代数学 III 演習 (橋本) 第9回

問題 9.1. $x^4 + x + 1 \in \mathbb{F}_2[x]$ が既約であることを示せ、また、このことを用いて $3x^4 + 2x^3 - 6x^2 - x + 1 \in \mathbb{Q}[x]$ が既約であることを示せ、

問題 9.2. $x^2y + xy^2 + y^3 + xy + y^2 + x + 1 \in \mathbb{F}_2[x, y]$ が既約であることを示せ.

問題 9.3. 環 R に対して、ある一意的な環準同型 $h_R: \mathbb{Z} \to R$ が存在することを示せ、また、 $h_R(\mathbb{Z}) \subset Z_R$ を示せ、ここに Z_R は R の中心 $\{r \in R \mid \forall a \in R \ ar = ra\}$ である.

 $\mathbb Z$ は PID なので、 $\mathbb Z$ のイデアル $\ker h_R$ を生成する非負整数 ν_R が一意的に存在する. この ν_R を R の標数という. 言い換えると、 $1+1+\dots+1=0$ (和は n 個) となる自然数 n の中で最小のもののことである. ただし、 そのような n がない場合は標数は 0 である.

問題 9.4. 整域の標数は 0 または素数であることを示せ.

問題 9.5. 局所環の標数は 0 または素数ベキであることを示せ. ただし, 素数ベキとは, ある素数 p とある自然数 $e \ge 1$ によって, p^e と表される自然数のことである.

問題 9.6. p が素数, R は標数 p の可換環とする. このとき, $F_R:R\to R$ を $F_R(x)=x^p$ で定義すると F_R は環準同型であることを示せ. F_R をフロベニウス写像という.

 $f:A\to B$ が可換環の準同型とする. B が A 上有限型あるいは有限生成とは, $B=A[b_1,\ldots,b_n]$ となる $b_1,\ldots,b_n\in B$ が存在することをいう. B が A 上有限であるとは, B を A 加群とみて有限生成であることをいう.

 $b \in B$ が A 上整であるとは、あるモニック多項式 $f(x) \in A[x]$ が存在して、f(b) = 0 となることをいう。B が A 上整であるとは、任意の B の元が A 上整であることをいう。なお、たまに f が有限、有限型、整であるなどという言い方をすることもある。

環 A と左 A 加群 M について, M が忠実であるとは, $a \in A$ で任意の $m \in M$ について am = 0 であれば, a = 0 であることをいう.

問題 9.7. $b \in B$ に対して、次が同値であることを示せ.

- (1) b は A 上整.
- (2) A[b] は A 上有限である.
- (3) $A[b] \subset C \subset B$ なる B の部分環 C で A 上有限なものが存在する.
- (4) 忠実 A[b] 加群 C で、A 加群としては有限であるものが存在する.

問題 9.8. $f: A \rightarrow B$ と $g: B \rightarrow C$ が可換環の準同型とする. 次に答えよ.

- (1) f と g が有限型であれば, $g \circ f$ も有限型である.
- (2) f と g が有限であれば, $g \circ f$ も有限である.
- (3) f と g が整であれば, $g \circ f$ も整である.

問題 9.9. $f: A \rightarrow B$ が可換環の準同型とするとき、

$$C = \{b \in B \mid b \text{ は } A \text{ 上整 } \}$$

とおくと, C は f(A) を含む B の部分環であることを示せ. C を B における A の整閉包という. C=f(A) のとき, A は B において整閉であるという.

問題 9.10. $f: A \rightarrow B$ が可換環の準同型とするとき, 次が同値であることを示せ.

- (1) B は A 上有限型かつ整.
- (2) B は A 上有限.

問題 9.11. 整域 R はその商体 Q(R) 内で整閉であるとき, 単に整閉整域であるという. UFD は整閉整域であることを示せ.

一般に整域 R のその商体内での整閉包を単に R の整閉包ということがある.

問題 9.12. $\mathbb{Z}[\sqrt{-3}]$ の整閉包を求めよ. また, t が変数のとき, $\mathbb{Q}[t^2,t^3]$ の整閉包を求めよ.

問題 9.13. $f:A\to B$ は可換環の準同型とし, C は A の B 内での整閉包とする. S が A の積閉集合とするとき, $f_S:A_S\to B_S$ を $f_S(a/s)=f(a)/s$ で定まる準同型とすると, A_S の B_S における整閉包は C_S であることを示せ.

問題 9.14. $A \to B$ は整域の整拡大(整な単射準同型)とする. このとき, 次が同値であることを示せ.

- (1) A が体.
- (2) B が体.

問題 9.15 (Lying-over theorem). $f:A\to B$ は整域の整拡大とする. このとき, ${}^af:\operatorname{Spec} B\to\operatorname{Spec} A$ を ${}^af(P)=f^{-1}(P)$ で定めると af は全射である.

問題 9.16 (Going-up theorem). $f:A\to B$ は整な可換環の準同型とする. このとき, 任意の $\mathfrak{p}_0,\mathfrak{p}_1\in\operatorname{Spec} A$ と任意の $P_0\in\operatorname{Spec} B$ について, もし $\mathfrak{p}_0\subset\mathfrak{p}_1$ で $P_0\cap A=\mathfrak{p}_0$ であるならば, ある $P_1\in\operatorname{Spec} B$ が存在して, $P_0\subset P_1$ かつ $P_1\cap A=\mathfrak{p}_1$ であることを示せ.

問題 9.17. $f:A\to B$ が整な可換環の準同型とするとき, ${}^af:\operatorname{Spec} B\to\operatorname{Spec} A$ は閉写像であることを示せ.