Acyclicity of flat complexes over a noetherian ring

MITSUYASU HASHIMOTO

Graduate School of Mathematics, Nagoya University Chikusa-ku, Nagoya 464-8602 JAPAN hasimoto@math.nagoya-u.ac.jp

Dedicated to Professor Masayoshi Nagata on his eightieth birthday

Abstract

Let R be a noetherian commutative ring, and

$$\mathbb{F}: \cdots \to F_2 \to F_1 \to F_0 \to 0$$

a flat R-complex. We prove that if $\kappa(\mathfrak{p}) \otimes_R \mathbb{F}$ is acyclic for any $\mathfrak{p} \in \operatorname{Spec} R$, then \mathbb{F} is acyclic, and $H_0(\mathbb{F})$ is R-flat. It follows that if \mathbb{F} is a (possibly unbounded) complex of flat R-modules and $\kappa(\mathfrak{p}) \otimes_R \mathbb{F}$ is exact for any $\mathfrak{p} \in \operatorname{Spec} R$, then $\mathbb{G} \otimes_R \mathbb{F}$ is exact for any R-complex \mathbb{G} . If, moreover, \mathbb{F} is a complex of projective R-modules, then it is null-homotopic (follows from Neeman's theorem).

1. Introduction

Throughout this paper, R denotes a noetherian commutative ring. The symbol \otimes without any subscript means \otimes_R . For $\mathfrak{p} \in \operatorname{Spec} R$, let $?(\mathfrak{p})$ denote the functor $\kappa(\mathfrak{p}) \otimes ?$, where $\kappa(\mathfrak{p})$ is the field $R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}$. An R-complex of the form

$$\mathbb{F}: \cdots \xrightarrow{d_2} F_1 \xrightarrow{d_1} F_0 \to 0$$

is said to be acyclic if $H_i(\mathbb{F}) = 0$ for any i > 0.

It has been known that, for an R-linear map of R-flat modules $\varphi : F_1 \to F_0$, if $\varphi(\mathfrak{p})$ is injective for any $\mathfrak{p} \in \operatorname{Spec} R$, then φ is injective and $\operatorname{Coker} \varphi$ is R-flat (see [1, Lemma I.2.1.4] and Corollary 6).

In this paper, we prove:

Theorem 1. Let

$$\mathbb{F}: \cdots \xrightarrow{d_2} F_1 \xrightarrow{d_1} F_0 \to 0$$

be an R-flat complex. If $\mathbb{F}(\mathfrak{p})$ is acyclic for any $\mathfrak{p} \in \operatorname{Spec} R$, then \mathbb{F} is acyclic, and $H_0(\mathbb{F})$ is R-flat. In particular, $M \otimes \mathbb{F}$ is acyclic for any R-module M.

The case of a map $\varphi: F_1 \to F_0$ is a special case of the theorem such that $F_i = 0$ for any i > 1.

By the theorem, it follows immediately that if \mathbb{F} is an (unbounded) R-flat complex and $\mathbb{F}(\mathfrak{p})$ is exact for any \mathfrak{p} , then \mathbb{F} is K-flat and exact. Combining this and Neeman's result, we can also prove that an (unbounded) projective R-complex \mathbb{P} is null-homotopic if $\mathbb{P}(\mathfrak{p})$ is exact for any $\mathfrak{p} \in \operatorname{Spec} R$.

The author is grateful to H. Brenner for a valuable discussion. Special thanks are also due to A. Neeman for sending his preprint [2] to the author.

2. Acyclicity of flat complexes

We give a proof of Theorem 1.

Proof of Theorem 1. It suffices to prove that $R/I \otimes \mathbb{F}$ is acyclic for any ideal I of R. Indeed, if so, then considering the case that I = 0, we have that \mathbb{F} is acyclic so that it is a flat resolution of $H_0(\mathbb{F})$. Since $R/I \otimes \mathbb{F}$ is acyclic for any ideal I, we have that $\operatorname{Tor}_i^R(R/I, H_0(\mathbb{F})) = 0$ for any i > 0. Thus $H_0(\mathbb{F})$ is R-flat. So $\operatorname{Tor}_i^R(M, H_0(\mathbb{F})) = 0$ for any i > 0, and the last assertion follows.

