
How much is known for the conjecture:

“All complete intersections have the strong Lefschetz

property”?

Junzo Watanabe, Tokai University

It seems natural to conjecture that all (Artinian) complete intersections have the strong
Lefschetz property over a field of characteristic zero. I report some basic theorems on
Lefschetz properties which suggest that this conjecture should indeed be true. Some new
observations are contained. 1

1 Definitions

Definition 1 Let A =
⊕c

i=0 Ai be an Artinian K-algebra over a field A0 = K of charac-
teristic zero. We say that A has the strong Lefschetz property (SLP) if there exists a linear
form l ∈ A1 which satisfies

×lk : Ai → Ai+k has full rank for all i = 0, 1, . . . , c− k.

In such a case we sometimes say that the pair (A, l) has the strong Lefschetz property. We
say that l is a (strong) Lefschetz element.

Definition 2 Let A =
⊕

Ai be a graded K algebra, where K = A0. The Hilbert function
of A is the map

i 7→ hi := dimK Ai.

If A is Artinian then hi = 0 for all i � 0. Hence we may write A =
⊕c

i=0 Ai. In this
case the Hilbert function can be denoted as a vector (h0, h1, . . . , hc). We say that a Hilbert

function (h0, h1, . . . , hc) is unimodal if there exists j such that

h0 ≤ h1 ≤ · · · ≤ hj ≥ hj+1 ≥ · · · ≥ hc.

We say that a Hilbert function is symmetric if

hj = hc−j , j = 0, 1, 2, . . . , [c/2].

If an Artinian ring has a symmetric Hilbert function then the strong Lefschetz property
can be redefined as follows:

Definition and Proposition 3 (SLP in the narrow sense) Let A =
⊕c

i=0 Ai be
an Artinian K-algebra with A0 = K. Suppose that A has a symmetric Hilbert function.
Then A has the SLP if there exists a linear form l ∈ A1 such that

×l : Ai → Ac−i is bijective for all i = 0, 1, . . . , [c/2].

1Detailed proof will appear elsewhere.
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Thus we have

SLP in the narrow sense ⇔ SLP + symmetric Hilbert function.

In all cases in this article we use the term “strong Lefschetz property” in the narrow sense
since we apply it mostly to Gorenstein algebras.

2 The SLP and tensor products

The SLP in the narrow sense is characterized in term of the Lie algebra sl2. Using this
characterization we can prove that the SLP is closed under taking tensor products. Let
{L,D,H} be the sl2-triple; so we have the relations

[L,D] = H, [H,L] = 2L, [H,D] = −2D.

Theorem 4 Let A =
⊕c

i=0 Ai be a graded K-algebra with a symmetric Hilbert function.
(We assume that the characteristic of K is zero.) Then the following conditions are equiv-
alent.

1. (A, l) has the SLP.

2. ∃Φ : sl2 → End(A), a representation of the Lie algebra, such that Φ(L) = ×l and Ai

are the eigenspaces of H ∈ sl2 for the eigenvalues (2i− c), for i = 0, 1, 2, . . ..

This characterization has many important consequences. We will always assume that K
has characteristic zero. The grading, however, is not necessarily standard. It is important
to consider algebras with non-standard grading to have a better understanding of algebras
with standard grading. Next is a direct consequence of Theorem 4.

Theorem 5 The SLP is closed under taking tensor products. Namely, if (A, l) and (B,m)
have the SLP, then the algebra (A⊗K B, l ⊗ 1 + 1⊗m) also has the SLP.

Corollary 6 The monomial complete intersection

K[x1, x2, . . . , xn]/(x
a1
1 , xa2

2 , . . . , xan
n )

has the SLP with x1 + x2 + · · ·+ xn as a Lefschetz element.

Remark 7 Compare the following three assertions:

(1) K[x1, x2, . . . , xn]/(x
a1
1 , xa2

2 , . . . , xan
n ) has the SLP.

(2) K[x1, x2, . . . , xn]/(x
2
1, x

2
2, . . . , x

2
n) has the SLP.

(3) K[x1, x2]/(x
a1
1 , xa2

2 ) has the SLP.

Obviously we have the chain of implication: (Theorem 4) ⇒ (Theorem 5) ⇒ (1) ⇒ (2), (3).
It seems noteworthy that (2) can be used to prove (3) and (3) can be used to prove Theorem 5
or even Theorem 4. For details see [7]. Below we indicate the implications (2) ⇒ (3) and
(2) ⇒ (1) via Ikeda’s lemma.

