The automorphism group of a UFD over the kernel of a locally nilpotent derivation

Shigeru Kuroda Department of Mathematics and Information Sciences Tokyo Metropolitan University

1 Introduction

Let A be an integral domain containing \mathbf{Q} , and δ a nonzero locally nilpotent derivation of A, i.e., a derivation of A such that, for each $a \in A$, there exists $l \geq 1$ satisfying $\delta^l(a) = 0$. We denote by $\operatorname{Aut}(A/A^{\delta})$ the automorphism group of the A^{δ} -algebra A, and by $\operatorname{LND}(A/A^{\delta})$ the set of locally nilpotent A^{δ} -derivations of A. For each $D \in \operatorname{LND}(A/A^{\delta})$, the exponential automorphism $\exp D \in \operatorname{Aut}(A/A^{\delta})$ is defined by

$$(\exp D)(a) = \sum_{l=0}^{\infty} \frac{D^l(a)}{l!}$$

for $a \in A$. Then, $\mathcal{N}_{\delta} := \{ \exp D \mid D \in \operatorname{LND}(A/A^{\delta}) \}$ forms a normal subgroup of $\operatorname{Aut}(A/A^{\delta})$ (cf. Proposition 2.1 (ii)). In this report, we discuss the structure of the quotient group

$$\operatorname{Aut}(A/A^{\delta})/\mathcal{N}_{\delta}.$$
(1.1)

We call $z \in A$ a *slice* of the extension A/A^{δ} if $A = A^{\delta}[z]$. If this is the case, A is the polynomial ring in z over A^{δ} . Hence, we have $A^{\times} = (A^{\delta})^{\times}$ and

$$\operatorname{Aut}(A/A^{\delta}) = \{\psi_{a,b} \mid a \in A^{\times}, b \in A^{\delta}\}, \quad \operatorname{LND}(A/A^{\delta}) = \{b(d/dz) \mid b \in A^{\delta}\},$$
(1.2)

where $\psi_{a,b} \in \operatorname{Aut}(A/A^{\delta})$ is such that $\psi_{a,b}(z) = az + b$. Since $\exp b(d/dz) = \psi_{1,b}$ for each $b \in A^{\delta}$, we see that (1.1) is isomorphic to A^{\times} in this case. The aim of this research is to study the quotient group (1.1) when A/A^{δ} has no slice.

2 Key results

First, we recall some basics on locally nilpotent derivations. For each $a \in A \setminus \{0\}$, we define the δ -degree of a by

 $\deg_{\delta}(a) := \max\{l \in \mathbf{Z}_{\geq 0} \mid \delta^{l}(a) \neq 0\}.$

This paper is an announcement of our result and the detail version will be submitted to somewhere.

Partly supported by the Grant-in-Aid for Young Scientists (B) 24740022, Japan Society for the Promotion of Science.

We call $z \in A \setminus \{0\}$ a *local slice* of δ if deg_{δ}(z) = 1, that is, $\delta(z)$ belongs to $A^{\delta} \setminus \{0\}$. If z is a slice of A/A^{δ} , then we have $\delta = \delta(z)(d/dz)$, and so z is a local slice of δ by (1.2). The ideal $pl(\delta) := A^{\delta} \cap \delta(A)$ of A^{δ} is called the *plinth ideal* of δ . Since δ is nonzero and locally nilpotent, we have $pl(\delta) \neq \{0\}$. Hence, there always exists a local slice. We define

$$\Gamma_{\delta} := \{ a \in Q(A^{\delta}) \mid a \operatorname{pl}(\delta) = \operatorname{pl}(\delta) \}.$$

Then, Γ_{δ} is a subgroup of $Q(A^{\delta})^{\times}$. Since $A^{\times} = (A^{\delta})^{\times}$ (cf. [4, Corollary 1.3.36]), we see that A^{\times} is contained in Γ_{δ} .

In the notation above, the following proposition holds.

Proposition 2.1. (i) For each $\phi \in \operatorname{Aut}(A/A^{\delta})$ and a local slice $z \in A$ of δ , there exist $u_{\phi} \in \Gamma_{\delta}$ and $b \in A^{\delta}$ such that $\phi(z) = u_{\phi}z + b$. Moreover, u_{ϕ} is defined only from ϕ , and does not depend on the choice of the local slice z. (ii) $\theta : \operatorname{Aut}(A/A^{\delta}) \ni \phi \mapsto u_{\phi} \in \Gamma_{\delta}$ is a homomorphism of groups with ker $\theta = \mathcal{N}_{\delta}$.