Assume the contrary, and let I be maximal among the ideals J such that $R/J\otimes \mathbb{F}$ is not acyclic. Then replacing R by R/I and \mathbb{F} by $R/I\otimes \mathbb{F}$, we may assume that $R/I\otimes \mathbb{F}$ is acyclic for any nonzero ideal I of R, but \mathbb{F} itself is not acyclic.

Assume that R is not a domain. There exists some filtration

$$0 = M_0 \subset M_1 \subset \cdots \subset M_r = R$$

such that for each i, $M_i/M_{i-1} \cong R/P_i$ for some $P_i \in \operatorname{Spec} R$. Since each P_i is a nonzero ideal, $R/P_i \otimes \mathbb{F}$ is acyclic. So $M_i \otimes \mathbb{F}$ is acyclic for any i. In

particular, $\mathbb{F} \cong M_r \otimes \mathbb{F}$ is acyclic, and this is a contradiction. So R must be a domain.

For each $x \in R \setminus 0$, there is an exact sequence

$$0 \to \mathbb{F} \xrightarrow{x} \mathbb{F} \to R/Rx \otimes \mathbb{F} \to 0.$$

Since $R/Rx \otimes \mathbb{F}$ is acyclic, we have that $x: H_i(\mathbb{F}) \to H_i(\mathbb{F})$ is an isomorphism for any i > 0. In particular, $H_i(\mathbb{F})$ is a K-vector space, where $K = \kappa(0)$ is the field of fractions of R. So

$$H_i(\mathbb{F}) \cong K \otimes H_i(\mathbb{F}) \cong H_i(K \otimes \mathbb{F}) = H_i(\mathbb{F}(0)) = 0 \qquad (i > 0),$$

and this is a contradiction.

Let A be a ring. A complex \mathbb{F} of left A-modules is said to be K-flat if the tensor product $\mathbb{G} \otimes_A^{\bullet} \mathbb{F}$ is exact for any exact sequence \mathbb{G} of right A-modules, see [3].

For a chain complex

$$\mathbb{H}: \cdots \to H_{i+1} \xrightarrow{d_{i+1}} H_i \xrightarrow{d_i} H_{i-1} \to \cdots$$

of left or right A-modules, we denote the complex

$$\cdots \to H_{i+1} \to \operatorname{Ker} d_i \to 0$$

by $\tau_{\geq i}\mathbb{H}$ or $\tau^{\leq -i}\mathbb{H}$. Since $\mathbb{G}\cong \varinjlim \tau^{\leq n}\mathbb{G}$, \mathbb{F} is K-flat if and only if $\mathbb{G}\otimes_A^{\bullet}\mathbb{F}$ is exact for any exact sequence $\overline{\mathbb{G}}$ of right A-modules bounded above (i.e., $\mathbb{G}_{-i}=\mathbb{G}^i=0$ for $i\gg 0$). A flat complex \mathbb{F} of left A-modules is K-flat if it is bounded above, as can be seen easily from the spectral sequence argument. A null-homotopic complex \mathbb{F} is K-flat, since $\mathbb{G}\otimes_A\mathbb{F}$ is null-homotopic for any complex \mathbb{G} .

Lemma 2. Let A be a ring, and

$$\mathbb{F}: \cdots \to F_{i+1} \xrightarrow{d_{i+1}} F_i \xrightarrow{d_i} F_{i-1} \to \cdots$$

a complex of flat left A-modules. Then the following are equivalent.

- **1** $M \otimes_A \mathbb{F}$ is exact for any right A-module M.
- **2** \mathbb{F} is exact, and $\operatorname{Im} d_i$ is flat for any i.

3 \mathbb{F} is K-flat and exact.