Lemma 8 (Ikeda) Suppose that (A, l) has the SLP. Then (A[z]/(z2), l + z) has the SLP.
Hence K[x1, x2, . . . , xn]/(x

2
1, x

2
2, . . . , x

2
n) has the SLP with x1 + · · ·+ xn as a Lefschetz ele-

ment.
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Using this lemma we want to show that K[x, y]/(xa+1, yb+1) has the SLP. Consider the
algebra homomorphism

φ : K[X,Y ] → A,

where
A := K[x1, x2, . . . , xn]/(x

2
1, x

2
2, . . . , x

2
n),

X 7→ x1 + x2 + · · ·+ xa,

Y 7→ xa+1 + xa+2 + · · ·+ xa+b,

n = a+ b.

One sees immediately
Kerφ = (Xa+1, Y b+1)

B := Imφ = K[X,Y ]/(Xa+1, Y b+1) ⊂ A

A and B has the same socle degree.

Since B is a subring of A, we have the injections piecewise:

A0
×l→ A1

×l→ A2
×l→ A3

×l→ · · · ×l→ Ac−1
×l→ Ac−1

×l→ Ac

↪→ ↪→ ↪→ ↪→ · · · ↪→ ↪→ ↪→

B0
×l→ B1

×l→ B2
×l→ B3

×l→ · · · ×l→ Bc−2
×l→ Bc−1

×l→ Bc

So bijectivity of Ai
×lc−2i

→ Ac−i implies that ×lc−2i : Bi → Bc−i is injective. Since dimK Bi =
dimK Bc−i, it is bijective.

Note that B := Imφ is the ring of invariants of A by the Young subgroup Sa ×Sb ⊂ Sn.
Also note that the ring of invariants of A by the Young subgroup

Sa1 × Sa2 × · · · × Sar ⊂ Sn

is isomorphic to
K[X1, X2, . . . , Xr]/(X

a1+1
1 , Xa2+1

2 , . . . , Xar+1
r ).

The same reasoning can be used to prove that this ring has the SLP. Thus the statement of
(3) in Remark 7 is the essential part of Theorem 5 (or even Theorem 4).

The above argument can be extended as follows:

Theorem 9 Suppose that A =
⊕c

i=0 Ai has the SLP and B =
⊕c

i=0 Bi is a graded subring
of A with a symmetric Hilbert function. If Bc = Ac and there exists an element l ∈ B1

which is an SL element of A, then (B, l) has the SLP.

It seems to be an interesting problem to ask under what conditions complete intersections
can appear as subrings of algebras with the SLP. In this direction we have

Theorem 10 (Goto) Set

A = K[x1, x2, . . . , xn]/(f1, f2, . . . , fn).

(In this article we assume A is an Artinian complete intersection.) Suppose that a finite
group G acts on R by linear transformation of the variables. If G is generated by pseudo-
reflections then the ring RG of invariants is a complete intersection.

Suppose we are trying to prove that all complete intersections have the SLP. Then
“SLP” can be replaced by a weaker condition called “WLP (weak Lefschetz property).” See
Theorem 12 below.
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Definition 11 (weak Lefschetz property (WLP)) Let A =
⊕c

i=0 Ai be an Artinian
algebra with A0 = K. We say that A has the weak Lefschetz property if there exists a linear
form l ∈ A1 such that

×l : Ai → Ai+1 has full rank for all i = 0, 1, . . . , c− 1.

We call l a (weak) Lefschetz element. We say that the pair (A, l) has the weak Lefschetz
property.

Let K be a field of characteristic zero. Let C be the family of all graded complete
intersections over K. We conjecture that all members of C have the SLP. It is interesting to
note the following

Theorem 12 TFAE

1. All members of C have the SLP.

2. All members of C have the WLP.

Concerning the WLP we know the following.

Theorem 13 (J. Migliore – U. Nagel) Let A =
⊕c

i=0 Ai be an Artinian K-algebra with
a symmetric Hilbert function. Then A has the WLP if{

×l : A(c−1)/2 → A(c+1)/2 is bijective for ∃l, (for odd c),
×l2 : A(c/2)−1 → A(c/2)+1is bijective for ∃l, (for even c).

