On modules of linear type*

Kosuke Fukumuro, Hirofumi Kume and Koji Nishida ${ }^{\dagger \ddagger}$
Graduate School of Science, Chiba University

1 Introduction

Let R be a Noetherian ring. For an R-module N, we denote by $\mathcal{S}(N)$ the symmetric algebra of N. Let m and n be positive integers such that $1 \leq m \leq n$. We denote by $\operatorname{Mat}(m, n ; R)$ the set of $m \times n$ matrices with entries in R. Let $A=\left(a_{i j}\right) \in \operatorname{Mat}(m, n ; R)$. We set

$$
M=\operatorname{Coker}\left(R^{m} \xrightarrow{t_{A}} R^{n}\right)
$$

Let $S=\mathcal{S}\left(R^{n}\right)$ and $x_{1}, x_{2}, \ldots, x_{n}$ be the standard free basis of R^{n}. Then we have

$$
S=R\left[x_{1}, x_{2}, \ldots, x_{n}\right]
$$

which is a polynomial ring. For any $i=1, \ldots, m$, we set

$$
f_{i}=a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+a_{i n} x_{n} \in S .
$$

As is well known, we have $\mathcal{S}(M)=S /\left(f_{1}, f_{2}, \ldots, f_{m}\right) S$. In [1], after proving that $\operatorname{grade}\left(f_{1}, f_{2}, \ldots, f_{m}\right) S=m$ if and only if grade $\mathrm{I}_{i}(A) \geq m-i+1$ for any $i=1, \ldots, m$, Avramov gave a condition for $\mathrm{I}_{m}(A)$ to be an ideal of linear type in the case where $n=m+1$ (See [3] for elementary proofs for those facts). Let us notice that if $n=m+1$, the cokernel of the homomorphism $R^{m} \rightarrow R^{n}$ defined by ${ }^{t} A$ is isomorphic to $\mathrm{I}_{m}(A)$ by the theorem of Hilbert-Burch. The purpose of this report is to generalize Avramov's result. Without assuming $n=m+1$, we will give a condition for the R-torsion part of $\mathcal{S}(M)$, which is denoted by $\mathrm{T}_{R}(\mathcal{S}(M))$, to be vanished. The main theorem can be stated as follows.

Theorem 1.1 The following conditions are equivalent.
(1) $\operatorname{grade}_{i}(A) \geq m-i+2$ for any $i=1, \ldots, m$.
(2) M has rank $n-m, \mathrm{~T}_{R}(\mathcal{S}(M))=0$ and grade $\left(f_{1}, f_{2}, \ldots, f_{m}\right) S=m$.

[^0]In order to explain the meaning of the condition (2) of the theorem above, let us recall the definitions of the rank and the Rees algebra of a module. Let r be a non-negative integer and Q be the total quotient ring of R. We say that an R-module N has rank r if $Q \otimes_{R} N \cong Q^{r}$, which is equivalent to saying that $N_{\mathfrak{p}} \cong R_{\mathfrak{p}}^{r}$ for any $\mathfrak{p} \in$ Ass R (cf. [2, 1.4.3]). If an R-module N has rank r and torsion free, there exist a finitely generated free R-module F and an embedding $\sigma: N \hookrightarrow F$ (cf. [2, 1.4.18]). Then we see that the kernel of $\mathcal{S}(\sigma): \mathcal{S}(N) \rightarrow \mathcal{S}(F)$ coincides with $\mathrm{T}_{R}(\mathcal{S}(N)$) (cf. [7, p.613]), and so $\operatorname{Im} \mathcal{S}(\sigma) \cong \mathcal{S}(N) / \mathrm{T}_{R}(\mathcal{S}(N))$ as R-algebras. This means that, up to isomorphisms of R-algebras, $\operatorname{Im} \mathcal{S}(\sigma)$ is independent of the choice of F and σ. So, the Rees algebra of N is defined to be $\mathcal{S}(N) / \mathrm{T}_{R}(\mathcal{S}(N)$), which is denoted by $\mathcal{R}(N)$. We say that N is a module of linear type if $\mathrm{T}_{R}(\mathcal{S}(N))=0$, that is $\mathcal{S}(N) \cong \mathcal{R}(N)$ as R-algebras. Therefore, if the condition (2) of 1.1 is satisfied, we have $\mathcal{R}(M) \cong S /\left(f_{1}, f_{2}, \ldots, f_{m}\right) S$ and the Koszul complex of $f_{1}, f_{2}, \ldots, f_{m}$ gives a S-free resolution of $\mathcal{R}(M)$.