(ii) θ : Aut $(A/A^{\delta}) \ni \phi \mapsto u_{\phi} \in \Gamma_{\delta}$ is a homomorphism of groups with ker $\theta = \mathcal{N}_{\delta}$. (iii) For each $\phi \in \operatorname{Aut}(A/A^{\delta}) \setminus \mathcal{N}_{\delta}$, we have $\operatorname{ord}(\phi) = \operatorname{ord}(\theta(\phi))$.

(iv) If $\text{LND}(A/A^{\delta}) = \{a\delta_0 \mid a \in A^{\delta}\}$ for some $\delta_0 \in \text{LND}(A/A^{\delta})$, then $\text{Im }\theta$ is contained in A^{\times} .

By Proposition 2.1 (ii), we know that $\operatorname{Aut}(A/A^{\delta})/\mathcal{N}_{\delta}$ is isomorphic to $\operatorname{Im} \theta$, and hence is an abelian group. We note that every element of $\mathcal{N}_{\delta} \setminus {\operatorname{id}}_A$ has infinite order.

As for Γ_{δ} , we have the following result.

Proposition 2.2. We have $\Gamma_{\delta} = A^{\times}$ if one of the following conditions holds.

(a) $pl(\delta)$ is a principal ideal.

(b) A is normal and $pl(\delta)$ is finitely generated.

(c) A satisfies the Ascending Chain Condition for principal ideals, and there exist a finite number of prime elements p_1, \ldots, p_l of A such that Γ_{δ} is contained in $A^{\delta}_{p_1\cdots p_l}$.

(d) A satisfies the Ascending Chain Condition for principal ideals, and there exists a local slice $z \in A$ of δ such that $\delta(z)$ is a product of prime elements of A. (e) A is a UFD.

Now, we define

$$\operatorname{ord}(A/A^{\delta}) := \begin{cases} \min\{ \deg_{\delta} a \mid a \in A \setminus A^{\delta}[z] \} & \text{if } \operatorname{pl}(\delta) \text{ is a principal ideal} \\ 1 & \text{otherwise,} \end{cases}$$

where $z \in A$ is such that $pl(\delta) = \delta(z)A^{\delta}$. Since $\delta(z)A^{\delta} = \delta(w)A^{\delta}$ implies $z = \alpha w + \beta$ for some $\alpha \in (A^{\delta})^{\times}$ and $\beta \in A^{\delta}$, we see that the definition of $ord(A/A^{\delta})$ does not depend on the choice of z. By definition, A/A^{δ} has a slice if $ord(A/A^{\delta}) = \infty$. Conversely, if A/A^{δ} has a slice z, then $A = A^{\delta}[z]$, and $pl(\delta) = \delta(z)A^{\delta}$, since $\delta(A^{\delta}[z]) \subset \delta(z)A$ and $\delta(z) \in A^{\delta}$. Hence, we have $ord(A/A^{\delta}) = \infty$.

Proposition 2.3. Assume that A/A^{δ} has no slice. If $pl(\delta)$ contains the product of a finite number of prime elements of A, then $(Im \theta)_{tor}$ is a finite cyclic group of order at most $ord(A/A^{\delta})$.

Here, we define $M_{\text{tor}} := \{a \in M \mid \text{ord}(a) < \infty\}$ for each group M.

In the case of UFD, Im θ is a subgroup of A^{\times} by Proposition 2.2 (e). Since $pl(\delta)$ contains the product of a finite number of prime elements of A, (i) of the following theorem is a consequence of Proposition 2.3.

Theorem 2.4. Assume that A is a UFD. Then, the following assertions hold.

(i) If A/A^{δ} has no slice, then $(\operatorname{Im} \theta)_{\text{tor}}$ is a finite cyclic group of order at most $\operatorname{ord}(A/A^{\delta})$. (ii) If A/A^{δ} has no slice, and if $\zeta^{i} - 1$ belongs to A^{\times} for any $i \geq 1$ and $\zeta \in A^{\times} \setminus (A^{\times})_{\text{tor}}$, then we have $\operatorname{Im} \theta = (\operatorname{Im} \theta)_{\text{tor}}$.

