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1 Polynomial representations of GL,

(1.1) Schur algebras, found by I. Schur at the begining of the 20th century,
is a powerful tool to study polynomial representations of general linear group.
The purpose of this section is to study the relationship of Schur algebras and
the polynomial representations of GL,,.

(1.2) Let k£ be an algebraically closed field of arbitrary characteristic.

For a ring A, an A-module means a left A-module, unless otherwise spec-
ified. However, an ideal of A means a two-sided ideal, not a left ideal. A mod
denotes the category of finitely generated A-modules.

For a group G, a G-module means a kG-module, where kG is the group
algebra of G over k. If V' is a finite dimensional vector space, then giving a
G-module structure to V' is the same thing as giving a group homomorphism
p:G— GL(V).

A finite dimensional GL,(k)-module V = k™ is said to be a polynomial
(resp. rational) representation if the corresponding group homomorphism p :
GL, (k) — GL(V) = GL,,(k) satisfies the following. For each (a;;) € GLy(k),
when we write p(a;;) = (pst(a;;)), then each pg(a;;) is a polynomial function
(resp. rational function everywhere defined on GL,) in a;;. We may also
say that p is a polynomial (resp. rational) representation. Note that this
condition is independent of the choice of the basis of V.

(1.3) Let V be a GL,(k)-module which may not be finite dimensional. We
say that V' is a polynomial (resp. rational) representation of GL, if V =
Uy W, where W runs through all the finite dimensional GL,-submodules of
V' which are polynomial (resp. rational) representations.



(1.4) If p: GL,(k) — GL,,(k) is a polynomial representation, and if there
exists some r > 0 such that for any s, t, ps is a homogeneous polynomial of
degree r, then we say that p is a polynomial representation of degree r. This
notion is also independent of the choice of basis.

(1.5) We give some examples. The one-dimensional representation
det™ : GL,(k) — GLy(k) = k~

given by A — det(A)™ is a polynomial representation of degree mn for
m > 0.

(1.6) The map p: GLy(k) — GLs(k) given by

. x? Ty y?
( y) = |22z zw+yz 2yw
= 22 2w w?

is a polynomial representation of degree two.
1.7 Exercise. Show (1.6).

(1.8) p : GL, — GL,, is a rational representation if and only if A —
p(A) - det(A)® is a polynomial representation for some s > 0. Thus there
is not much difference between rational representations and polynomial rep-
resentations, and most problems for rational representations are reduced to
those for polynomial representations.

(1.9) The identity map GL(V) — GL(V) is obviously a polynomial repre-
sentation of degree one. This representation is called the vector representa-
tion of GL(V).

(1.10) If V is a polynomial representation of GL,, and W is a GL,-submodule
of V' (that is, W is a k-subspace of V|, and Aw € W for any A € GL,, and
w € W), then W and V/W are polynomial representations. If, moreover, V'
is of degree r, then W and V/W are of degree r.

1.11 Exercise. Show (1.10).

1.12 Exercise. Let V' be a finite dimensional GL,(k)-module and W be
its GL,(k)-submodule. Show by an example that even if W and V/W are
polynomial representations, V' may not be so.



(1.13) For two polynomial representations V' and W of GL,, the direct
sum V & W and the tensor product V' ® W are polynomial representation.
Av+w) =Av+Awin Ve W, and Awv@w) = Av® Awin Ve W. If
V and W are of degree r, then so is V & W. If V and W are of degree r
and 7’ respectively, then V ® W is of degree r + r’. It is easy to see that
an infinite direct sum of polynomial representations of GL, is a polynomial
representation.

(1.14) Let V be a finite dimensional rational representation of GL,, and
W be a rational representation of GL,. Then Hom(V, W) is a rational rep-
resentation of GL, again. The action is given by (g¢)(v) = g(¢(¢g7*(v))) for
g € GL,(k), p € Hom(V, W), and v € V. In particular, V* = Hom(V, k) is a
rational representation. As g~! is involved, even if both V and W are poly-
nomial representations, Hom(V, W) may not be so. Note that Hom(V, W) =
W ®V* as a GL,(k)-module. In a functorial notation, the action of g € GL,
on V* is given by the action of (¢*)~* = Hom(g, k)~! = Hom(g™!, k).

(1.15) Let V be a polynomial representation of GL,. Then V®? is so.
Let TV := @,V be the tensor algebra. Then GL, acts on it, and
the two sided ideals TV(v @ w —w ®@ v | v,w € V)TV and TV (v @ v |
v € V)TV are GL,-submodules of TV. So the quotient algebras Sym V'
and AV admit GL,-algebra structure such that TV — SymV and TV —
AV preserve degree. Being quotients of V®¢ Sym,V and /\dV are also
polynomial representations. If V is of degree r, then V®¢ Sym, V', and /\d 1%
are of degree rd.

(1.16) For a k-vector space V', we define DyV := (Sym, V*)*. We call D,V
the dth divided power of V. If V is a polynomial representation of GL,,, then
so is DgV'. Indeed, in a functorial language, g € GL, (k) acts on D,V by

((Sym(g*)™") ™" = (((Symg*)™")™")* = (Symg*)".

If the matrix of g is A, then the matrix of g* with respect to the dual basis
is the transpose ‘A. So D,V is a polynomial representation.

(1.17) Let B be a k-algebra. Then the product map mp : B® B — B
and the unit map u : £ — B are defined by mpg(b ® ') = bb' and u(a) = a,



respectively, and the diagrams

m®1

ARAQRA— AQ A AR A
| | e
1®m m m
A A—=2 A AQk— > A~k A

are commutative, because of the associativity law and the unit law.
Reversing the directions of arrows, we get the definition of coalgebras.
We say that C' = (C, A ¢) is a k-coalgebra if k-linear maps A : C' — C ® C

and ¢ : C' — k are given, and the diagrams

CoCoCL ocgC CeC
Tl@A TA y TA&
A o o~

cCel

C Cok C keC

are commutative. The commutativity of the first diagram is called the coas-
sociativity law, while the commutativity of the second diagram is called the
counit law.