Proof. $1\Rightarrow 2$ Obviously, $\mathbb{F} \cong A \otimes_A \mathbb{F}$ is exact. Thus

$$\mathbb{F}': \cdots \to F_{i+1} \to F_i \to 0$$

is a flat resolution of $\operatorname{Im} d_i$, where F_{n+i} has the homological degree n in \mathbb{F}' . For any $i \in \mathbb{Z}$,

$$\operatorname{Tor}_{1}^{A}(M,\operatorname{Im} d_{i}) \cong H_{1}(M \otimes_{A} \mathbb{F}') \cong H_{i+1}(M \otimes_{A} \mathbb{F}) = 0$$

for any right A-module M. Thus Im d_i is A-flat.

 $2\Rightarrow 1$ For any $i\in\mathbb{Z}$,

$$H_{i+1}(M \otimes_A \mathbb{F}) \cong H_1(M \otimes_A \mathbb{F}') \cong \operatorname{Tor}_1^A(M, \operatorname{Im} d_i) = 0,$$

where \mathbb{F}' is as above.

 $\mathbf{1,2}\Rightarrow \mathbf{3}$ We prove that $\mathbb{G}\otimes_A\mathbb{F}$ is exact for any bounded above complex \mathbb{G} of right A-modules. Since $\mathbb{F}\cong \varinjlim \tau^{\leq n}\mathbb{F}$ and $\tau^{\leq n}\mathbb{F}$ satisfies $\mathbf{2}$ (and hence $\mathbf{1}$), we may assume that \mathbb{F} is also bounded above. Then by an easy spectral sequence argument, $\mathbb{G}\otimes_A\mathbb{F}$ is exact.

 $3\Rightarrow 1$ Let \mathbb{P} be a projective resolution of M. Since \mathbb{P} is a bounded above flat complex of left A^{op} -modules and \mathbb{F} is an exact complex of right A^{op} -modules, $\mathbb{P}\otimes_A\mathbb{F}$ is exact. Let \mathbb{Q} be the mapping cone of $\mathbb{P}\to M$. Then $\mathbb{Q}\otimes_A\mathbb{F}$ is also exact, since \mathbb{Q} is exact and \mathbb{F} is K-flat. By the exact sequence of homology groups

$$H_i(\mathbb{P} \otimes_A \mathbb{F}) \to H_i(M \otimes_A \mathbb{F}) \to H_i(\mathbb{Q} \otimes_A \mathbb{F}),$$

we have that $M \otimes_A \mathbb{F}$ is also exact.

Corollary 3. Let

$$\mathbb{F}: \cdots \to F_{n+1} \xrightarrow{d_{n+1}} F_n \xrightarrow{d_n} F_{n-1} \to \cdots$$

be a (possibly unbounded) flat complex of R-modules. If $\mathbb{F}(\mathfrak{p})$ is exact for any $\mathfrak{p} \in \operatorname{Spec} R$, then \mathbb{F} is K-flat and exact.

Proof. By Lemma 2, it suffices to show that for any $n \in \mathbb{Z}$ and any R-module $M, H_n(M \otimes \mathbb{F}) = 0$. But this is trivial by Theorem 1 applied to the complex

$$\cdots \to F_{n+1} \xrightarrow{d_{n+1}} F_n \xrightarrow{d_n} F_{n-1} \to 0.$$

The following was proved by A. Neeman [2, Corollary 6.10].

Theorem 4. Let A be a ring, and \mathbb{P} a complex of projective left A-modules. If \mathbb{P} is K-flat and exact, then \mathbb{P} is null-homotopic.

By Corollary 3 and Theorem 4, we have

Corollary 5. Let \mathbb{P} be a complex of R-projective modules. If $\mathbb{P}(\mathfrak{p})$ is exact for any $\mathfrak{p} \in \operatorname{Spec} R$, then \mathbb{P} is null-homotopic.

The following also follows.

Corollary 6 (cf. [1, Lemma I.2.1.4]). Let $\varphi : F_1 \to F_0$ be an R-linear map between R-flat modules. Then the following are equivalent.

1 φ is injective and Coker φ is R-flat.

2 φ is pure.

3 $\varphi(\mathfrak{p})$ is injective for any $\mathfrak{p} \in \operatorname{Spec} R$.