(iii) If ζ is an element of $\operatorname{Im} \theta \setminus (\operatorname{Im} \theta)_{\operatorname{tor}}$, then $A_{\underline{\zeta}}/A_{\underline{\zeta}}^{\delta}$ has a slice, where δ is the unique extension of δ to $A_{\zeta} := A[\{1/(\zeta^{i}-1) \mid i \geq 1\}].$

Thanks to (i) and (ii) of Theorem 2.4, we obtain the following theorem.

Theorem 2.5. Assume that A is a UFD such that $A^{\times} \cup \{0\}$ is a field. If A/A^{δ} has no slice, then $\operatorname{Aut}(A/A^{\delta})/\mathcal{N}_{\delta}$ is isomorphic to a finite cyclic subgroup of A^{\times} of order at most $\operatorname{ord}(A/A^{\delta})$.

In the situation of Theorem 2.5, each element of $\operatorname{Aut}(A/A^{\delta}) \setminus \mathcal{N}_{\delta}$ has finite order by Proposition 2.1 (iii).

3 Polynomial ring

We are especially interested in the case where A is the polynomial ring $k[\mathbf{x}] := k[x_1, \ldots, x_n]$ over a field k of characteristic zero. Even in the case of n = 3, the structure of the automorphism group $\operatorname{Aut}_k k[\mathbf{x}]$ of this k-algebra remains mysterious. Since $k[\mathbf{x}]$ is a UFD with $k[\mathbf{x}]^{\times} \cup \{0\} = k$, the assumption of Theorem 2.5 is satisfied. Hence, if $k[\mathbf{x}]/k[\mathbf{x}]^{\delta}$ has no slice, then $\operatorname{Aut}(k[\mathbf{x}]/k[\mathbf{x}]^{\delta})/\mathcal{N}_{\delta}$ is isomorphic to a finite cyclic subgroup of k^{\times} .

For each $f = \sum_{a} u_a \mathbf{x}^a \in k[\mathbf{x}]$, we define $\operatorname{supp}(f) := \{a \mid u_a \neq 0\}$, where $u_a \in k$ and $\mathbf{x}^a = x_1^{a_1} \cdots x_n^{a_n}$ for each $a = (a_1, \ldots, a_n)$. We define M_{δ} to be the **Z**-submodule of \mathbf{Z}^n generated by

$$\bigcup_{f \in k[\mathbf{x}]^{\delta}} \operatorname{supp}(f).$$

We mention that, for any given δ , the generators of M_{δ} can be computed by means of a standard technique for locally nilpotent derivations. In fact, we can construct $f_1, \ldots, f_n, g \in k[\mathbf{x}]^{\delta} \setminus \{0\}$ satisfying $k[\mathbf{x}]^{\delta} \subset k[f_1, \ldots, f_n, g^{-1}]$. Then, M_{δ} is generated by $\operatorname{supp}(f_1) \cup \cdots \cup \operatorname{supp}(f_n) \cup \operatorname{supp}(g)$.

(ii) of the following theorem is a consequence of Theorem 2.5.

Theorem 3.1. (i) If rank $M_{\delta} < n$, then we have $\delta = f\partial/\partial x_i$ for some $1 \le i \le n$ and $f \in k[x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n]$. Hence, $k[\mathbf{x}]/k[\mathbf{x}]^{\delta}$ has a slice, and $\mathbf{Z}^n/M_{\delta} \simeq \mathbf{Z}$.

