THE RING OF DIFFERENTIAL OPERATORS OF AN AFFINE SEMIGROUP ALGEBRA

MUTSUMI SAITO

1. Introduction and Definitions

The ring of differential operators was introduced by Grothendieck [2]. Although it may be ugly in general [1], the ring of differential operators of an affine semigroup algebra shares the computability with the other objects concerning a semigroup. The aim of this article is to demonstrate it by using simple examples. In particular, we exhibit a beautiful structure of the spectrum of its graded ring (with respect to the order filtration) when the semigroup is scored.

Let $A:=\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}\right)=\left(a_{i j}\right)$ be a $d \times n$ matrix with coefficients in \mathbb{Z}. We sometimes identify A with the set of its column vectors. We assume that $\mathbb{Z} A=\mathbb{Z}^{d}$, where $\mathbb{Z} A$ is the abelian group generated by A.

Let $\mathbb{N} A$ be the monoid generated by A, and R_{A} its semigroup algebra:

$$
R_{A}=\mathbb{C}[\mathbb{N} A]=\bigoplus_{a \in \mathbb{N} A} \mathbb{C} t^{a} \subseteq \mathbb{C}\left[t_{1}^{ \pm 1}, \ldots, t_{d}^{ \pm 1}\right]
$$

Then the ring of differential operators of R_{A} can be given as a subalgebra of the ring of differential operators of the Laurent polynomial ring:

$$
D\left(R_{A}\right)=\left\{P \in \mathbb{C}\left[t_{1}^{ \pm 1}, \ldots, t_{d}^{ \pm 1}\right]\left\langle\partial_{1}, \ldots, \partial_{d}\right\rangle: P\left(R_{A}\right) \subset R_{A}\right\}
$$

Let $D_{k}\left(R_{A}\right)$ be the subspace of differential operators of order less or equal to k in $D\left(R_{A}\right)$. Then the graded ring with respect to the order filtration $\left\{D_{k}\left(R_{A}\right)\right\}$ is commutative:

$$
\operatorname{Gr} D\left(R_{A}\right)=\bigoplus_{k=0}^{\infty} D_{k}\left(R_{A}\right) / D_{k-1}\left(R_{A}\right) \subseteq \mathbb{C}\left[t_{1}^{ \pm}, \ldots, t_{d}^{ \pm}, \xi_{1}, \ldots, \xi_{d}\right]
$$

where ξ_{i} denotes the image of ∂_{i}.

2. Finiteness

In general, the ring of differential operators on an affine variety may be neither left or right Noetherian nor finitely generated as an algebra [1]. In this section, we give some results on finiteness of $D\left(R_{A}\right)$.

Theorem 2.1 ([8]). $D\left(R_{A}\right)$ is a finitely generated \mathbb{C}-algebra.

Theorem 2.2 ([6]). (1) $D\left(R_{A}\right)$ is right Noetherian.
(2) $D\left(R_{A}\right)$ is left Noetherian if $\mathbb{N} A$ is S_{2}.

Date: December 22, 2013.

In [6], we also gave a necessary condition for $D\left(R_{A}\right)$ being left Noetherian.
Definition 2.3. A semigroup $\mathbb{N} A$ is S_{2} if $\mathbb{N} A=\bigcap_{\sigma: \text { facet of } \mathbb{R}_{\geq 0} A}[\mathbb{N} A+\mathbb{Z}(A \cap \sigma)]$.
The following is an example of $\mathbb{N} A$ that does not satisfy the S_{2} condition.
Example 1 (non- S_{2}).
$A_{1}=\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}, \boldsymbol{a}_{4}\right)=\left(\begin{array}{cccc}2 & 3 & 0 & 1 \\ 0 & 0 & 1 & 1\end{array}\right)$. Then

Figure 1. The semigroup $\mathbb{N} A_{1}$
In this case,

$$
\mathbb{N} A_{1}=\mathbb{N}^{2} \backslash\binom{1}{0}, \quad \text { whereas } \quad \bigcap_{\sigma: \text { facet of } \mathbb{R} \geq 0}\left[\mathbb{N} A_{1}+\mathbb{Z}\left(A_{1} \cap \sigma\right)\right]=\mathbb{N}^{2}
$$

Theorem 2.4 ([7]).

$$
\operatorname{Gr} D\left(R_{A}\right) \text { is Noetherian } \Leftrightarrow \mathbb{N} A \text { is scored. }
$$

Let \mathcal{F} be the set of facets of $\mathbb{R}_{\geq 0} A$. For a facet $\sigma \in \mathcal{F}$, we define the primitive integral support function F_{σ} of σ as the linear form on \mathbb{R}^{d} uniquely determined by the conditions:
(1) $F_{\sigma}\left(\mathbb{R}_{\geq 0} A\right) \geq 0$,
(2) $F_{\sigma}(\sigma)=0$,
(3) $F_{\sigma}\left(\mathbb{Z}^{d}\right)=\mathbb{Z}$.