3 Flat Extension Theorem

The following is a generalization of Theorem 5.

Theorem 14 (Flat Extension Theorem) Suppose that B → A is a finite free extension
of Artinian rings, where B1 ⊂ A1. Let C be the fiber: C = A/(B+)A. If B and C have the
SLP, then A has the SLP. (Problem: Prove the converse.)

Corollary 15 A simple extension of B with SLP has the SLP. Namely, if B has the SLP
then the algebra A := B[z]/(zk + b1z

k−1 + b2z
k−2 + · · ·+ bk) has the SLP, where bi ∈ Bi.

Proof. A is flat over B and the fiber is isomorphic to K[z]/(zk). So the flat extension
theorem applies.

Corollary 16 Suppose A = K[x1, x2, . . . , xn]/(f1, . . . , fn) is a complete intersection, and
suppose that a power of a linear form l can replace one of f1, . . . , fn as a generating set for
the ideal. Assume that A/(l) has the SLP. Then so does A.

Proof. Suppose that lk can replace a member in the minimal generating set for the ideal.
Then A is flat over K[Z]/(Zk), where Z 7→ l, and the fiber is A/lA. Thus the flat extension
theorem applies.

Here is an application of the flat extension theorem.

Example 17 Set R = K[x1, x2, . . . , xn]. Let e1, e2, . . . , en be the elementary symmetric
functions:

e1 = x1 + x2 + · · ·+ xn

e2 = x1x2 + x1x3 + · · ·+ xn−1xn

...

en = x1x2 · · ·xn

Then R/I, where I = (e1, e2, . . . , en), has the SLP.
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Proof. The generator en can be replaced by xn
n as a member in a minimal set of generators

for I. On the other hand the algebra R/(I + xnR) has embedding dimension n− 1 and the
ideal (I +xnR)/xnR is generated by the elementary symmetric functions in n− 1 variables.
Thus the assertion is proved by Corollary 16.

4 A generalization of a theorem of Wiebe

A. Wiebe proved the following

Theorem 18 Let A = R/I be a graded Artinian K-algebra as a quotient of the polynomial
ring R. Let In(I) be the ideal generated by the initial monomials of I with respect to the
graded reverse lex order. Then if R/In(I) has the SLP, then so does A.

This can be generalized as follows:

Theorem 19 Let A =
⊕c

i=0 Ai be an Artinian graded algebra. For a linear element z ∈ A1,
we set

Grz(A) := A/(z)⊕ (z)/(z2)⊕ (z2)/(z3)⊕ · · · ⊕ (zr)/(zr+1),

with r such that zr 6= 0, zr+1 = 0. If there exists a linear form z such that Grz(A) has the
SLP, then so does A.

Proof. Let l ∈ A1 and compare the two linear maps obtained by the multiplication

L : A −→ A

and
L′ : Grz(A) −→ Grz(A),

where L is defined by L(x) = l × x for x ∈ A and L′ by

L′(x) = (l mod z + z mod z2)× x,

for x ∈ Grz(A). By the definition of multiplication in Grz(A), this means that

L′(x mod zk+1) = (l mod z + z mod z2)× x (1)

= (lx mod zk+1) + (zx mod zk+2) ∈ Grz(A) (2)

for x ∈ (zk) \ (zk+1). It is not difficult to see that rank L ≥ rank L′. This means that A has
at least the weak Lefschetz property. Let x0 be a new variable. Then to prove that A has
the SLP it suffices to prove that A[x0]/(x

α
0 ) has the WLP for all positive integers α > 0.

Since Grz(B) ∼= Grz(A)[x0]/(x
α
0 ), the SLP of A follows from the WLP of B for all α > 0 by

the same argument. (See [5].)

5 A sufficient condition for Grz(A) to have SLP

Let A be a graded Artinian (Gorenstein) algebra over K and let z ∈ A be a linear element.
Consider the exact sequence

0 → A/(0 : z)
×z→ A → A/(z) → 0.

It is sometimes the case that both A/(0 : z) and A/(z) are Gorenstein algebras. Even in
this situation it is not easy to deduce the SLP of A from the assumption that both A/(0 : z)
and A/(z) have the SLP. It can be proved, however, that if z is an SL element for A/(0 : z),
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then A has the SLP. In fact this is a sufficient condition for Grz(A) to have the SLP. Below
we indicate an outline of proof.