(ii) Assume that $d := \#(\mathbf{Z}^n/M_{\delta})$ is finite. Then, \mathbf{Z}^n/M_{δ} is a cyclic group. If k contains a primitive d-th root of unity, then $\operatorname{Aut}(k[\mathbf{x}]/k[\mathbf{x}]^{\delta}) \setminus \mathcal{N}_{\delta}$ contains an element of order d. For example, let δ be the locally nilpotent derivation of $k[\mathbf{x}]$ for n = 3 defined by $\delta(x_1) = 0$, $\delta(x_2) = x_1$ and $\delta(x_3) = -2x_2$. Then, we have $k[\mathbf{x}]^{\delta} = k[x_1, x_1x_3 + x_2^2]$. In this case, M_{δ} is generated by

$$supp(x_1) \cup supp(x_1x_3 + x_2^2) = \{(1, 0, 0), (1, 0, 1), (0, 2, 0)\}$$

Hence, we have $\mathbf{Z}^3/M_{\delta} \simeq \mathbf{Z}/2\mathbf{Z}$. The automorphism of $k[\mathbf{x}]$ defined by $x_2 \mapsto -x_2$ and $x_i \mapsto x_i$ for i = 1, 3 belongs to $\operatorname{Aut}(k[\mathbf{x}]/k[\mathbf{x}]^{\delta}) \setminus \mathcal{N}_{\delta}$.

The rank rank(δ) of δ is by definition the minimal number $0 \leq r \leq n$ for which there exist $\phi \in \operatorname{Aut}_k k[\mathbf{x}]$ and $f_1, \ldots, f_r \in k[\mathbf{x}]$ such that

$$\phi \circ \delta \circ \phi^{-1} = f_1 \frac{\partial}{\partial x_1} + \dots + f_r \frac{\partial}{\partial x_r}.$$

Due to Rentschler [15], the extension $k[\mathbf{x}]/k[\mathbf{x}]^{\delta}$ always has a slice if n = 2. In the case of n = 3, there always exist $f_1, f_2 \in A^{\delta}$ such that $A^{\delta} = k[f_1, f_2]$ by Miyanishi [12]. This means that rank $(\delta) = 1$ if A/A^{δ} has a slice. Thus, rank $(\delta) \ge 2$ implies that $k[\mathbf{x}]/k[\mathbf{x}]^{\delta}$ has no slice when n = 3. Using Asanuma [2] (see also [6]), we can prove that $k[\mathbf{x}]/k[\mathbf{x}]^{\delta}$ has no slice if $n \ge 3$ and rank $(\delta) = 2$. Therefore, we have the following corollary to Theorem 2.5.

Corollary 3.2. Assume that n = 3 and $\operatorname{rank}(\delta) \ge 2$, or $n \ge 3$ and $\operatorname{rank}(\delta) = 2$. Then, $\operatorname{Aut}(k[\mathbf{x}]/k[\mathbf{x}]^{\delta})/\mathcal{N}_{\delta}$ is isomorphic to a finite cyclic subgroup of k^{\times} of order at most $\operatorname{ord}(k[\mathbf{x}]/k[\mathbf{x}]^{\delta})$.

We mention that $pl(\delta)$ is a principal ideal if n = 3 by Daigle-Kaliman [3, Theorem 1]. The following theorem is a consequence of Theorem 5.3 stated later.

Theorem 3.3. Assume that n = 3 and let δ be a locally nilpotent derivation of $k[\mathbf{x}]$ with rank $(\delta) = 3$. Then, we have $M_{\delta} = \mathbf{Z}^3$.

A k-derivation D of $k[\mathbf{x}]$ is said to be triangular if $D(x_i)$ belongs to $k[x_1, \ldots, x_{i-1}]$ for $i = 1, \ldots, n$. It is easy to see that D is locally nilpotent if D is triangular. We say that D is triangularizable if $\phi \circ D \circ \phi^{-1}$ is triangular for some $\phi \in \operatorname{Aut}_k k[\mathbf{x}]$. Since every triangular k-derivation of $k[\mathbf{x}]$ has rank at most n - 1, the same holds for every triangularizable k-derivation of $k[\mathbf{x}]$.

The following theorem is proved by using Theorem 4.4 stated later.

Theorem 3.4. Assume that $n \geq 3$ and $\operatorname{rank}(\delta) = 2$. If $\operatorname{Aut}(k[\mathbf{x}]/k[\mathbf{x}]^{\delta}) \neq \mathcal{N}_{\delta}$, then δ is triangularizable.