Definition 2.5. The semigroup $\mathbb{N} A$ is said to be scored if

$$
\mathbb{N} A=\bigcap_{\sigma: \text { facet }}\left\{\boldsymbol{a} \in \mathbb{Z}^{d}: F_{\sigma}(\boldsymbol{a}) \in F_{\sigma}(\mathbb{N} A)\right\}
$$

Remark 2.6.

$$
\mathbb{N} A: \text { scored } \Rightarrow \mathbb{N} A: \mathrm{S}_{2}
$$

Proof. For each facet σ,

$$
\mathbb{N} A \subseteq \mathbb{N} A+\mathbb{Z}(A \cap \sigma) \subseteq\left\{\boldsymbol{a} \in \mathbb{Z}^{d}: F_{\sigma}(\boldsymbol{a}) \in F_{\sigma}(\mathbb{N} A)\right\}
$$

Hence

$$
\mathbb{N} A \subseteq \bigcap_{\sigma \in \mathcal{F}}(\mathbb{N} A+\mathbb{Z}(A \cap \sigma)) \subseteq \bigcap_{\sigma \in \mathcal{F}}\left\{\boldsymbol{a} \in \mathbb{Z}^{d}: F_{\sigma}(\boldsymbol{a}) \in F_{\sigma}(\mathbb{N} A)\right\}
$$

Example 2 (Scored).
$A_{2}=\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}\right)=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 2 & 3\end{array}\right)$. Then
σ_{3}

Figure 2. The semigroup $\mathbb{N} A_{2}$
$\mathcal{F}=\left\{\sigma_{1}=\mathbb{R}_{\geq 0} \boldsymbol{a}_{1}, \sigma_{3}=\mathbb{R}_{\geq 0} \boldsymbol{a}_{3}\right\}$,
$F_{\sigma_{1}}\left(s_{1}, s_{2}\right)=s_{2}, F_{\sigma_{3}}\left(s_{1}, s_{2}\right)=3 s_{1}-s_{2}$.
$F_{\sigma_{1}}\left(\mathbb{N} A_{2}\right)=\mathbb{N} \backslash\{1\}, F_{\sigma_{3}}\left(\mathbb{N} A_{2}\right)=\mathbb{N}$.
We have

$$
\mathbb{N} A_{2}=\left\{\boldsymbol{a} \in \mathbb{Z}^{2} \mid F_{\sigma_{1}}(\boldsymbol{a}) \in \mathbb{N} \backslash\{1\}, F_{\sigma_{3}}(\boldsymbol{a}) \in \mathbb{N}\right\}
$$

Hence $\mathbb{N} A_{2}$ is scored.
Example 3 (S_{2} but non-scored). $A_{3}=\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}\right)=\left(\begin{array}{ccc}2 & 0 & 1 \\ 0 & 1 & 1\end{array}\right)$. Then

Figure 3. The semigroup $\mathbb{N} A_{3}$
$\mathcal{F}=\left\{\sigma_{1}=\mathbb{R}_{\geq 0} \boldsymbol{a}_{1}, \sigma_{2}=\mathbb{R}_{\geq 0} \boldsymbol{a}_{2}\right\}$,
$F_{\sigma_{1}}\left(s_{1}, s_{2}\right)=s_{2}, F_{\sigma_{2}}\left(s_{1}, s_{2}\right)=s_{1}$.
$F_{\sigma_{1}}\left(\mathbb{N} A_{3}\right)=\mathbb{N}, F_{\sigma_{3}}\left(\mathbb{N} A_{3}\right)=\mathbb{N}$.
We have

$$
\mathbb{N} A_{3} \subsetneq\left\{\boldsymbol{a} \in \mathbb{Z}^{2} \mid F_{\sigma_{1}}(\boldsymbol{a}) \in \mathbb{N}, F_{\sigma_{3}}(\boldsymbol{a}) \in \mathbb{N}\right\}=\mathbb{N}^{2}
$$

Hence $\mathbb{N} A_{3}$ is not scored.
Example 4 (scored).
$d=1, n=2, \quad A_{4}=(2,3)$.
This is the smallest non-trivial example; we use this as a running example.
We have the following:

- $\mathbb{N} A_{4}=\{0,2,3,4, \ldots\}=\mathbb{N} \backslash\{1\} . \quad \mathbb{R}_{\geq 0} A_{4}=\mathbb{R}_{\geq 0}$.
- $\mathcal{F}=\{\{0\}\}, \quad F_{\{0\}}(s)=s ; \quad \mathbb{N} A_{4}$ is scored.
- $R_{A_{4}}=\mathbb{C}\left[t^{2}, t^{3}\right]$.
- $D\left(R_{A_{4}}\right)=\left\{P \in \mathbb{C}\left[t^{ \pm 1}\right]\langle\partial\rangle: P\left(\mathbb{C}\left[t^{2}, t^{3}\right]\right) \subseteq \mathbb{C}\left[t^{2}, t^{3}\right]\right\}$.

3. Weight Decomposition

It is easy to see $s_{i}:=t_{i} \partial_{i} \in D\left(R_{A}\right) \quad(i=1, \ldots, d)$.
For $\boldsymbol{a}={ }^{t}\left(a_{1}, a_{2}, \ldots, a_{d}\right) \in \mathbb{Z}^{d}$, set

$$
D\left(R_{A}\right)_{a}:=\left\{P \in D\left(R_{A}\right):\left[s_{i}, P\right]=a_{i} P \quad \text { for } i=1,2, \ldots, d\right\} .
$$

Then $t^{a} \in D\left(R_{A}\right)_{\boldsymbol{a}}$ for $\boldsymbol{a} \in \mathbb{N} A$.
Lemma 3.1. (1) $D\left(R_{A}\right)=\bigoplus_{\boldsymbol{a} \in \mathbb{Z}^{d}} D\left(R_{A}\right)_{\boldsymbol{a}}$.
(2) $D_{k}\left(R_{A}\right)=\bigoplus_{a \in \mathbb{Z}^{d}} D_{k}\left(R_{A}\right) \cap D\left(R_{A}\right)_{a}$.
(3) $\operatorname{Gr} D\left(R_{A}\right)=\bigoplus_{a \in \mathbb{Z}^{d}} \operatorname{Gr} D\left(R_{A}\right)_{a}$.

