · · · x1x−1 · · · x−(s−2)x−s,

n
(s)
+r :=

√
m

(s)
+rm

(s), n
(s)
−r :=

√
m

(s)
−rm

(s),

and where for an even integer t,
m

(t)
+r := xrx−(r−1) · · · x±(t+3)x∓(t+2) · xtxt−2 · · · x2x0x−2 · · · x−(t−2)x−t,

m
(t)
−r := x−rxr−1 · · · x∓(t+3)x±(t+2) · xtxt−2 · · · x2x0x−2 · · · x−(t−2)x−t,

m(t) := xtxt−2 · · · x2x0x−2 · · · x−(t−2)x−t.

Example 2.3. I4 is generated by the following 9 monomials:

x4x−3x2x−1, x−4x3x−2x1, x4x−3x2x0, x−4x3x−2x0,

x4x−3 · x1x−1, x−4x3 · x1x−1, x4 · x2x0x−2, x−4 · x2x0x−2,

x3x1x−1x−3.

Example 2.4. I5 is generated by the following 11 monomials:

x5x−4x3x−2x1, x−5x4x−3x2x−1, x5x−4x3x−2x0, x−5x4x−3x2x0,

x5x−4x3 · x1x−1, x−5x4x−3 · x1x−1, x5x−4 · x2x0x−2, x−5x4 · x2x0x−2,

x5 · x3x1x−1x−3, x−5 · x3x1x−1x−3, x4x2x0x−2x−4.

3. Key lemmas and 3 elements which generate Ir up to radical

In this section, we explain the idea of the proof of Theorem 1.1.
The cases r = 1, 2 are easy.

Example 3.1. Since I1 = (x0, x−1, x1), there is nothing to prove for the case
r = 1.
Let us consider the case r = 2. I2 is generated by the following 5 monomials:

x2x−1, x−2x1, x1x−1, x2x0, x−2x0.

Actually, I2 is the Stanley–Reisner ideal of 5-cycle. This ideal is known to be
a set-theoretic complete intersection; see e.g., [2, 4]. For example, following 3
elements generate I2 up to radical:

x1x−1, x2x−1 + x−2x0, x−2x1 + x2x0.

In what follows, we assume r ≥ 3. We divide the minimal monomial gener-
ators of Ir by the divisibility by x0. We denote by Jr, the ideal of Sr generated
by the minimal monomial generators of Ir which are not divisible by x0. Let
J ′
r be the ideal of Sr+1 obtained from Jr by substitutions xk 7→ xk+1 and

x−k 7→ x−(k+1) (k = 1, 2, . . . , r).
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Lemma 3.2. Let r ≥ 3 be an integer. Then Ir = Jr + x0J
′
r−1.

We first construct 2 elements which generate x0Jr up to radical. Set
g
(1)
1r := x0((m

(ro−2)
+r )r+3 − (m

(ro−2)
−r )r+3)((m

(ro−4)
+r )r+3 − (m

(ro−4)
−r )r+3)

· · · ((m(1)
+r)

r+3 − (m
(1)
−r)

r+3)((n
(0)
+r)

r+3 − (n
(0)
−r)

r+3),

g
(1)
2r := x1x−1,

and for s = 3, 5, . . . , ro,
g
(s)
1r := x0(g

(s−2)
2r )r+3((m

(ro−2)
+r )r+3 − (m

(ro−2)
−r )r+3)((m

(ro−4)
+r )r+3 − (m

(ro−4)
−r )r+3)

· · · ((m(s−2)
+r )r+3 − (m

(s−2)
−r )r+3),

g
(s)
2r := g

(s−2)
2r xsx−s + g

(s−2)
1r .

Put g1r := g
(ro)
1r , g2r := g

(ro)
2r .

Proposition 3.3. x0Jr is generated by x0g1r, x0g2r up to radical. Moreover,
g1r, g2r −m(ro) ∈ x0(Jr)

r+3.

