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1. Introduction and Definitions

The ring of differential operators was introduced by Grothendieck [2]. Although it may
be ugly in general [1], the ring of differential operators of an affine semigroup algebra
shares the computability with the other objects concerning a semigroup. The aim of this
article is to demonstrate it by using simple examples. In particular, we exhibit a beautiful
structure of the spectrum of its graded ring (with respect to the order filtration) when
the semigroup is scored.

Let A := (a1,a2, . . . ,an) = (aij) be a d×n matrix with coefficients in Z. We sometimes
identify A with the set of its column vectors. We assume that ZA = Zd, where ZA is the
abelian group generated by A.

Let NA be the monoid generated by A, and RA its semigroup algebra:

RA = C[NA] =
⊕
a∈NA

Cta ⊆ C[t±1
1 , . . . , t±1

d ].

Then the ring of differential operators of RA can be given as a subalgebra of the ring
of differential operators of the Laurent polynomial ring:

D(RA) = {P ∈ C[t±1
1 , . . . , t±1

d ]⟨∂1, . . . , ∂d⟩ : P (RA) ⊂ RA}.
LetDk(RA) be the subspace of differential operators of order less or equal to k inD(RA).

Then the graded ring with respect to the order filtration {Dk(RA)} is commutative:

GrD(RA) =
∞⊕
k=0

Dk(RA)/Dk−1(RA) ⊆ C[t±1 , . . . , t±d , ξ1, . . . , ξd],

where ξi denotes the image of ∂i.

2. Finiteness

In general, the ring of differential operators on an affine variety may be neither left or
right Noetherian nor finitely generated as an algebra [1]. In this section, we give some
results on finiteness of D(RA).

Theorem 2.1 ([8]). D(RA) is a finitely generated C-algebra.

Theorem 2.2 ([6]). (1) D(RA) is right Noetherian.
(2) D(RA) is left Noetherian if NA is S2.
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In [6], we also gave a necessary condition for D(RA) being left Noetherian.

Definition 2.3. A semigroup NA is S2 if NA =
∩

σ: facet of R≥0A

[NA+ Z(A ∩ σ)].

The following is an example of NA that does not satisfy the S2 condition.
Example 1 (non-S2).

A1 = (a1,a2,a3,a4) =

(
2 3 0 1
0 0 1 1

)
. Then

t d t t tt t t t tt t t t tt t t t t
-

6

σ2

σ1

Figure 1. The semigroup NA1

In this case,

NA1 = N2 \
(
1
0

)
, whereas

∩
σ: facet of R≥0A1

[NA1 + Z(A1 ∩ σ)] = N2.

Theorem 2.4 ([7]).

GrD(RA) is Noetherian ⇔ NA is scored.

Let F be the set of facets of R≥0A. For a facet σ ∈ F , we define the primitive
integral support function Fσ of σ as the linear form on Rd uniquely determined by
the conditions:

(1) Fσ(R≥0A) ≥ 0,
(2) Fσ(σ) = 0,
(3) Fσ(Zd) = Z.

Definition 2.5. The semigroup NA is said to be scored if

NA =
∩

σ:facet

{a ∈ Zd : Fσ(a) ∈ Fσ(NA) }.

Remark 2.6.
NA: scored ⇒ NA: S2.

Proof. For each facet σ,

NA ⊆ NA+ Z(A ∩ σ) ⊆ {a ∈ Zd : Fσ(a) ∈ Fσ(NA) }.

Hence
NA ⊆

∩
σ∈F

(NA+ Z(A ∩ σ)) ⊆
∩
σ∈F

{a ∈ Zd : Fσ(a) ∈ Fσ(NA) }.

□
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Example 2 (Scored).

