DUAL F-SIGNATURE OF COHEN-MACAULAY MODULES OVER QUOTIENT SURFACE SINGULARITIES

YUSUKE NAKAJIMA

1. INTRODUCTION

Throughout this paper, we suppose that k is an algebraically closed field of prime characteristic p > 0. Let R be a Noetherian ring of prime characteristic p > 0, then we can define the Frobenius morphism $F : R \to R$ $(r \mapsto r^p)$. For $e \in \mathbb{N}$, we also define the *e*-times iterated Frobenius morphism $F^e : R \to R$ $(r \mapsto r^{p^e})$. For any *R*-module *M*, we define the *R*-module $F_*^e M$ via F^e as follows. That is, $F_*^e M$ is just *M* as an abelian group, and its *R*-module structure is defined by $r \cdot m := F^e(r)m = r^{p^e}m$ $(r \in R, m \in M)$. We say *R* is *F*-finite if F_*R is a finitely generated *R*-module. For example, if *R* is an essentially of finite type over a perfect field or complete Noetherian local ring with a perfect residue field *k*, then *R* is *F*-finite. In this article, we only discuss such rings, thus the *F*-finiteness is always satisfied.

In positive characteristic commutative algebra, we understand the properties of R through the structure of $F_*^e M$. For this purpose, several numerical invariants are defined. Firstly, we introduce the notion of F-signature defined by C. Huneke and G. Leuschke.

Definition 1.1 ([HL]). Let (R, \mathfrak{m}, k) be a *d*-dimensional reduced *F*-finite Noetherian local ring of prime characteristic p > 0. For each $e \in \mathbb{N}$, we decompose $F_*^e R$ as follows

$$F^e_* R \cong R^{\oplus a_e} \oplus M_e,$$

where M_e has no free direct summands. We call a_e the e-th F-splitting number of R. Then, the limit $s(R) := \lim_{e \to \infty} \frac{a_e}{p^{ed}}$ is called the F-signature of R.

And K. Tucker showed its existence [Tuc]. By Kunz's theorem, R is regular if and only if $F_*^e R$ is a free R-module of rank p^{ed} [Kun]. Thus, roughly speaking, the F-signature s(R) measures the deviation from regularity. The next theorem confirms this intuition.

Theorem 1.2 ([HL], [Yao2], [AL]). Let (R, \mathfrak{m}, k) be a *d*-dimensional reduced *F*-finite Noetherian local ring with char R = p > 0. Then we have

- (1) *R* is regular if and only if s(R) = 1,
- (2) *R* is strongly *F*-regular if and only if s(R) > 0.

This notion is extended for a finitely generated *R*-module as follows.

Definition 1.3 ([San]). Let (R, \mathfrak{m}, k) be a *d*-dimensional reduced *F*-finite Noetherian local ring of prime characteristic p > 0. For a finitely generated *R*-module *M* and $e \in \mathbb{N}$, we set

$$b_e(M) \coloneqq \max\{n \mid \exists \varphi : F^e_*M \twoheadrightarrow M^{\oplus n}\},\$$

THIS PAPER IS AN ANNOUNCEMENT OF OUR RESULT AND THE DETAILED VERSION WILL BE SUBMITTED TO SOMEWHERE.

and call it the e-th F-surjective number of M. Then we call the limit $s(M) \coloneqq \lim_{e \to \infty} \frac{b_e(M)}{p^{ed}}$ dual *F*-signature of M if it exists.

Remark 1.4. Since the morphism $F_*^e R \to R^{\oplus b_e(R)}$ splits, if *M* is isomorphic to the basering *R*, then the dual *F*-signature of *R* in sense of Definition 1.3 coincides with the *F*-signature of *R*. Thus, we use the same notation unless it causes confusion.

Remark 1.5. Since the m-adic completion commutes with $F_*^e(-)$, we can easily reduce the case of complete local ring in Definition 1.1 and 1.3. Thus, we may assume that the Krull-Schmidt condition holds for *R*.

Just like the *F*-signature, the dual *F*-signature also characterizes some singularities.

