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Abstract. We will study finite Abelian cover of normal graded singularities in terms

of Pinkham-Demazure’s construction. We will define the new subgroup Cl0(R) of the

torsion part of the divisor class group Cl(R) of normal graded ring. For a finite subgroup

G of Cl(R), we show G/Cl0(R) ∩ G is cyclic. Taking the Kummer cover of Proj(R) by

Cl0(R) ∩ G, the standard generator of G/Cl0(R) ∩ G gives the Demazure divisor of an

Abelian cover of R by G.

Introduction

The index one cover trick is one of most important method in the theory of minimal

models and other algebraic geometric studies of varieties. In particular, in the case that

the canonical module defines a torsion in the divisor class group of local ring, precise

study of cyclic cover of singularity in terms of divisor class group is interesting problem.

In 1990 and subsequent 10 years, for the graded singularities, the present author and

Prof. Kei-ichi Watanabe made some explicit formula of graded cyclic cover by means of

Pinkham-Demazure’s construction. It began at the talk in the 9th symposium of these

series of Japanese Commutative Ring Theory [3].

In recent years, there are many interests in abelian covers of normal two-dimensional

singularities. Inspired by these works, here I will discuss the Ablelian covers of normal

graded rings in terms of Pinkham-Demazure’s construction. Given a finite subgroup G

of divisor class group of normal graded ring R, we can construct a graded G-cover of R

(see §1). Author’s interest is a quick method to represent this new ring in terms of given

datum as in the case of cyclic cover. The results in the below will be regarded as natural

generalizations of studies of cyclic covers of normal graded rings.

1This paper is an announcement of our result and the detailed version will be submitted to somewhere.
2E-mail: tomari＠math.chs.nihon-u.ac.jp
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Let R be a normal graded ring written as R =
⊕
n≥0

Rn with the zero-th part R0 being

algebraically closed field. We always assume that R0 is an algebraically closed, and will

study the singularity at the homogeneous maximal ideal R+ =
⊕
n>0

Rn.

By Pinkham-Demazure, there is an ample Q-Cartier rational divisor D on Proj(R)

= X, where the relation

R =
⊕
n≥0

H0(X,OX(nD))T n

holds [1]. Here T is a homogeneous element of the quotient field of R with degree one, and

we regard T as an indeterminate. D is determined up to the choice of T . We will represent

this expression as R = R(X,D) , and call the Pinkham-Demazure representation of R.

Now, to recall the representation theory of the divisor class group of R by Prof. Watan-

abe, we introduce the following:

Let Irr1(X) be the set of irreducible closed subvarieties of X with codimension one. We

shall write D as;

D =
∑

V ∈Irr1(X)

(pV /qV )V, (pV , qV ∈ Z, (pV , qV ) = 1, qV ≥ 1)

Then, by Kei-ichi Watanabe [4], we call represent the divisor class group Cl(R) as follows;

Cl(R) ∼= Div(X, D)/P (X) ⊕ ZD

Here P (X) denotes the set of principal diviosr of X, Div(X, D) (resp. P (X) ⊕ ZD)

denotes the special module corresponds to the homogeneous divisor group of R (resp.

homogeneous principal divisors of R) . Recall that Div(X, D) is introduced as

Div(X, D) =
{
E ∈ Div(X,Q)

∣∣∣∣ E =
∑

V∈Irr1(X)

rVV with rVqV ∈ Z
}
.

So the torsion part of Cl(R) is represented by the subset of Div(X, D) as{
E ∈ Div(X, D)

∣∣∣∣ ∃r ∈ N and ∃a′ ∈ Z such that rE − a′D ∈ P(X)
}
.

Now let us assume that E ∈ Div(X, D) defines a torsion element cl(E) ∈ Cl(R) of order

r. There exist an integer a′ and a rational function φ ∈ k(X) such that the relation

rE − a′D = div(φ) holds. In [3], to represent the cyclic cover of R(X,D) by cl(E), we

introduced the following decomposition of E.
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Definition. The central part and The polarization part of E. [3]

Let GCD(r, a′) = s, and integers α, β satisfy the equality αa′ + βr = s. Set

E0 =
r

s
E − a′

s
D, and E1 = αE + βD

These are members of Div(X, D). Further E0 determined the cyclic branched cover ρ :

Y → X and E1 is an ample Q-Cartier divisor on X and so is the pullback ρ∗(E1) on Y .