Theorem 3.2 (Musson [4]).

$$
D\left(R_{A}\right)_{\boldsymbol{a}}=t^{a} \mathbb{I}(\Omega(\boldsymbol{a})) \quad \text { for all } \boldsymbol{a} \in \mathbb{Z}^{d}
$$

where

$$
\begin{aligned}
\Omega(\boldsymbol{a}) & :=\{\boldsymbol{b} \in \mathbb{N} A: \boldsymbol{b}+\boldsymbol{a} \notin \mathbb{N} A\}=\mathbb{N} A \backslash(-\boldsymbol{a}+\mathbb{N} A), \\
\mathbb{I}(\Omega(\boldsymbol{a})) & :=\left\{f(s) \in \mathbb{C}[s]:=\mathbb{C}\left[s_{1}, \ldots, s_{d}\right]: f \text { vanishes on } \Omega(\boldsymbol{a})\right\} .
\end{aligned}
$$

In particular, $D\left(R_{A}\right)_{\mathbf{0}}=\mathbb{C}[s]$.

Example 1 Continued.

Put $D_{a}:=t^{a} \prod_{a_{i}<0} \prod_{k=0}^{-a_{i}-1}\left(s_{i}-k\right) \in D\left(\mathbb{C}\left[t_{1}^{ \pm 1}, t_{2}^{ \pm 1}, \partial_{1}, \partial_{2}\right]\right), E_{a}:=D_{a}\left(s_{1}+a_{1}-1\right)$, and $F_{\boldsymbol{a}}:=D_{\boldsymbol{a}}\left(s_{2}+a_{2}\right)$. Then

$$
\begin{array}{ll}
D\left(R_{A_{1}}\right)_{\boldsymbol{a}}=D_{\boldsymbol{a}} \mathbb{C}[s] & \text { if } \boldsymbol{a} \not{ }^{t}(1,0)-\mathbb{N} A_{1}, \\
D\left(R_{A_{1}}\right)_{\boldsymbol{a}}=E_{\boldsymbol{a}} \mathbb{C}[s]+F_{\boldsymbol{a}} \mathbb{C}[s] & \text { if } \boldsymbol{a} \in{ }^{t}(1,0)-\mathbb{N} A_{1}
\end{array}
$$

Let $a_{1}, b_{1}<0$, and $\boldsymbol{a}={ }^{t}\left(a_{1}, 0\right), \boldsymbol{b}={ }^{t}\left(b_{1}, 0\right)$. Then

$$
E_{\boldsymbol{a}}=\partial_{1}^{-a_{1}}\left(s_{1}+a_{1}-1\right)=\left(s_{1}-1\right) \partial_{1}^{-a_{1}}, \quad F_{\boldsymbol{a}}=\partial_{1}^{-a_{1}} s_{2}=s_{2} \partial_{1}^{-a_{1}} .
$$

We have

$$
\begin{aligned}
E_{\boldsymbol{a}} E_{\boldsymbol{b}} & =\left(s_{1}-a_{1}-1\right) E_{\boldsymbol{a}+\boldsymbol{b}}, \\
F_{\boldsymbol{a}} E_{\boldsymbol{b}} & =\left(s_{1}-a_{1}-1\right) F_{\boldsymbol{a}+\boldsymbol{b}}, \\
E_{\boldsymbol{a}} F_{\boldsymbol{b}} & =s_{2} E_{\boldsymbol{a}+\boldsymbol{b}}=\left(s_{1}-1\right) F_{\boldsymbol{a}+\boldsymbol{b}}, \\
F_{\boldsymbol{a}} F_{\boldsymbol{b}} & =s_{2} F_{\boldsymbol{a}+\boldsymbol{b}} .
\end{aligned}
$$

Then, for $\boldsymbol{a}^{\prime}={ }^{t}\left(a_{1}^{\prime}, 0\right), \boldsymbol{b}^{\prime}={ }^{t}\left(b_{1}^{\prime}, 0\right)$ with $a_{1}^{\prime}, b_{1}^{\prime}<0$ and $\boldsymbol{a}+\boldsymbol{b}=\boldsymbol{a}^{\prime}+\boldsymbol{b}^{\prime}$, we have

$$
F_{\boldsymbol{a}} E_{\boldsymbol{b}}-F_{\boldsymbol{a}^{\prime}} E_{\boldsymbol{b}^{\prime}}=\left(a_{1}^{\prime}-a_{1}\right) F_{\boldsymbol{a}+\boldsymbol{b}} .
$$

In this way, the right ideal $\sum_{a_{1}<0} F_{t\left(a_{1}, 0\right)} D\left(R_{A_{1}}\right)$ is finitely generated. However, since $E_{\boldsymbol{a}} F_{\boldsymbol{b}}-E_{\boldsymbol{a}^{\prime}} F_{\boldsymbol{b}^{\prime}}=0$, the left ideal $\sum_{a_{1}<0} D\left(R_{A_{1}}\right) F_{\left(a_{1}, 0\right)}$ is not finitely generated.

