On modules of linear type^{*}

Kosuke Fukumuro, Hirofumi Kume and Koji Nishida^{†‡}

Graduate School of Science, Chiba University

1 Introduction

Let R be a Noetherian ring. For an R-module N, we denote by $\mathcal{S}(N)$ the symmetric algebra of N. Let m and n be positive integers such that $1 \leq m \leq n$. We denote by Mat(m, n; R) the set of $m \times n$ matrices with entries in R. Let $A = (a_{ij}) \in Mat(m, n; R)$. We set

$$M = \operatorname{Coker} \left(R^m \xrightarrow{{}^{t}A} R^n \right).$$

Let $S = \mathcal{S}(\mathbb{R}^n)$ and x_1, x_2, \ldots, x_n be the standard free basis of \mathbb{R}^n . Then we have

$$S = R[x_1, x_2, \dots, x_n],$$

which is a polynomial ring. For any i = 1, ..., m, we set

$$f_i = a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \in S$$
.

As is well known, we have $\mathcal{S}(M) = S/(f_1, f_2, \dots, f_m)S$. In [1], after proving that grade $(f_1, f_2, \dots, f_m)S = m$ if and only if grade $I_i(A) \ge m - i + 1$ for any $i = 1, \dots, m$, Avramov gave a condition for $I_m(A)$ to be an ideal of linear type in the case where n = m + 1 (See [3] for elementary proofs for those facts). Let us notice that if n = m + 1, the cokernel of the homomorphism $\mathbb{R}^m \to \mathbb{R}^n$ defined by tA is isomorphic to $I_m(A)$ by the theorem of Hilbert-Burch. The purpose of this report is to generalize Avramov's result. Without assuming n = m + 1, we will give a condition for the R-torsion part of $\mathcal{S}(M)$, which is denoted by $T_R(\mathcal{S}(M))$, to be vanished. The main theorem can be stated as follows.

Theorem 1.1 The following conditions are equivalent.

- (1) grade $I_i(A) \ge m i + 2$ for any i = 1, ..., m.
- (2) M has rank n m, $T_R(\mathcal{S}(M)) = 0$ and grade $(f_1, f_2, \ldots, f_m)S = m$.

^{*}This report is an announcement of our result and the detailed version will be submitted to somewhere.

 $^{^\}dagger {\rm The}$ last author is supported partially by JSPS KAKENHI Grant Number 23540042.

[‡]E-mail: nishida@math.s.chiba-u.ac.jp

In order to explain the meaning of the condition (2) of the theorem above, let us recall the definitions of the rank and the Rees algebra of a module. Let r be a non-negative integer and Q be the total quotient ring of R. We say that an R-module N has rank r if $Q \otimes_R N \cong Q^r$, which is equivalent to saying that $N_{\mathfrak{p}} \cong R_{\mathfrak{p}}^r$ for any $\mathfrak{p} \in Ass R$ (cf. [2, 1.4.3]). If an *R*-module N has rank r and torsion free, there exist a finitely generated free R-module F and an embedding $\sigma: N \hookrightarrow F$ (cf. [2, 1.4.18]). Then we see that the kernel of $\mathcal{S}(\sigma) : \mathcal{S}(N) \to \mathcal{S}(F)$ coincides with $T_R(\mathcal{S}(N))$ (cf. [7, p.613]), and so Im $\mathcal{S}(\sigma) \cong \mathcal{S}(N)/T_R(\mathcal{S}(N))$ as *R*-algebras. This means that, up to isomorphisms of *R*-algebras, Im $\mathcal{S}(\sigma)$ is independent of the choice of F and σ . So, the Rees algebra of N is defined to be $\mathcal{S}(N)/T_R(\mathcal{S}(N))$, which is denoted by $\mathcal{R}(N)$. We say that N is a module of linear type if $T_R(\mathcal{S}(N)) = 0$, that is $\mathcal{S}(N) \cong \mathcal{R}(N)$ as *R*-algebras. Therefore, if the condition (2) of 1.1 is satisfied, we have $\mathcal{R}(M) \cong S/(f_1, f_2, \ldots, f_m)S$ and the Koszul complex of f_1, f_2, \ldots, f_m gives a S-free resolution of $\mathcal{R}(M)$.