We consider the regular representation of A:

× : A → End(A),

a 7→ (x 7→ ax).

If we fix a K-basis for A, elements of End(A) are matrices of size dimK A. We will be
thinking that ×f is a matrix (even if we do not specify a basis). Notice that ×f has only
one eigenvalue for any element f ∈ A. If f is a non-unit, then it is nilpotent and all
eigenvalues of ×f are zero. The Jordan block decomposition of z ∈ A1 can be denoted by
their sizes of Jordan blocks. In other words this is denoted by a partition of the positive
integer dimK A or a Young diagram of that size. We use the terms “Young diagram of size
N” and “partition of the integer N” interchangeably. As is customary they are regarded as
decreasing sequence of integers:

n1 ≥ n2 ≥ · · · ≥ nr,
∑

ni = dimK A. (3)

Let
f1 > f2 > · · · > fs > 0

be the finest subsequence of the descending chain of the integers

n1 ≥ n2 ≥ · · · .

Then we can describe the Young diagram

n1 ≥ n2 ≥ · · · ≥ nr

as
f1, . . . , f1︸ ︷︷ ︸

m1

, f2, . . . , f2︸ ︷︷ ︸
m2

, . . . , fs, . . . , fs︸ ︷︷ ︸
ms

.

With these integers f1, . . . , fs we put

Ui :=
0 : zfi + (z)

0 : zfi−1 + (z)
, i = 1, . . . , s.

and

Wi :=
(zfi−1) ∩ (0 : z)

(zfi) ∩ (0 : z)
, i = 1, . . . , s.

For example if we have the descending sequence of integers (6 6 4 4 4 2 2 2), this is denoted

6, . . . , 6︸ ︷︷ ︸
2

, 4, . . . , 4︸ ︷︷ ︸
3

, 2, . . . , 2︸ ︷︷ ︸
3

.

So s = 3 and f1 = 6, f2 = 4, f3 = 2. The Young diagram for it is:
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There are 6× 2 + 4× 3 + 2× 3 = 42 boxes. This describes a Jordan decomposition of a
nilpotent matrix J = (×z) ∈ EndK(A), A = K42. If we identify the Young diagram with a
Jordan basis for J , we have the following correspondence.

Young diagram ↔ Jordan basis
a box ↔ basis element

a box b′ is next to and on the right of b ↔ J sends b to b′

the box at end of a row ↔ b ∈ ker J
the boxes at the end of rows ↔ ker J

a row ↔ a Jordan block
the first column ↔ A/J(A)
the ith column ↔ J i−1(A)/J i(A)

U1 consists of the 1st and 2nd boxes of the first column, U2 consists of the 3rd, 4th and
5th boxes of the first column and U3 the 6th and 7th of the first column. Similarly W1

consists of the two boxes at the end of the first and second rows. W2 are the rightmost
boxes of the 3rd, 4th and 5th rows and W3 the rightmost boxes of the last two rows.

For z ∈ A1, the sequence of ideals

A = (z0) ⊃ (z) ⊃ (z2) ⊃ · · · ⊃ (zN−1) ⊃ (zN ) = 0,

induces a filtration of 0 : z by restriction:

(0 : z) ∩ (z0) ⊃ (0 : z) ∩ (z) ⊃ (0 : z) ∩ (z2) ⊃ · · · ⊃ (0 : z) ∩ (zN−1) ⊃ (zN ) = 0.

The non-zero terms of the successive quotients (0:z)∩(zi)
(0:z)∩(zi+1) are the modules

W1,W2, . . . ,Ws.

Likewise the sequence of ideals

A = 0 : (zN ) ⊃ 0 : zN−1 ⊃ 0 : zN−2 ⊃ · · · ⊃ 0 : z ⊃ 0

induces a co-filtration on the algebra A/(z). Namely a sequence of surjections:

A/(z) � A/((z) + (0 : z)) � A/((z) + (0 : z2)) � · · · � A/((z) + (0 : zN )) = 0.

Among the surjections �, those with a non-trivial cokernel give us the modules

Ui :=
0 : zfi + (z)

0 : zfi−1 + (z)
, i = 1, . . . , s.