Example 4 Continued.

$A_{4}=(2,3), \quad \mathbb{N} A_{4}=\mathbb{N} \backslash\{1\}$.
$a \in \mathbb{Z} . \quad \Omega(a)=\mathbb{N} A_{4} \backslash\left(-a+\mathbb{N} A_{4}\right) . \quad D\left(R_{A_{4}}\right)_{a}=t^{a} \mathbb{I}(\Omega(a))$.

- $\Omega(a)=\emptyset \quad\left(a \in \mathbb{N} A_{4}\right), \quad D\left(R_{A_{4}}\right)_{a}=t^{a} \mathbb{C}[s]$.
- $\Omega(1)=\{0\}, \quad D\left(R_{A_{4}}\right)_{1}=t s \mathbb{C}[s]=t^{2} \partial \mathbb{C}[s]$.
- $\Omega(-1)=\{0,2\}, \quad D\left(R_{A_{4}}\right)_{-1}=t^{-1} s(s-2) \mathbb{C}[s]$.
- $\Omega(-2)=\{0,3\}, \quad D\left(R_{A_{4}}\right)_{-2}=t^{-2} s(s-3) \mathbb{C}[s]$.
- $\Omega(-k)=\{0,2, \ldots, k-1\} \cup\{k+1\} \quad(k \geq 3)$, $D\left(R_{A_{4}}\right)_{-k}=t^{-k} s(s-2) \cdots(s-(k-1))(s-(k+1)) \mathbb{C}[s]$.

Note that $|\Omega(-k)|=k$ if $k \in \mathbb{N} A_{4}$.

Example 3 Continued.

Since $\mathbb{N} A_{3}$ satisfies $\left(S_{2}\right)$, each $D\left(R_{A_{3}}\right)_{\mathbf{a}}$ is singly generated. For $\mathbf{a}={ }^{t}\left(a_{1}, a_{2}\right)$, put

$$
Q_{\mathrm{a}}:= \begin{cases}t_{1}^{a_{1}} t_{2}^{a_{2}} & \left(a_{1} \geq 0, a_{2} \geq 1, \text { or } a_{1} \geq 0 \text { even, } a_{2}=0\right) \\ t_{1}^{a_{1}} t_{2} \partial_{2}^{\left|a_{2}\right|+1} & \left(a_{1} \geq 0, a_{2}<0, \text { or } a_{1} \geq 0 \text { odd, } a_{2}=0\right) \\ t_{2}^{a_{2}} \partial_{1}^{\left|a_{1}\right|} & \left(a_{1}<0, a_{2} \geq 1, \text { or } a_{1}<0 \text { even, } a_{2}=0\right) \\ t_{2} \partial_{1}^{a_{1} \mid} \partial_{2}^{\left|a_{2}\right|+1} & \left(a_{1}, a_{2}<0, \text { or } a_{1}<0 \text { odd, } a_{2}=0\right) .\end{cases}
$$

By computing $\mathbb{I}(\Omega(\mathbf{a}))$, we see that $D\left(R_{A_{3}}\right)_{\mathbf{a}}$ is generated by $Q_{\mathbf{a}}$. The following is the list of some $Q_{\mathbf{a}}$:

-3	-2	-1	0	1	2	3	a_{1} / a_{2}
$t_{2}^{2} \partial_{1}^{3}$	$t_{2}^{2} \partial_{1}^{2}$	$t_{2}^{2} \partial_{1}$	t_{2}^{2}	$t_{1} t_{2}^{2}$	$t_{1}^{2} t_{2}^{2}$	$t_{1}^{3} t_{2}^{2}$	2
$t_{2} \partial_{1}^{3}$	$t_{2} \partial_{1}^{2}$	$t_{2} \partial_{1}$	t_{2}	$t_{1} t_{2}$	$t_{1}^{2} t_{2}$	$t_{1}^{3} t_{2}$	1
$t_{2} \partial_{1}^{3} \partial_{2}$	∂_{1}^{2}	$t_{2} \partial_{1} \partial_{2}$	1	$t_{1} t_{2} \partial_{2}$	t_{1}^{2}	$t_{1}^{3} t_{2} \partial_{2}$	0
$t_{2} \partial_{1}^{3} \partial_{2}^{2}$	$t_{2} \partial_{1}^{2} \partial_{2}^{2}$	$t_{2} \partial_{1} \partial_{2}^{2}$	$t_{2} \partial_{2}^{2}$	$t_{1} t_{2} \partial_{2}^{2}$	$t_{1}^{2} t_{2} \partial_{2}^{2}$	$t_{1}^{3} t_{2} \partial_{2}^{2}$	-1
$t_{2} \partial_{1}^{3} \partial_{2}^{3}$	$t_{2} \partial_{1}^{2} \partial_{2}^{3}$	$t_{2} \partial_{1} \partial_{2}^{3}$	$t_{2} \partial_{2}^{3}$	$t_{1} t_{2} \partial_{2}^{3}$	$t_{1}^{2} t_{2} \partial_{2}^{3}$	$t_{1}^{3} t_{2} \partial_{2}^{3}$	-2

Then we have

$$
\operatorname{Gr}\left(D\left(R_{A_{3}}\right)\right) /\left\langle\bigoplus_{a_{1} \neq 0} \operatorname{Gr}\left(D\left(R_{A_{3}}\right)\right)_{\boldsymbol{a}}, s, t_{2}\right\rangle=\mathbb{C}\left\langle t_{2} \xi_{2}^{2}, t_{2} \xi_{2}^{3}, \cdots\right\rangle .
$$

Since this is not a finitely generated algebra, neither is $\operatorname{Gr}\left(D\left(R_{A_{3}}\right)\right)$.