Theorem 1.6 ([San]). Let (R, \mathfrak{m}, k) be a *d*-dimensional reduced *F*-finite Cohen-Macaulay local ring with char R = p > 0. Then we have

- (1) *R* is *F*-rational if and only if $s(\omega_R) > 0$,
- (2) $s(R) \leq s(\omega_R)$,
- (3) $s(R) = s(\omega_R)$ if and only if R is Gorenstein.

In this way, the value of s(R) and $s(\omega_R)$ characterize some singularities. Now we have some questions. Let *M* be a finitely generated *R*-module which may not be *R* or ω_R . Then

- Does the value of s(M) have some pieces of information about singularities ?
- What does the explicit value of s(M) mean ?
- Is there any connection between s(M) and other numerical invariants ?

However, it is difficult to try these questions for now. Because the value of dual *F*-signature is not known and we don't have an effective method for determining it except only a few cases. For example, the case of two-dimensional Veronese subrings is studied in [San, Example 3.17]. Thus, in this article, we investigate the dual *F*-signature for Cohen-Macaulay (=CM) modules over two-dimensional rational double points. Therefore, in the rest of this article, we suppose that *G* is a finite subgroup of SL(2, *k*) and the order of *G* is coprime to p = char k. We remark that *G* contains no pseudo-reflections in this situation and it is well known that a finite subgroup of SL(2, *k*) is conjugate to one of the type so-called $(A_n), (D_n), (E_6), (E_7)$ or (E_8) . We denote the invariant subring of S := k[[x,y]] under the action of *G* by $R := S^G$ and the maximal ideal of *R* by m. In this situation, the invariant subring *R* is Gorenstein by [Wat]. We call *R* (or equivalently Spec *R*) rational double points (or Du Val singularities, Kleinian singularities, ADE singularities in the literature).

Let $V_0 = k, V_1, \dots, V_n$ be the full set of non-isomorphic irreducible representations of *G*. We set $M_t := (S \otimes_k V_t)^G$ $(t = 0, 1, \dots, n)$. Under the assumption *G* contains no pseudo-reflections, we can see that each M_t is an indecomposable maximal Cohen-Macaulay (=MCM) *R*-module $(\operatorname{rank}_R M_t = \dim_k V_t)$ and $M_s \not\cong M_t$ $(s \neq t)$. For more details refer to [HN, Section 2].

In this article, we will investigate the value of $s(M_t)$. In order to determine the dual *F*-signature, we have to understand the following topics;

- (1) The structure of $F_*^e M_t$, namely
 - What kind of MCM appears in $F_*^e M_t$ as a direct summand?
 - The asymptotic behavior of $F_*^e M_t$ on the order of p^{2e} .
- (2) How do we construct a surjection $F_*^e M_t \twoheadrightarrow M_t^{\oplus b_e}$?

To show the former one, we need the notion of generalized *F*-signature. So we review it in Section 2. After that we will use the notion of the Auslander-Reiten quiver to show the latter problem. Thus, we give a brief summary of the Auslander-Reiten theory in Section 3. In Section 4, we actually determine the value of dual *F*-signature of CM modules. Since the strategy for determining the dual *F*-signature is almost the same for all the ADE cases, we will give a concrete explanation only for the case of D_5 . In Section 5, we give the complete list of the value of dual *F*-signature for all the ADE cases.

2. GENERALIZED F-SIGNATURE OF INVARIANT SUBRINGS

Firstly it is known that *R* is of finite CM representation type, that is, it has only finitely many non-isomorphic indecomposable MCM modules $\{R, M_1, \dots, M_n\}$. Since $F_*^e R$ is an MCM *R*-module, we can describe as

$$F^e_*R\cong R^{\oplus c_{0,e}}\oplus M_1^{\oplus c_{1,e}}\oplus\cdots\oplus M_n^{\oplus c_{n,e}}.$$

Since the Krull-Schmidt condition holds for *R*, the multiplicities $c_{t,e}$ are determined uniquely. For understanding the asymptotic behavior of the multiplicity $c_{t,e}$, we consider the limit

$$s(R,M_t) \coloneqq \lim_{e \to \infty} \frac{c_{t,e}}{p^{2e}} \quad (t = 0, 1, \cdots, n).$$

We call it generalized *F*-signature of M_t . In our situation, this limit exists [SVdB, Yao1]. And the value of this limit is known as follows.