Recall that we have chosen {fi} in the decreasing order. So one sees that Ui and Wi are
isomorphic as graded A/(z)-modules with the shift of degree by fi − 1. So

Ui[−fi + 1] ∼= Wi, Ui 3 b 7→ bzfi−1 ∈ Wi.

Observe the following

Proposition 20 With the same notation as above, suppose that (A, l) is a pair of a graded
Artinian ring and a linear element and

f1, · · · , f1︸ ︷︷ ︸
m1

, f2, · · · , f2︸ ︷︷ ︸
m2

, · · · , fs, · · · , fs︸ ︷︷ ︸
ms

.

is the Jordan type of ×l ∈ EndK(A).
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1. Us coincides with Ws if and only if fs = 1. (Recall that Ui and Wi are isomorphic by
the map b 7→ bzfi−1.) In this case Us = ((0 : l) + (l))/(l) = (0 : l)/((0 : l) ∩ (l)) = Ws.

2. fs > 1 if and only if (0 : l) ⊂ (l).

3. The Jordan type of ×l ∈ EndK(A/(0 : l)) is given by

f1 − 1, · · · , f1 − 1︸ ︷︷ ︸
m1

, f2 − 1, · · · , f2 − 1︸ ︷︷ ︸
m2

, · · · , fs − 1, · · · , fs − 1︸ ︷︷ ︸
ms

.

(If fs = 1, the last block should be dropped.)

4. The central irreducible modules (as we call them) W1,W2, . . . ,Ws for (A, l) and these
modules W ′

1,W
′
2, . . . ,W

′
s′ for (A/(0 : l), l) may be regarded as the same if fs > 1. (So

s′ = s.)

5. If fs = 1, then W1,W2, . . . ,Ws−1 for (A, l) may be regarded as these modules W ′
1,W

′
2, . . . ,W

′
s′

for (A/(0 : l), l). (So s′ = s− 1.)

Let Z be a variable, and denote by K[Z] the one dimensional polynomial ring. If V =⊕b
i=a Vi is a finite graded K[Z]-module, we say that V has the SLP if the homomorphism

×Zb−a−2i : Va+i → Vb−i

is bijective for all i ≤ [(b− a)/2]. Note that the Hilbert function of V =
⊕b

i=a Vi is symmet-
ric if dimK Va+i = dimK Vb−i for i = 0, 1, 2, . . . , [(a + b)/2], provided that Va 6= 0, Vb 6= 0.

Let V =
⊕b

i=a Vi be a graded vector space over K. Then V has a K[Z]-module structure
if a degree one homomorphism L : V → V is given. For a K-vector space V , we write
V [Z]/(Zf ) := V ⊗K K[Z]/(Zf ). If V =

⊕
V b
i=a is a finite graded vector space with a degree

one homomorphism L : V → V , then Ṽ := V [Z]/(Zf ) is made into a graded K[Z]-module
via the degree one homomorphism

L+ Z : V [Z]/(Zf ) → V [Z]/(Zf )

defined by ∑
viZ

d−i 7→ (
∑

viZ
d−i)(L+ Z) =

∑
LviZ

d−i +
∑

viZ
d−i+1.

We use these notation and terminology in the following proposition in this sense. (So we
denote by Ũi the module Ũi := Ui[Z]/(Zfi) := Ui ⊗K K[Z]/(Zfi).) We can prove the
following

Proposition 21 Suppose that A =
⊕

Ai is a graded Gorenstein algebra and let l ∈ A1 be
any linear form. Let Ui be the central irreducible modules for (A, l) as defined before. We
have

1. Ui has a symmetric Hilbert function for all i.

2. Ũi has a symmetric Hilbert function for all i.

3. If Ui has the SLP as an A/(l)-module, then Ũi has the SLP as an (A/(l))[Z]-module.

4. If all Ui have the SLP, then Grl(A) has the SLP.
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Proof. It is easy to see the equivalence of (1) and (2). Denote by Hilb(V ) the Hilbert series

Hilb(V ) =
∑

(dimK Vi)T
i.

