THE RING OF DIFFERENTIAL OPERATORS
OF AN AFFINE SEMIGROUP ALGEBRA

MUTSUMI SAITO

1. INTRODUCTION AND DEFINITIONS

The ring of differential operators was introduced by Grothendieck [2]. Although it may
be ugly in general [1], the ring of differential operators of an affine semigroup algebra
shares the computability with the other objects concerning a semigroup. The aim of this
article is to demonstrate it by using simple examples. In particular, we exhibit a beautiful
structure of the spectrum of its graded ring (with respect to the order filtration) when
the semigroup is scored.

Let A:=(ay,as,...,a,) = (a;;) be a dxn matrix with coefficients in Z. We sometimes
identify A with the set of its column vectors. We assume that ZA = Z¢, where ZA is the
abelian group generated by A.

Let NA be the monoid generated by A, and R4 its semigroup algebra:

Ry=C[NA| =  ct* c Clty, ... 13",
acNA

Then the ring of differential operators of R4 can be given as a subalgebra of the ring
of differential operators of the Laurent polynomial ring:

D(Ry) ={P e C[ty',..., (01, ...,04) : P(Ra) C Ra}.

Let Dy(R4) be the subspace of differential operators of order less or equal to k in D(R4).
Then the graded ring with respect to the order filtration {Dy(R4)} is commutative:

CGrD(R,) = @Dk (Ra)/Dyp_1(Ra) CC[tF, ... 15,61, &),
k=0

where & denotes the image of 0;.

2. FINITENESS

In general, the ring of differential operators on an affine variety may be neither left or
right Noetherian nor finitely generated as an algebra [1]. In this section, we give some
results on finiteness of D(R4).

Theorem 2.1 ([8]). D(R4) is a finitely generated C-algebra.

Theorem 2.2 ([6]). (1) D(Ra4) is right Noetherian.
(2) D(Ra) is left Noetherian if NA is Ss.
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In [6], we also gave a necessary condition for D(R4) being left Noetherian.

Definition 2.3. A semigroup NA is S, if NA = ﬂ INA+Z(ANo)).

o:facet of R»gA

The following is an example of NA that does not satisfy the S, condition.
Example 1 (non-Ss).
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FiGURE 1. The semigroup NA;

In this case,

NA, = N\ ((1)) . whereas N [NA +Z(4 N o)) = N2

o:facet of R>gA;

Theorem 2.4 ([7]).
Gr D(Rjy) is Noetherian <  NA is scored.

Let F be the set of facets of R>¢gA. For a facet ¢ € F, we define the primitive
integral support function F, of ¢ as the linear form on R¢ uniquely determined by
the conditions:

(1) FG(RZOA) Z O,
(2) Fo(o) =0,
(3) F,(2%) =Z.

Definition 2.5. The semigroup NA is said to be scored if
NA= () {acZ: F,(a) € F,(NA)}.

o:facet

Remark 2.6.
NA: scored = NA: S,.

Proof. For each facet o,
NACNA+Z(ANo) C{acZ: F,(a) € F,(NA) }.

Hence
NAC [(J(NA+Z(ANo)) C ({a€Z: F,(a) € F,(NA)}.
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Example 2 (Scored).
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Ay = (0170»270/3) =
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F1GURE 2. The semigroup NA,

]: == {0’1 = Rzoal, 03 = Rzoag },
F, (s1,52) = S2, Fyy(51,52) = 351 — Sa.
F, (NAy) =N\ {1}, F,,(NA;) = N.
We have
NA, = {a € Z?| F,,(a) € N\ {1}, F,,(a) € N}.

Hence NA, is scored.

Example 3 (Sy but non-scored). A3z = (a1, as, a3) = ( (2) (1) 1 ) . Then

02

01

FI1GURE 3. The semigroup NAj

F = {0'1 = Rzoal, 09 — Rzoag },
Fol (51, 82) = Sog, Fg2(51, 52) = 5.
F, (NA;) = N, F,,(NA;) = N.
We have
NA; € {a € Z* | F,,(a) €N, F,,(a) € N} = N°.
Hence NAj3 is not scored.