Theorem 2.1. ([HS, Lemma 4.10], *see also* [HN, Theorem 3.4]) *For* $t = 0, 1, \dots, n$, *we have*

$$s(R, M_t) = \frac{\operatorname{rank}_R M_t}{|G|} = \frac{\dim_k V_t}{|G|}$$

Remark 2.2. In the case of t = 0, we have s(R,R) = s(R) and the above result is also due to [HL, Example 18], [WY, Theorem 4.2].

As a corollary, we also have the next statement.

Corollary 2.3. ([HN, Corollary 3.10]) Suppose an MCM R-module $F_*^e M_t$ decomposes as follows.

$$F^e_*M_t \cong R^{\oplus d^t_{0,e}} \oplus M_1^{\oplus d^t_{1,e}} \oplus \cdots \oplus M_n^{\oplus d^t_{n,e}}.$$

Then, for all $s, t = 0, \dots, n$, we have

$$s(M_t, M_s) \coloneqq \lim_{e \to \infty} \frac{d_{s,e}^t}{p^{2e}} = (\operatorname{rank}_R M_t) \cdot s(R, M_s) = \frac{(\operatorname{rank}_R M_t) \cdot (\operatorname{rank}_R M_s)}{|G|}.$$

Remark 2.4. As Corollary 2.3 shows, every indecomposable MCM *R*-modules appear in $F_*^e M_t$ as a direct summand for sufficiently large e >> 0. Therefore, the additive closure $\operatorname{add}_R(F_*^e M_t)$ coincides with the category of MCM *R*-modules CM(*R*). So we can apply several results so-called Auslander-Reiten theory to $\operatorname{add}_R(F_*^e M_t)$. We discuss it in the next section.

3. REVIEW OF AUSLANDER-REITEN THEORY

From Nakayama's lemma, when we discuss the surjectivity of $F_*^e M_t \to M_t^{\oplus b}$, we may consider each MCM module as a vector space after tensoring the residue field k. Thus, we want to know a basis of $M_t/\mathfrak{m}M_t$ (i.e. minimal generators of M_t). For some $m \in \mathbb{N}$, we have

From this observation, we identify a minimal generator of M_t with a morphism from R to M_t which doesn't factor through free modules except the starting point. In order to find such morphisms, we will use the notion of Auslander-Reiten (=AR) quiver. So we review some results of Auslander-Reiten theory in this section. For more details, see some textbooks (e.g. [Yos]).

In order to define the AR quiver, we introduce the notion of irreducible morphism.

Definition 3.1 (Irreducible morphism). Suppose M and N are MCM R-modules. We decompose M and N into indecomposable modules as $M = \bigoplus_i M_i$, $N = \bigoplus_j N_j$ and also decompose $\psi \in \operatorname{Hom}_R(M,N)$ along the above decomposition as $\psi = (\psi_{ij} : M_i \to N_j)_{ij}$. Then we define submodule $\operatorname{rad}_R(M,N) \subset \operatorname{Hom}_R(M,N)$ as

$$\psi \in \operatorname{rad}_R(M,N) \stackrel{def}{\Longleftrightarrow} no \ \psi_{ij} \text{ is an isomorphism.}$$

Furthermore, we define submodule $\operatorname{rad}_R^2(M,N) \subset \operatorname{Hom}_R(M,N)$. The submodule $\operatorname{rad}_R^2(M,N)$ consists of morphisms $\psi: M \to N$ such that ψ decomposes as $\psi = fg$, where $f \in \operatorname{rad}_R(M,Z)$, $g \in \operatorname{rad}_R(Z,N)$ and Z is an MCM R-module. We say that a morphism $\psi: M \to N$ is irreducible if $\psi \in \operatorname{rad}_R(M,N) \setminus \operatorname{rad}_R^2(M,N)$. In this setting, we define the k-vector space $\operatorname{Irr}_R(M,N)$ as $\operatorname{Irr}_R(M,N) \coloneqq \operatorname{rad}_R(M,N) / \operatorname{rad}_R^2(M,N)$.