A2 = (a1,a2,a3) =

(
1 1 1
0 2 3

)
. Then

t t t t td d d dt t t tt t t tt t t
-
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Figure 2. The semigroup NA2

F = {σ1 = R≥0a1, σ3 = R≥0a3 },
Fσ1(s1, s2) = s2, Fσ3(s1, s2) = 3s1 − s2.
Fσ1(NA2) = N \ {1}, Fσ3(NA2) = N.
We have

NA2 = {a ∈ Z2 |Fσ1(a) ∈ N \ {1}, Fσ3(a) ∈ N}.
Hence NA2 is scored.

Example 3 (S2 but non-scored). A3 = (a1,a2,a3) =

(
2 0 1
0 1 1

)
. Then

t d t d tt t t t tt t t t tt t t t t
-

6
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Figure 3. The semigroup NA3

F = {σ1 = R≥0a1, σ2 = R≥0a2 },
Fσ1(s1, s2) = s2, Fσ2(s1, s2) = s1.
Fσ1(NA3) = N, Fσ3(NA3) = N.
We have

NA3 ⊊ {a ∈ Z2 |Fσ1(a) ∈ N, Fσ3(a) ∈ N} = N2.

Hence NA3 is not scored.

Example 4 (scored).
d = 1, n = 2, A4 = (2, 3).
This is the smallest non-trivial example; we use this as a running example.
We have the following:

• NA4 = {0, 2, 3, 4, . . .} = N \ {1}. R≥0A4 = R≥0.
• F = {{0}}, F{0}(s) = s; NA4 is scored.
• RA4 = C[t2, t3].
• D(RA4) = {P ∈ C[t±1]⟨∂⟩ : P (C[t2, t3]) ⊆ C[t2, t3]}.
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3. Weight Decomposition

It is easy to see si := ti∂i ∈ D(RA) (i = 1, . . . , d).
For a = t(a1, a2, . . . , ad) ∈ Zd, set

D(RA)a := {P ∈ D(RA) : [si, P ] = aiP for i = 1, 2, . . . , d}.
Then ta ∈ D(RA)a for a ∈ NA.

Lemma 3.1. (1) D(RA) =
⊕

a∈Zd D(RA)a.
(2) Dk(RA) =

⊕
a∈Zd Dk(RA) ∩D(RA)a.

(3) GrD(RA) =
⊕

a∈Zd GrD(RA)a.

Theorem 3.2 (Musson [4]).

D(RA)a = taI(Ω(a)) for all a ∈ Zd,

where

Ω(a) := { b ∈ NA : b+ a ̸∈ NA } = NA \ (−a+ NA),
I(Ω(a)) := {f(s) ∈ C[s] := C[s1, . . . , sd] : f vanishes on Ω(a)}.

In particular, D(RA)0 = C[s].

Example 1 Continued.
Put Da := ta

∏
ai<0

∏−ai−1
k=0 (si − k) ∈ D(C[t±1

1 , t±1
2 , ∂1, ∂2]), Ea := Da(s1 + a1 − 1), and

Fa := Da(s2 + a2). Then

D(RA1)a = DaC[s] if a /∈ t(1, 0)− NA1,

D(RA1)a = EaC[s] + FaC[s] if a ∈ t(1, 0)− NA1.

Let a1, b1 < 0, and a = t(a1, 0), b = t(b1, 0). Then

Ea = ∂−a1
1 (s1 + a1 − 1) = (s1 − 1)∂−a1

1 , Fa = ∂−a1
1 s2 = s2∂

−a1
1 .

We have

EaEb = (s1 − a1 − 1)Ea+b,

FaEb = (s1 − a1 − 1)Fa+b,

EaFb = s2Ea+b = (s1 − 1)Fa+b,

FaFb = s2Fa+b.

Then, for a′ = t(a′1, 0), b
′ = t(b′1, 0) with a′1, b

′
1 < 0 and a+ b = a′ + b′, we have

FaEb − Fa′Eb′ = (a′1 − a1)Fa+b.

In this way, the right ideal
∑

a1<0 Ft(a1,0)D(RA1) is finitely generated. However, since
EaFb − Ea′Fb′ = 0, the left ideal

∑
a1<0D(RA1)Ft(a1,0) is not finitely generated.