2 Preliminaries

In this section, we summarize preliminary results we need to prove Theorem 1.1.
Lemma 2.1 Let N be a finitely generated torsion-free R-module having a rank. Then $\mathrm{T}_{R_{\mathfrak{p}}}\left(N_{\mathfrak{p}}\right) \cong \mathrm{T}_{R}(N)_{\mathfrak{p}}$ for any $\mathfrak{p} \in \operatorname{Spec} R$.

Theorem 1.1 will be proved by induction on m. The next result plays a key role in the argument of induction.

Lemma 2.2 Let $m \geq 2$ and $\mathfrak{p} \in \operatorname{Spec} R$. We assume $\mathrm{I}_{1}(A) \nsubseteq \mathfrak{p}$. Then there exists $B=\left(b_{i j}\right) \in \operatorname{Mat}\left(m-1, n-1 ; R_{\mathfrak{p}}\right)$ satisfying the following conditions.
(a) $\mathrm{I}_{i}(B)=\mathrm{I}_{i+1}(A)_{\mathfrak{p}}$ for any $i \in \mathbb{Z}$.
(b) Setting $S^{\prime}=R_{\mathfrak{p}}\left[x_{1}, \ldots, x_{n-1}\right]$ and $g_{i}=b_{i 1} x_{1}+\cdots+b_{i, n-1} \in S^{\prime}$ for $i=1, \ldots, m-1$, we have

$$
\operatorname{grade}\left(f_{1}, \ldots, f_{m-1}, f_{m}\right) S_{\mathfrak{p}}=1+\operatorname{grade}\left(g_{1}, \ldots, g_{m-1}\right) S^{\prime}
$$

(c) Setting $N=\operatorname{Coker}\left(R_{\mathfrak{p}}^{m-1} \xrightarrow{t_{B}} R_{\mathfrak{p}}^{n-1}\right)$, we have $M_{\mathfrak{p}} \cong N$ as $R_{\mathfrak{p}}$-modules.

Let us denote the Koszul complex of $f_{1}, f_{2}, \ldots, f_{m}$ with respect to S by

$$
0 \longrightarrow C_{m} \xrightarrow{d_{m}} C_{m-1} \longrightarrow \cdots \longrightarrow C_{1} \xrightarrow{d_{1}} C_{0} \longrightarrow 0
$$

Let $u_{1}, u_{2}, \ldots, u_{m}$ be the R-free basis of C_{1} such that $d_{1}\left(u_{i}\right)=f_{i}$ for $i=1, \ldots, m$. Then

$$
d_{r}\left(u_{i_{1}} \wedge u_{i_{2}} \wedge \cdots \wedge u_{i_{r}}\right)=\sum_{p=1}^{r}(-1)^{p-1} f_{i_{p}} u_{i_{1}} \wedge \cdots \wedge \widehat{u_{i_{p}}} \wedge \cdots \wedge u_{i_{r}}
$$

if $1 \leq r \leq m$ and $1 \leq i_{1}<i_{2}<\cdots<i_{r} \leq m$. We regard S as a graded ring by setting $\operatorname{deg} x_{j}=1$ for all $j=1, \ldots, n$. Moreover, we regard C_{\bullet} as a graded complex by setting
$\operatorname{deg} u_{i}=1$ for all $i=1, \ldots, m$. Then, taking the homogeneous component of C • of degree m, we get a complex

