SUBINTEGRALITY, INVERTIBLE MODULES AND POLYNOMIAL EXTENSIONS

VIVEK SADHU AND BALWANT SINGH

Let $A \subseteq B$ be a ring extension (of commutative rings).

This extension is an **elementary subintegral** extension if B = A[b] with $b^2, b^3 \in A$. The extension $A \subseteq B$ is **subintegral** or B is subintegral over A if B is a union of subrings which are obtainable from A by a finite succession of elementary subintegral extensions. The **subintegral closure** of A in B, usually denoted by ${}_B{}^{\dagger}A$, is the largest subintegral extension of A in B. This is simply the union of all intermediary subrings which are subintegral over A. The ring ${}_B{}^{\dagger}A$ is integral over A. Further, if ${}_B{}^{\dagger}A$ is an integral domain then ${}_B{}^{\dagger}A$ and A have the same field of fractions. We say that A is **subintegrally closed** in B if ${}_B{}^{\dagger}A = A$. This is equivalent to saying that whenever $b \in B$ and $b^2, b^3 \in A$ then $b \in A$. Without reference to B, the ring A is **seminormal** if the following condition holds: $b, c \in A$ and $b^3 = c^2$ imply that there exists $a \in A$ with $b = a^2$ and $c = a^3$. A seminormal ring is necessarily reduced and is subintegrally closed in every reduced overring.

The multiplicative group of those A-submodules of B which are invertible is denoted by $\mathcal{I}(A, B)$. The Picard group of A is denoted, of course, by PicA, while the group of units of A is denoted by A^{\times} . A relationship between these groups is given by the natural exact sequence

 $1 \to A^{\times} \to B^{\times} \to \mathcal{I}(A, B) \to \operatorname{Pic} A \to \operatorname{Pic} B.$

We prove the following two theorems motivated by a well known result of Traverso and Swan which says that for a commutative ring A, A_{red} is seminormal if and only if the canonical map Pic $A \rightarrow Pic A[X]$ is an isomorphism. In the special case when A is reduced and Noetherian, the first of the two theorems yields Traverso-Swan's result as a corollary.

Theorem 1. Let $A \subseteq B$ be a ring extension. Then A is subintegrally closed in B if and only if the canonical map $\mathcal{I}(A, B) \to \mathcal{I}(A[X], B[X])$ is an isomorphism.

Theorem 2. Let $A \subseteq B$ be a ring extension, and let A denote the subintegral closure of A in B. Then:

THIS PAPER IS A RESUME OF OUR RESULTS. THE DETAILED VERSION OF THIS PAPER IS AVAILABLE IN JOURNAL OF ALGEBRA , VOL-393, 16-23 (2013).

(1) There exists a commutative diagram

$$1 \longrightarrow \mathcal{I}(A, {}^{+}\!\!A) \longrightarrow \mathcal{I}(A, B) \xrightarrow{\varphi(A, {}^{+}\!\!A, B)} \mathcal{I}({}^{+}\!\!A, B)$$
$$\downarrow_{\theta(A, {}^{+}\!\!A)} \qquad \qquad \downarrow_{\theta(A, B)} \approx \downarrow_{\theta({}^{+}\!\!A, B)}$$
$$1 \longrightarrow \mathcal{I}(A[X], {}^{+}\!\!A[X]) \longrightarrow \mathcal{I}(A[X], B[X]) \longrightarrow \mathcal{I}({}^{+}\!\!A[X], B[X])$$

+

of canonical maps with exact rows and with $\theta(A, B)$ an isomorphism.

(2) If B is an integral domain and dim $A \leq 1$ then the above diagram extends to the commutative diagram

with exact rows.

(3) If $\mathbb{Q} \subseteq A$ then $\mathcal{I}(A[X], {}^{+}\!\!A[X]) \cong \mathbb{Z}[X] \otimes_{\mathbb{Z}} M_0 \cong \bigoplus_{n=0}^{\infty} M_n$ with $M_0 = \operatorname{im} \theta(A, {}^{+}\!\!A) \cong \mathcal{I}(A, {}^{+}\!\!A)$ and each M_n also isomorphic to $\mathcal{I}(A, {}^{+}\!\!A)$.

References

- J.W. Brewer and W.D. Nichols, Seminormality in power series rings, J. Algebra 82 (1983) 282-284.
- [2] T. Coquand, On seminormality, J. Algebra 305 (2006) 577-584.
- [3] T. Gaffney and M.A. Vitulli, Weak subintegral closure of ideals, Adv. in Math. 226 (2011) 2089-2117.
- [4] H. Lombardi and C. Quitte, Comparison of Picard Groups in Dimension 1, Math. Logic Quarterly, 54 (2008) 247-252.
- [5] L. Reid, L. G. Roberts and B. Singh, Finiteness of subintegrality, in: P.G Goerss and J.F Jardine (eds.) Algebraic K-Theory and Algebraic Topology NATO ASI, Series C, Vol. 407 (Kluwer Academic Publishers, Dordrecht, 1993) 223- 227.
- [6] L. G. Roberts and B. Singh, Subintegrality, invertible modules and the Picard group, Compositio Math. 85 (1993), 249-279.
- [7] B. Singh, The Picard group and subintegrality in positive characteristic, Compositio Math. 95 (1995), 309-321.
- [8] R. G Swan, On Seminormality, J. Algebra 67 (1980) 210- 229.
- [9] C. Traverso, Seminormality and the Picard Group, Ann. Sc. Norm. Sup. Pisa 24 (1970) 585-595.

Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India

E-mail address: viveksadhu@math.iitb.ac.in

UM-DAE Centre for Excellence in Basic Sciences, Kalina Campus, Santacruz, Mumbai 400098, India

 $E\text{-}mail\ address: \texttt{balwantbagga@gmail.com}$