2 Preliminaries

In this section, we summarize preliminary results we need to prove Theorem 1.1.

Lemma 2.1 Let N be a finitely generated torsion-free R-module having a rank. Then $T_{R_{\mathfrak{p}}}(N_{\mathfrak{p}}) \cong T_{R}(N)_{\mathfrak{p}}$ for any $\mathfrak{p} \in \operatorname{Spec} R$.

Theorem 1.1 will be proved by induction on m. The next result plays a key role in the argument of induction.

Lemma 2.2 Let $m \geq 2$ and $\mathfrak{p} \in \operatorname{Spec} R$. We assume $I_1(A) \not\subseteq \mathfrak{p}$. Then there exists $B = (b_{ij}) \in Mat(m-1, n-1; R_{\mathfrak{p}})$ satisfying the following conditions.

- (a) $I_i(B) = I_{i+1}(A)_{\mathfrak{p}}$ for any $i \in \mathbb{Z}$.
- (b) Setting $S' = R_{\mathfrak{p}}[x_1, \dots, x_{n-1}]$ and $g_i = b_{i1}x_1 + \dots + b_{i,n-1} \in S'$ for $i = 1, \dots, m-1$, we have ade $(f_1, \ldots, f_{m-1}, f_m) S_n = 1 +$

grade
$$(f_1, \ldots, f_{m-1}, f_m)S_{\mathfrak{p}} = 1 + \text{grade}(g_1, \ldots, g_{m-1})S'$$

(c) Setting $N = \operatorname{Coker}(R_{\mathfrak{p}}^{m-1} \xrightarrow{{}^{t}B} R_{\mathfrak{p}}^{n-1})$, we have $M_{\mathfrak{p}} \cong N$ as $R_{\mathfrak{p}}$ -modules.

Let us denote the Koszul complex of f_1, f_2, \ldots, f_m with respect to S by

$$0 \longrightarrow C_m \xrightarrow{d_m} C_{m-1} \longrightarrow \cdots \longrightarrow C_1 \xrightarrow{d_1} C_0 \longrightarrow 0.$$

Let u_1, u_2, \ldots, u_m be the *R*-free basis of C_1 such that $d_1(u_i) = f_i$ for $i = 1, \ldots, m$. Then

$$d_r(u_{i_1} \wedge u_{i_2} \wedge \dots \wedge u_{i_r}) = \sum_{p=1}^r (-1)^{p-1} f_{i_p} u_{i_1} \wedge \dots \wedge \widehat{u_{i_p}} \wedge \dots \wedge u_{i_r}$$

if $1 \le r \le m$ and $1 \le i_1 < i_2 < \cdots < i_r \le m$. We regard S as a graded ring by setting $\deg x_j = 1$ for all $j = 1, \ldots, n$. Moreover, we regard C_{\bullet} as a graded complex by setting deg $u_i = 1$ for all i = 1, ..., m. Then, taking the homogeneous component of C_{\bullet} of degree m, we get a complex

$$0 \longrightarrow [C_m]_m \xrightarrow{[d_m]_m} [C_{m-1}]_m \longrightarrow \cdots \longrightarrow [C_1]_m \xrightarrow{[d_1]_m} [C_0]_m \longrightarrow 0$$

of finitely generated free *R*-modules, where $[d_r]_m$ denotes the restriction of d_r to $[C_r]_m$ for $r = 1, \ldots, m$. Let us notice that $[C_m]_m$ is rank 1 and is generated by $u_1 \wedge u_2 \wedge \cdots \wedge u_m$. Furthermore, as an *R*-free basis of $[C_{m-1}]_m$, we can take

$$\{x_j \check{u}_i \mid 1 \le i \le m, 1 \le j \le n\},\$$

where $\check{u}_i = u_1 \wedge \cdots \wedge \widehat{u}_i \wedge \cdots \wedge u_m$ for $i = 1, \dots, m$. Because

$$\partial_m (u_1 \wedge u_2 \wedge \dots \wedge u_m) = \sum_{i=1}^m (-1)^{i-1} f_i \check{u}_i$$

=
$$\sum_{i=1}^m (-1)^{i-1} (\sum_{j=1}^n a_{ij} x_j) \check{u}_i$$

=
$$\sum_{i=1}^m \sum_{j=1}^n (-1)^{i-1} a_{ij} \cdot x_j \check{u}_i,$$

we get the following result.

