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1 Introduction

This report is a preliminary version, and a more detailed final version will
be published elsewhere.

Let A be a Zn-graded ring, I a prime ideal (resp. radical ideal, primary
ideal) of A, and I∗ the homogeneous ideal generated by the all homogeneous
elements of I. Then it is well-known that I∗ is again a prime ideal (resp.
radical ideal, primary ideal). In particular, if P is a prime ideal of A, then
the local ring AP ∗ makes sense. In particular, the following theorem makes
sense.

Theorem 1.1. Let M = Zn, A be an M -graded noetherian ring, and P
a prime ideal of A. If AP ∗ is Cohen–Macaulay (resp. Gorenstein, complete
intersection, regular), then so is AP .

This theorem was conjectured by Nagata [8] for the case that n = 1 for
the Cohen–Macaulay property, and solved by Hochster–Ratliff [5], Matijevic–
Roberts [7], Matijevic [6], Aoyama–Goto [1], and Avramov–Achiles [2], affir-
matively.



If M is a finitely generated abelian group with torsion elements and A is
M -graded, then even if P is a prime ideal, P ∗ may not be a prime. However,
a homogeneous ideal of the form P ∗ has some special interest. For homoge-
neous ideals I and J , if IJ ⊂ P ∗, then either I ⊂ P ∗ or J ⊂ P ∗. Our start
of this research is to consider a substitute of AP ∗ in this context.

More generally, let S be a scheme, G an S-group scheme, and X a noethe-
rian G-scheme, where a G-scheme means an S scheme on which G acts. We
assume that the second projection p2 : G×X → X is flat of finite type. Un-
der these settings, we define a G-prime, G-primary, and G-radical G-ideals.
As we will see, these are natural generalization of prime, primary, and rad-
ical ideals, respectively. We study some important properties of G-stable
closed subschemes defined by G-primary ideals. Moreover, we generalize
Theorem 1.1.

Utilizing this research, we can remove the assumption that G is smooth
with connected fibers from the talk of Ohtani [9] given at the 29th Symposium
on Commutative Algebra in Japan. This will be discussed elsewhere.

2 G-prime ideals

Let S, G, and X be as in the introduction.

Definition 2.1 (Mumford). A G-linearized OX-module (an equivariant
(G,OX)-module) is a pair (M,Φ) such that M is an OX-module, and Φ :
a∗M→ p∗2M is an isomorphism of OG×X-modules such that

(µ× 1X)∗Φ : (µ× 1X)∗a∗M→ (µ× 1X)∗p∗2M
agrees with

(µ× 1X)∗a∗M ∼=−→ (1G × a)∗a∗M Φ−→ (1G × a)∗p∗2M
∼=−→ p∗23a

∗M Φ−→ p∗23p
∗
2M

∼=−→ (µ× 1X)∗p∗2M,

where p23 : G×G×X → G×X is the projection. In this case, we sometimes
say that M is a G-linearized OX-module with Φ its structure map.

Definition 2.2. A morphism ϕ : (M,Φ) → (N ,Ψ) of G-linearized OX-
modules is a morphism ϕ :M→N such that Ψ ◦ (a∗ϕ) = (p∗2ϕ) ◦ Φ.

Thus we have a category of G-linearized OX-modules in a natural way.



Definition 2.3. Let (M,Φ) be a G-linearized OX-module. We say that N
is an equivariant (G,OX)-submodule ofM if N is an OX-submodule ofM,
and Φ(a∗N ) = p∗2N (note that a and p2 are flat). If, moreover, M = OX ,
then we say that N is a G-ideal of OX .

If N is an equivariant (G,OX)-submodule of M, then (N ,Φ|N ) is a
G-linearized OX-module, and the inclusion N ↪→ M is a morphism of
G-linearized OX-modules. Conversely, if ϕ : N → M is a morphism of
G-linearized OX-modules, then the image of ϕ is an equivariant (G,OX)-
submodule of M.

The following is [4, Corollary 12.8, Lemma 12.12].

Theorem 2.4. The category Qch(G,X) of quasi-coherent G-linearized OX-
modules is a locally noetherian abelian category, and (M,Φ) is a noetherian
object of Qch(G,X) if and only if M is coherent. The forgetful functor
FX : Qch(G,X) → Qch(X) given by (M,Φ) 7→ M is faithful exact, and
admits a right adjoint.

(Quasi-) coherent G-linearized OX-modules are closed under various ring-
theoretic operations.