By using this notion, we define the AR quiver.

Definition 3.2 (Auslander-Reiten quiver). *The AR quiver of R is an oriented graph whose vertices are indecomposable MCM R-modules* $\{R, M_1, \dots, M_n\}$ *and draw* $\dim_k \operatorname{Irr}_R(M_s, M_t)$ *arrows from* M_s *to* M_t ($s, t = 0, 1, \dots, n$).

In our situation, the AR quiver of *R* coincides with the McKay quiver of *G* by [Aus1], so we can describe it from representations of *G* (for the definition of McKay quiver, refer to [Yos, (10.3)]). And more fortunately, the AR quiver of *R* coincides with the extended Dynkin diagram corresponding to a finite subgroup of SL(2,k) after replacing each edges "–" by arrows " \subseteq ". This is a kind of McKay correspondence. Therefore the Auslander-Reiten quiver of *R* is the left hand side of the following,

where a vertex t corresponds the MCM R-module M_t and the right hand side of the figure means rank_R M_t .

4. DUAL *F*-SIGNATURE OVER RATIONAL DOUBLE POINTS

The strategy for determining the dual *F*-signature is almost the same for all the ADE cases. So from now on, we will explain the method of determining it by using the following example.

Example 4.1. The binary dihedral group $G \coloneqq \mathscr{D}_3 = \langle \begin{pmatrix} \zeta_6 & 0 \\ 0 & \zeta_6^{-1} \end{pmatrix}, \begin{pmatrix} 0 & \zeta_4 \\ \zeta_4 & 0 \end{pmatrix} \rangle$ is the type D_5 in the list [Yos, (10.15)] and |G| = 12. For the invariant subring under the action of G, the AR quiver takes the form of D_5 ,

with relations

$$\begin{cases} A \circ a = 0, & C \circ c + D \circ d + E \circ e = 0, \\ B \circ b = 0, & d \circ D = 0, \\ a \circ A + b \circ B + c \circ C = 0, & e \circ E = 0 \end{cases}$$
(4.1)

In order to find morphisms from *R* to M_t which doesn't factor through free modules except the starting point, we define the stable category $\underline{CM}(R)$ as follows. The objects of $\underline{CM}(R)$ are same as those of $\underline{CM}(R)$ and the morphism set is given by

$$\underline{\operatorname{Hom}}_{R}(X,Y) \coloneqq \operatorname{Hom}_{R}(X,Y) / \mathscr{P}(X,Y), \quad X,Y \in \operatorname{CM}(R)$$

where $\mathscr{P}(X,Y)$ is the submodule of $\operatorname{Hom}_{R}(X,Y)$ consisting of morphisms which factor through a free *R*-module.

By the property of AR quiver, we can see that morphisms from *R* to non-free indecomposable $M_t \in CM(R)$ (on the AR quiver of D_5) always go through the vertex M_2 at the beginning. Thus, the composition of $R \xrightarrow{a} M_2$ and non-zero elements of $\underline{Hom}_R(M_2, M_t)$ are exactly what we wanted. Therefore we will find non-zero elements of $\underline{Hom}_R(M_2, M_t)$. For this purpose we rewrite the AR quiver as a repetition of the original one.

Since this quiver has relations, it seems to be difficult to extract non-zero morphisms from the above picture. But there is a useful technique so-called counting argument of AR quiver. By using such a technique, we can extract desired morphisms. This method first appeared in the work of Gabriel [Gab] and it is also used for classifying special CM modules over quotient surface singularities [IW]. For the details of this kind of counting argument, see [Gab, Iya, IW].

After applying such a technique, we obtain the following picture. And paths on this quiver represent non-zero morphisms in $\underline{\text{Hom}}_{R}(M_{2}, M_{t})$.

The following quiver is the composition of $R \xrightarrow{a} M_2$ and non-zero element of $\underline{\text{Hom}}_R(M_2, M_t)$ for $t = 1, 2, \dots, 5$ (the exponent of each vertex implies the multiplicity).