Example 4 (scored).
d=1,n=2, A;=(2,3).
This is the smallest non-trivial example; we use this as a running example.
We have the following:
o NA4 = {0,2,3,4,...} :N\{l} R20A4:R20.
o F={{0}}, Fin(s)=s; NAis scored.
e Ry, = C[t*,t7].
e D(Ry,) ={P € C[t*'|(9) : P(C[t?t3]) C C[t?¢3]}.
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3. WEIGHT DECOMPOSITION

It is easy to see s; :=1;0; € D(R4) (i=1,...,d).
For a = t(ay, as, ..., aq) € Z4, set
D(Ra)a :={P € D(R4) : [s;,P] =a;P fori=12,...,d}.
Then t* € D(R4)q for a € NA.
Lemma 3.1. (1) D(Ra) = @ pepa D(RA)a.

(2) Di(Ra) = @ ,ep0 Die(Ra) N D(Ra)a.
(3) GrD(Ra) = D,y Gr D(R4)a.

Theorem 3.2 (Musson [4]).
D(Ra)q = t°1(Q(a)) for all a € 7,
where
Qa) = {beNA: b+a¢gNA}=NA\ (—a+NA),
I(Q(a)) = {f(s) € C[s]:=C][sy,...,5q4] : [ vanishes on Q(a)}.
In particular, D(Ra)o = Cls].

Example 1 Continued.
Put Dg :=t*]], - i (s, — k) € D(C[tEY, 451,04, 0a]), Ea := Da(s1 +ay — 1), and
Fo = Dg(s2 + ag). Then

D(Ra,)a = DoCls] if a ¢'(1,0) — NA,
D(Ra))a = ELCls]+ F,C[s] if a € /(1,0) — NA;.
Let ai, by <0, and a = *(ay,0),b =*(b,0). Then
Eo,=0{"(s1+a1—1)=(s1 —1)0{ ", Fu=0]"sy = 850;
We have
EoEy = (51 —a1—1)Eqte,
FoEy = (s1— a1 —1)Fgyp,
Eoly = 5FEqip = (51— 1)Faqs,
FoFy = s3Fqq.
Then, for a’ =*(a},0),b" = (},0) with a|,0; <0 and a +b = a’ +b', we have
FoEy — FoEy = (a) — a1)Farp-

In this way, the right ideal }
Ey Fy — Eq Fyy = 0, the left ideal >

Fi(a,0D(R4,) is finitely generated. However, since

a1<0 D(Ra,) Fi(q, 0) is not finitely generated.

Example 4 Continued.
Ay =1(2,3), NA; =N\ {1}.
a € 7. Q() NA4\( (Z+NA4

~

D(Ra,)a = °I((a)).

e Qa)=0 (a€eNAy), D(Ry,),=tCls].

e Q1) = {0}, D(Ra,)1 = tsCls] = t*0C]s].

e O(—1) = {0,2}, D(Ry4,)-1 =t ts(s — 2)C[s]
e O(—2)={0,3}, D(Ra,)—2 =t"2%s(s — 3)C[s]



o Q(—k)=1{0,2,.... k—1}U{k+1} (k>3),
D(Ra,)- = t™*s(s = 2) -+ (s — (k = 1))(s — (k + 1))Cls].

Note that |Q(—k)| = k if kK € NA,.

Example 3 Continued.
Since NAj; satisfies (S3), each D(Ra,)a is singly generated. For a = *(ay, az), put

1152 (a1 > 0,a3 > 1, or a3 > 0 even, as = 0)
Q o tclblt26|2a2‘+1 (CLl > 0, ay < O, ora; >0 Odd, a9 = O)
AT gezg)l (a1 < 0,a3 > 1, or a; < 0 even, ay = 0)

t28|1a1|a|2a2|+1 (a1,a9 <0, or a; <0 odd, ay = 0).