Lemma 2.5. Let M, N , L be in Qch(G,X), I be a G-ideal, and M1,
M2,M3, andMλ be quasi-coherent equivariant (G,OX)-submodules ofM.
Let L and M3 be coherent. Then the following modules have structures
of quasi-coherent G-linearized OX-modules: TorOXi (M,N ), ExtiOX (L,M),

H i
I(M) ∼= lim−→ExtiOX (OX/In,M), the Fitting ideal Fittj(L), M1 ∩ M2,∑
λMλ, IM1, M1 :M3, and M1 : I.

Let M be in Qch(G,X), and m be an OX-submodule of M. The sum
of all quasi-coherent equivariant (G,OX)-submodules of M contained in m

is denoted by m∗. m∗ is the largest quasi-coherent equivariant (G,OX)-
submodule of M contained in m.

Let Y = V (a) be a closed subscheme of X. Then Y ∗ := V (a∗) is the
smallest G-stable closed subscheme of X containing Y .

From now on, all ideals and G-ideals are required to be coherent. All
modules and G-linearized modules are required to be quasi-coherent.

Lemma 2.6. Let M be in Qch(G,X), m, n, and mλ be OX-submodules of
M, and N be a coherent equivariant (G,OX)-submodule of M. Let I be a
G-ideal ofOX . Then we have: 1) (

⋂
λ m∗λ)

∗ = (
⋂
λ mλ)

∗; 2) m∗∩n∗ = (m∩n)∗;
3) (m : N )∗ = m∗ : N ; 4) (m : I)∗ = m∗ : I.



3 G-prime and G-radical G-ideals

Lemma 3.1. Let P be a G-ideal of OX . Then the following are equivalent.

• There exists some ideal p of OX such that p is prime (i.e., V (p) is
integral) and p∗ = P .

• P 6= OX , and if I and J are G-ideals of OX and IJ ⊂ P, then I ⊂ P
or J ⊂ P .

Definition 3.2. If the equivalent conditions in the lemma are satisfied, we
say that P is a G-prime G-ideal.

Definition 3.3. Let I be a G-ideal of OX . Then VG(I) denotes the set of
G-prime ideals containing I. We set G

√I := (
⋂
P∈VG(I)P)∗, and call G

√I the
G-radical of I.

Lemma 3.4. Let I, J , and P be G-ideals of OX . Then we have: 1) I ⊂
G
√I ⊂ √I, G

√I =
√I ∗. 2) If I ⊃ J , then G

√I ⊃ G
√J . 3) G

√IJ =
G
√I ∩ J = G

√I ∩ G
√J . 4)

G
√

G
√I = G

√I. 5) If P is a G-prime, then
G
√P = P .

Lemma 3.5. Let I be a G-ideal of OX . Then the following are equivalent.
1) I = G

√I; 2) I is the intersection of finitely many G-prime G-ideals; 3)
There exists some ideal a of OX such that a is radical (i.e., V (a) is reduced),
and a∗ = I.

If the equivalent conditions in the lemma are satisfied, then we say that
I is G-radical. A G-prime G-ideal is G-radical.

4 G-primary submodules

From now on, until the end of this report, let M be a coherent G-linearized
OX-module, and N its coherent equivariant (G,OX)-submodule.

Definition 4.1. We say that N is G-primary if N 6= M, and for any
coherent equivariant (G,OX)-submodule L of M, either N : L = OX or
N : L ⊂ G

√N :M holds.

If N is G-primary, then P = G
√N :M is G-prime. In this case, we say

that N is P-G-primary.



Lemma 4.2. For a prime ideal p of OX , p∗ is G-prime. For a radical ideal
a of OX , a∗ is G-radical. If n is a p-primary OX-submodule of M, then n∗

is a p∗-G-primary submodule of M. For a G-primary submodule N of M,
there exists some primary OX-submodule n of M such that n∗ = N .

An expression
N =M1 ∩ · · · ∩Mr

is called a G-primary decomposition if this equation holds, and each Mi is
a G-primary submodule ofM. We say that the decomposition is minimal if
N 6= ⋂j 6=iMj for any i, and G

√Mi :M is distinct.

Proposition 4.3. N has a minimal G-primary decomposition.

Proof (sketch). Let
N = m1 ∩ · · · ∩mr

be a usual primary decomposition. Then

N = N ∗ = (m1 ∩ · · · ∩mr)
∗ = m∗1 ∩ · · · ∩m∗r

is a G-primary decomposition. We can make it minimal, as usual.

Theorem 4.4. The set

AssG(M/N ) = { G
√
Mi :M | i = 1, . . . , r}

is independent of the choice of minimal G-primary decomposition

N =M1 ∩ · · · ∩Mr,

and depends only on M/N .