Thus, we identify paths on this quiver with minimal generator of each MCM *R*-module M_t . For example, minimal generators of M_1 are identified with

Of course, there are several paths from R to M_1 not only the above ones. But they are same up to modulo radical because this quiver has relations. When we consider a surjection, it doesn't matter if we identify them.

By using these results, we try to determine $s(M_1)$ as an example. Firstly, we suppose an MCM *R*-module $F_*^e M_1$ decomposes as $F_*^e M_1 \cong R^{\oplus d_{0,e}} \oplus M_1^{\oplus d_{1,e}} \oplus \cdots \oplus M_n^{\oplus d_{n,e}}$. From Corollary 2.3, we have the following for all $s = 0, 1, \dots, n$,

$$s(M_1, M_s) = \lim_{e \to \infty} \frac{d_{s,e}}{p^{2e}} = \frac{(\operatorname{rank}_R M_1)(\operatorname{rank}_R M_s)}{|G|} = \frac{\operatorname{rank}_R M_s}{12}.$$

Thus, we may consider

$$F_*^e M_1 \approx (R^{\frac{1}{12}} \oplus M_1^{\frac{1}{12}} \oplus M_2^{\frac{2}{12}} \oplus M_3^{\frac{2}{12}} \oplus M_4^{\frac{1}{12}} \oplus M_5^{\frac{1}{12}})^{p^{2e}},$$

on the order of p^{2e} in this case. When we try to compute dual *F*-signature, the part of $o(p^{2e})$ is harmless. So we identify $F_*^e M_1$ with $\left(R^{\frac{1}{12}} \oplus M_1^{\frac{1}{12}} \oplus M_2^{\frac{2}{12}} \oplus M_3^{\frac{2}{12}} \oplus M_4^{\frac{1}{12}} \oplus M_5^{\frac{1}{12}}\right)$ and consider a surjection

$$R^{\frac{1}{12}} \oplus M_1^{\frac{1}{12}} \oplus M_2^{\frac{2}{12}} \oplus M_3^{\frac{2}{12}} \oplus M_4^{\frac{1}{12}} \oplus M_5^{\frac{1}{12}} \twoheadrightarrow M_1^{\oplus b}.$$

As we showed before, minimal generators of M_1 are identified with paths in (4.3). We denote the left (resp. right) of them by g_1 (resp. g_2). In order to construct a surjection, we pay attention to g_1 . We can see that M_2 can generate g_1 through the morphism $M_2 \xrightarrow{B} M_1$.

$$0 + 2 \xrightarrow{B} 1 = g_1: 0$$
2
min. gen. of M_2

Similarly, *R* can generate g_1 through the morphism $R \xrightarrow{B \circ a} M_1$. Moreover, M_1 clearly generate g_1 through the identity map $(M_1 \xrightarrow{1_{M_1}} M_1)$. And we have no other such MCMs. Collectively, MCM modules which generate the minimal generator g_1 are $\{R^{\frac{1}{12}}, M_1^{\frac{1}{12}}, M_2^{\frac{2}{12}}\}$. Thus, the value of $s(M_1)$ can take $s(M_1) \le \frac{1}{12} + \frac{1}{12} + \frac{2}{12} = \frac{4}{12}$ (In order to show the ratio of $s(M_1)$ to the order of *G*, we don't reduce the fraction). In this way, we obtain the upper bounds of $s(M_1)$.

Next, we will show that we can actually construct a surjection

$$R^{\frac{1}{12}} \oplus M_1^{\frac{1}{12}} \oplus M_2^{\frac{2}{12}} \oplus M_3^{\frac{2}{12}} \oplus M_4^{\frac{1}{12}} \oplus M_5^{\frac{1}{12}} \twoheadrightarrow M_1^{\frac{4}{12}}$$

As we showed before, each minimal generator of M_2 is identified with a morphism from "0" to "2" in (4.2). Considering the composition of such morphisms and $2 \xrightarrow{B} 1$, we have g_1 and g_2 at the same time. Namely, we have the surjection $M_2^{\frac{2}{12}} \xrightarrow{B} M_1^{\frac{2}{12}}$. Moreover, there is the surjection $M_1^{\frac{1}{12}} \rightarrow M_1^{\frac{1}{12}}$ clearly. In this way, M_1 and M_2 can generate g_1 and g_2 at the same time. But R can't generate g_1 and g_2 at the same time (only generate either g_1 or g_2). We will use it for generating g_1 and use the remaining MCMs $\{M_3, M_4, M_5\}$ for generating g_2 . (From the picture (4.2), we read off that these remaining MCMs generate g_2 .) For example, we have $R^{\frac{1}{12}} \oplus M_4^{\frac{1}{12}} \rightarrow M_1^{\frac{1}{12}}$.