$$
0 \longrightarrow\left[C_{m}\right]_{m} \xrightarrow{\left[d_{m}\right]_{m}}\left[C_{m-1}\right]_{m} \longrightarrow \cdots \longrightarrow\left[C_{1}\right]_{m} \xrightarrow{\left[d_{1}\right]_{m}}\left[C_{0}\right]_{m} \longrightarrow 0
$$

of finitely generated free R-modules, where $\left[d_{r}\right]_{m}$ denotes the restriction of d_{r} to $\left[C_{r}\right]_{m}$ for $r=1, \ldots, m$. Let us notice that $\left[C_{m}\right]_{m}$ is rank 1 and is generated by $u_{1} \wedge u_{2} \wedge \cdots \wedge u_{m}$. Furthermore, as an R-free basis of $\left[C_{m-1}\right]_{m}$, we can take

$$
\left\{x_{j} \check{u}_{i} \mid 1 \leq i \leq m, 1 \leq j \leq n\right\},
$$

where $\check{u}_{i}=u_{1} \wedge \cdots \wedge \widehat{u_{i}} \wedge \cdots \wedge u_{m}$ for $i=1, \ldots m$. Because

$$
\begin{aligned}
\partial_{m}\left(u_{1} \wedge u_{2} \wedge \cdots \wedge u_{m}\right) & =\sum_{i=1}^{m}(-1)^{i-1} f_{i} \check{u}_{i} \\
& =\sum_{i=1}^{m}(-1)^{i-1}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right) \check{u}_{i} \\
& =\sum_{i=1}^{m} \sum_{j=1}^{n}(-1)^{i-1} a_{i j} \cdot x_{j} \check{u}_{i}
\end{aligned}
$$

we get the following result.
Lemma 2.3 $\mathrm{I}_{1}\left(\left[d_{m}\right]_{m}\right)=\mathrm{I}_{1}(A)$.
The following fact can be regarded as the core of Theorem 1.1.
Lemma 2.4 (cf. [6, Proposition]) The following conditions are equivalent.
(1) $\operatorname{grade} \mathrm{I}_{m}(A) \geq 2$.
(2) M is torsion-free and has rank $n-m$.

When this is the case, $\operatorname{pd}_{R} M \leq 1$ and M can be embedded into a finitely generated free R-module.

3 Proof of the main theorem

In this section we prove Theorem 1.1.
Proof of (1) \Rightarrow (2).
As grade $\mathrm{I}_{m}(A) \geq 2$ by (1), it follows that M is torsion-free and has rank $n-m$ by 2.3. Moreover, we get grade $\left(f_{1}, f_{2}, \ldots, f_{m}\right) S=m$ by [1, Proposition 1]. Let us prove $\mathrm{T}_{R}(\mathcal{S}(M))=0$ by induction on m.

First, we consider the case where $m=1$. Then $\mathcal{S}(M)=S / f_{1} S$, where $f_{1}=a_{11} x_{1}+$ $a_{12} x_{2}+\cdots+a_{1 n} x_{n}$. Suppose $\mathrm{T}_{R}(\mathcal{S}(M)) \neq 0$. Then there exists $P \in \operatorname{Ass}_{S} \mathrm{~T}_{R}(\mathcal{S}(M))$. Because $\mathrm{T}_{R}(\mathcal{S}(M))$ is an S-submodule of $S / f_{1} S$ and grade $f_{1} S=1$, we have depth $S_{P}=$