Our fundamental result of cyclic cover [3] is the representation theorem

Theorem (Theorem 1.3 [3] ) The Pinkham-Demazure construction for the cyclic cover

of R(X, D) by cl(E) is isomorphic to R(Y, ρ∗(E1)).

Here we will call E0 the central part of E and E1 the polarization part of E.

In this paper, we will introduce the decomposition method of subgroup of the torsion

part of Cl(R) which is similar to the above decomposition of E.

We shall introduce more small subset Div0(X, D) as in the following way

Div0(X, D) =
{
E ∈ Div(X, D)

∣∣∣∣ ∃r ∈ N such that rE ∈ P(X)
}

and define

Cl0(R) = Div0(X, D)/P (X).

There are natural inclusion relations

the torsion part of Cl(X) ⊂ Cl0(R) ⊂ the torsion part of Cl(R)

In other word, the subgroup Cl0(R) consists in the elements of the form E0 for Div(X,D)

which give torsion of Cl(R) ((1) of Lemma 1.2). Using Cl0(R) we can state the results.

Theorem 1. Let G ⊂ Cl(R) be a finite subgroup. Then the quotient G/(Cl0(R)∩G) is

a cyclic group.

Now we can choose a generator cl(DG) of G/(Cl0(R) ∩ G), where DG ∈ Div(X,D) a

representative. We define the polarization part (DG)1 of DG. In the case cl(DG) = 0

in G/(Cl0(R) ∩ G), that is when the relation G ⊂ Cl0(R) or Cl0(R) ∩ G = G , we can

choose the polarization part as (DG)1 = D. Let G0 ⊂ G be the subgroup defined as

G0 = Cl0(R) ∩ G.
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Theorem 2. Let G ⊂ Cl(R) be a finite subgroup and G0 be as above. Using G0 we

can construct a Kummer covering YG of X as ρ : YG = SpecX(
⊕

E∈G0 OX(E)) → X

and consider the pullback ρ∗((DG)1) = D̃ ∈ Div(YG) ⊗ Q. Then ρ∗((DG)1) is an ample

Q-Cartier divisor on YG. Further we can observe that R(YG, D̃) is a G-graded cover of

R = R(X, D).

Theorem 3. If G0 = 0, G is a cyclic group (by Theorem 1) and YG = X in the notation

of Theorem 2. In the construction of Theorem 2, we have the relation R(YG, D̃)(|G|) = R.

That is R is the |G|-th Veronease subgroup of R(YG, D̃).

Conversely, if there exist a natural number r with R(YG, D̃)(r) = R, then the relation

G0 = 0 holds.

Note 4. When G is a cyclic group, our theorems in the above are concerning the cyclic

covers. These are nothing but the theorems proven in [3]. For our theorem 3, the as-

sumption G0 = 0 corresponds the the condition gcd(r, a′) = 1 in the notation of §1 of

[3].

§1. A construction of graded G-cover of R(X,D), and proof of Thereoms.

The purpose of this section is to collect the preliminaries of class group of divisor class

groups, and make precise the graded structure of our graded covers. After pure careful

setting of the structure, theorems in Introduction follow easily.

Let R be a normal graded ring represented as R = R(X,D) =
⊕

n≥0 H0(X,OX(nD))T n

by the Pinkham-Demazure construction. Here T is the homogeneous element of Q(R)

with deg(T ) = 1. Let G be a finite subgroup of the divisor class goup Cl(R). Then by

K.-i. Watanabe [4] , there are Q-divisors E1, E2, · · · , Em ∈ Div(X, D) which generate G

as a direct sum as

G =< cl(E1) > ⊕ < cl(E2) > ⊕ · · ·⊕ < cl(Em) > in Cl(R).

Each cl(Ei) ∈ Cl(R) is a torsion element. We set ri the torsion order of cl(Ei). There

are the integer a′
i and a rational function φi ∈ k(X) with the relation riEi − a′

iD =

div(φi) in Div(X) and set si = gcd(ri, a
′
i) for i = 1, 2, · · · ,m.
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We introduce graded R-algebra as follows:

A(G) = ⊕(k1,k2,···,km)∈ZmR(k1E1 + k2E2 + · · · + kmEm)T k1
1 T k2

2 · · ·T km
m

⊂ Q(R)[T1, T
−1
1 , T2, T

−1
2 , · · · , Tm, T−1

m ]

Here k1E1 + k2E2 + · · · + kmEm ∈ Div(X,D) and

R(k1E1 + k2E2 + · · · + kmEm) = ⊕k∈ZH0(OX(k1E1 + k2E2 + · · · + kmEm + kD))T k

as standard notation. Let us set the degree of Ti as deg(Ti) = ri

a′
i
∈ Q. We also have

deg(T ) = 1 by the assumption. Then T ri − φiT
a′

i is a homogeneous element of degree a′
i.