Example 4 Continued.
A4 = (2, 3), NA4 = N \ {1}.
a ∈ Z. Ω(a) = NA4 \ (−a+ NA4). D(RA4)a = taI(Ω(a)).

• Ω(a) = ∅ (a ∈ NA4), D(RA4)a = taC[s].
• Ω(1) = {0}, D(RA4)1 = tsC[s] = t2∂C[s].
• Ω(−1) = {0, 2}, D(RA4)−1 = t−1s(s− 2)C[s].
• Ω(−2) = {0, 3}, D(RA4)−2 = t−2s(s− 3)C[s].
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• Ω(−k) = {0, 2, . . . , k − 1} ∪ {k + 1} (k ≥ 3),
D(RA4)−k = t−ks(s− 2) · · · (s− (k − 1))(s− (k + 1))C[s].

Note that |Ω(−k)| = k if k ∈ NA4.

Example 3 Continued.
Since NA3 satisfies (S2), each D(RA3)a is singly generated. For a = t(a1, a2), put

Qa :=


ta11 ta22 (a1 ≥ 0, a2 ≥ 1, or a1 ≥ 0 even, a2 = 0)

ta11 t2∂
|a2|+1
2 (a1 ≥ 0, a2 < 0, or a1 ≥ 0 odd, a2 = 0)

ta22 ∂
|a1|
1 (a1 < 0, a2 ≥ 1, or a1 < 0 even, a2 = 0)

t2∂
|a1|
1 ∂

|a2|+1
2 (a1, a2 < 0, or a1 < 0 odd, a2 = 0).

By computing I(Ω(a)), we see that D(RA3)a is generated by Qa. The following is the list
of some Qa:

−3 −2 −1 0 1 2 3 a1/a2
t22∂

3
1 t22∂

2
1 t22∂1 t22 t1t

2
2 t21t

2
2 t31t

2
2 2

t2∂
3
1 t2∂

2
1 t2∂1 t2 t1t2 t21t2 t31t2 1

t2∂
3
1∂2 ∂2

1 t2∂1∂2 1 t1t2∂2 t21 t31t2∂2 0
t2∂

3
1∂

2
2 t2∂

2
1∂

2
2 t2∂1∂

2
2 t2∂

2
2 t1t2∂

2
2 t21t2∂

2
2 t31t2∂

2
2 −1

t2∂
3
1∂

3
2 t2∂

2
1∂

3
2 t2∂1∂

3
2 t2∂

3
2 t1t2∂

3
2 t21t2∂

3
2 t31t2∂

3
2 −2

Then we have

Gr(D(RA3))/⟨
⊕
a1 ̸=0

Gr(D(RA3))a, s, t2⟩ = C⟨t2ξ22 , t2ξ32 , · · · ⟩.

Since this is not a finitely generated algebra, neither is Gr(D(RA3)).

4. The spectrum

By Theorem 2.4, the spectrum of GrD(RA) is in question, when NA is scored.

4.1. Zd-graded Prime Ideals. From now on, we assume that NA is scored, and set
G := GrD(RA). By Lemma 3.1, we work on Zd-graded prime ideals of G.

Corollary 4.1 (to Theorem 3.2).

G =
⊕
a∈Zd

taI(Ω(a)) =
⊕
a∈Zd

P aC[s],

where

pa :=
∏
σ

∏
m∈Fσ(NA)\(−Fσ(a)+Fσ(NA))

(Fσ(s)−m),

Pa := ta · pa(s),
P a = ta ·

∏
σ

Fσ(s)
♯(Fσ(NA)\(−Fσ(a)+Fσ(NA))).

Since G0 = C[s] is a subalgebra of G, the following lemma is immediate.

Lemma 4.2. Let P =
⊕

a∈Zd Pa be a Zd-graded prime ideal of G. Then P0 is a prime
ideal of G0 = C[s].
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Given a prime ideal p of C[s], we shall classify all Zd-graded prime ideals P of G with
P0 = p.