Proof. $1\Rightarrow 2\Rightarrow 3$ is obvious. $3\Rightarrow 1$ is a special case of Theorem 1.

Corollary 7 ([1, Corollary I.2.1.6]). Let F be a flat R-module. If $F(\mathfrak{p}) = 0$ for any $\mathfrak{p} \in \operatorname{Spec} R$, then F = 0.

Proof. Consider the zero map $F \to 0$, and apply Corollary 6. We have that this map is injective, and hence F = 0.

Corollary 8. Let $\varphi : F_1 \to F_0$ be an R-linear map between R-flat modules. If $\varphi(\mathfrak{p})$ is an isomorphism for any $\mathfrak{p} \in \operatorname{Spec} R$, then φ is an isomorphism.

Proof. By Corollary 6, φ is injective and $C := \operatorname{Coker} \varphi$ is R-flat. Since $C(\mathfrak{p}) \cong \operatorname{Coker}(\varphi(\mathfrak{p})) = 0$ for any $\mathfrak{p} \in \operatorname{Spec} R$, we have that C = 0 by Corollary 7.

Corollary 9. Let M be an R-module. If $\operatorname{Tor}_i^R(\kappa(\mathfrak{p}), M) = 0$ for any i > 0, then M is R-flat. If $\operatorname{Tor}_i^R(\kappa(\mathfrak{p}), M) = 0$ for any $i \geq 0$, then M = 0.

Proof. For the first assertion, Let \mathbb{F} be a projective resolution of M, and apply Theorem 1. The second assertion follows from the first assertion and Corollary 7.

Corollary 10. Let M be an R-module. If $\operatorname{Ext}_R^i(M, \kappa(\mathfrak{p})) = 0$ for any i > 0 (resp. $i \geq 0$), then M is R-flat (resp. M = 0).

Proof. This is trivial by Corollary 9 and the fact

$$\operatorname{Ext}_{R}^{i}(M, \kappa(\mathfrak{p})) \cong \operatorname{Hom}_{\kappa(\mathfrak{p})}(\operatorname{Tor}_{i}^{R}(\kappa(\mathfrak{p}), M), \kappa(\mathfrak{p})). \quad \Box$$

3. Some examples

Example 11. There is an acyclic projective complex

$$\mathbb{P}: \cdots \to P_1 \to P_0 \to 0$$

over a noetherian commutative ring R such that $H_0(\mathbb{P})$ is R-flat and $h_0(\mathfrak{p}) := \dim_{\kappa(\mathfrak{p})} H_0(\mathbb{P}(\mathfrak{p}))$ is finite and constant, but $H_0(\mathbb{P})$ is neither R-finite nor R-projective.

Proof. Set $R = \mathbb{Z}$, $M = \sum_p (1/p)\mathbb{Z}$, and \mathbb{P} to be a projective resolution of M. Then M is R-torsion free, and is R-flat. Since $M_{(p)} = (1/p)\mathbb{Z}_{(p)}$, $h_0(\mathfrak{p}) = 1$ for any $\mathfrak{p} \in \operatorname{Spec} \mathbb{Z}$. A finitely generated nonzero torsion-free \mathbb{Z} -submodule of \mathbb{Q} must be rank-one free, but M is not a cyclic module, and is not rank-one free. This shows that M is not R-finite. As R is a principal ideal domain, any R-projective module is free. If M is projective, then it is free of rank $h_0((0)) = 1$. But M is not finitely generated, so M is not projective. \square $Remark\ 12$. Let (R,\mathfrak{m}) be a noetherian $local\ ring$, F a flat R-module, and C a non-negative integer. If $\dim_{\kappa(\mathfrak{p})} F(\mathfrak{p}) = c$ for any $\mathfrak{p} \in \operatorname{Spec} R$, then $F \cong R^c$, see $[1, \operatorname{Corollary}\ III.2.1.10]$.