1. We set $\mathfrak{p}=P \cap R$. Then grade $\mathfrak{p} \leq 1$, and so $\mathrm{I}_{1}(A) \nsubseteq \mathfrak{p}$ as grade $\mathrm{I}_{1}(A) \geq 2$. Hence, replacing the columns of A if necessary, we may assume $a_{11} \notin \mathfrak{p}$. Then we have

$$
\mathcal{S}\left(M_{\mathfrak{p}}\right)=\mathcal{S}(M)_{\mathfrak{p}}=\frac{R_{\mathfrak{p}}\left[x_{1}, x_{2}, \ldots, x_{n}\right]}{\left(x_{1}+\left(a_{12} / a_{11}\right) x_{2}+\cdots+\left(a_{1 n} / a_{11}\right) x_{n}\right)} \cong R_{\mathfrak{p}}\left[x_{2}, \ldots, x_{n}\right] .
$$

which means $\mathrm{T}_{R_{\mathfrak{p}}}\left(\mathcal{S}\left(M_{\mathfrak{p}}\right)\right)=0$, and so $\mathrm{T}_{R}(\mathcal{S}(M))_{\mathfrak{p}}=0$ by 2.1. Therefore it follows that $\mathrm{T}_{R}(\mathcal{S}(M))_{P}=0$, which contradicts to $P \in \operatorname{Ass}_{S} \mathrm{~T}_{R}(\mathcal{S}(M))$. Thus we see $\mathrm{T}_{R}(\mathcal{S}(M))=0$ in the case where $m=1$.

Next, we assume $m \geq 2$ and the required implication is true for matrices having $m-1$ rows. Suppose $\mathrm{T}_{R}(\mathcal{S}(M)) \neq 0$. Then there exists $P \in \operatorname{Ass}_{R} \mathrm{~T}_{R}(\mathcal{S}(M))$. Because $\mathrm{T}_{R}(\mathcal{S}(M))$ is an S-submodule of $S /\left(f_{1}, f_{2}, \ldots, f_{m}\right) S$ and grade $\left(f_{1}, f_{2}, \ldots, f_{m}\right) S=m$, we have depth $S_{P}=m$. We set $\mathfrak{p}=P \cap R$. Then grade $\mathfrak{p} \leq m$, and so $\mathrm{I}_{\mathrm{I}_{1}(A)}(Y \subseteq \mathfrak{p}$ as grade $1 A \geq m+1$. Hence, there exists $B=\left(b_{i j}\right) \in \operatorname{Mat}\left(m-1, n-1 ; R_{\mathfrak{p}}\right)$ satisfying the conditions (a), (b) and (c) of 2.2. By (a), for any $i=1, \ldots, m-1$, we have

$$
\operatorname{grade} \mathrm{I}_{i}(B)=\operatorname{grade} \mathrm{I}_{i+1}(A)_{\mathfrak{p}} \geq \operatorname{grade} \mathrm{I}_{i+1}(A) \geq m-(i+1)+2=(m-1)-i+2
$$

Therefore, setting

$$
N=\operatorname{Coker}\left(R_{\mathfrak{p}}^{m-1} \xrightarrow{t_{B}} R_{\mathfrak{p}}^{n-1}\right),
$$

we get $\mathrm{T}_{R_{\mathfrak{p}}}(\mathcal{S}(N))=0$ by the hypothesis of induction. Because $\mathcal{S}\left(M_{\mathfrak{p}}\right) \cong \mathcal{S}(N)$ by (c), we have $\mathrm{T}_{R_{\mathfrak{p}}}\left(\mathcal{S}\left(M_{\mathfrak{p}}\right)\right)=0$, and so $\mathrm{T}_{R}(M)_{\mathfrak{p}}=0$ by 2.1. This means $\mathrm{T}_{R}(\mathcal{S}(M))_{P}=0$, which contradicts to $P \in \operatorname{Ass}_{S} \mathrm{~T}_{R}(\mathcal{S}(M))$. Thus we see $\mathrm{T}_{R}(\mathcal{S}(M))=0$.