4.2. Degree and Expected Degree. For σ ∈ F and a ∈ Zd, set

• degσ(a) :=
♯ (Fσ(NA) \ (−Fσ(a) + Fσ(NA))),

• expdegσ(a) :=

{
0 if Fσ(a) ≥ 0
|Fσ(a)| if Fσ(a) ≤ 0.

Then
Pa = ta

∏
σ∈F

F degσ(a)
σ .

Example 4 Continued.
A = (2, 3), NA = N \ {1}.

F{0}(s) = s.

a · · · −k · · · −3 −2 −1 0 1 2 3 · · ·
expdeg{0}(a) · · · k · · · 3 2 1 0 0 0 0 · · ·
deg{0}(a) · · · k · · · 3 2 2 0 1 0 0 · · ·

G =
⊕
a∈Z

tasdeg{0}(a)C[s] ⊆ C[t±1, ξ], s = tξ.

For a fixed prime ideal p of C[s], we define

F(p) := {σ ∈ F : Fσ ∈ p},
Σ(p) : the fan determined by the hyperplane arrangement {Rσ : σ ∈ F(p) },
S(p) := {a ∈ Zd : |Fσ(a)| ∈ Fσ(NA) (for ∀σ ∈ F(p)) }.

Example 4 Continued.
A = (2, 3), NA = N \ {1}.

F{0}(s) = s.

• p = (s− β) : a fixed prime ideal of C[s]

• F((s− β)) = {σ ∈ F : Fσ ∈ (s− β)} =

{
{0} (β = 0)
∅ (otherwise).

• Σ((s− β)) =

{
{R≥0, {0},R≤0} (β = 0)

{R} (otherwise).

• S((s− β)) =

{
Z \ {±1} (β = 0)

Z (otherwise).
• F((0)) = ∅, Σ((0)) = {R}, S((0)) = Z.

For a ∈ Zd, put

• degp(a) :=
∑

σ∈F(p) degσ(a).

• expdegp(a) :=
∑

σ∈F(p) expdegσ(a).

Then degm(a) = deg(pa), where m = (s1, . . . , sd).
6



Proposition 4.3. (1) degp(a) ≥ expdegp(a).
(2) degp(a) = expdegp(a) if and only if a ∈ S(p).

4.3. Classification. For a cone τ ∈ Σ(p), we define an ideal P(p, τ) =
⊕

a∈Zd P(p, τ)a
of G by

P(p, τ)a :=

{
Gap (a ∈ τ ∩ S(p))
Ga (otherwise).

Proposition 4.4. The Zd-graded ideal P(p, τ) is prime.

Theorem 4.5 ([5]). Let P be a Zd-graded prime ideal with P0 = p. Then there exists
τ ∈ Σ(p) such that P = P(p, τ).

Proposition 4.6. P(p, τ) ⊆ P(p′, τ ′) if and only if p ⊆ p′ and τ ⊇ τ ′.

Proposition 4.7. dim G/P(p, τ) = dim C[s]/p+ dim τ .

Example 4 Continued.
A = (2, 3), NA = N \ {1}. Let a ∈ Z.

• P((s),R≥0)a =

{
Gas (a ∈ N \ {1})
Ga (otherwise).

• P((s), {0})a =
{

Gas (a = 0)
Ga (a ̸= 0).

• P((s),R≤0)a =

{
Gas (−a ∈ N \ {1})
Ga (otherwise).

P((s),R≥0) ⊆ P((s), {0}) ⊇ P((s),R≤0).

• P((s− β),R)a = Ga(s− β) (∀a ∈ Z) for β ̸= 0.
• P((0),R)a = Ga(0) = 0 (∀a ∈ Z), i.e., P((0),R) = 0.

5. Cohen-Macaulayness of GrD(RA)

Theorem 5.1 (Musson [4]). If NA is normal, then GrD(RA) is Gorenstein.