By computing I(£2(a)), we see that D(Ra,)a is generated by Q.. The following is the list
of some ,:

-3 | 2 [ -1 ]o0 | 1 [ 2 | 3 |a/a
207 | 307 | 30, | 65 | ity | 33 | tit3 2
607 | 207 | 201 | ta | tity | ity | tits 1
12030y | 07 | 120102 | 1 [titaOo | 17 [ t5t205 | 0
120703 | 120705 | 120105 | 205 | 11903 | 15205 | t5t205 || —1
120305 | 120703 | 120105 | 1203 | t1t203 | 13205 | tita03 | —2
Then we have

D(R4,))/ @Gr (Ray))a: 5, t2) = C(t283, 1265, - ).

a1#0

Since this is not a finitely generated algebra, neither is Gr(D(Ra,)).

4. THE SPECTRUM
By Theorem 2.4, the spectrum of Gr D(R4) is in question, when NA is scored.

4.1. Z%-graded Prime Ideals. From now on, we assume that NA is scored, and set
G := Gr D(R,). By Lemma 3.1, we work on Z?-graded prime ideals of G.

Corollary 4.1 (to Theorem 3.2).

G = @taﬂ @P@

aczd aczd

ra = ]] 11 (E5(s) —m),

o meF;(NA\(—Fo(a)+F,(NA))

P, = ¢ ~pa()
P, = (o HF #(Fo (NA)\(=Fy (a)+F» (NA)))

where

Since Go = C[s] is a subalgebra of G, the following lemma is immediate.

Lemma 4.2. Let P = P, .54 Ba be a Z2-graded prime ideal of G. Then Bo is a prime
ideal of Go = C[s].
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Given a prime ideal p of C[s], we shall classify all Z%-graded prime ideals 3 of G' with
PBo = p.

4.2. Degree and Expected Degree. For o € F and a € Z, set
o deg,(a) :="F (F,(NA) \ (- F(a) + F,(NA))),
. deg_(a) = 0 if Fy(a) >0
KPEBAD) =\ |Fy(a)| if Fy(a) <O0.
Then
E — @ H Fo(_iEg‘T(a).
oeF

Example 4 Continued.
A=1(2,3), NA=N\{1}.

F{O}(S):S.
a |- | k[ [-3[-2]-1]0]1]2]3]
expdeggoy(a) |[ -+ | kK |-~ | 3 2] 1]0/0]0)0
G = tesde0(IC[s] C CtE, ¢, s =t€.
a€’Z

For a fixed prime ideal p of C[s]|, we define
Fp) == {oeF: F ep}
Y(p) : the fan determined by the hyperplane arrangement { Ro : o € F(p) },
S(p) = {acZ': |F,(a)| € F,(NA) (forVo e F(p))}.

Example 4 Continued.
A=(2,3), NA=N\{1}.

F{O}(S) = S.
e p=(s—f): afixed prime ideal of Cls]

e F((s—p)={oceF: :F,e(s—p)}= { {8} Eftl?e?v)vise).
R>0,{0},R<o} (=0
e X((s—p) = { e {{R}} <) gotherv)vise).

e S((s—p) “ %il} Eft;efv)vise).

) =
o 7((0)) =0, %((0)) ={R}, S5((0)) =2

For a € Z¢, put
° degp(a) = def(p) deg,(a).
e expdeg,(a) := Zae}‘(p) expdeg, (a).

Then deg,,(a) = deg(pg), where m = (s1, ..., Sq).
6



Proposition 4.3. (1) deg,(a) > expdeg,(a).
(2) deg,(a) = expdeg,(a) if and only if a € S(p).

4.3. Classification. For a cone 7 € X(p), we define an ideal P(p,7) = Dyeza PP, 7)a
of G by

[ Gap (@a€eTnS(p))
Bp,7)a = { Gq  (otherwise).

Proposition 4.4. The Z*-graded ideal 3(p, ) is prime.

Theorem 4.5 ([5]). Let B be a Z-graded prime ideal with Po = p. Then there exists
T € X(p) such that P = P(p, 7).

Proposition 4.6. B(p,7) CP(p', 7’) if and only if p Cp' and 7 2 7.

Proposition 4.7. dim G/B(p,7) = dim C[s|/p + dim 7.