Lemma 2.3 $I_1([d_m]_m) = I_1(A)$.

The following fact can be regarded as the core of Theorem 1.1.

Lemma 2.4 (cf. [6, Proposition]) The following conditions are equivalent.

- (1) grade $I_m(A) \ge 2$.
- (2) M is torsion-free and has rank n m.

When this is the case, $pd_R M \leq 1$ and M can be embedded into a finitely generated free R-module.

3 Proof of the main theorem

In this section we prove Theorem 1.1.

Proof of $(1) \Rightarrow (2)$.

As grade $I_m(A) \ge 2$ by (1), it follows that M is torsion-free and has rank n - m by 2.3. Moreover, we get grade $(f_1, f_2, \ldots, f_m)S = m$ by [1, Proposition 1]. Let us prove $T_R(\mathcal{S}(M)) = 0$ by induction on m.

First, we consider the case where m = 1. Then $\mathcal{S}(M) = S/f_1S$, where $f_1 = a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n$. Suppose $T_R(\mathcal{S}(M)) \neq 0$. Then there exists $P \in Ass_S T_R(\mathcal{S}(M))$. Because $T_R(\mathcal{S}(M))$ is an S-submodule of S/f_1S and grade $f_1S = 1$, we have depth $S_P =$ 1. We set $\mathfrak{p} = P \cap R$. Then grade $\mathfrak{p} \leq 1$, and so $I_1(A) \not\subseteq \mathfrak{p}$ as grade $I_1(A) \geq 2$. Hence, replacing the columns of A if necessary, we may assume $a_{11} \notin \mathfrak{p}$. Then we have

$$\mathcal{S}(M_{\mathfrak{p}}) = \mathcal{S}(M)_{\mathfrak{p}} = \frac{R_{\mathfrak{p}}[x_1, x_2, \dots, x_n]}{(x_1 + (a_{12}/a_{11})x_2 + \dots + (a_{1n}/a_{11})x_n)} \cong R_{\mathfrak{p}}[x_2, \dots, x_n].$$

which means $T_{R_{\mathfrak{p}}}(\mathcal{S}(M_{\mathfrak{p}})) = 0$, and so $T_{R}(\mathcal{S}(M))_{\mathfrak{p}} = 0$ by 2.1. Therefore it follows that $T_{R}(\mathcal{S}(M))_{P} = 0$, which contradicts to $P \in Ass_{S} T_{R}(\mathcal{S}(M))$. Thus we see $T_{R}(\mathcal{S}(M)) = 0$ in the case where m = 1.

Next, we assume $m \geq 2$ and the required implication is true for matrices having m-1 rows. Suppose $T_R(\mathcal{S}(M)) \neq 0$. Then there exists $P \in Ass_R T_R(\mathcal{S}(M))$. Because $T_R(\mathcal{S}(M))$ is an S-submodule of $S/(f_1, f_2, \ldots, f_m)S$ and grade $(f_1, f_2, \ldots, f_m)S = m$, we have depth $S_P = m$. We set $\mathfrak{p} = P \cap R$. Then grade $\mathfrak{p} \leq m$, and so $I_{I_1(A)}() \subseteq \mathfrak{p}$ as grade $1A \geq m+1$. Hence, there exists $B = (b_{ij}) \in Mat(m-1, n-1; R_{\mathfrak{p}})$ satisfying the conditions (a), (b) and (c) of 2.2. By (a), for any $i = 1, \ldots, m-1$, we have

grade $I_i(B)$ = grade $I_{i+1}(A)_{\mathfrak{p}} \ge$ grade $I_{i+1}(A) \ge m - (i+1) + 2 = (m-1) - i + 2$.