4. The spectrum

By Theorem 2.4, the spectrum of $\operatorname{Gr} D\left(R_{A}\right)$ is in question, when $\mathbb{N} A$ is scored.
4.1. \mathbb{Z}^{d}-graded Prime Ideals. From now on, we assume that $\mathbb{N} A$ is scored, and set $G:=\operatorname{Gr} D\left(R_{A}\right)$. By Lemma 3.1, we work on \mathbb{Z}^{d}-graded prime ideals of G.

Corollary 4.1 (to Theorem 3.2).

$$
G=\bigoplus_{\boldsymbol{a} \in \mathbb{Z}^{d}} \overline{t^{a} \mathbb{I}(\Omega(\boldsymbol{a}))}=\bigoplus_{\boldsymbol{a} \in \mathbb{Z}^{d}} \bar{P}_{\boldsymbol{a}} \mathbb{C}[s],
$$

where

$$
\begin{aligned}
p_{\boldsymbol{a}} & :=\prod_{\sigma} \prod_{m \in F_{\sigma}(\mathbb{N} A) \backslash\left(-F_{\sigma}(\boldsymbol{a})+F_{\sigma}(\mathbb{N} A)\right)}\left(F_{\sigma}(s)-m\right), \\
P_{\boldsymbol{a}} & :=t^{a} \cdot p_{\boldsymbol{a}}(s), \\
\bar{P}_{\boldsymbol{a}} & =t^{a} \cdot \prod_{\sigma} F_{\sigma}(s)^{\sharp\left(F_{\sigma}(\mathbb{N} A) \backslash\left(-F_{\sigma}(\boldsymbol{a})+F_{\sigma}(\mathbb{N} A)\right)\right)} .
\end{aligned}
$$

Since $G_{\mathbf{0}}=\mathbb{C}[s]$ is a subalgebra of G, the following lemma is immediate.
Lemma 4.2. Let $\mathfrak{P}=\bigoplus_{a \in \mathbb{Z}^{d}} \mathfrak{P}_{a}$ be a \mathbb{Z}^{d}-graded prime ideal of G. Then \mathfrak{P}_{0} is a prime ideal of $G_{\mathbf{0}}=\mathbb{C}[s]$.

Given a prime ideal \mathfrak{p} of $\mathbb{C}[s]$, we shall classify all \mathbb{Z}^{d}-graded prime ideals \mathfrak{P} of G with $\mathfrak{P}_{0}=\mathfrak{p}$.
4.2. Degree and Expected Degree. For $\sigma \in \mathcal{F}$ and $\boldsymbol{a} \in \mathbb{Z}^{d}$, set

- $\operatorname{deg}_{\sigma}(\boldsymbol{a}):=\sharp\left(F_{\sigma}(\mathbb{N} A) \backslash\left(-F_{\sigma}(\boldsymbol{a})+F_{\sigma}(\mathbb{N} A)\right)\right)$,
- $\operatorname{expdeg}{ }_{\sigma}(\boldsymbol{a}):= \begin{cases}0 & \text { if } F_{\sigma}(\boldsymbol{a}) \geq 0 \\ \left|F_{\sigma}(\boldsymbol{a})\right| & \text { if } F_{\sigma}(\boldsymbol{a}) \leq 0 .\end{cases}$

Then

$$
\overline{P_{\boldsymbol{a}}}=t^{a} \prod_{\sigma \in \mathcal{F}} F_{\sigma}^{\operatorname{deg}_{\sigma}(\boldsymbol{a})}
$$

Example 4 Continued.

$$
A=(2,3), \quad \mathbb{N} A=\mathbb{N} \backslash\{1\}
$$

$F_{\{0\}}(s)=s$.

a	\cdots	$-k$	\cdots	-3	-2	-1	0	1	2	3	\cdots
$\operatorname{expdeg}_{\{0\}}(a)$	\cdots	k	\cdots	3	2	1	0	0	0	0	\cdots
$\operatorname{deg}_{\{0\}}(a)$	\cdots	k	\cdots	3	2	$\mathbf{2}$	0	$\mathbf{1}$	0	0	\cdots
$G=\bigoplus_{a \in \mathbb{Z}} t^{a} s^{\operatorname{deg}_{\{0\}}(a)} \mathbb{C}[s] \subseteq \mathbb{C}\left[t^{ \pm 1}, \xi\right]$								$s=t \xi$.			