Remark 3.4. If we remove x0 on the construction g
(s)
1r , we obtain two elements

which generate Jr up to radical. (We may also omit the power r + 3 in each

g
(s)
1r , g

(s)
2r .) Combining this with Lemma 3.2, we have ara Ir ≤ 4.

On the proof of Proposition 3.3, the following result, which is essentially due
to Schmitt and Vogel [14, Lemma p. 249], is useful.

Lemma 3.5. Let R be a commutative ring with unitary and I an ideal of R.
Suppose that a, b ∈ R satisfy ab ∈

√
I. Then a, b ∈

√
I + (a+ b).

Proof. Put J = I + (a + b). Since a2 = a(a + b)− ab and ab ∈
√
I ⊂

√
J , we

have a2 ∈
√
J . Hence a ∈

√
J . �

Instead of proving Proposition 3.3, we see the case where r = 4.

Example 3.6. When r = 4, the construction is done by 2 steps:{
g
(1)
14 = x0((x4x−3x−1)

7 − (x−4x3x1)
7)((x4x−3x2x−1)

7 − (x−4x3x−2x1)
7),

g
(1)
24 = x1x−1,{

g14 = g
(3)
14 = x0(g

(1)
24 )

7((x4x−3x−1)
7 − (x−4x3x1)

7),

g24 = g
(3)
24 = x3x1x−1x−3 + g

(1)
14 .

It is easily to see that the product of two summands of g24 is in
√

(g14). Then

we have x3x1x−1x−3, g
(1)
14 ∈

√
(g14, g24) by Lemma 3.5. Since the product of 2

terms in each bracket of g14, g
(1)
14 are divisible by x3x1x−1x−3, we conclude that

x0g14, x0g24 generate x0J4 up to radical by repeated use of Lemma 3.5.
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Now we return to the ideal Ir and explain the construction of 3 elements
q0r, q1r, q2r which generate Ir up to radical.
Set

q0r :=

{
n
(0)
+r − n

(0)
−r, if r is odd,

n
(0)
−r − n

(0)
+r, if r is even.

The construction of q1r, q2r is done inductively. Let h1r, h2r be elements ob-
tained from x0g1 r−1, x0g2 r−1 respectively, by substitutions xk 7→ xk+1; x−k 7→
x−(k+1) (k = 1, 2, . . . , r − 1), which is the same ones we used to obtain J ′

r−1

from Jr−1.

Starting with q0r, h1r, h2r, we construct q
(ro−t)
itr

for t = 0, 2, 4, . . . , ro−1, where
it is 1 if t is a multiple of 4; otherwise 2. For t = 2, 4, . . . , ro − 1, we set

Mro−t :=

{
xro−t+2m

(ro−t)
+r − x−(ro−t+2)m

(ro−t)
−r , if r is odd,

xro−t+2m
(ro−t)
−r − x−(ro−t+2)m

(ro−t)
+r , if r is even.

Put Qro−t := (q0r, q
(ro−t+2)
it−2r

, q
(ro−t)
itr

) (t = 0, 2, . . . , r0 − 1), where q
(ro+2)
i−2r

:= h2r.

We will construct q
(ro−t)
itr

so that q
(ro−t)
itr

and Qro−t satisfy the following lemmas:

Lemma 3.7. For t = 0, 2, . . . , ro − 1,

q
(ro−t)
itr

−Mro−2Mro−4 · · ·Mro−tm
(ro−t)

∈ (m(ro),Mro−2m
(ro−2),Mro−4m

(ro−4), . . . ,Mro−t+4m
(ro−t+4))m(ro−t)

+ x0(J
′
r−1)

r−(t/2).

Lemma 3.8. x0J
′
r−1 ⊂

√
Qro and m(ro), n

(0)
+r, n

(0)
−r ∈

√
Qro.

Lemma 3.9. For t = 2, 4, . . . , ro − 1, Qro−t+2 ⊂
√

Qro−t and n
(ro−t)
+r , n

(ro−t)
−r ∈√

Qro−t. In particular,

(1) x0J
′
r−1 + (m(ro), n

(0)
+r, n

(0)
−r) ⊂

√
Qro−t.