Example 4 Continued.
A=(2,3), NA=N\{1}. Let a € Z.

o B((s), Rag)s = {Gs (a € N\ {1})

G, (otherw1se)
G,s a =0)
Go (a#0) O

. 0= {
G,s ae N\ {1

* B((s) R<o)a { Ga otheervvls\e){ )
PB((s), R=0) € B((s),{0}) 2 B((s), Ro)-

hd sB((S - B)’R)a Ga(s 6) (Va € Z) for ﬁ 7§ 0.
e B((0),R), = Go(0) =0 (Va € Z), ie., B((0),R) = 0.

5. COHEN-MACAULAYNESS OF Gr D(R4)
Theorem 5.1 (Musson [4]). If NA is normal, then Gr D(R4) is Gorenstein.

Proof. Let ¥ be the fan determined by F, = 0 (¢ € F). For a facet 7 € 3, Let A, be a
generating set of the semigroup 7 N Z<. Put Ay := U;A,. Then

GrD(R4) = C[s][P,|a € Ag] = C[F,,P,|0c € F; a € Ag)].
Replace F, by an indeterminate z,, and put
G :=Clzy, Py|0 € F; a € Ay).

Then G is a normal affine semigroup algebra, and [] . 2, represents the unique minimal
positive element. (Indeed, in Z% @ Z*, the corresponding semigroup has the primitive

integral support functions F, + 2,, 2z, (0 € F). ][, cr % corresponds to (0,1,...,1).)
7



Hence G is Gorenstein. The natural map
m: G — GrD(Ry)

defined by 7(z,) = F, is surjective. Let {I;} be a basis of Ker(m|(.,). Then {/;} is a regular
sequence, and generates Ker(m). Hence Gr D(R4) is Gorenstein. If we consider Gr D(R,)
is Z¢ @ Z-graded (the last one corresponds to the degree in s), then the a-invariant is

(07__ﬁ]7) 0
However, if NA is not normal, then Gr D(R,) is never Cohen-Macaulay:

Proposition 5.2 (Hsiao [3] d = 1). If NA is scored but not normal, then Gr D(R,) is
not Cohen-Macaulay.

Proof. Let G := Gr D(R,). Since NA satisfies (5), each G4 is a free C[s]-module. Hence
S1,---,Sa 18 a regular sequence of G. Let G :=G/(s1,...,84). Then dim G = d, and G is
Cohen-Macaulay if and only if so is G. We have

G =EpcCr.,

aczd

and
(5.1) EE#O@{

by [5, Theorem 3.6]. Let
[ := max{deg(a) — expdeg(a) |a € RsgA N Z%},
deg(b) — expdeg(b) =, and b € R5gANZ%. Put
T = ﬂ o.
deg,, (b)—expdeg, (b)>0

Ifx=73,. caP, is not a zero-divisor, then, by (5.1), there exists 0 # a € 7 N Rx,A
such that ¢, # 0, and

(5.2) x- P, = Z CaPpaip-

0¢GGR20AQ’T

F,(a)F,(b) >0 (Vo e F)
deg,(a) — expdeg,(a) > 0= F,(b)=0 (o€ F)

Let b be primitive in the sense that there exists no 8" € R3gANZ? and 0 # a € R>qANT
such that b = b’ +a and deg(b’) —expdeg(b’) = [. Let t := dim 7. Suppose that xy,. .., z;
forms a regular sequence of G. Then, by the primitiveness and the equations (5.1), (5.2),
we have P, # 0 in G/(xy,...,x;). Since t = dim 7, for any & € G/(x, ..., =), we have
x™ - P, € (x1,...,x;) for some m by (5.2). Hence the length of a regular sequence of G

cannot exceed t; depth(G) <t <d— 1. O

Example 4 Continued.
A=(2,3), NA=N\{1}.
Then G = Gr D(R4) is again an affine semigroup algebra:

G =C[t3, 1 ts,s,t 1s%, 125 17757

Clearly, this semigroup does not satisfy S;. Hence G is not Cohen-Macaulay.
8



[ N )
cee

FIGURE 4. The semigroup for G
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