For a fixed prime ideal \mathfrak{p} of $\mathbb{C}[s]$, we define

$$
\begin{aligned}
\mathcal{F}(\mathfrak{p}) & :=\left\{\sigma \in \mathcal{F}: F_{\sigma} \in \mathfrak{p}\right\}, \\
\Sigma(\mathfrak{p}) & : \text { the fan determined by the hyperplane arrangement }\{\mathbb{R} \sigma: \sigma \in \mathcal{F}(\mathfrak{p})\}, \\
S(\mathfrak{p}) & \left.:=\left\{\boldsymbol{a} \in \mathbb{Z}^{d}:\left|F_{\sigma}(\boldsymbol{a})\right| \in F_{\sigma}(\mathbb{N} A) \quad \text { (for } \forall \sigma \in \mathcal{F}(\mathfrak{p})\right)\right\} .
\end{aligned}
$$

Example 4 Continued.

$$
A=(2,3), \quad \mathbb{N} A=\mathbb{N} \backslash\{1\} .
$$

$F_{\{0\}}(s)=s$.

- $\mathfrak{p}=(s-\beta)$: a fixed prime ideal of $\mathbb{C}[s]$
- $\mathcal{F}((s-\beta))=\left\{\sigma \in \mathcal{F}: F_{\sigma} \in(s-\beta)\right\}=\left\{\begin{array}{cl}\{0\} & (\beta=0) \\ \emptyset & \text { (otherwise). }\end{array}\right.$
- $\Sigma((s-\beta))=\left\{\begin{array}{cl}\left\{\mathbb{R}_{\geq 0},\{0\}, \mathbb{R}_{\leq 0}\right\} & (\beta=0) \\ \{\mathbb{R}\} & \text { (otherwise). }\end{array}\right.$
- $S((s-\beta))=\left\{\begin{array}{cl}\mathbb{Z} \backslash\{ \pm 1\} & (\beta=0) \\ \mathbb{Z} & \text { (otherwise). }\end{array}\right.$
- $\mathcal{F}((0))=\emptyset, \quad \Sigma((0))=\{\mathbb{R}\}, \quad S((0))=\mathbb{Z}$.

For $\boldsymbol{a} \in \mathbb{Z}^{d}$, put

- $\operatorname{deg}_{\mathfrak{p}}(\boldsymbol{a}):=\sum_{\boldsymbol{\sigma} \in \mathcal{F}(\mathfrak{p})} \operatorname{deg}_{\sigma}(\boldsymbol{a})$.
- $\operatorname{expdeg}_{\mathfrak{p}}(\boldsymbol{a}):=\sum_{\sigma \in \mathcal{F}(\mathfrak{p})} \operatorname{expdeg}_{\sigma}(\boldsymbol{a})$.

Then $\operatorname{deg}_{\boldsymbol{m}}(\boldsymbol{a})=\operatorname{deg}\left(p_{\boldsymbol{a}}\right)$, where $\boldsymbol{m}=\left(s_{1}, \ldots, s_{d}\right)$.

Proposition 4.3. (1) $\operatorname{deg}_{\mathfrak{p}}(\boldsymbol{a}) \geq \operatorname{expdeg}_{\mathfrak{p}}(\boldsymbol{a})$.
(2) $\operatorname{deg}_{\mathfrak{p}}(\boldsymbol{a})=\operatorname{expdeg}_{\mathfrak{p}}(\boldsymbol{a})$ if and only if $\boldsymbol{a} \in S(\mathfrak{p})$.
4.3. Classification. For a cone $\tau \in \Sigma(\mathfrak{p})$, we define an ideal $\mathfrak{P}(\mathfrak{p}, \tau)=\bigoplus_{\boldsymbol{a} \in \mathbb{Z}^{d}} \mathfrak{P}(\mathfrak{p}, \tau)_{\boldsymbol{a}}$ of G by

$$
\mathfrak{P}(\mathfrak{p}, \tau)_{\boldsymbol{a}}:= \begin{cases}G_{\boldsymbol{a}} \mathfrak{p} & (\boldsymbol{a} \in \tau \cap S(\mathfrak{p})) \\ G_{\boldsymbol{a}} & \text { (otherwise). }\end{cases}
$$

Proposition 4.4. The \mathbb{Z}^{d}-graded ideal $\mathfrak{P}(\mathfrak{p}, \tau)$ is prime.

Theorem 4.5 ([5]). Let \mathfrak{P} be a \mathbb{Z}^{d}-graded prime ideal with $\mathfrak{P}_{\mathbf{0}}=\mathfrak{p}$. Then there exists $\tau \in \Sigma(\mathfrak{p})$ such that $\mathfrak{P}=\mathfrak{P}(\mathfrak{p}, \tau)$.

Proposition 4.6. $\mathfrak{P}(\mathfrak{p}, \tau) \subseteq \mathfrak{P}\left(\mathfrak{p}^{\prime}, \tau^{\prime}\right)$ if and only if $\mathfrak{p} \subseteq \mathfrak{p}^{\prime}$ and $\tau \supseteq \tau^{\prime}$.

Proposition 4.7. $\operatorname{dim} G / \mathfrak{P}(\mathfrak{p}, \tau)=\operatorname{dim} \mathbb{C}[s] / \mathfrak{p}+\operatorname{dim} \tau$.

Example 4 Continued.

$A=(2,3), \quad \mathbb{N} A=\mathbb{N} \backslash\{1\} . \quad$ Let $a \in \mathbb{Z}$.