(1.18) If C is a k-coalgebra and ¢ € C, then A(c) is sometimes denoted by
Z(C) 1) ®c 2) (Sweedler’s notation). (A ® 1)A(c) = (1 ® A)A(c) is denoted

by E(c 2) ® ¢(3), and so on. The counit law is expressed as
Y elee)em = Y elem)ep = ¢
(0) (0)

for any ¢ € C. For more about coalgebras and related notion, see [Sw].

(1.19) A right C-comodule is a k-vector space M with a map wy, : M —
M & C such that the diagrams

M M®C M®Ek M
l 1®e l
w 1QA w
MeoCA Moo M&C

are commutative. The commutativity of the first diagram is called the coas-
sociativity law, and the second one is called the counit law. For m € M,
w(m) is denoted by >,y m@) ®mu) € M@C. (1@ A)w(m) = (w® 1)w(m)
is denoted by Z ) M(0) ® m) @ mz € M ® C®C, and so on.
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(1.20) A map f: D — C between two k-coalgebras is called a coalgebra
map if it is k-linear, Ao f = (f ® f)Ap, and ecf = ep.

For a k-coalgebra C, right C-comodules M and N, andamap f: M — N,
we say that f is a comodule map if f is k-linear, and wyf = (f ® 1¢)wa.
The identity map and the composite of two comodule maps are comodule
maps, and the category of right C-comodules Comod C' is obtained. Note
that Comod C' is an abelian k-category.

(1.21) If Cis a k-coalgebra, then the dual C* is a k-algebra with the product
given by
() (c) = > (le))(W(cw))
(c)
for ¢, € C*. The k-algebra C* is called the dual algebra of C. If M is a
right C-comodule, then M is a left C*-module with the structure given by

pm =Y _(ema))m).-
)

This gives a functor Comod C' — C'Mod (M — M). It is obviously exact,
and known to be fully faithful. If C'is finite dimensional, it is an equivalence.

1.22 Exercise. Check (1.21).

(1.23) Given a polynomial representation p : GL,(k) — GL,,(k), we can
write p(a;;) = (pst(ai;)) for some polynomials pg. Then p(a;;) makes sense for
any (a;j) € M,(k), and we get an extended morphism p’ : M, (k) — M,,(k)
which is a semigroup homomorphism.

1.24 Exercise. Prove that p/ is a semigroup homomorphism.

Conversely, if p’ : M, (k) — M,,(k) is a k-morphism which is a semigroup
homomorphism, then the restriction p = p'|ar, of p’ to GL,, is a polynomial
representation.

Thus, a finite dimensional polynomial representation of GL, is canoni-
cally identified with a morphism M, (k) — M,,(k) which is also a semigroup
homomorphism.



(1.25) Let us denote the coordinate ring k[M,, (k)] of the affine space M, (k)
by S. It is the polynomial ring k[z;;] in n-variables over k. An element
f € Sis a function M, (k) — A', where A' = k is the affine line. That is,
[ (a;;) = f(a;;) € kis atfunction. The product p : M, (k) x M, (k) — M, (k)
induces a k-algebra map A : k[M, (k)] — k[M,(k) x M,(k)] defined by
(Af)(A,B) = fu(A, B) = f(AB). Identifying k[M, (k) x M, (k)] with S® S
via (f® f')(A,B) = f(A)f'(B), A is a k-algebra map from S to S ® S. The
associativity of the product (AB)C = A(BC) for A, B,C € M, (k) yields the
coassociativity (A ® 1g) o A = (1g ® A) o A. Let us denote the evaluation
at the unit element by € : S — k. That is, e(f) = f(FE), where E is the unit
matrix. Then the coassociativity law follows from the fact that F is a unit
element of the semigroup S. Thus S together with A and ¢ is a k-coalgebra.

1.26 Exercise. S = k[z;;] is a polynomial ring. Give A(x;;) and e(zy;)
explicitly, and prove directly that the coassociativity and the counit laws
hold.

(1.27) Let C and D be coalgebras and f : D — C' a coalgebra map. Let M
be a D-comodule. Then letting the composite map

MM oD e

the structure map, M is a C-comodule. This gives the restriction functor
res? : Comod D — Comod C. Obviously, it is an exact functor.

(1.28) Let V be an m-dimensional polynomial representation of GL,,. Let
U1, ..., Uy be abasis of V', and let us identify End(V') by M,, (k) via the basis.
Let us identify k[M,, (k)] with the polynomial algebra k[y,] in a natural way.
Then V is a (right) k[M,,(k)]-comodule by w(v;) = >, vs ® Y.

Let p : M,(k) — M,,(k) be the map coming from the representation.
Then p is a semigroup homomorphism. Let p* : k[M,,(k)] — k[M, (k)] be
the k-algebra map given by (p*(f))(A) = f(p(A)). As p is a semigroup
homomorphism, it is easy to check that p* is a k-coalgebra map. So via
the restriction Comod k[M,, (k)] — Comod k[M, (k)], V is a right k[M,(k)]-
comodule. Note that the coaction of V' as a k[M,(k)]-comodule is given by

W) =3, 05 @ pF(Yst) = Doy Vs @ Pt

(1.29) Conversely, assume that V' is a finite dimensional right k[M, (k)]-
comodule. Then defining py € k[M, (k)] by w(v:) = >, vs ® pst, we get a



polynomial representation given by p(A) = (pst(A)). Thus a finite dimen-
sional polynomial representation of GL, and a right k[GL,]-comodule are
one and the same thing. More generally, it is not so difficult to show that
(possibly infinite dimensional) polynomial representation of GL,, and a right
k[GL,]-comodule are the same thing.

(1.30) Let C be a k-coalgebra, and D C C'. We say that D is a subcoalgebra
of C'if D is a k-subspace of C, and A(D) C D® D, where A is the coproduct
of C. Or equivalently, D is a subcoalgebra if D has a k-coalgebra structure
(uniquely) such that the inclusion D — C'is a k-coalgebra map.

1.31 Exercise. Prove that if D is a subcoalgebra of C', then the restriction
functor res? : Comod(D) — Comod(C) is full, faithful, and exact. A C-
comodule M is of the form res2 V if and only if wy (M) C M ® D. If this
is the case, M is a D-comodule in an obvious way, and letting V = M,
M = res8 V. Thus a D-comodule is identified with a C-comodule M such
that wy (M) C M ® D.