5. Summary of the value of Dual F-signature

By using similar method, we can obtain the dual *F*-signature for all the ADE cases. Finally, we give the complete list of the dual *F*-signature.

Theorem 5.1. The following is the Dynkin diagram Q and corresponding values of dual F-signature (In order to show the ratio of dual F-signature to the order of G clearly, we don't reduce fractions).

(1) Type
$$A_n$$

REFERENCES

- [AL] I. Aberbach and G. Leuschke, The F-signature and strongly F-regularity, Math. Res. Lett. 10 (2003), 51-56.
- [Aus1] M. Auslander, *Rational singularities and almost split sequences*, Trans. Amer. Math. Soc. **293** (1986), no. 2, 511-531.
- [Aus2] M. Auslander, *Isolated singularities and existence of almost split sequences*, Proc. ICRA IV, Springer Lecture Notes in Math. **1178** (1986), 194-241.
- [AR] M. Auslander and I. Reiten, Almost split sequences for Rational double points, Trans. Amer. Math. Soc. 302 (1987), no. 1, 87-97.
- [Gab] P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, Lecture Notes in Math. 831, Representation theory I (Proceedings, Ottawa, Carleton Univ., 1979), Springer, (1980), 171,
- [HS] N. Hara and T. Sawada, Splitting of Frobenius sandwiches, RIMS Kôkyûroku Bessatu B24 (2011), 121-141.
- [HN] M. Hashimoto and Y. Nakajima, Generalized F-signature of invariant subrings, arXiv:1311.5963.
- [HL] C. Huneke and G. Leuschke, Two theorems about maximal Cohen-Macaulay modules, Math. Ann. 324 (2002), no. 2, 391-404.
- [Kun] E. Kunz, Characterizations of regular local rings for characteristic p, Amer. J. Math. 41 (1969), 772-784.
- [Iya] O. Iyama, τ -categories I: Ladders, Algeb. Represent. Theory 8 (2005), no. 3, 297-321.
- [IW] O. Iyama and M. Wemyss, The classification of special Cohen Macaulay modules, Math. Z. 265 (2010), no. 1, 41-83.
- [San] A. Sannai, *Dual F-signature*, to appear in International Mathematics Research Notices, arXiv:1301.2381.
- [SVdB] K. E. Smith and M. Van den Bergh, *Simplicity of rings of differential operators in prime characteristic*, Proc. London Math. Soc. (3) **75** (1997), no. 1, 32-62.
- [Tuc] K. Tucker, F-signature exists, Invent. Math. 190 (2012), no. 3, 743-765.
- [Wat] K. Watanabe, Certain invariant subrings are Gorenstein. I, Osaka J. Math. 11 (1974), 1-8.
- [WY] K. Watanabe and K. Yoshida, *Minimal relative Hilbert-Kunz multiplicity*, Illinois J. Math. 48 (2004), no. 1, 273-294.
- [Yao1] Y. Yao, Modules with Finite F-Representation Type, J. London Math. Soc. 72 (2005), no. 2, 53-72.
- [Yao2] Y. Yao, Observations on the F-signature of local rings of characteristic p, J. Algebra **299** (2006), no. 1, 198-218.
- [Yos] Y. Yoshino, Cohen-Macaulay modules over Cohen-Macaulay rings, London Mathematical Society Lecture Note Series, 146, Cambridge University Press, Cambridge, (1990).

GRADUATE SCHOOL OF MATHEMATICS, NAGOYA UNIVERSITY, CHIKUSA-KU, NAGOYA, 464-8602 JAPAN *E-mail address*: m06022z@math.nagoya-u.ac.jp