Proof of (2) \Rightarrow (1).
Let us consider the Koszul complex

$$
0 \longrightarrow C_{m} \xrightarrow{d_{m}} C_{m-1} \longrightarrow \cdots \longrightarrow C_{1} \xrightarrow{d_{1}} C_{0} \longrightarrow 0
$$

described in Section 2. This is graded and acyclic as grade $\left(f_{1}, f_{2}, \ldots, f_{m}\right) S=m$. Moreover, we have

$$
\text { Coker } d_{1}=S /\left(f_{1}, f_{2}, \ldots, f_{m}\right) S=\mathcal{S}(M)
$$

The condition $\mathrm{T}_{R}(\mathcal{S}(M))=0$ implies that M is torsion-free over R, and so by [2, 1.4.18] there exist a finitely generated free R-module F and an embedding $\sigma: M \hookrightarrow F$. Then the induced homomorphism $\mathcal{S}(\sigma): \mathcal{S}(M) \longrightarrow \mathcal{S}(F)$ is injective since $\operatorname{Ker} \mathcal{S}(\sigma)=\mathrm{T}_{R}(\mathcal{S}(M))=$ 0 . Thus we get a graded acyclic complex

$$
0 \longrightarrow C_{m} \xrightarrow{d_{m}} C_{m-1} \longrightarrow \cdots \longrightarrow C_{1} \xrightarrow{d_{1}} C_{0} \longrightarrow \mathcal{S}(F) \longrightarrow 0 .
$$

Taking its homogeneous component of degree m, we get an acyclic complex

$$
0 \longrightarrow\left[C_{m}\right]_{m} \xrightarrow{\left[d_{m}\right]_{m}}\left[C_{m-1}\right]_{m} \longrightarrow \cdots \longrightarrow\left[C_{1}\right]_{m} \xrightarrow{\left[d_{1}\right]_{m}}\left[C_{0}\right]_{m} \longrightarrow\left[\mathcal{S}(F]_{m}\right) \longrightarrow 0,
$$

of finitely generated free R-modules. Let us notice that $\operatorname{rank}_{R}\left[C_{m}\right]_{m}=1$ and $\mathrm{I}_{1}\left(\left[d_{m}\right]_{m}\right)=$ $\mathrm{I}_{1}(A)$ by 2.3 . Hence we get grade $\mathrm{I}_{1}(A) \geq m+1$ by [2, 1.4.13].

In the rest of this proof, we show that the condition (1) holds by induction on m. If $m=1$, it is certainly true by the observation stated above. So, let us consider the case where $m \geq 2$. We suppose that grade $\mathrm{I}_{j}(A) \leq m-j+1$ for some j with $2 \leq j \leq m$. Then there exists $\mathfrak{p} \in \operatorname{Spec} R$ such that $\mathrm{I}_{j}(A) \subseteq \mathfrak{p}$ and depth $R_{\mathfrak{p}} \leq m-j+1$. As grade $\mathrm{I}_{1}(A) \geq$ $m+1$, we have $\mathrm{I}_{1}(A) \nsubseteq \mathfrak{p}$, and so there exists $B=\left(b_{i j}\right) \in \operatorname{Mat}\left(m-1, n-1 ; R_{\mathfrak{p}}\right)$ satisfying the conditions (a), (b) and (c) of 2.2. We set

$$
N=\operatorname{Coker}\left(R_{\mathfrak{p}}^{m-1} \xrightarrow{t_{B}} R_{\mathfrak{p}}^{n-1}\right) .
$$

Then by (c) we have $N \cong M_{\mathfrak{p}}$ as $R_{\mathfrak{p}}$-modules, so N has rank $n-m$ and $\mathcal{S}(N) \cong \mathcal{S}\left(M_{\mathfrak{p}}\right)$ as $R_{\mathfrak{p}}$-algebras. Because $\mathrm{T}_{R_{\mathfrak{p}}}\left(\mathcal{S}\left(M_{\mathfrak{p}}\right)\right)=\mathrm{T}_{R}(\mathcal{S}(M))_{\mathfrak{p}}=0$ by 2.1, it follows that $\mathrm{T}_{R_{\mathfrak{p}}}(\mathcal{S}(N))=$ 0. Moreover, setting $S^{\prime}=R_{\mathfrak{p}}\left[x_{1}, \ldots, x_{n-1}\right]$ and $g_{i}=b_{i 1} x_{1}+\cdots+b_{i, n-1} x_{n-1} \in S^{\prime}$ for $i=1, \ldots, m-1$, we get