(1.32) Let C' = @, C; be a k-coalgebra such that each C; is a subcoalgebra
of C. In this case, we say that C' is the direct sum of C;. Let (M;) be a
collection such that each M; is a C;-comodule. Then M; is a C-comodule
by restriction, and hence @, M; is also a C-comodule. This gives a functor
F: (M;) — @, M; from ][], Comod C; to Comod C.

Let M be a C-comodule. Define M; to be wy;} (M ®C;). Then it is easy to
check that M; is a Cj-comodule and M = @ M;. The functor G : M — (M)
from Comod C' to [[, Comod C; is a quasi-inverse of F, and hence F' and G
are equivalence.

1.33 Exercise. Prove (1.32).

(1.34) Let V = k™. Then a polynomial representation of GL(V) = GL,
is nothing but a S = k[M, (k)]-comodule. Note that S = €, S; is a graded
k-algebra, and each S; is a subcoalgebra of S. An S-comodule V is of degree
r if and only if V' is an S,-comodule, that is to say, wy (V) C V®S,. Thus the
category Comod S of the polynomial representations of GL(V') is equivalent
to [[, Comod S;, and the study of polynomial representations of GL(V') is
reduced to the study of S,-comodules of various r.

(1.35) Comod S, is equivalent to the category S’ Mod, the category of left
S*-modules. Thus the study of polynomial representations of GL(V') is re-
duced to the study of S’-modules. We define the Schur algebra S(n,r) to
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be S¥. Note that S(n,r) is ("Qtr_l)—dimensional. In particular, S(n,r) is a
finite dimensional k-algebra.
For a finite dimensional polynomial representation (V, p) of GL, of degree

r, V is an S(n,r) module via v, = > (&(pst))vs for € € S(n,r), where
U1, ..., Uy isabasis of V, and p((ai;)) = (pst((ai;))) for (ai;) € GL, = GL(V).
(1.36) Let E be a finite dimensional k-vector space. Then we define H :
(B*)er — (E®r)* by

(HG® @) (1@ @) = (§21) -+ - (§r2)

for &,...,& € E* and x4,...,z, € E. Note that H is an isomorphism. We
identify (E*)®" and (E®")* via H.

(1.37) Let FE be a finite dimensional k-vector space. The sequence

r—1
P e = (B4 - Sym, BT -0
=1

is exact, where 7,(§; ® - ® &) =6 Q- ® & Q& ® - - - ®@E,. Taking the
dual,

r—1
0— D.E — E® M @E@”
i=1

is also exact, where the symmetric group &, acts on E®" via
O-(xl ®®l‘7») =25-11 ® "'®x0_1r7

and o; is the transposition (7,74 1). As the symmetric group is generated by
o1,...,0,_1, we have that D, E is identified with (E®")®".

(1.38) Let V =Ek" and F = End(V) = Mat, (k). Then the Schur algebra
S(n,r) is identified with D, E. Note that the diagonalization £ — E'x---xE
(x — (x,z,...,7))is a semigroup homomorphism. So the corresponding map
S®---®S — S, which is nothing but the product map, is a bialgebra map
(that is, a k-algebra map which is also a coalgebra map), where S = Sym E*.
Thus the restriction of the product

(E")®" — Sym, E*



is also a coalgebra map. This shows that S(n,r) = D.E — E®" is an algebra
map. Note that ® : E®" — End(V®") given by

(P @ @¢)) (11 R - Q) = 1(v1) ® -+ R Pr(vy)

is a &,-algebra isomorphism. Identifying E®" by End(V®") via ®, The subal-
gebra S(n,r) = (E®")®r is identified with (End V®")®" = Endg, V®". Thus
we have

1.39 Theorem. S(n,r) is k-isomorphic to Endg, V.

By Maschke’s theorem, kG, is semisimple if the characteristic of & is zero
or larger than r. If this is the case, V®" is a semisimple k&,-module, and
hence S(n,r) = Endg, V¥ is also semisimple.

1.40 Corollary. If the characteristic of k is zero or larger than r, then S(n, r)
is semisimple.

(1.41) Notes and references. Quite a similar discussion can be found in
[Gr]. This book is recommended as a good reading,.
References

[Sw] M. Sweedler, Hopf Algebras, Benjamin (1969).

[Gr] J. A. Green, Polynomial Representations of GL,, Lecture Notes in
Math. 830, Springer (1980).



2  Weyl modules

(2.1) Let W be an m-dimensional k-vector space with the basis wy, . .., wp,.
Let 71, ...,m, be the dual basis of W*. Then the symmetric algebra S =
Sym W* is the polynomial ring k[n, ..., n,]. We define A : W — S ® S by
Alw)=w1+1w € 51 ®S)®Sy®S;. A is extended to a k-algebra map
A S — S®S uniquely. It is easy to see that A makes S a graded k-bialgebra.
We define DW to be the graded dual @,., D,W = D, Si of S = Sym W*.
Note that DW is also a graded k-bialgebra. The algebra structure of DW
is defined to be that of the subalgebra of the dual algebra S* of S. The
coproduct A : D, y)W — D,W @ D,W is given by (Ax)(a ® () = x(af3) for
xr €D, W, aeS,, and B € S,. Note that

(WD) St = D,y W 2
DWW @ D\2W = (W@a)@a ® (W®b)6b _ (W®(a+b))6a><6b

is nothing but the inclusion. As S is commutative and cocommutative, DW
is commutative and cocommutative. Note that if W is a polynomial repre-
sentation of GL,, then DW is a polynomial representation of GL,, and the
structure maps of DW as a k-bialgebra are GL,-linear. In particular, DW
is a polynomial representation of GL(W).

(2.2) Note that B, = {ny = n}*---n) | [\| = 7} is a basis of S,, where
AN = A+ -+ A Let C. = {w™ | |A] = r} be the dual basis, where
w® is dual to n,. The basis element w((®--0:0--0) dual to n; is denoted by

w](»r). It is easy to check that w = wg/\l) i) By the unique k-algebra

map © : Sym W — DW which is the identity map on degree one, w* =
wt -+ -w)m is mapped to (A)!--- (Ap)w™. In particular, Sym, W = D, W

as a GL(W)-module if the characteristic of k is zero or larger than r.