One sees immediately that

s∑
j=1

Hilb(Uj) = Hilb(A)−Hilb(A/(0 : l)),

and
s∑

j=1

Hilb(Ũj) = Hilb(A),

and moreover the modules W1,W2, . . . ,Ws−1 for (A, l) coincide with those modules for
(A/(0 : l), l). This proves (1) and (2) at the same time by induction. The assertion (3) follows
from Theorem 4. To see (4) let l be a linear form in A. Then A may be viewed as a K[Z]-
module by Z 7→ l. The element l induces homomorphisms on Ui and we may view Ũi asK[Z]-
modules and likewise we may view Grl(A) as K[Z]-modules by Z 7→ (l mod (l)+z mod (l2)).
As K[Z]-modules we have the isomorphism

s⊕
i=1

Ũi
∼= Grl(A).

This proves (4) (for more details see [2]).

Note that the Hilbert function of the first column (i.e., Hilbert function of A/(l)) deter-
mines the Hilbert function of A and that Wi are Ui are graded vector spaces and Ui

∼= Wi

with a shift of degrees by fi − 1. As was remarked earlier, it is possible to define the SLP
for graded vector spaces with degree one maps.

With this extended definition of SLP we can state our result as follows:

Theorem 22 Let A be a graded K-algebra and l ∈ A1 a linear form. Then the following
are equivalent.

1. Grl(A) = A/(l)⊕ (l)/(l2)⊕ · · · (lr)/(lr+1) has the SLP.

2. All of U1, · · · , Us have the SLP as graded A/(l)-modules.

Here are some examples of computation for U1, . . . , Us.

Example 23 Let A = K[x, y, z]/(x2, y2, z2). For a basis for A we take the set of square-free
monomials of x, y, z. The modules U1, U2, . . . ,W1, . . . etc. depend on the choice of l.

1. Consider l = z. Then the Jordan decomposition of ×l ∈ End(A) is given by 8 =
2 + 2 + 2 + 2. A Jordan basis for ×l is:

1 l
x xl
y yl
xy xyl

U1 = 〈1, x, y, xy〉, W1 = 〈l, xl, yl, xyl〉.
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2. Consider l = x+y. Then the Jordan decomposition of ×l ∈ End(A) is 8 = 3+3+1+1.
For simplicity put f := x− y. Then a basis for ×l is:

1 l l2

z lz zl2

f
fz

U1 = 〈1, z〉, W1 = 〈l2, zl2〉, U2 = W2 = 〈f, fz〉.

3. Consider l = x+y+z. Then the Jordan decomposition of ×l ∈ End(A) is 8 = 4+2+2.
For simplicity put g := x− y, h = x− z. Then a basis for ×l is:

1 l l2 l3

g gl
h hl

U1 = 〈1〉, W1 = 〈l3〉, U2 = 〈g, h〉, W2 = 〈gl, hl〉.

We exhibit some more examples of complete intersections for which the modules U1, . . . , Us

can be computed (for some l) and the SLP can be proved via Theorem 22. In the following
examples ed(x1, . . . , xn) denotes the elementary symmetric functions of degree d. In these
examples it is possible to compute the modules U1, . . . , Us by choosing the linear form z as
one of the variables. For proof we refer to [2].

Example 24 Let
R = K[x1, . . . , xn]

fi = ei(x
r
1, x

r
2, . . . , x

r
n), i = 1, . . . , n− 1,

fn = esn = (x1 · · ·xn)
s.

I = (f1, f2, . . . , fn−1, fn).

Then A = R/I has the SLP.

Example 25 Let
R = K[x1, . . . , xn]

fi = ei(x
r
1, x

r
2, . . . , x

r
n), i = 1, . . . , n,

I = (f1, f2, . . . , fn).

Then A = R/I has the SLP.

6 Inductive argument to compute U1, . . . , Us

The Artinian algebras in Examples 24 and 25 are complete intersections and in proving that
they have the SLP, it is the key that one of the generators of the ideal is divisible by a linear
element. So it seems worth noticing the following

Lemma 26 1. Let I = (a1, . . . , an) ⊂ R be a complete intersection ideal in a regular
local ring R, and suppose that an = ab is a product of two elements. Then I ′ = (I :
b) = (a1, . . . , an−1, a).
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2. Suppose that I ⊂ R is a homogeneous complete intersection ideal in a polynomial ring
R and an = al with l a linear form. Let

f1, · · · , f1︸ ︷︷ ︸
m1

, f2, · · · , f2︸ ︷︷ ︸
m2

, · · · , fs, · · · , fs︸ ︷︷ ︸
ms

.

be the Jordan type of ×l ∈ EndK(A). Then fs > 1 if and only if ((I : l) + (l))/(l) is a
complete intersection ideal (i.e., it is generated by n− 1 elements).