Now, let R be a UFD, and $R[\mathbf{x}] = R[x_1, x_2]$ the polynomial ring in two variables over R. We discuss a triangular R-derivation of $R[\mathbf{x}]$ of a special form. Let $p(z) = \sum_{i\geq 0} b_i z^i \in R[z]$ be a polynomial in one variable over R, and $a \in R \setminus (R^* \cup \{0\})$ such that a and $p(z) - b_0$ have no non-unit common factor. We define a triangular R-derivation D of $R[x_1, x_2]$ by

$$D = a \frac{\partial}{\partial x_1} - p'(x_1) \frac{\partial}{\partial x_2}, \qquad (3.1)$$

where p'(z) is the derivative of p(z). Then, the *R*-algebra $R[\mathbf{x}]^D$ is generated by $f := ax_2 + p(x_1)$, and the extension $R[\mathbf{x}]/R[\mathbf{x}]^D$ has a slice if and only if

(†) the image of b_i in R/aR is a unit if i = 1, and nilpotent if $i \ge 2$.

We note that the image of $b \in R$ in R/aR is nilpotent if and only if b is divisible by \sqrt{a} , where $\sqrt{a} \in R$ is such that \sqrt{aR} is the radical of aR.

In the notation and assumption above, the following theorem holds.

Theorem 3.5. Let $A := R[x_1, x_2]$ and $\delta := D$ be as above. When R contains a primitive d-th root $\zeta \in R^{\times}$ of unity with $d \geq 2$, the following conditions are equivalent: (1) Aut $(A/A^{\delta})/\mathcal{N}_{\delta}$ contains an element of order d.

(2) p(z) belongs to $R[(z+q(p(z)))^d] + aR[z]$ for some $q(z) \in \sqrt{aR[z]z+R}$.

If this is the case, we can define $\phi \in \operatorname{Aut}(A/A^{\delta})$ with $\theta(\phi) = \zeta$ by

$$\phi(x_1) = \zeta x_1 + (\zeta - 1)q(f), \quad \phi(x_2) = x_2 + \frac{p(x_1) - \phi(p(x_1))}{a}.$$
(3.2)

4 Linearization Problem

The following problem is a difficult problem with very little progress.

Problem 4.1 (Linearization Problem). Let $\phi \in \operatorname{Aut}_{\mathbf{C}} \mathbf{C}[\mathbf{x}]$ be such that $\phi^d = \operatorname{id}_{\mathbf{C}[\mathbf{x}]}$ for some $d \geq 2$. Does it follow that ϕ is linearizable.

Note that ϕ is linearizable if and only if there exist $\psi \in \operatorname{Aut}_{\mathbf{C}} \mathbf{C}[\mathbf{x}]$ and $\alpha_1, \ldots, \alpha_n \in \mathbf{C}^{\times}$ such that $(\psi^{-1} \circ \phi \circ \psi)(x_i) = \alpha_i x_i$ for $i = 1, \ldots, n$.

Due to Kambayashi [7], the answer is affirmative if n = 2. The problem remains open for $n \ge 3$. Quite recently, the author proved the following.

Theorem 4.2. Let R be a PID, and $\phi \in \operatorname{Aut}_R R[x_1, x_2]$ such that $\operatorname{ord}(\phi) = d$ for some $d \ge 1$. If R contains a primitive d-th root of unity, then ϕ is linearizable.

This theorem immediately implies the following.

Corollary 4.3. Let $\phi \in \operatorname{Aut}_k[x_1, x_2, x_3]$ be such that $\phi(x_3) = x_3$ and $\operatorname{ord}(\phi) = d$ for some $d \ge 1$. If k contains a primitive d-th root ζ of unity, then ϕ is linearizable as an automorphism over $k[x_3]$.

Assume that $n \geq 3$, and let $\phi \in \operatorname{Aut}_k k[\mathbf{x}]$ be such that $\phi(x_i) = x_i$ for $i = 3, \ldots, n$ and $\operatorname{ord}(\phi) = d$ for some $d \geq 2$. Then, ϕ is regarded as an element of $\operatorname{Aut}_K K[x_1, x_2]$, where $K := k(x_3, \ldots, x_n)$. Hence, if k contains a primitive d-th root ζ of unity, then there exist $\psi \in \operatorname{Aut}_K K[x_1, x_2]$ and $d_1, d_2 \in \mathbf{Z}$ such that $(\psi^{-1} \circ \phi \circ \psi)(x_i) = \zeta^{d_i} x_i$ for i = 1, 2. In this situation, we have the following theorem.