(2.3) Let V = k™ be an n-dimensional k-vector space with the basis vy, ..., vy,.
Set E := End(V), and define &;; € E by &;u = 0;v; for i, j € [1,n], where
;1 is Kronecker’s delta. It is easy to see that &;;&s = 9,5t

E* has the dual basis {c¢;; | i,j € [1,n]}, where ¢;;(£5) = 0;56;:. Then the
coalgebra structure of E* is given by

A(cyj) = Z Cit @ Cyj.
1
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Indeed,

(A(Cij>><£st ® éuv) = Cij(éstguv) = Cij(&fu&sv) = 5tu5i35jv7

and
(Z Cit & Clj)(fst ® éuv) = Z 5i35lt5lu5jv = 5i35tu5jv-
l l

(2.4) Let I(n,r) denote the set Map([l,r],[1,n]), the set of maps from
[1,7] = {1,...,r} to [1,n] = {1,...,n}. Such a map is identified with
a sequence i = (i1,...,4,) of elements of [1,n]. As &, acts on [1,7], it
also acts on I(n,r) by (0i)(l) = i(c7(1)). In other words, o(i1,...,i,) =
(Go=1(1), - - - to—1(n)). S, also acts on I(n,r)* by o(i,j) = (04,07). We say
that (z,7) ~ (¢, ') if (4,7) and (7', j") lie on the same orbit with respect to
the action of G,.

Let » > 1. Note that S, = Sym, E* has a basis {¢;; = ¢i,j,Cijo =+ * Cirjr |
(i,7) € I(n,r)?/&,}. The dual basis of S(n,r) is denoted by {&; | (i,7) €
I(n,r)*/&,}. Note that

A(Cij) = Z Cis @ Csj-
sel(n,r)
So
gijguv - Z Z(Za ja u,v,p, Q)gpq

P
in the Schur algebra S(n,r), where Z(i,j,u,v,p,q) is the number of s €
I(n,r) such that (7,7) ~ (p, s) and (u,v) ~ (s,q).

(2.5) In particular, if &;&,, # 0, then j ~ u. Note that ;§; = &; and
&ij&j; = &j for i,7 € I(n,r). So {&;}, where i runs through I(n,r)/&,, is a
set of mutually orthogonal idempotents of S(n,r), and Y, & = L.
(2.6) Set T'(n,r) to be the k-span of {&; | i € I(n,r)/&,}. It is a k-
subalgebra of S(n,r), and T'(n, ) is the direct product of k&; = k for various
1 as a k-algebra. We define

Aln,r) ={A=(A1,..., ) €25, | [N =1}

For i € I(n,r)/6,, we define v(i) € A(n,r) by v(i); = #{l | i = j}. Note
that v : I(n,r)/&, — A(n,r) is a bijection. We denote &; by &,¢).
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(2.7) For a T'(n,r)-module M and A € A(n,r), we define M, to be &, M.
As {& | A € A(n,r)} is a set of mutually orthogonal idempotents of T'(n,r)
with >, &, = 1, we have that M = @, M. We say that A € A(n,r) is a
weight of M if M) # 0. For a finite dimensional 7'(n, r)-module M, we define

X(M) == "(dimy, MRt -t} € Zt, ... L),
A

We use this convention to an S(n,r)-module M. Plainly, an S(n,r)-module
is a T'(n,r)-module.

(2.8) For a sequence A = (A1, Ag,...) of nonnegative integers, we define
ANV = A" VoAV ®---, Sym,V := Sym, V & Sym,,V &---, and
D)V := D\ V®D,,V&---. If |\| =r, then A, V, Sym, V, and D,V are
S(n,r)-modules. For A € A(n,r), we define

fa i DAV — S(n,r)éx
by
f>\<fU§au) . Uﬁbanl)@. . .®fv§a1”) e 'Uy(Lann)> — gl] — %Cllll) e éfﬁ"l) e %Z;") e é‘ﬁglnn)’

where i = (1911, ... pant 192 pon2  qen  opaan)and j = (17, ... nn).
It is easy to see that fy is a GL,(k)-isomorphism. As &, is an idempotent of
S(n,r) and >, & = 1, we have

2.9 Lemma. D,V for A € A(n,r) is a projective S(n,r)-module.
add({D,\V | A € A(n,7)}) = add({S(n,7)}),

where for a ring A and a set X of A-modules, add X denotes the set of A-
modules which is isomorphic to a direct summand of a finite direct sum of
elements of X.

(2.10) For A € A(n,r) and an S(n,r)-module M, we have
Homs(mr)(D,\‘/, M) = Homg(nﬂn)(S(n, T)f)\, M) = g)\M

Note that ¢ € Homg, ) (D2V, M) corresponds to gp(v§/\l)®. ) -®U§L)\")) e M.

In particular, A is a weight of M if and only if Homg, »)(DAV, M) # 0.
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(2.11) We define ¢; := (0,...,0,1,0,...), where 1 is at the ¢th position. We
also define «o; 1= ¢; — g;11. For A\, € A(n,r), we say that A > pu if there
exist ¢1,...,¢,—1 > 0 such that A — = >, ¢;o;. This gives an ordering of
A(n,r), called the dominant order.

(2.12) Let A be a ring, M a (left) A-module, and X a set of A-modules.
Then we define the X-trace of M, denoted by trx M the sum of all A-
submodules of M which is a homomorphic image of elements of X.

trx M = Z Z Im ¢.

NeX ¢cHomy (N,M)

Obviously, for N € X, Homu (N, trx M) — Hom (N, M) is an isomorphism.
In particular, if N is projective, then Hom (N, M/ try M) = 0.

(2.13) Let A = (Aq,...,\,) be a sequence of nonnegative integers, and
o € 6,. Let o) denote (As-1(1), ..., Ao-1(n)) as before. Then

T D)\V — DU)\V

given by a; ® -+ ® ap — a,-11) ® - -+ @ Gg-1() is an isomorphism S(n,r)-
modules. In particular, for a finite dimensional S(n,r)-module M, we have
M, = M,,. It follows that x(M) is a symmetric polynomial.