3. fs = 1 if and only if ((I : l) + (l))/(l) is an almost complete intersection ideal.

4. If ((I : l) + (l))/(l) is an almost complete intersection ideal, then Us = Ws = ((a) +
(l))/(l) ∼= (A/(l))/(l : a).

Example 27 Let
R = K[x1, . . . , xn]

I = (L1, L2, . . . , Ln−1, Ln),

where Li are products of linear forms which are “general enough among themselves.” Then
A = R/I has the SLP.

Proof. Let l be one of the factors of Ln and consider the exact sequence:

0 → A/(0 : l) → A → A/(l) → 0.

The algebras A/(0 : l) and A/(l) are complete intersections by an ideal generated by products
of linear forms. So we can use the induction. By the definition l is an SL element of A/(0 : l).
Consider the central irreducible modules

U1, U2, . . . , Us−1, Us,

for (A, l). We want to prove that all of them have the SLP as A/(l)-modules. By Proposi-
tion 20, the modules

U1, U2, . . . , Us−1

are central irreducible modules for (A/(0 : l), l). Since l is general enough, it is an SL element
and we get that U1, U2, . . . , Us−1 are graded vector spaces with homogeneous components
concentrated at one degree. Thus they all have the SLP as A/(l)-modules. Consider the
module Us. It is a principal ideal of A/(l) generated by the element L′ := Ls/l. Thus it
is isomorphic to A/(l : L′). By the induction hypothesis A/(l) has the SLP. Since L′ is a
product of general enough linear forms we can conclude that Us

∼= A/(l : L′) also has the
SLP by Proposition 20.

Remark 28 In the above example we did not define the phrase “general enough linear
forms.” It is hoped that the reader may understand the meaning of this terminology as the
proof reveals it. Generally speaking it is not easy to check if a given linear form is general
enough for some purpose in a particular situation. If the ring is a Gorenstein algebra with
the SLP, then a general element should be thought of as an SL element. We treat more
examples of this kind in the next section, where these modules are computable.

Remark 29 In Example 27, one of Li can be replaced by any homogeneous form. This

is because we can start the induction with n = 2, in which case the SLP for complete
intersections are proved.
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7 The algebras with the action of the symmetric group

In Section 9 of [7] we indicated how the Schur–Weyl duality can be applied to the monomial
complete intersection with generators of equal degree

A := K[x1, x2, . . . , xn]/(x
d
1, x

d
2, . . . , x

d
n).

Put B = K[ε]/(ε2). Let B∗ be the multiplicative group of B (so it is {a+ bε | a, b ∈ K, a 6=
0}), and similarly A∗ the multiplicative group of A. Define the group homomorphism

Φ : B∗ → A∗

by a+ bε 7→ a exp((b/a)(x1 + x2 + · · · + xn)). In this case the only eigenvalue of Φ(a+ bε)
is adn and the Jordan type of it is given by the dual partition to the Hilbert function of A.
(See the remark below.)

Remark 30 Let A =
⊕c

i=0 Ai be a graded Artinian algebra. The Hilbert function of A
may be regarded as a partition of the integer dimK A, since

Hilb(A, T ) =

c∑
i=0

(dimK Ai)T
i.

and

dimK A =
c∑

i=0

(dimK Ai). (4)

(If one prefers, one could re-order it in the decreasing order.) Let dimK A = p0 + p1 + p2 +
· · · + pr be the dual partition of (4). (Assume this is in the decreasing order.) If (4) is
unimodal, then the dual partition is given by

(p0, p1, . . . , pr) = (5)c+ 1︸ ︷︷ ︸
h0

, c− 1, · · · , c− 1︸ ︷︷ ︸
h1−h0

, c− 3, · · · , c− 3︸ ︷︷ ︸
h2−h1

, c− 5, · · · , c− 5︸ ︷︷ ︸
h3−h2

· · ·

 .

It seems natural to expect that the same is true with other Artinian algebras with the
action of the symmetric group Sn. So we consider the following problem.