$$
\operatorname{grade}\left(g_{1}, \ldots, g_{m-1}\right) S^{\prime}=\operatorname{grade}\left(f_{1}, \ldots, f_{m-1}, f_{m}\right) S_{\mathfrak{p}}-1=m-1
$$

by (b). Therefore the hypothesis of induction implies

$$
\text { grade } \mathrm{I}_{j-1}(A) \geq(m-1)-(j-1)+2=m-j+2
$$

Then, as $\mathrm{I}_{j-1}(B)=\mathrm{I}_{j}(A)_{\mathfrak{p}}$ by (a), we get grade $\mathrm{I}_{j}(A)_{\mathfrak{p}} \geq m-j+2$, which contradicts to depth $R_{\mathfrak{p}} \leq m-j+1$. Thus we see grade $\mathrm{I}_{i}(A) \geq m-i+2$ for any $i=1,2, \ldots, m$ and the proof is complete.

4 Example

In this section, we give examples of matrices satisfying the condition (1) of Theorem 1.1.
Example 4.1 Let m and d be positive integers such that $m<d$. Let (R, \mathfrak{m}) be a d dimensional Cohen-Macaulay local ring and $x_{1}, x_{2}, \ldots, x_{n}$ be elements of R generating an \mathfrak{m}-primary ideal. We take a family $\left\{\alpha_{i j}\right\}_{1 \leq i \leq m, 1 \leq j \leq n}$ of positive integers, and set

$$
a_{i j}= \begin{cases}x_{i+j-1}^{\alpha_{i j}} & \text { if } i+j \leq n+1 \\ x_{i+j-n-1}^{\alpha_{i j}} & \text { if } i+j>n+1\end{cases}
$$

and $A=\left(a_{i j}\right) \in \operatorname{Mat}(m, n ; R)$. Then we have grade $\mathrm{I}_{i}(A) \geq m-i+2$ for $1 \leq \forall i \leq m$.
If $\alpha_{i j}=1$ for any i and j, the matrix A stated above looks like

$$
\left(\begin{array}{ccccccc}
x_{1} & x_{2} & \cdots & & x_{m} & \cdots & x_{n} \\
x_{2} & & & x_{m} & & x_{n} & x_{1} \\
\vdots & & . \cdot & & . & . \cdot & \vdots \\
& x_{m} & & x_{n} & x_{1} & & x_{m-2} \\
x_{m} & \cdots & x_{n} & x_{1} & \cdots & x_{m-2} & x_{m-1}
\end{array}\right) .
$$

However, we can take any power at each entries.

References

[1] L. Avramov, Complete intersections and symmetric algebras, J. Algebra, 73 (1981), 248-263.
[2] W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge Stud. Adv. Math. 39, Cambridge University Press, 1997.
[3] K. Fukumuro, On the symmetric and Rees algebras of certain determinantal ideals, to appear in Tokyo J. Math., arXiv:1306.0993.
[4] K. Fukumuro, T. Inagawa and K. Nishida, On a transform of an acyclic complex of length 3, J. Algebra, 384 (2013), 84-109.
[5] T. Inagawa, *-transforms of acyclic complexes, Preprint (2013), arXiv:1307.1500.
[6] D. Katz, Torsion-free modules and syzygies, Mathematica Pannonica, 5/1 (1994), 7-13.
[7] A. Simis, B. Ulrich and W. Vasconcelos, Rees algebras of modules, Proc. London Math. Soc. (3), 87 (2003), 610-646

[^0]: *This report is an announcement of our result and the detailed version will be submitted to somewhere.
 ${ }^{\dagger}$ The last author is supported partially by JSPS KAKENHI Grant Number 23540042.
 ${ }^{\ddagger}$ E-mail: nishida@math.s.chiba-u.ac.jp