(2.14) X(A"V) =2 1ci ccion tin -+ + ti, 18 the elementary symmetric poly-
nomial. x(Sym, V) = x(D;V) = > \cxmn )1~ M is the complete sym-
metric polynomial.

(2.15) Let A = (A1, A2), and 1 < j < Ay. We define the box map to be the
composite

A®1 1®m

|:| . DAHQIV = D)\NLJ'V@D)\Q,J'V — D)\IV®DJ‘V®D)\2,J'V _— D)\IV®D)\2‘/,

where A and m denote the coproduct and the product of DV, respectively.
(2.16) We define A(n,r)™ ={A € A(n,r) | \y > - > A\, }. Aln,r)T is an

ordered set with respect to the dominant order. For A € A(n,r)*, we define

n—1 Xit1
O
Ov: PP DasjeV == DiV:
i=1 j=1

13



where 0 : Dyjo,V — D,V is given by

D)\-l-joéiv = D)\IV® o 'D)\i—1V®D>\i+jV®D>\i+1—jV® T
V® R, D)\V

18--®1808-, Dy, V &---Dy,_V®D,V&D,,,,
We define A(A) := D,\V/Im(,), and call A(\) the Weyl module of V. If
we want to emphasize V', then A()) is also denoted by K, V.

(2.17) Let A € A(n,r). We define the Young diagram Y (\) of A to be
{(i,j) e N2 | 1 <4 < n, 1 <35 < N}. An element of Tab()\) =
Map(Y' (M), [1,n]) is called a tableau of shape A\. Let T' € Tab(\). T is
called co-row-standard if 7'(¢,j) < T'(i,j') for any i, j, ;' with 7 < j'. The
set of co-row-standard tableaux is denoted by CoRow(\). Associated with a
co-row-standard tableau 7', we have

(a(n.m) ¢

n

D\V®&D\V&- - -®&D,V =D,V,

p(T) = v{e0D) . yallm) g (@@D) | @n) g ... g ylam) .

where a(i, j) = #{l | T(i,1) = j}.

2.18 Example.

11 2 3 4
p<2 9 2 4 >:“52)02vsv4®v§3’v4-

Assume that A € A(n,r)T. T is called co-column-standard if T'(i,j) <
T(i',j) for i < ¢'. T is called co-standard if it is both co-row-standard and
co-column standard.

What is important is the following.

2.19 Theorem (Akin-Buchsbaum-Weyman [ABW, (I1.3.16)]). {p(7) |
T is co-standard} is a basis of A(\).

2.20 Exercise. Express the tableau
1 1 2 3 4
Pla2 214
as a linear combination of co-standard tableaux in K4V

14



Let A € A(n,r) and T € CoRow()A). Define Cont(T) to be the se-
quence (ft1, ..., tn), where p; := #{(i,7) € Y(A) | T'(¢,j) = I}. Note that
Cont(T) € A(n,r). Then p(T) € D,V is actually in the weight Cont(T")
space (D\V)cont(r) of DAV

2.21 Lemma. If A € A(n,r)" and T is a standard tableau of shape A, then
Cont(T") < A. The only standard tableau T of shape A such that Cont(7") = A
is the tableau T given by T'(, 7) = i (the canonical tableau).

2.22 Exercise. Prove Lemma 2.21.
By Theorem 2.19 and Lemma 2.21, we immediately have

2.23 Lemma. Let A € A(n,7)" and p € A(n, 7). If A(X), # 0, then p < .
A(A), is one-dimensional, and is spanned by the canonical tableau.

(2.24) Let A be a ring and M a left A-module. We denote M/rad M by
top M, and call it the top of M.

2.25 Proposition. Let A € A(n,r)". The S(n,r)-module A()\) has the
simple top.

Proof. Let W be the sum of all S(n,r)-submodules V' of A(\) such that
V) = 0. Clearly, Wy = 0, and hence W # A(X). If U is an S(n, r)-submodule
of A(X\) such that U ¢ W, then Uy # 0. As Uy C A(M\), and A()), is one-
dimensional and generated by the canonical tableau, U contains the canonical
tableau T'. On the other hand, A(\) = S(n,r)T, since D,V = S(n,r)T. So
U = A(\). This means that W is the unique maximal submodule of A()),
and hence top A(A) = A(X)/W is simple. O

(2.26) We denote top(A(A)) by L(A). Note that L(\), is one-dimensional
and generated by the canonical tableau, and L(\),, # 0 implies ;1 < A. Let
P()) denote the projective cover of L(A).

2.27 Lemma. Let A\, € A(n,r)*, and A # . Then L(\) 2 L(p).
Proof. Assume that L(\) = L(u). Then

A =max{v € A(n,r) | L(\), # 0} = max{v € A(n,r) | L(u), # 0} = u.

O

15



2.28 Lemma. D,V is of the form P(A) & D, , P(11)®X . For any order
filter I of A(n,r)", add(P(\) | A € I) =add(D,\V | A € I).
Proof. We prove the first assertion. Assume the contrary, and let A be a
maximal element such that D,V is not of the form P(A\) & €D . P(1)®em),
As D,V has L()) as a quotient, P(\) is a direct summand of D,V. By
assumption, D,V has a semisimple quotient M such that M, = 0 for any
p € A(n,r)* which satisfies p > A, and that M is not simple. Then by the
definition of A(\), M is a quotient of A(\). This contradicts the fact that
A()) has a simple top.

The second assertion follows immediately from the first. O

2.29 Corollary. The set {L()\) | A € A(n,r)T} is a complete set of represen-
tatives of the isomorphism classes of the simples of S(n,r). For A € A(n,r)™,
A(N) =2 P(N)/ trzon(P(N)), where Z(\) = {P(p) | p € A(n,r)™, > A} If
Homggn ) (P(v), A(N)) # 0, then v < X. Endgp,r) A(N) = k.