Now we define our graded G-cover R(G) of R by

R(G) = A(G)/(T r1 − φiT
a′
1 , T r2 − φiT

a′
2 , · · · , T rm − φiT

a′
m)

We can easily see that R(G) is a graded finite R-module.

Lemma 1.1 R(G) is a normal domain.

In fact, R(G) is obtained by the following successive procedure. One of the basic result

for the proceeding arguments is the injectivity of the divisor class groups of cyclic cover

modulo trivial kernels. For the precise informations, I refere our previous paper [2] ( in

particular Corollary 2.6 [2]).

Note that, in each step, R[[i]] is a normal graded domain by [2,3], and so is R[[m]] =

R(G):

Let R[[i]] be as follows; R[[0]] = R, and R[[1]] the cyclic cover of R by cl(E1) ∈ Cl(R)

with the data r1E1 − a′
1D = div(φ1) in Div(X). Then we have a natural inclusion

map of divisor class groups Cl(R)/Zcl(E1) → Cl(R[[1]]) and the corresponding elements

cl(Ei) ∈ Cl(R[[1]]) has the same torsion order as in Cl(R) for i = 2, · · · ,m. The relations

riEi − a′
iD = div(φi) in Div(X) induce the corresponding identification there. So we can

continue these process as R[[i]] is the cyclic cover of R[[i−1]] by cl(Ei) ∈ Cl(R[[i−1]]) with

the data corresponding riEi−a′
iD = div(φi) in Div(X). We conclude that R[[m]] = R(G).

Note that the grading of R[[1]] by the method is given over Z or over non-negative

integers. However in our process on R[[i]] in the above, the grading are given in the sets

contained in Q by the rule on the degree of Ti. Each homogeneous element in

H0(OX(k1E1 + k2E2 + · · · + kmEm + kD))T kT k1
1 T k2

2 · · ·T km
m
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has the degree

k + k1
a′

1

r1

+ k2
a′

2

r2

+ · · · + km
a′

m

rm

.

So the grading is given over

I =

{
k + k1

a′
1

r1

+ k2
a′

2

r2

+ · · · + km
a′

m

rm

| k, k1, · · · , km ∈ Z

}
⊂ Q

For the group Cl0(R), we can show the following.

Lemma 1.2 Let R, Cl(R) and Cl0(R) be as in Introduction.

(1) If E ∈ Div(X,D) defines a torsion element of Cl(R), the following relation holds.

Zcl(E) ∩ Cl0(R) = Zcl(E0) in Cl(R)

(2) If E1, E2 ∈ Div(X, D) define torsion elements of Cl(R) and Zcl(E1)∩Zcl(E2) = {0}
in Cl(R), then

Zcl(E0
1) ∩ Zcl(E0

2) = {0} in Cl0(R) = Div0(X,D)/P (X).

(3) Using the decomposition G =< cl(E1) > ⊕ < cl(E2) > ⊕ · · ·⊕ < cl(Em) >

in Cl(R)., we have the relation

G ∩ Cl0(R) =< cl(E0
1) > ⊕ < cl(E0

2) > ⊕ · · ·⊕ < cl(E0
m) > in Cl0(R).

(4) By (3), we have

G/(G ∩ Cl0(R)) ∼=
< cl(E1) >

< cl(E0
1) >

⊕ < cl(E2) >

< cl(E0
2) >

⊕ · · · ⊕ < cl(Em) >

< cl(E0
m) >

(5) For each Ei, we have the following relation

< cl(Ei) > / < cl(E0
i ) >= (< cl(E1

i ) > + < cl(E0
i >)/ < cl(E0

i > in Cl(R)/Cl0(R)

Inparticular the order of this group is
ri

si

.

(6)
ri

si

and
rj

sj

are relatively prime for i 6= j. Therefore the group of (4) is a cyclic group.