- $\mathfrak{P}\left((s), \mathbb{R}_{\geq 0}\right)_{a}= \begin{cases}G_{a} s & (a \in \mathbb{N} \backslash\{1\}) \\ G_{a} & \text { (otherwise). }\end{cases}$
- $\mathfrak{P}((s),\{0\})_{a}= \begin{cases}G_{a} s & (a=0) \\ G_{a} & (a \neq 0) .\end{cases}$
- $\mathfrak{P}\left((s), \mathbb{R}_{\leq 0}\right)_{a}= \begin{cases}G_{a} s & (-a \in \mathbb{N} \backslash\{1\}) \\ G_{a} & \text { (otherwise). }\end{cases}$

$$
\mathfrak{P}\left((s), \mathbb{R}_{\geq 0}\right) \subseteq \mathfrak{P}((s),\{0\}) \supseteq \mathfrak{P}\left((s), \mathbb{R}_{\leq 0}\right)
$$

- $\mathfrak{P}((s-\beta), \mathbb{R})_{a}=G_{a}(s-\beta) \quad(\forall a \in \mathbb{Z}) \quad$ for $\beta \neq 0$.
- $\mathfrak{P}((0), \mathbb{R})_{a}=G_{a}(0)=0 \quad(\forall a \in \mathbb{Z})$, i.e., $\mathfrak{P}((0), \mathbb{R})=0$.

5. Cohen-Macaulayness of $\operatorname{Gr} D\left(R_{A}\right)$

Theorem 5.1 (Musson [4]). If $\mathbb{N} A$ is normal, then $\operatorname{Gr} D\left(R_{A}\right)$ is Gorenstein.
Proof. Let Σ be the fan determined by $F_{\sigma}=0(\sigma \in \mathcal{F})$. For a facet $\tau \in \Sigma$, Let A_{τ} be a generating set of the semigroup $\tau \cap \mathbb{Z}^{d}$. Put $A_{\Sigma}:=\cup_{\tau} A_{\tau}$. Then

$$
\operatorname{Gr} D\left(R_{A}\right)=\mathbb{C}[s]\left[\overline{P_{\boldsymbol{a}}} \mid \boldsymbol{a} \in A_{\Sigma}\right]=\mathbb{C}\left[\overline{F_{\sigma}}, \overline{P_{\boldsymbol{a}}} \mid \sigma \in \mathcal{F} ; \boldsymbol{a} \in A_{\Sigma}\right]
$$

Replace $\overline{F_{\sigma}}$ by an indeterminate z_{σ}, and put

$$
\widetilde{G}:=\mathbb{C}\left[z_{\sigma}, \overline{P_{\boldsymbol{a}}} \mid \sigma \in \mathcal{F} ; \boldsymbol{a} \in A_{\Sigma}\right] .
$$

Then \widetilde{G} is a normal affine semigroup algebra, and $\prod_{\sigma \in \mathcal{F}} z_{\sigma}$ represents the unique minimal positive element. (Indeed, in $\mathbb{Z}^{d} \oplus \mathbb{Z}^{\sharp \mathcal{F}}$, the corresponding semigroup has the primitive integral support functions $F_{\sigma}+z_{\sigma}, \quad z_{\sigma} \quad(\sigma \in \mathcal{F}) . \prod_{\sigma \in \mathcal{F}} z_{\sigma}$ corresponds to $(\mathbf{0}, 1, \ldots, 1)$.)

Hence \widetilde{G} is Gorenstein. The natural map

$$
\pi: \widetilde{G} \rightarrow \operatorname{Gr} D\left(R_{A}\right)
$$

defined by $\pi\left(z_{\sigma}\right)=\overline{F_{\sigma}}$ is surjective. Let $\left\{l_{j}\right\}$ be a basis of $\operatorname{Ker}\left(\pi_{\mid\left\langle z_{\sigma}\right\rangle}\right)$. Then $\left\{l_{j}\right\}$ is a regular sequence, and generates $\operatorname{Ker}(\pi)$. Hence $\operatorname{Gr} D\left(R_{A}\right)$ is Gorenstein. If we consider $\operatorname{Gr} D\left(R_{A}\right)$ is $\mathbb{Z}^{d} \oplus \mathbb{Z}$-graded (the last one corresponds to the degree in s), then the a-invariant is ($0,-\sharp \mathcal{F}$).

However, if $\mathbb{N} A$ is not normal, then $\operatorname{Gr} D\left(R_{A}\right)$ is never Cohen-Macaulay:
Proposition 5.2 (Hsiao [3] d=1). If $\mathbb{N} A$ is scored but not normal, then $\operatorname{Gr} D\left(R_{A}\right)$ is not Cohen-Macaulay.
Proof. Let $G:=\operatorname{Gr} D\left(R_{A}\right)$. Since $\mathbb{N} A$ satisfies $\left(S_{2}\right)$, each $G_{\boldsymbol{a}}$ is a free $\mathbb{C}[s]$-module. Hence s_{1}, \ldots, s_{d} is a regular sequence of G. Let $\bar{G}:=G /\left\langle s_{1}, \ldots, s_{d}\right\rangle$. Then $\operatorname{dim} \bar{G}=d$, and G is Cohen-Macaulay if and only if so is \bar{G}. We have

$$
\bar{G}=\bigoplus_{\boldsymbol{a} \in \mathbb{Z}^{d}} \mathbb{C} \overline{P_{\boldsymbol{a}}}
$$

and

$$
\overline{P_{\boldsymbol{a}}} \cdot \overline{P_{\boldsymbol{b}}} \neq 0 \Leftrightarrow\left\{\begin{array}{l}
F_{\sigma}(\boldsymbol{a}) F_{\sigma}(\boldsymbol{b}) \geq 0 \quad(\forall \sigma \in \mathcal{F}) \tag{5.1}\\
\operatorname{deg}_{\sigma}(\boldsymbol{a})-\operatorname{expdeg}_{\sigma}(\boldsymbol{a})>0 \Rightarrow F_{\sigma}(\boldsymbol{b})=0 \quad(\sigma \in \mathcal{F})
\end{array}\right.
$$

by [5, Theorem 3.6]. Let

$$
l:=\max \left\{\operatorname{deg}(\boldsymbol{a})-\operatorname{expdeg}(\boldsymbol{a}) \mid \boldsymbol{a} \in \mathbb{R}_{\geq 0} A \cap \mathbb{Z}^{d}\right\}
$$