Proof. Note that add{P(\) | A € A(n,r)"} = add S(n,r) by Lemma 2.28,
(2.13), and Lemma 2.9. The first assertion follows from this and Lemma 2.27.
The second assertion is a consequence of Lemma 2.28. The third and the
fourth assertions follow from Lemma 2.23. O

(2.30) Let V and W be k-vector spaces, and r > 0. Consider the map
6. : DV © D,W 225 veor g wer I (v @ W)®T,

where 7(a1 ® - ®a, R0 Q@ - - ®b,) = a1 Qb ® -+ ®a, ®b.. Itis
easy to see that @ factors through D,(V @ W) = (V @ W)® | and induces
0.: D,V ®DW — D.(V&W). Note that the diagram

D,V ® D,W —"=D,(V & W)
lA@A lA
Ver @ Wer —— (Vo W)
is commutative, and 6, commutes with the action of GL(V) x GL(W).
(2.31) Let A € A(n,r). Then we define 6, : D\V ® D\W — D,(V&@ W) to

be the composite

0x, Q- ®0x,
—_—

D\W@D\W LD,V D,W®®---®DyV&Dy W
Dy(VeW)®- @D, (VeoW) = D.(VeW).
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We define M(\) = > 5 1m0, and M) =3
denotes the lexicographic order.

e\ Im6,, where >

2.32 Theorem (Cauchy formula for the divided power algebra, [HK,
(IT1.2.9)]). For each A € A(n,r)", there is a unique isomorphism O, :
K,V @ KW — M(X)/M () such that the diagram

DV @ DAW —2— M(\)
KV @ K\W —2> M(A)/M(\)

1s commutative.

(2.33) Let V be a finite dimensional S(n,r)-module. A filtration of S(n,r)-
modules

O=VWWcWVic---CV,=V

is said to be a Weyl module filtration if V;/V;_1 = A(A(7)) for some A(i) €
A(n,r)".

(2.34) The left regular representation g, ,S(n,r) = D,(V ® V*) is iden-
tified with the following representation. V @ V* is a GL(V)-module by
g(v® ) =gv®p. D, is a functor from the category of S(n,1)-modules to
the category of S(n,r)-modules, and we have that D, (V ® V*) is an S(n,r)-
module. Note that K,V ® K,V* is a direct sum of copies of K,V = A(\).
By Theorem 2.32, we have

2.35 Corollary. g(,,S(n,r) has a Weyl module filtration.

(2.36) Note that the k-dual (?)* = Homg(?, k) is an equivalence S(n, r)? —
S(n,r)mod. On the other hand, the transpose map t : S(n,r) — S(n,r)®?
given by t(&;;) = & (it corresponds to the transpose of matrices) is an iso-
morphism. Through ¢, a right module changes to a left module. Thus we get
a transposed dual functor *(?) : S(n,r) mod — S(n,r). It is a contravariant
autoequivalence of S(n,r)mod. It is easy to see that {(V @ W) 2 'V @ 'W.
So {(S\V) = D,V. It follows that S\V is an injective S(n,r)-module for
A€ An,r).

Note also that the transposed dual does not change the formal character.
As the formal character determines the simples, *(L(\)) = L()). This shows
a very important
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2.37 Lemma. For A\, € A(n,r)",

Extlsgu ) (L), L)) 2 Extl, (L), LOV).

2.38 Example. We show the simplest example. Let k£ be of characteristic
two, n = dimV = 2, and » = 2. The map i : /\2V — DoV given by
i(wy; A we) = wywsy is nonzero, and hence is injective, since /\2V is one-
dimensional and hence is simple. The sequence

0— ANV = DV — D V/ ANV — 0

is exact, and is non-split, since DoV = A((2,0)) has a simple top. It follows
that A®V is not injective. It is easy to see that DyV/ A>V is simple and
agrees with L(2,0). Note that the sequence

0DV EVV = AV =0

is non-split, since V@V = Sym, ;) V' is projective injective, and /\2 V' is not
injective. This shows that DoV C rad(V @ V'), since D,V is indecomposable

projective. Thus V ®V has the simple top /\2 V,and V@V = P(1,1). Thus
we have

L(1,1) £(2,0)
P(1,1)= L(2,0) P(2,0)= 7.

Note that A(1,1) = L(1,1). Note also that D,V/ A*V is isomorphic to the
first Frobenius twist V(1) of the vector representation.

(2.39) Notes and References. As we will see later, Corollary 2.29 and Corol-
lary 2.35 show that S(n, ) is a quasi-hereditary algebra. The notion of Schur
algebra is generalized by S. Donkin [D1, D2]. This generaized Schur algebras
are also quasi-hereditary. The proof usually requires the standard course in
representation theory of algebraic groups [J], including Kempf’s vanishing.
Our argument is good only for S(n,r), but is elementary in the sense that it
only requires multilinear algebra.
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3 Tilting modules of GL,

(3.1) For sure, we start with the definition of quasi-hereditary algebra. For
more, see [DR] and references therein. Consider a triple (A, A, L) such that
A is a finite dimensional k-algebra, A a finite ordered set, and L a bijection
from A to the set of isomorphism classes of simple A-modules. For A € A,
we denote the projective cover and the injective hull of L(\) by P(\) and
Q(A), respectively. For A € A, define Z(\) := {u € A | p > A}, and
Z'N):={p e AN pnLA}. Wesay that A (or better, (A, A, L)) is adapted if
trzoy P(A) = trz ) P(X) for any A € A,

3.2 Lemma. Let (A, A, L) be as above. Then the following are equivalent.
1. (A, A, L) is adapted.

2. For incomparable elements A, 4 € A and a finite dimensional A-module
V such that top V' = L(A) and socV = L(u), there exists some v € A
such that v > A\, v > p, and L(v) is a subquotient of V', where soc
denotes the socle of a module.

3. (A°? A, L*) is adapted, where AP is the opposite k-algebra of A, and
L*(\) := L(\)*.

(3.3) Let (A,A,L) be as above. For A € A, we define the Weyl module
A(X) = Aa(A) to be P(X)/trz) P(A). We define the dual Weyl module
V(A) = Va()N) to be Ayer(A)*. Or equivalently, V()) is defined to be the
largest submodule of Q(A\) whose simple subquotient is isomorphic to L(u)
for some pu < A.