A new problem

Problem 31 Let n, d > 0 be positive integers. Let R = K[x1, . . . , xn] be the polynomial ring
over a field K and let Sn, the symmetric group, act on R as permutation of the variables.
Suppose I = (g1, . . . , gn) is a set of homogeneous polynomials permuted among themselves
by the action of Sn. Then the group Sn naturally acts on A := R/I as automorphisms of
the algebra. Prove that A has the SLP with x1+x2+ · · ·+xn as a strong Lefschetz element.

For simplicity we assume that Sn permutes the polynomials

g1, g2, . . . , gn

in the same way as Sn permutes the variables.
We can think of two or three different ways of choosing generators.

1. Let F be a symmetric homogeneous polynomial of degree d and put

g1 := xd
1 + F, g2 := xd

2 + F, . . . , gn := xd
n + F. (6)

12



2. Let (a1, . . . , an) ∈ Kn be an arbitrary constant vector. Let e = x1 + x2 + · · ·+ xn.

gi = (e− a1xi)(e− a2xi) · · · (e− adxi), i = 1, . . . , n (7)

3. Let F be a homogeneous polynomial of degree d and put

g1 := xd
1 − xd

2, g2 := xd
2 − xd

3, · · · , gn−1 := xd
n−2 − xd

n, gn := F. (8)

One notices easily that both (6) and (7) are two different sets generators of the same ideal as
described in Problem 31. Since the stabilizer of g1 should be Sn−1 the generators in either
(6) or (7) can be deconstructed as in (8). Note that in either case (6) or (7), the algebra A
is similar to that of Example 27, except that we do not know if the linear forms involved
are general enough.

In Section 1 we showed that the algebra K[x1, . . . , xn]/(x
2
1, . . . , x

2
n) contains the algebra

K[x1, · · · , xr]/(x
d
1, . . . , x

d
r) as a subring. So, to approach Problem 31, it seems good enough

to assume d = 2 at least to start with. For the case d = 2 we show how Problem 31 can be
settled in the next section.

8 Complete intersections generated by quadrics

We work in the polynomial ring R = K[x1, . . . , xn], and we fix the following notation:

a, p, q ∈ K

e1 = x1 + x2 + · · ·+ xn

e2 = x1x2 + x1x3 + · · ·+ xn−1xn

g1 = x2
1 − x2

n

g2 = x2
2 − x2

n

...

gn−1 = x2
n−1 − x2

n

gn = pe21 + qe2

I ′ = (g1, g2, . . . , gn−1, gn)

I = (g1, g2, . . . , gn−1, e2 + ax2
n)

J = (x2
1, x

2
2, . . . , x

2
n−1, e2)

It is easy to see the following

Proposition 32 (i) I ′ and I are the same ideal with a = np.

(ii) R/J is isomorphic to R/(x2
1, . . . , x

2
n−1, x

2
n) by the homomorphism

xi 7→
{

xi if i < n,
x1 + x2 ++ · · ·+ xn if i = n.

Hence R/J has the SLP with xn as a general element.

(iii) In(I) = In(J) with respect to the graded reverse lexicographic order.

(iv) Put z := xn. Then Grz(R/I) = Grz(R/J). Hence R/J has the SLP with xn a general
element. (In fact it is an SL element.)

Proof. (We are assuming that p, q, a are chosen so that these ideals are complete intersec-
tions.) It is easy to see (i) and (ii) are true and the implication (iii) ⇒ (iv). We need a little
trick to verify (iii).
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Remark 33 1. Let I be the ideal defined in (6). It is possible to compute the central
irreducible modules for (A := R/I, z), where z is one of the factors of gn.

2. Let I be the ideal defined in (7). It is possible to compute the central irreducible
modules for (A := R/I, z), where z is one of the factors of gn.

9 The homomorphism SL(2) → GL(A)

Theorem 34 Let R = K[x1, x2, . . . , xn] be the polynomial ring over a field K of char-
acteristic zero. Let I be a complete intersection ideal generated by quadrics on which the
symmetric group Sn acts by permutation of the variables. Then A := R/I has the SLP with
x1 + · · ·+ xn as an SL element. In particular there is a homomorphism

Φ : SL(2) → GL(A)

such that

dΦ

((
0 k
0 0

))
= ×k(x1 + x2 + · · ·+ xn),

where
dΦ : sl2 → End(A)

is the induced map of Φ on the Lie algebras. The Jordan type of Φ

((
1 k
0 1

))
is the dual

to the partition of 2n given by the coefficients of (1 + T )n.
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