Theorem 4.4. If $gcd(d, d_1) > 1$ or $gcd(d, d_2) > 1$, then ϕ is linearizable as an automorphism over $k[x_3, \ldots, x_n]$.

Finally, we mention a relation between Problem 4.1 and the *Cancellation Problem*.

Problem 4.5 (Cancellation Problem). Let R be a **C**-algebra, and R[z] the polynomial ring in one variable over R. Assume R[z] is **C**-isomorphic to $\mathbf{C}[x_1, \ldots, x_n]$. Does it follow that R is **C**-isomorphic to $\mathbf{C}[x_1, \ldots, x_{n-1}]$?

This is a famous problem in Affine Algebraic Geometry. The answer is affirmative if n = 2 by Abhyankar-Heinzer-Eakin [1], and if n = 3 by Fujita [5] and Miyanishi-Sugie [13]. The problem remains open for $n \ge 4$.

It is well known that Problem 4.1 implies Problem 4.5. More precisely, the following remark holds.

Remark 4.6. Fix $n \in \mathbb{N}$. If there exists $d \geq 2$ such that Problem 4.1 has an affirmative answer for each $\phi \in \operatorname{Aut}_{\mathbb{C}} \mathbb{C}[\mathbf{x}]$ with $\operatorname{ord}(\phi) = d$, then Problem 4.5 has an affirmative answer.

As this remark suggests, the statement of Problem 4.1 is quite strong.

5 Wang's type theorem

Wang [16] proved the following theorem.

Theorem 5.1 (Wang). Let δ be a locally nilpotent derivation of $k[x_1, x_2, x_3]$ such that $\delta^2(x_i) = 0$ for i = 1, 2, 3. Then, we have rank $(\delta) \leq 1$.

We proved the following theorem similar to Wang's by using the Shestakov-Umirbaev inequality [14] (cf. [8]) and some deep results on locally nilpotent derivations.

Theorem 5.2. Let δ be a locally nilpotent derivation of $k[x_1, x_2, x_3]$ such that $\delta^2(x_1) = 0$. Then, we have rank $(\delta) \leq 2$.

As an application of Theorem 5.2, we obtain the following result.

Theorem 5.3. Assume that n = 3 and let δ be a locally nilpotent derivation of $k[\mathbf{x}]$ with rank $(\delta) = 3$. Then, no element of Aut $(k[\mathbf{x}]/k[\mathbf{x}]^{\delta}) \setminus \{1\}$ is linearizable.

By Proposition 2.1 (iii) and Corollary 3.2, every element of $\operatorname{Aut}(\mathbf{C}[\mathbf{x}]/\mathbf{C}[\mathbf{x}]^{\delta}) \setminus \mathcal{N}_{\delta}$ has finite order if $n = \operatorname{rank}(\delta) = 3$. Therefore, if $\operatorname{Aut}(\mathbf{C}[\mathbf{x}]/\mathbf{C}[\mathbf{x}]^{\delta}) \neq \mathcal{N}_{\delta}$ for some δ , then Problem 4.1 has a negative answer by Theorem 5.3.

6 Examples

To end this report, we give some examples.

First, we construct an example in which Im θ is an infinite group when A is a UFD. Let $R = \mathbf{Q}[t^{\pm 1}]$ be the Laurent polynomial ring in one variable over \mathbf{Q} and $A = R[x_1, x_2]$. Take any $p(x_1) \in R[x_1]$ such that $gcd(a, p'(x_1)) = 1$, and define D as in (3.1) with a := t - 1. Then, we have $A^D = R[f]$, where $f = ax_2 + p(x_1)$. We can define $\phi \in Aut(A/A^D)$ by

$$\phi(x_1) = tx_1$$
 and $\phi(x_2) = x_2 + \frac{p(x_1) - p(tx_1)}{t - 1}$.

Since x_1 is a local slice of D, we have $\theta(\phi) = t$. Therefore, Im θ is an infinite group.