An A-module V is said to be Schurian if End4 V' is a division ring. If V
is finite dimensional, then this is equivalent to saying that k — End4 V' is an
isomorphism, since k is algebraically closed.

3.4 Lemma. For A € A, the following are equivalent.
1. A(\) is Schurian.

2. [A(N) : L(\)] = 1.

3. If V is a finite dimensional A-module, [V : L(u)] # 0 implies p < A,
and top V = socV = L(A), then V = L(\).

4. [V(N) : L(N)] = 1.
5. V(A) is Schurian.
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(3.5) Let A be an abelian category, and C be a set of its objects. We define
F(C) to be the full subcategory of A consisting of objects A of A such that
there is a filtration

0=VycWic---CcV,=4

such that each V;/V;_; is isomorphic to an element of C. Let (A, A, L) be as
above. Then we define A = {A(N\) | A € A}, and V ={V(\) | A € A}.

(3.6) Let A be an abelaian category, and C a set of objects or a full subcat-
egory. We define *+C to be the full subcategory of A consisting of A € A such
that Ext’(A,C) =0 for any C' € C and i > 0. Similarly, we define C* to be
the full subcategory of A consisting of B € A such that Ext’(C, B) = 0 for
any C' € C and 7 > 0.

Let A be a finite dimensional k-algebra. Set A = Amod. Then a full
subcategory of the form X = +C for some subset C of the object set of A
is resolving (that is, closed under extensions and epikernels, and contains
all projective modules), and is closed under direct summands. Similarly, a
full subcategory of the form ) = C* for some subset C of the object set of
A is coresolving (that is, closed under extensions and monocokernels, and
contains all injective modules), and is closed under direct summand.

3.7 Proposition. Let (A, A, L) be a triple such that A is a fiite dimensional
k-algebra, A is a finite partially ordered set, and L is a bijection from A to
the set of isomorphism classes of simples of A. Assume that A is adapted,
and all Weyl modules A(\) are Schurian. Then the following conditions are
equivalent.

1. /A e F(A).

2. If X € Amod and Ext!, (X, V(\)) =0 for any A € A, then X € F(A).
3. F(A) = LF(V).

4. F(V) = F(A)*-

5. Exty(A(N\), V(i) =0 for A\, u € A.

3.8 Definition. We say that A, or better, (A, A, L) is a quasi-hereditary
algebra if A is adapted, A()) is Schurian for any A € A, and 4A € X(A).
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Note that (A, A, L) is a quasi-hereditary algebra if and only if (A°, A, L*)
is quasi-hereditary.

By Corollary 2.29 and Corollary 2.35, we immediately have that the Schur
algebra S(n,r) (or better, (S(n,r), AT (n,r), L)) is a quasi-hereditary algebra,
and A()) defined in the last section agrees with that in this section.

(3.9) Let (A, A, L) be a quasi-hereditary algebra. A finite dimensional A-
module V is said to be good if V' € F(V). V is said to be cogood if V' € F(A).
Set w = F(A)NF(V).

3.10 Theorem (Ringel [Rin]). Let A be a quasi-hereditary algebra, and
M € Amod. Then there exists a unique (up to isomorphisms) short exact
sequence

0=Yy 5 Xy B M=0

such that Xy € F(A), Yy € F(V), and p is right minimal (ie., ¢ €
Enda(Xy), pp = p imply that ¢ is an isomorphism), and there exists a
unique (up to isomorphisms) short exact sequence

0—-MLY,% X, —0

such that Y}, € F(V), X}, € F(A), and j is left minimal (i.e., ¢ € End, Y},
¥j = j imply 9 is an isomorphism).

We denote Xy() by T'(A), and call it the indecomposable tilting mod-
ule of highest weight A. Note that T'(\) € w, T'(\) is indecomposable, and
Yiny ETA). T = @yea T'(N) is called the (full) tilting module (the char-
acteristic module) of the quasi-hereditary algebra A. Note that w = addT.
Note also that T"is both tilting and cotilting module in the usual sense. There
would be no problem if we call an A-module 7" such that add 7’ = add T a
characteristic module of A, as we shall do so later. We call an object of w a
partial tilting module.

If A is a minimal element of A then we have that A(\) = L(A) = V()).
Thus we have L()) is partial tilting, and hence L(\) = T'()).

(3.11) Now consider GL, = GL(V'), where V' = k™ is an n-dimensional
k-vector space with a basis eq,...,e,. A finite dimensional polynomial rep-
resentation W = @, W,, where W, is an S(n, r)-module, is said to be good
(resp. cogood, partial tilting), if each W, is so.
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(3.12) As can be checked directly, for 0 < r <n, A"V is a simple S(n,r)-
module whose highest weight is w, = (1,1,...,1,0,0...,0). As w, is a
minimal element of AT (n,r), We have that

Alw,) 2 V(w,) 2 T(w,) = L{w,) = A" V.
The following theorem is useful in determining the tilting module of GL,,.

3.13 Theorem (Boffi-Donkin—-Mathieu [Bof], [Don], [Mat]). If M €
S(n,r)mod and N € S(n,r")mod are good (resp. cogood, partial tilting),
then the tensor product M ® N is good (resp. cogood, partial tilting) as an
S(n,r +r’)-module.

Thus for a sequence A = (A1, ..., \;) with 0 < \; < n, the tensor product
ANV =AN"Ve aAdV

is partial tilting. Note that e; A---Aey ®---®er A--- Aey, is a highest
weight vector of weight A = (Ay,...,\,), where \; = #{j | A\; > i}. As
dim;(A*V); = 1, we have

3.14 Lemma. For each A € A" (n,r), there is an isomorphism of the form

AV =T & @) )

p<A

Note that A = A for A € AT (n,r). Note also that ¢/(\, 1) depends on the
characteristic of the base field k in general.

(3.15) Let V = k™ with the basis ey,...,e,. Assume that n > r. Then
D,V =V® where w, = (1,1,...,1,0,...,0) € AT(n,r), so

Ends(nm) (V®T) = (V®T )wT ,

which has {o(e;®- - -®e,)} as its k-basis. Thus the map k&, — Endgg, (V")
is an isomorphism.