(2) n
(ro−2)
+r , n

(ro−2)
−r , n

(ro−4)
+r , n

(ro−4)
−r , . . . , n

(ro−t)
+r , n

(ro−t)
−r ∈

√
Qro−t.

By Lemma 3.9, we can conclude that q0r, q
(3)
iro−3r

, q
(1)
iro−1r

, which are generators
of Q1, generate Ir up to radical.

The key idea of the construction is the following lemma which based on
Barile’s idea [1] (see also [3, 4, 7]).

Lemma 3.10. Let R be a commutative ring with unitary and I an ideal of R.
Take elements q1, q2 ∈ I and p1, p2 ∈ R. Suppose q1, q2 ∈ (p1, p2) :

(3.1)

(
q1
q2

)
= A

(
p1
p2

)
,

where A is 2×2 matrix whose entries are in R. Then (detA)p1, (detA)p2 ∈ I.

Proof. Multiply each side of (3.1) by the cofactor matrix of A from left. �
We show the construction when r = 5.
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Example 3.11. In order to construct 3 elements q05, q15, q25 which generate
I5 up to radical, we need 3 steps. The starting 3 elements are

q05 = x5x−4x3x−2x1 − x−5x4x−3x2x−1,

h15 ∈ x0(J
′
4)

7,

h25 = x4x2x0x−2x−4 + η,

where η ∈ x2
0(J

′
4)

7.

(Step 1) We first construct q
(5)
15 . Since q05, h25 ∈ (x−4x−2, x4x2), we can write(

q05
h25

)
= A

(5)
1

(
x−4x−2

x4x2

)
,

where

A
(5)
1 =

(
x5x3x1 ∗
x0η

(51)
− x0x−2x−4 + x0η

(51)
+

)
,

and η
(51)
− , η

(51)
+ ∈ x0(J

′
4)

6. Therefore

detA
(5)
1 − x5x3x1 · x0x−2x−4 ∈ x0(J

′
4)

6.

Then since q05, detA
(5)
1 ∈ (x−4x−2, x4x2), we can write(

q05
detA

(5)
1

)
= A

(5)
2

(
x−4x−2

x4x2

)
,

where

A
(5)
2 =

(
∗ −x−5x−3x−1

x0x5x3x1 + x0η
(52)
− x0η

(52)
+

)
,

and η
(52)
− , η

(52)
+ ∈ x0(J

′
4)

5. We set

q
(5)
15 :=

detA
(5)
2

x0

+ h15.

Note that q
(5)
15 = x5x3x1x−1x−3x−5 + η(5), where η(5) ∈ x0(J

′
4)

5. Therefore

q
(5)
15 satisfies Lemma 3.7 with t = 0. We show that Q5 = (q05, h25, q

(5)
15 ) satisfies

Lemma 3.8.
By Lemma 3.10, we have

detA
(5)
2 x4x2, detA

(5)
2 x−4x−2 ∈

√
(q05, h25)

Therefore the product of two terms of q
(5)
15 is in

√
(q05, h25). Thus each term of

q
(5)
15 is in

√
Q5 by Lemma 3.5. In particular, h15, h25 ∈

√
Q5. Since h15 and h25

generate x0J
′
4 up to radical, we have x0J

′
4 ⊂

√
Q5. Then x5x3x1x−1x−3x−5 ∈√

Q5 also follows. Moreover, by q05 ∈ Q5 and Lemma 3.5, we have

x5x−4x3x−2x1, x−5x4x−3x2x−1 ∈
√

Q5.