Proof. Let Σ be the fan determined by Fσ = 0 (σ ∈ F). For a facet τ ∈ Σ, Let Aτ be a
generating set of the semigroup τ ∩ Zd. Put AΣ := ∪τAτ . Then

GrD(RA) = C[s][Pa |a ∈ AΣ] = C[Fσ, Pa |σ ∈ F ; a ∈ AΣ].

Replace Fσ by an indeterminate zσ, and put

G̃ := C[zσ, Pa |σ ∈ F ; a ∈ AΣ].

Then G̃ is a normal affine semigroup algebra, and
∏

σ∈F zσ represents the unique minimal
positive element. (Indeed, in Zd ⊕ Z♯F , the corresponding semigroup has the primitive
integral support functions Fσ + zσ, zσ (σ ∈ F).

∏
σ∈F zσ corresponds to (0, 1, . . . , 1).)
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Hence G̃ is Gorenstein. The natural map

π : G̃ → GrD(RA)

defined by π(zσ) = Fσ is surjective. Let {lj} be a basis of Ker(π|⟨zσ⟩). Then {lj} is a regular
sequence, and generates Ker(π). Hence GrD(RA) is Gorenstein. If we consider GrD(RA)
is Zd ⊕ Z-graded (the last one corresponds to the degree in s), then the a-invariant is
(0,−♯F). □

However, if NA is not normal, then GrD(RA) is never Cohen-Macaulay:

Proposition 5.2 (Hsiao [3] d = 1). If NA is scored but not normal, then GrD(RA) is
not Cohen-Macaulay.

Proof. Let G := GrD(RA). Since NA satisfies (S2), each Ga is a free C[s]-module. Hence
s1, . . . , sd is a regular sequence of G. Let G := G/⟨s1, . . . , sd⟩. Then dimG = d, and G is
Cohen-Macaulay if and only if so is G. We have

G =
⊕
a∈Zd

CPa,

and

(5.1) Pa · Pb ̸= 0 ⇔
{

Fσ(a)Fσ(b) ≥ 0 (∀σ ∈ F)
degσ(a)− expdegσ(a) > 0 ⇒ Fσ(b) = 0 (σ ∈ F)

by [5, Theorem 3.6]. Let

l := max{deg(a)− expdeg(a) |a ∈ R≥0A ∩ Zd},
deg(b)− expdeg(b) = l, and b ∈ R≥0A ∩ Zd. Put

τ :=
∩

degσ(b)−expdegσ(b)>0

σ.

If x =
∑

a̸=0 caPa is not a zero-divisor, then, by (5.1), there exists 0 ̸= a ∈ τ ∩ R≥0A
such that ca ̸= 0, and

(5.2) x · Pb =
∑

0̸=a∈R≥0A∩τ

caPa+b.

Let b be primitive in the sense that there exists no b′ ∈ R≥0A∩Zd and 0 ̸= a ∈ R≥0A∩τ
such that b = b′+a and deg(b′)−expdeg(b′) = l. Let t := dim τ . Suppose that x1, . . . ,xt

forms a regular sequence of G. Then, by the primitiveness and the equations (5.1), (5.2),
we have Pb ̸= 0 in G/(x1, . . . ,xt). Since t = dim τ , for any x ∈ G/(x1, . . . ,xt), we have
xm · Pb ∈ (x1, . . . ,xt) for some m by (5.2). Hence the length of a regular sequence of G
cannot exceed t; depth(G) ≤ t ≤ d− 1. □

Example 4 Continued.
A = (2, 3), NA = N \ {1}.
Then G = GrD(RA) is again an affine semigroup algebra:

G = C[t3, t2, ts, s, t−1s2, t−2s2, t−3s3].

Clearly, this semigroup does not satisfy S2. Hence G is not Cohen-Macaulay.
8



t d t t td t t t t tt t t t t t tt t t t t t t t
-

6

s

t

Figure 4. The semigroup for G
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