(3.16) We define the autorphism of k-algebra ¥ : kS, — kG, by V(o) =
(—1)?0. So it induces the automorphism ¥ : Endgg, ) V" — Endg, ) V.
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3.17 Lemma. Let A\, u € A(n,r). Then there exists a unique isomorphism
VU : Homgn,r) (DAV, D, V) — Homggnry (A, Vi /\ﬂ V') such that the diagram

(3171) Homs(n,r)(DAV, DﬂV) —\Ij> Homs(n,,,)(/\)\ ‘/, /\,u V)

lA*m* lA*m*

Homs(n,r)(\/@, V®r) —\II> Homg(m)(V@, V®T)

is commutative, and is compatible with the change of rings.

Proof (sketch). We work over arbitrary base ring R, rather than an alge-
braically closed field. Let Vz = Z", and Vg := R ®z Vz. S(n,r)z =
D, (Endz(V7z)) is the Schur algebra over Z, and S(n,r)g :== R ®z S(n,7)z.

Then we have canonical isomorphisms

R @z Homg (), (V5" Vi) = Homg (VT VET),
R Xz HomS(n,r Z(DAV27 DMVZ) - HomS(n,r R(DAVRa DMVR)a
R ®z Homg (), (Ay Vz, A\, Vz) = Homs(uryn (Ay Ve, A\, VR)-

The first isomorphism is easy, as
R®ZHomS(n,T)Z(VZ®T, VZ®T) = R®Z<VZ®T)MT = (V}?r)wr = HOIHS (n T)R(V}?r, V®T).

The second isomorphism also holds similarly. The third isomorphism is by
the u-goodness of A, Vz, see [Has, Corollary I11.4.1.8].

Thus we only have to prove the corresponding statement for R = Z.
However, first consider the case that R = Q. Then for v € A(n,r), define

S,={ce&, |Vio(ln+-+via+Lm+-+v1+y]) C
N o Z A S B Z 1 SRR S AN S 71 P

Also define idempotents

Y ocke,, ¢ = #6 > (- e,) € kG,

eSS, 0EG,

€y =

#6

Then we can identify D, Vgy C Vgr by el,V(g”", and A\, Vo C Vgr by e’y\/g’r.
Thus Homs(n, o (DAVo, D, Vo) and Homg(,, ), (A Va, A\, Vo) are respectively
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identified with e,kG&,ey and €, kS,€). So ¥ maps Homg(n,ry, (DaVa, D, Vo)
bijectively onto Homg(, ), (Ay Va, A, Vo), and W is its inverse.

Now consider the case R = Z. Then as V" — A, Vz is surjective and
N, Vz — V7" is a Z-split mono, we have

Homg ), (Ay Vz, A, Vz) = (Homsry, (A Vas A, V) ©2Q)NHomg (V" V7).

So
U Homgnr), (DaAVz, DyVz) — Homg ), (A Vz, A, Vz)

is uniquely defined so that the diagram (3.17.1) is commutative.
U is clearly injective, as it is injective when considered over Q. The
surjectivity is difficult, and we omit the proof. See [AB]. O

(3.18) Nowset T = @ycp(n,y Ar V- Then T could be called a characteristic
module of S(n,r). Note that

S(n,r) = (Ends(u S(n,7))® = (Endsn( € DaV))® 2 (Endgn T)%
AeA(n,r)

is an algebra isomorphism, as can be seen easily from the fact that ¥ :
kS, — k&, is an algebra isomorphism. As Homg, (7, 7) is a functor from
S(n,r)mod to (Endg(n,y T)° mod, we have that it is also considered as a
functor from S(n,r)mod to itself.

Now we invoke the following Ringel’s theorem.

3.19 Theorem (Ringel [Rin, Theorem 6]). Let (A, A, L) be a quasi-
hereditary algebra, and T its characteristic module. Set A" = (End4 7P,

A = A°® F := Homu(T,?) : Amod — A’mod, Then (A’, N, L') is a quasi-
hereditary algebra, and F(VA(A)) >~ Aa(A), where L'(\) = top( (Va(N)).

(3.20) Set V4 = {Va(\) | A € A}, Ay = {Aa(N) | A € A}, Vo =
{VaA) | Ae N}, and Ay = {Ax(N) | A € A’} As T is a tilting module
(in the sense of [Miy]), F': F(V4) — F(Ay) is an exact equivalence whose
quasi-inverse G : F(Ay) — F(Va) is given by G = T®y4? [Miy]. This
equivalence induces an equivalence w4 — proj A’.

(3.21) Through the isomorphism S(n,r) = (Endg(,,,) T)°?, we get a func-
tor F' = Homg, (7, 7) : S(n,r) mod — S(n,r)mod. Note that F'(\, V) =
D,V almost by the definition of F. Let T'(\) be the indecomposable tilt-
ing module of highest weight X. Then F(T'()\)) = P(\) by Lemma 2.28 and
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Lemma 3.14. From this, the simple L(\) corresponds to the simple L(\) by F,
as A = A for A*(n,r). As?is order-reversing, the map (S(n,r), AT (n,r), L) —
(S(n,7), A" (n,r)’, L") is an isomorphism of quasi-hereditary algebra, which
is appropriately defined, where S(n,r) — S(n,r) = (Endgg,) 1) is given
above, and A*(n,r) — At (n,r) is the order reversing map ?.

Thus we have,

3.22 Theorem. Let n > r. Then T = @, (., A\ V 18 a characteristic
module (which may not be basic), and S(n,r) = (Endgg,) T)°P. The tilting
F : Homg,)(7T,7) gives an exact equivalence F': F(V) — F(A). We have
F(V(A) =AN).

3.23 Corollary (Akin—Buchsbaum [AB]). Let n > r. Then
Xt (V(A), V(1)) 2 Exty, ) (AX), A(R)
for A\, u € AT (n,r) and i > 0.

3.24 Corollary. Let n > r. Then ¢(\, 1) in Lemma 3.14 agrees with ¢(), /i)
(in Lemma 2.28).
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