(Step 2) Next we construct q
(3)
25 . Since q05, q

(5)
15 ∈ (x−4x−2, x−5), we can

write (
q05
q
(5)
15

)
= A

(3)
+

(
x−4x−2

x−5

)
,

6



where

A
(3)
+ =

(
x5x3x1 ∗
η
(31)
+ x5 · x3x1x−1x−3 + η

(32)
+

)
,

and η
(31)
+ , η

(32)
+ ∈ x0(J

′
4)

4. Similarly, since q05, q
(5)
15 ∈ (x4x2, x5), we can write(

q05
q
(5)
15

)
= A

(3)
−

(
x4x2

x5

)
,

where

A
(3)
− =

(
−x−5x−3x−1 ∗

η
(31)
− x−5 · x3x1x−1x−3 + η

(32)
−

)
,

and η
(31)
− , η

(32)
− ∈ x0(J

′
4)

4. Then

detA
(3)
+ + detA

(3)
− = (x2

5x3x1 − x2
−5x−3x−1)x3x1x−1x−3 + η(3),

where η(3) ∈ x0(J
′
4)

4. We set

q
(3)
25 := detA

(3)
+ + detA

(3)
− + (h25)

7.

It is easy to see that q
(3)
25 satisfies Lemma 3.7 with t = 2. We show that

Q3 = (q05, q
(5)
15 , q

(3)
25 ) satisfies Lemma 3.9 with t = 2.

By construction and Lemmas 3.10 and 3.5, we have

detA
(3)
+ + detA

(3)
− , h25 ∈

√
Q3.

Then Q5 ⊂
√
Q3 follows. In particular, x0J

′
4 ⊂

√
Q3. It then follows that

(x2
5x3x1 − x2

−5x−3x−1)x3x1x−1x−3 ∈
√
Q3.

Since x5x3x1x−1x−3x−5 ∈
√
Q5 ⊂

√
Q3, we also have

x5 · x3x1x−1x−3, x−5 · x3x1x−1x−3 ∈
√

Q3

by Lemma 3.5, as desired.

(Step 3) Finally we construct q
(1)
15 . Since q05, q

(3)
25 ∈ (x−2, x−3), we can write(

q05
q
(3)
25

)
= A

(1)
+

(
x−2

x−3

)
,

where

A
(3)
+ =

(
x5x−4x3x1 ∗

η
(11)
+ (x2

5x3x1 − x2
−5x−3x−1)x3x1x−1 + η

(12)
+

)
,

and η
(11)
+ , η

(12)
+ ∈ x0(J

′
4)

3. Similarly, since q05, q
(5)
15 ∈ (x2, x3), we can write(

q05
q
(3)
25

)
= A

(1)
−

(
x2

x3

)
,

where

A
(1)
− =

(
−x−5x4x−3x−1 ∗

η
(11)
− (x2

5x3x1 − x2
−5x−3x−1)x−3x1x−1 + η

(12)
−

)
,

7



and η
(11)
− , η

(12)
− ∈ x0(J

′
4)

3. Then

detA
(1)
+ +detA

(1)
− = (x2

5x3x1−x2
−5x−3x−1)(x5x−4x

2
3x1−x−5x4x

2
−3x−1)x1x−1+η(1),

where η(1) ∈ x0(J
′
4)

3. We set

q
(1)
15 := detA

(1)
+ + detA

(1)
− + (q

(5)
15 )

2.

It is easy to see that q
(1)
15 satisfies Lemma 3.7 with t = 4. We show that

Q1 = (q05, q
(3)
25 , q

(1)
15 ) satisfies Lemma 3.9 with t = 4.

By construction and Lemmas 3.10 and 3.5, we have

detA
(1)
+ + detA

(1)
− , q

(5)
15 ∈

√
Q1.

Then Q3 ⊂
√
Q1 follows. In particular, x0J

′
4 ⊂

√
Q1. It then follows that

(x2
5x3x1 − x2

−5x−3x−1)(x5x−4x
2
3x1 − x−5x4x

2
−3x−1)x1x−1 ∈

√
Q1.

Note that we also have x5x3x1x−1x−3x−5 ∈
√
Q1. Then by repeated use of

Lemma 3.5, we have

x5x−4x3 · x1x−1, x−5x4x−3 · x1x−1 ∈
√
Q1,

as desired.
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