Therefore, setting

$$N = \operatorname{Coker} \left(R_{\mathfrak{p}}^{m-1} \xrightarrow{{}^{t}B} R_{\mathfrak{p}}^{n-1} \right),$$

we get $T_{R_{\mathfrak{p}}}(\mathcal{S}(N)) = 0$ by the hypothesis of induction. Because $\mathcal{S}(M_{\mathfrak{p}}) \cong \mathcal{S}(N)$ by (c), we have $T_{R_{\mathfrak{p}}}(\mathcal{S}(M_{\mathfrak{p}})) = 0$, and so $T_R(M)_{\mathfrak{p}} = 0$ by 2.1. This means $T_R(\mathcal{S}(M))_P = 0$, which contradicts to $P \in Ass_S T_R(\mathcal{S}(M))$. Thus we see $T_R(\mathcal{S}(M)) = 0$.

Proof of $(2) \Rightarrow (1)$.

Let us consider the Koszul complex

$$0 \longrightarrow C_m \xrightarrow{d_m} C_{m-1} \longrightarrow \cdots \longrightarrow C_1 \xrightarrow{d_1} C_0 \longrightarrow 0$$

described in Section 2. This is graded and acyclic as grade $(f_1, f_2, \ldots, f_m)S = m$. Moreover, we have

Coker
$$d_1 = S/(f_1, f_2, \dots, f_m)S = \mathcal{S}(M)$$
.

The condition $T_R(\mathcal{S}(M)) = 0$ implies that M is torsion-free over R, and so by [2, 1.4.18] there exist a finitely generated free R-module F and an embedding $\sigma : M \hookrightarrow F$. Then the induced homomorphism $\mathcal{S}(\sigma) : \mathcal{S}(M) \longrightarrow \mathcal{S}(F)$ is injective since Ker $\mathcal{S}(\sigma) = T_R(\mathcal{S}(M)) =$ 0. Thus we get a graded acyclic complex

$$0 \longrightarrow C_m \xrightarrow{d_m} C_{m-1} \longrightarrow \cdots \longrightarrow C_1 \xrightarrow{d_1} C_0 \longrightarrow \mathcal{S}(F) \longrightarrow 0.$$

Taking its homogeneous component of degree m, we get an acyclic complex

$$0 \longrightarrow [C_m]_m \xrightarrow{[d_m]_m} [C_{m-1}]_m \longrightarrow \cdots \longrightarrow [C_1]_m \xrightarrow{[d_1]_m} [C_0]_m \longrightarrow [\mathcal{S}(F]_m) \longrightarrow 0,$$

of finitely generated free *R*-modules. Let us notice that $\operatorname{rank}_{R}[C_{m}]_{m} = 1$ and $I_{1}([d_{m}]_{m}) = I_{1}(A)$ by 2.3. Hence we get grade $I_{1}(A) \ge m + 1$ by [2, 1.4.13].

In the rest of this proof, we show that the condition (1) holds by induction on m. If m = 1, it is certainly true by the observation stated above. So, let us consider the case where $m \ge 2$. We suppose that grade $I_j(A) \le m - j + 1$ for some j with $2 \le j \le m$. Then there exists $\mathfrak{p} \in \text{Spec } R$ such that $I_j(A) \subseteq \mathfrak{p}$ and depth $R_{\mathfrak{p}} \le m - j + 1$. As grade $I_1(A) \ge m + 1$, we have $I_1(A) \not\subseteq \mathfrak{p}$, and so there exists $B = (b_{ij}) \in \text{Mat}(m - 1, n - 1; R_{\mathfrak{p}})$ satisfying the conditions (a), (b) and (c) of 2.2. We set

$$N = \operatorname{Coker} \left(R_{\mathfrak{p}}^{m-1} \xrightarrow{{}^{t}B} R_{\mathfrak{p}}^{n-1} \right).$$