$\operatorname{deg}(\boldsymbol{b})-\operatorname{expdeg}(\boldsymbol{b})=l$, and $\boldsymbol{b} \in \mathbb{R}_{\geq 0} A \cap \mathbb{Z}^{d}$. Put

$$
\tau:=\bigcap_{\operatorname{deg}_{\sigma}(b)-\operatorname{expdeg}_{\sigma}(b)>0} \sigma .
$$

If $\boldsymbol{x}=\sum_{\boldsymbol{a} \neq \boldsymbol{0}} c_{\boldsymbol{a}} \overline{P_{\boldsymbol{a}}}$ is not a zero-divisor, then, by (5.1), there exists $\mathbf{0} \neq \boldsymbol{a} \in \tau \cap \mathbb{R}_{\geq 0} A$ such that $c_{\boldsymbol{a}} \neq 0$, and

$$
\begin{equation*}
\boldsymbol{x} \cdot \overline{P_{\boldsymbol{b}}}=\sum_{\mathbf{0} \neq \boldsymbol{a} \in \mathbb{R} \geq 0 A \cap \tau} c_{\boldsymbol{a}} \overline{P_{\boldsymbol{a}+\boldsymbol{b}}} \tag{5.2}
\end{equation*}
$$

Let \boldsymbol{b} be primitive in the sense that there exists no $\boldsymbol{b}^{\prime} \in \mathbb{R}_{\geq_{0}} A \cap \mathbb{Z}^{d}$ and $\mathbf{0} \neq \boldsymbol{a} \in \mathbb{R}_{\geq_{0}} A \cap \tau$ such that $\boldsymbol{b}=\boldsymbol{b}^{\prime}+\boldsymbol{a}$ and $\operatorname{deg}\left(\boldsymbol{b}^{\prime}\right)-\operatorname{expdeg}\left(\boldsymbol{b}^{\prime}\right)=l$. Let $t:=\operatorname{dim} \tau$. Suppose that $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{t}$ forms a regular sequence of \bar{G}. Then, by the primitiveness and the equations (5.1), (5.2), we have $\overline{P_{\boldsymbol{b}}} \neq 0$ in $\bar{G} /\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{t}\right)$. Since $t=\operatorname{dim} \tau$, for any $\overline{\boldsymbol{x}} \in \bar{G} /\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{t}\right)$, we have $\boldsymbol{x}^{m} \cdot \overline{P_{\boldsymbol{b}}} \in\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{t}\right)$ for some m by (5.2). Hence the length of a regular sequence of \bar{G} cannot exceed $t ; \operatorname{depth}(\bar{G}) \leq t \leq d-1$.

Example 4 Continued.

$A=(2,3), \quad \mathbb{N} A=\mathbb{N} \backslash\{1\}$.
Then $G=\operatorname{Gr} D\left(R_{A}\right)$ is again an affine semigroup algebra:

$$
G=\mathbb{C}\left[t^{3}, t^{2}, t s, s, t^{-1} s^{2}, t^{-2} s^{2}, t^{-3} s^{3}\right] .
$$

Clearly, this semigroup does not satisfy S_{2}. Hence G is not Cohen-Macaulay.

Figure 4. The semigroup for G

References

[1] J. N. Bernstein, I. M. Gel'fand, and S. I. Gel'fand: Differential operators on the cubic cone, Russian Math. Surveys 27 (1972), 169-174.
[2] A. Grothendieck and J. Dieudonné, Élements de Géométrie Algébrique IV., Publ. Math. I. H. E. S., 32, 1967.
[3] J.-C. Hsiao, D-module structure of local cohomology modules of toric algebras. Trans. Amer. Math. Soc. 364 (2012), 2461-2478.
[4] I. M. Musson, Rings of differential operators on invariants of tori. Trans. Amer. Math. Soc. 303 (1987), 805-827.
[5] M. Saito, The spectrum of the graded ring of differential operators of a Scored Semigroup Algebra, Comm. in Algebra 38 (2010), 829-847.
[6] M. Saito and K. Takahashi, Noetherian properties of rings of differential operators of affine semigroup algebras, Osaka J. Math. 46 (2009), 1-28.
[7] M. Saito and W. N. Traves, Differential algebras on semigroup algebras. AMS Contemporary Math. 286 (2001), 207-226.
[8] M. Saito and W. N. Traves, Finite generations of rings of differential operators of semigroup algebras. J. of Algebra 278 (2004), 76-103.

Department of Mathematics, Graduate School of Science, Hokkaido University, SapPORO, 060-0810, JAPAN

E-mail address: saito@math.sci.hokudai.ac.jp