Note on a proof of (6) of Lemma 1.2
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By the definition,

ri

si

E1
i =

ri

si

αiEi +
ri

si

βiD =
ri

si

αiEi +
si − αia

′
i

si

D = αi

(
ri

si

Ei −
a′

i

si

D

)
+ D

Let d = GCD( ri

si
, rj

sj
). The divisor

1

d

ri

si

E1
i −

1

d

rj

sj

E1
j

is an integral combination of E1
i and E1

j . Hence this is an element of Div(X, D). Now we

have

d

(
1

d

ri

si

E1
i −

1

d

rj

sj

E1
j

)
= αi

(
ri

si

Ei −
a′

i

si

D

)
− αj

(
rj

sj

Ej −
a′

j

sj

D

)

This belongs to Div0(X, D). By definition, 1
d

ri

si
E1

i − 1
d

rj

sj
E1

j also belong to Div0(X, D).

Hence cl(1
d

ri

si
E1

i ) = cl(1
d

rj

sj
E1

j ) is a non-zero element of Cl(R)/Cl0(R) if d > 1. This is

impossible. So it have to d = 1.

Theorem 1 is nothing but the assertions of (6) of Lemma 1.2.

Thereom 2 is a straightforward calculation of Proj using Lemma1.1 and Lemma1.2. I

omit the proof here. But I want to give remark on the choice of the Demazure divisor in

the following special case. If G is contained in Cl0(R), we have the conditions ri

si
= 1 for

i = 1, 2, · · · ,m. Then ri = si(= GCD(ri, a
′
i)) and ri divides a′

i for i = 1, 2, · · · ,m. Hence

the grading group I is exactly Z in the usual grading. The Demazure divisor is defined

by the homogeneous element of the degree 1. We can also choose the element as T . So

our divisor is determined by D.

§2 Some example and remarks.

Our results are formula for computation of graded rings. Most important things should

be several interesting examples. But I am sorry for I only talk about very little here.

Example 2.1 Rational double points are given by graded rings. The divisor class groups

of these classes are ,in many case, cyclic groups. Here we calculate an abelian cover of

D2m case. Then the class group is not cyclic.

Let R = R(P 1, D) be the singularity with D = 1
2
P1 + 1

2
P2 − 2m−3

2m−2
P3 where P1, P2, P3 ∈
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P 1. Let E1 = 1
2
P1 and E2 = 1

2
P2. We have

Div(X, D) = ZE1 + ZE2 + ZD + Div(P 1)

and Cl(R) ∼= Zcl(E1) ⊕ Zcl(E2)

Let us take G = Cl(R), and consider G-cover of R. We can see easily that

Cl0(R) ∼= Z (E1 − (m − 1)D) ⊕ Z (E2 − (m − 1)D) .

So this is the case that G ⊂ Cl0(R).

We assume that m is even. (The arguments for case of odd m are similar. So I will

omit it.) We have

E1 − (m − 1)D ∼ −1

2
P2 +

1

2
P3, E2 − (m − 1)D ∼ −1

2
P1 +

1

2
P3

Let π1 : X1 → X = P 1 be the cyclic cover defined by E2 − (m − 1)D, and π2 : Y → X1

the cyclic cover of X1 by the pullback π∗
1(E1 − (m − 1)D). The composition of pi1 and

p2 defines ρ : Y → X = P 1 and is the Kummer cover of P 1 = X defined by Cl0(R). One

can easily see that Y ∼= P 1 and ρ∗(D) = 2P0 − m−2
m−1

P ∗
3,1 − m−2

m−1
P ∗

3,2. Hence the type of the

singularity of R(Y, ρ∗(D)) is the rational doube point of A2m−3 type.

On universal Abelian Cover of singularities. In the example above , the singular-

ity type is known from the different point of view as the universal abelian covering of

singularity.

My first motivation to study the present theme was to understand the phenomenon

funded by W. Neumann [6] in the following theorem.

Theorem [6]. Let (V, p) be a quasi homogeneous complex surface singularity. Suppose

that V/C∗ is a rational curve. Then the universal abelian cover of (V, p) is a complete

intersection of Brieskorn polynomial singularities.

Universal abelian covering is the normal complex filling of the homology cover of the

link. This is determined canonically and is unique. Here the assumption implies the the

finiteness of the divisor class group of the graded ring. By Okuma’s study [7], this is also

obtaind by covering construction from the resolution manifold by using full divisor class

group. Their arguments are algebraic geometric but not purely algebraic (for me). So

I hoped to understand their studies in more ring theoretic situation and by more ring

theoretic arguments. But I could not yet.
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