Then by (c) we have $N \cong M_{\mathfrak{p}}$ as $R_{\mathfrak{p}}$ -modules, so N has rank n-m and $\mathcal{S}(N) \cong \mathcal{S}(M_{\mathfrak{p}})$ as $R_{\mathfrak{p}}$ -algebras. Because $T_{R_{\mathfrak{p}}}(\mathcal{S}(M_{\mathfrak{p}})) = T_{R}(\mathcal{S}(M))_{\mathfrak{p}} = 0$ by 2.1, it follows that $T_{R_{\mathfrak{p}}}(\mathcal{S}(N)) = 0$. Moreover, setting $S' = R_{\mathfrak{p}}[x_{1}, \ldots, x_{n-1}]$ and $g_{i} = b_{i1}x_{1} + \cdots + b_{i,n-1}x_{n-1} \in S'$ for $i = 1, \ldots, m-1$, we get

grade $(g_1, \ldots, g_{m-1})S'$ = grade $(f_1, \ldots, f_{m-1}, f_m)S_{\mathfrak{p}} - 1 = m - 1$

by (b). Therefore the hypothesis of induction implies

grade
$$I_{j-1}(A) \ge (m-1) - (j-1) + 2 = m - j + 2$$
.

Then, as $I_{j-1}(B) = I_j(A)_{\mathfrak{p}}$ by (a), we get grade $I_j(A)_{\mathfrak{p}} \ge m - j + 2$, which contradicts to depth $R_{\mathfrak{p}} \le m - j + 1$. Thus we see grade $I_i(A) \ge m - i + 2$ for any $i = 1, 2, \ldots, m$ and the proof is complete.

4 Example

In this section, we give examples of matrices satisfying the condition (1) of Theorem 1.1.

Example 4.1 Let m and d be positive integers such that m < d. Let (R, \mathfrak{m}) be a ddimensional Cohen-Macaulay local ring and x_1, x_2, \ldots, x_n be elements of R generating an \mathfrak{m} -primary ideal. We take a family $\{\alpha_{ij}\}_{1 \leq i \leq m, 1 \leq j \leq n}$ of positive integers, and set

$$a_{ij} = \begin{cases} x_{i+j-1}^{\alpha_{ij}} & \text{if } i+j \le n+1 \\ \\ x_{i+j-n-1}^{\alpha_{ij}} & \text{if } i+j > n+1 \end{cases}$$

and $A = (a_{ij}) \in Mat(m, n; R)$. Then we have grade $I_i(A) \ge m - i + 2$ for $1 \le \forall i \le m$.

If $\alpha_{ij} = 1$ for any *i* and *j*, the matrix *A* stated above looks like

$$\begin{pmatrix} x_1 & x_2 & \cdots & x_m & \cdots & x_n \\ x_2 & & x_m & & x_n & x_1 \\ \vdots & & \ddots & & \ddots & \vdots \\ & & x_m & & x_n & x_1 & & x_{m-2} \\ & & x_m & \cdots & x_n & x_1 & \cdots & x_{m-2} & x_{m-1} \end{pmatrix}$$

However, we can take any power at each entries.

References

- L. Avramov, Complete intersections and symmetric algebras, J. Algebra, 73 (1981), 248–263.
- [2] W. Bruns and J. Herzog, *Cohen-Macaulay rings*, Cambridge Stud. Adv. Math. 39, Cambridge University Press, 1997.
- [3] K. Fukumuro, On the symmetric and Rees algebras of certain determinantal ideals, to appear in Tokyo J. Math., arXiv:1306.0993.
- [4] K. Fukumuro, T. Inagawa and K. Nishida, On a transform of an acyclic complex of length 3, J. Algebra, 384 (2013), 84–109.
- [5] T. Inagawa, *-transforms of acyclic complexes, Preprint (2013), arXiv:1307.1500.
- [6] D. Katz, Torsion-free modules and syzygies, Mathematica Pannonica, 5/1 (1994), 7–13.
- [7] A. Simis, B. Ulrich and W. Vasconcelos, Rees algebras of modules, Proc. London Math. Soc. (3), 87 (2003), 610–646