We call an element of AssG(M/N ) a G-associated G-prime. The set
of minimal elements of AssG(M/N ) is denoted by MinG(M/N ), and its
element is called a G-minimal G-prime. An element of the set AssG(M/N )\
MinG(M/N ) is called a G-embedded G-prime.

Theorem 4.5. Let
N =M1 ∩ · · · ∩Mr

be a minimal G-primary decomposition and

Mi = mi,1 ∩ · · · ∩mi,si



a minimal primary decomposition. Then

N =
r⋂
i=1

(mi,1 ∩ · · · ∩mi,si)

is a minimal primary decomposition.

Proposition 4.6. A G-primary submodule N of M does not have an em-
bedded prime. For each minimal prime p of M/N , we have p∗ = G

√N :M.

Corollary 4.7. We have

Ass(M/N ) =
s∐
i=1

Ass(M/Mi) =
∐

P∈AssG(M/N )

Ass(OX/P)

and
AssG(M/N ) = {p∗ | p ∈ Ass(M/N )}

Corollary 4.8. Ass(M/N ) = Min(M/N ) if and only if AssG(M/N ) =
MinG(M/N ).

5 Smooth group schemes and Group schemes

with connected fibers

For some groups, the notion of G-prime G-ideal agrees with that of G-ideal
which is a prime ideal.

Lemma 5.1. Assume that G is S-smooth. If a is a radical ideal of OX , then
a∗ is also radical. In particular, any G-radical G-ideal is radical.

Corollary 5.2. Assume that G is S-smooth. If I is a G-ideal of OX , then√I = G
√I. In particular,

√I is a G-radical G-ideal.

Lemma 5.3. Assume that G → S has connected fibers. If q is a primary
ideal of OX , then q∗ is also primary. In particular, a G-primary G-ideal is
primary.

Corollary 5.4. Assume that G→ S has connected fibers. If I is a G-ideal,
then a minimal G-primary decomposition of I is also a minimal primary
decomposition.

Corollary 5.5. Assume that G → S is smooth with connected fibers. If p

is a prime, then p∗ is also a prime. Any G-prime G-ideal is a prime. For a
G-ideal I of OX , any associated prime of I is a G-prime G-ideal.



6 G-stable closed subschemes defined by G-

primary G-ideals

Theorem 6.1. Let 0 be G-primary in OX . Then the dimension of the fiber
of p2 : G×X → X is constant.

Theorem 6.2. Let 0 be G-primary in OX . If X has an affine open covering
(SpecAi) such that each Ai is Hilbert, universally catenary, and for
any minimal prime P of Ai, the heights of maximal ideals of Ai/P
are the same (for example, X is of finite type over a field or Z). Then the
dimensions of the irreducible components of X are the same.

Remark 6.3. There is an example of G = X such that the dimensions of
the irreducible components are different. The bold face assumptions are
necessary. The bold face property is preserved by of-finite-type extensions.

The following is a generalization of Theorem 1.1.

Theorem 6.4. Let y ∈ X and Y = ȳ. Let η be the generic point of an
irreducible component of Y ∗. Then: 1) dimOX,y ≥ dimOX,η. 2) If Mη

is maximal Cohen–Macaulay (resp. of finite injective dimension, projective
dimension m, dim− depth = n, torsionless, reflexive, G-dimension g), then
so is My. 3) If OX,η is a complete intersection, then so is OX,y. 4) If G
is smooth and OX,η is regular, then OX,y is regular. 5) Assume that G is
smooth and X is a locally excellent Fp-scheme. If OX,η is weakly F -regular
(resp. F -regular, F -rational), then so is OX,y.

Some special cases of Theorem 6.4 was proved by the author [3], and the
author and M. Ohtani (unpublished).

Consider the case S = SpecZ, G = Gn
m, and X = SpecA is affine. Then

A is a Zn-graded ring.

Corollary 6.5. Let A be a locally excellent Zn-graded Fp-algebra. Let P be
a prime ideal of A, and let P ∗ be the prime ideal generated by homogeneous
elements of P . If AP ∗ is weakly F -regular (resp. F -regular, F -rational), then
so is AP .

Corollary 6.6. Let Y be a G-stable closed subscheme of X defined by a
G-primary G-ideal. If η and ζ are generic points of irreducible components
of Y , then dimOX,η = dimOX,ζ .



X is said to be G-artinian if every G-prime of OX is a G-minimal G-prime
of 0.

Corollary 6.7. A G-artinian G-scheme is Cohen–Macaulay.
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