Remark 13. Let

$$\mathbb{P}: 0 \to P^0 \xrightarrow{d^0} P^1 \xrightarrow{d^1} P^2 \xrightarrow{d^2} \cdots$$

be an R-flat complex such that P^0 is R-projective. Assume that $\mathbb{P}(\mathfrak{p})$ is acyclic (i.e., $H^i(\mathbb{P}(\mathfrak{p})) = 0$ for any i > 0) and $h^0_{\mathbb{P}}(\mathfrak{p}) := \dim_{\kappa(\mathfrak{p})} H^0(\mathbb{P}(\mathfrak{p}))$ is finite for any $\mathfrak{p} \in \operatorname{Spec} R$. If $h^0_{\mathbb{P}}$ is a locally constant function on $\operatorname{Spec} R$, then $H^0(\mathbb{P})$ is R-finite R-projective, and $M \otimes \mathbb{P}$ is acyclic and the canonical map $M \otimes H^0(\mathbb{P}) \to H^0(M \otimes \mathbb{P})$ is an isomorphism for any R-module M, see [1, Proposition III.2.1.14]. If, moreover, \mathbb{P} is an R-projective complex, then $\operatorname{Im} d^i$ is R-projective for any i > 0, as can be seen easily from Theorem 4.

Example 14. Let M be an R-module. Even if $M(\mathfrak{p}) = 0$ for any $\mathfrak{p} \in \operatorname{Spec} R$, M may not be zero. Even if $\operatorname{Tor}_1^R(\kappa(\mathfrak{p}), M) = 0$ for any $\mathfrak{p} \in \operatorname{Spec} R$, M may not be R-flat.

Indeed, let (R, \mathfrak{m}, k) be a d-dimensional regular local ring, and E the injective hull of k. Then

$$\operatorname{Tor}_{i}^{R}(\kappa(\mathfrak{p}), E) \cong \left\{ \begin{array}{ll} k & (i = d \text{ and } \mathfrak{p} = \mathfrak{m}) \\ 0 & (\text{otherwise}) \end{array} \right.$$

E is not R-flat unless d = 0.

Proof. Since supp $E = \{\mathfrak{m}\}$, $\operatorname{Tor}_{i}^{R}(\kappa(\mathfrak{p}), E) = 0$ unless $\mathfrak{p} = \mathfrak{m}$.

Let $\mathbf{x} = (x_1, \dots, x_d)$ be a regular system of parameters of R, and \mathbb{K} the Koszul complex $K(\mathbf{x}; R)$, which is a minimal free resolution of k. Note that \mathbb{K} is self-dual. That is, $\mathbb{K}^* \cong \mathbb{K}[-d]$, where $\mathbb{K}^* = \operatorname{Hom}_R^{\bullet}(\mathbb{K}, R)$, and $\mathbb{K}[-d]^n = \mathbb{K}^{n-d}$. So

$$\operatorname{Tor}_{i}^{R}(k,E) \cong H^{-i}(\mathbb{K} \otimes E) \cong H^{-i}(\mathbb{K}^{**} \otimes E) \cong H^{-i}(\operatorname{Hom}_{R}^{\bullet}(\mathbb{K}[-d],E))$$
$$\cong H^{-i}(\operatorname{Hom}_{R}^{\bullet}(k[-d],E)) \cong \left\{ \begin{array}{ll} k & (i=d) \\ 0 & (i \neq d) \end{array} \right..$$

Example 15. There is a projective complex \mathbb{P} over a noetherian commutative ring R such that for each $\mathfrak{m} \in \operatorname{Max}(R)$, $\mathbb{P}(\mathfrak{m})$ is exact, but \mathbb{P} is not exact, where $\operatorname{Max}(R)$ denotes the set of maximal ideals of R.

Proof. Let R be a DVR with its field of fractions K, and \mathbb{P} a projective resolution of K.

References

- [1] M. Hashimoto, "Auslander-Buchweitz Approximations of Equivariant Modules," *London Mathematical Society Lecture Note Series* **282**, Cambridge (2000).
- [2] A. Neeman, The homotopy category of flat modules, preprint.
- [3] N. Spaltenstein, Resolutions of unbounded complexes, *Compositio Math.* **65** (1988), 121–154.