Next, we give an example in which $\operatorname{Im} \theta$ is not contained in A^{\times} . Consider the **Q**-subalgebras $R := \mathbf{Q} + \mathbf{Q}[x_1^{\pm 1}, x_2]x_2$ and $A := R + \mathbf{Q}[x_1^{\pm 1}, x_2]x_3$ of the polynomial ring

 $\mathbf{Q}[x_1^{\pm 1}][x_2, x_3]$ in x_2 and x_3 over the Laurent polynomial ring $\mathbf{Q}[x_1^{\pm 1}]$. It is easy to see that $A^{\times} = R^{\times} = \mathbf{Q}^{\times}$, and the **Q**-algebra A is not finitely generated. For the locally nilpotent derivation $\delta = x_2 \partial/\partial x_3$ of A, we have

$$A^{\delta} = A \cap \mathbf{Q}[x_1^{\pm 1}, x_2, x_3]^{\delta} = A \cap \mathbf{Q}[x_1^{\pm 1}, x_2] = R, \quad \mathrm{pl}(\delta) = \mathbf{Q}[x_1^{\pm 1}, x_2]x_2.$$

Actually, $pl(\delta) = A^{\delta} \cap \delta(A)$ is contained in $R \cap x_2 A = \mathbf{Q}[x_1^{\pm 1}, x_2]x_2$. Conversely, for each $l \in \mathbf{Z}$, the element $x_1^l x_2 = \delta(x_1^l x_3)$ of $R = A^{\delta}$ belongs to $\delta(A)$, and hence belongs to $pl(\delta)$. Define $\phi \in Aut(A/A^{\delta}) = Aut(A/R)$ by $\phi(x_i) = x_i$ for i = 1, 2 and $\phi(x_3) = x_1 x_3$. Then, we have $\theta(\phi) = x_1$, since x_3 is a local slice of δ . Therefore, Im θ is not contained in $\mathbf{Q}^{\times} = A^{\times}$.

References

- S. S. Abhyankar, W. Heinzer and P. Eakin, On the uniqueness of the coefficient ring in a polynomial ring, J. Algebra 23 (1972), 310–342.
- [2] T. Asanuma, On strongly invariant coefficient rings, Osaka J. Math. 11 (1974), 587– 593.
- [3] D. Daigle and S. Kaliman, A note on locally nilpotent derivations and variables of k[X, Y, Z], Canad. Math. Bull. **52** (2009), 535–543.
- [4] A. van den Essen, Polynomial automorphisms and the Jacobian conjecture, Progress in Mathematics, Vol. 190, Birkhäuser, Basel, Boston, Berlin, 2000.
- [5] T. Fujita, On Zariski problem, Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), 106–110.
- [6] E. Hamann, On the *R*-invariance of R[x], J. Algebra **35** (1975), 1–16.
- [7] T. Kambayashi, Automorphism group of a polynomial ring and algebraic group action on an affine space, J. Algebra 60 (1979), 439–451.
- [8] S. Kuroda, A generalization of the Shestakov-Umirbaev inequality, J. Math. Soc. Japan 60 (2008), 495–510.
- [9] S. Kuroda, Lnd-automorphisms of integral domains, in preparation.
- [10] S. Kuroda, Locally nilpotent derivations of k[x, y, z] with $D^2(x) = 0$, in preparation.
- [11] S. Kuroda, Linearization of finite-order polynomial automorphisms in two variables over a PID, in preparation.
- [12] M. Miyanishi, Normal affine subalgebras of a polynomial ring, Algebraic and Topological Theories— to the memory of Dr. Takehiko Miyata (Tokyo), Kinokuniya, 1985, pp. 37–51.

- [13] M. Miyanishi and T. Sugie, Affine surfaces containing cylinderlike open sets, J. Math. Kyoto Univ. 20 (1980), 11–42.
- [14] I. Shestakov and U. Umirbaev, Poisson brackets and two-generated subalgebras of rings of polynomials, J. Amer. Math. Soc. 17 (2003), 181–196.
- [15] R. Rentschler, Opérations du groupe additif sur le plan affine, C. R. Acad. Sci. Paris Sér. A-B 267 (1968), 384–387.
- [16] Z. Wang, Homogeneization of locally nilpotent derivations and an application to k[X, Y, Z], J. Pure Appl. Algebra **196** (2005), 323–337.

Department of Mathematics and Information Sciences Tokyo Metropolitan University 1-1 Minami-Osawa, Hachioji Tokyo 192-0397, Japan kuroda@tmu.ac.jp