SUBINTEGRALITY, INVERTIBLE MODULES AND POLYNOMIAL EXTENSIONS

VIVEK SADHU AND BALWANT SINGH

Let $A \subseteq B$ be a ring extension (of commutative rings).
This extension is an elementary subintegral extension if $B=A[b]$ with $b^{2}, b^{3} \in A$. The extension $A \subseteq B$ is subintegral or B is subintegral over A if B is a union of subrings which are obtainable from A by a finite succession of elementary subintegral extensions. The subintegral closure of A in B, usually denoted by ${ }_{B}{ }^{+} A$, is the largest subintegral extension of A in B. This is simply the union of all intermediary subrings which are subintegral over A. The ring $B^{+} A$ is integral over A. Further, if ${ }_{B}{ }^{+} A$ is an integral domain then ${ }_{B}{ }^{+} A$ and A have the same field of fractions. We say that A is subintegrally closed in B if ${ }_{B}{ }^{+} A=A$. This is equivalent to saying that whenever $b \in B$ and $b^{2}, b^{3} \in A$ then $b \in A$. Without reference to B, the ring A is seminormal if the following condition holds: $b, c \in A$ and $b^{3}=c^{2}$ imply that there exists $a \in A$ with $b=a^{2}$ and $c=a^{3}$. A seminormal ring is necessarily reduced and is subintegrally closed in every reduced overring.

The multiplicative group of those A-submodules of B which are invertible is denoted by $\mathcal{I}(A, B)$. The Picard group of A is denoted, of course, by Pic A, while the group of units of A is denoted by A^{\times}. A relationship between these groups is given by the natural exact sequence

$$
1 \rightarrow A^{\times} \rightarrow B^{\times} \rightarrow \mathcal{I}(A, B) \rightarrow \operatorname{Pic} \mathrm{A} \rightarrow \operatorname{Pic} \mathrm{~B}
$$

We prove the following two theorems motivated by a well known result of Traverso and Swan which says that for a commutative ring $A, A_{\text {red }}$ is seminormal if and only if the canonical map Pic $\mathrm{A} \rightarrow \operatorname{Pic} \mathrm{A}[\mathrm{X}]$ is an isomorphism. In the special case when A is reduced and Noetherian, the first of the two theorems yields Traverso-Swan's result as a corollary.

Theorem 1. Let $A \subseteq B$ be a ring extension. Then A is subintegrally closed in B if and only if the canonical map $\mathcal{I}(A, B) \rightarrow \mathcal{I}(A[X], B[X])$ is an isomorphism.

Theorem 2. Let $A \subseteq B$ be a ring extension, and let ${ }^{+} A$ denote the subintegral closure of A in B. Then:

THIS PAPER IS A RESUME OF OUR RESULTS. THE DETAILED VERSION OF THIS PAPER IS AVAILABLE IN JOURNAL OF ALGEBRA , VOL-393, 16-23 (2013).
(1) There exists a commutative diagram

of canonical maps with exact rows and with $\theta\left({ }^{+} A, B\right)$ an isomorphism.
(2) If B is an integral domain and $\operatorname{dim} A \leq 1$ then the above diagram extends to the commutative diagram

with exact rows.
(3) If $\mathbb{Q} \subseteq A$ then $\mathcal{I}\left(A[X],{ }^{+} A[X]\right) \cong \mathbb{Z}[X] \otimes_{\mathbb{Z}} M_{0} \cong \bigoplus_{n=0}^{\infty} M_{n}$ with $M_{0}=\operatorname{im} \theta\left(A,{ }^{+} A\right) \cong$ $\mathcal{I}\left(A,{ }^{+} A\right)$ and each M_{n} also isomorphic to $\mathcal{I}\left(A,{ }^{+} A\right)$.

References

[1] J.W. Brewer and W.D. Nichols, Seminormality in power series rings, J. Algebra 82 (1983) 282284.
[2] T. Coquand, On seminormality, J. Algebra 305 (2006) 577-584.
[3] T. Gaffney and M.A. Vitulli, Weak subintegral closure of ideals, Adv. in Math. 226 (2011) 2089-2117.
[4] H. Lombardi and C. Quitte, Comparison of Picard Groups in Dimension 1, Math. Logic Quarterly, 54 (2008) 247-252.
[5] L. Reid, L. G. Roberts and B. Singh, Finiteness of subintegrality, in: P.G Goerss and J.F Jardine (eds.) Algebraic K-Theory and Algebraic Topology NATO ASI, Series C, Vol. 407 (Kluwer Academic Publishers, Dordrecht, 1993) 223- 227.
[6] L. G. Roberts and B. Singh, Subintegrality, invertible modules and the Picard group, Compositio Math. 85 (1993), 249-279.
[7] B. Singh, The Picard group and subintegrality in positive characteristic, Compositio Math. 95 (1995), 309-321.
[8] R. G Swan, On Seminormality, J. Algebra 67 (1980) 210- 229.
[9] C. Traverso, Seminormality and the Picard Group, Ann. Sc. Norm. Sup. Pisa 24 (1970) 585-595.

Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India

E-mail address: viveksadhu@math.iitb.ac.in

UM-DAE Centre for Excellence in Basic Sciences, Kalina Campus, Santacruz, MumBAI 400098, IndiA

E-mail address: balwantbagga@gmail.com

