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1 Introduction

This report is a preliminary version, and a more detailed final version will
be published elsewhere.

Let A be a Z"-graded ring, I a prime ideal (resp. radical ideal, primary
ideal) of A, and I* the homogeneous ideal generated by the all homogeneous
elements of I. Then it is well-known that I* is again a prime ideal (resp.
radical ideal, primary ideal). In particular, if P is a prime ideal of A, then
the local ring Ap+ makes sense. In particular, the following theorem makes
sense.

Theorem 1.1. Let M = Z", A be an M-graded noetherian ring, and P
a prime ideal of A. If Ap« is Cohen—Macaulay (resp. Gorenstein, complete
intersection, regular), then so is Ap.

This theorem was conjectured by Nagata [8] for the case that n = 1 for
the Cohen—Macaulay property, and solved by Hochster—Ratliff [5], Matijevic—
Roberts [7], Matijevic [6], Aoyama—Goto [1], and Avramov—Achiles [2], affir-
matively.



If M is a finitely generated abelian group with torsion elements and A is
M-graded, then even if P is a prime ideal, P* may not be a prime. However,
a homogeneous ideal of the form P* has some special interest. For homoge-
neous ideals I and J, if IJ C P*, then either I C P* or J C P*. Our start
of this research is to consider a substitute of Ap« in this context.

More generally, let S be a scheme, G an S-group scheme, and X a noethe-
rian G-scheme, where a G-scheme means an S scheme on which G acts. We
assume that the second projection ps : G x X — X is flat of finite type. Un-
der these settings, we define a G-prime, G-primary, and G-radical G-ideals.
As we will see, these are natural generalization of prime, primary, and rad-
ical ideals, respectively. We study some important properties of G-stable
closed subschemes defined by G-primary ideals. Moreover, we generalize
Theorem 1.1.

Utilizing this research, we can remove the assumption that G is smooth
with connected fibers from the talk of Ohtani [9] given at the 29th Symposium
on Commutative Algebra in Japan. This will be discussed elsewhere.

2 (G-prime ideals

Let S, GG, and X be as in the introduction.

Definition 2.1 (Mumford). A G-linearized Ox-module (an equivariant
(G, Ox)-module) is a pair (M, ®) such that M is an Ox-module, and P :
a* M — p5M is an isomorphism of Ogy x-modules such that

(1 x 1x)" @ (px 1x)"a" M — (nx 1x)"p;

agrees with

(X 1x)aM S (1g x a)'a*M 2 (1g x a)psM
=x S w x = * )k
— p23a M — p23p2M — (M X 1X) p2M7

where po3 : G X G X X — G x X is the projection. In this case, we sometimes
say that M is a G-linearized Ox-module with ® its structure map.

Definition 2.2. A morphism ¢ : (M, ®) — (N, V) of G-linearized Ox-
modules is a morphism ¢ : M — N such that ¥ o (a*¢) = (php) o .

Thus we have a category of G-linearized Ox-modules in a natural way.



Definition 2.3. Let (M, ®) be a G-linearized Ox-module. We say that N
is an equivariant (G, Ox)-submodule of M if N is an Ox-submodule of M,
and ®(a*N') = psN (note that a and py are flat). If, moreover, M = Oy,
then we say that N is a G-ideal of Ox.

If NV is an equivariant (G,Ox)-submodule of M, then (N, ®|y) is a
G-linearized Ox-module, and the inclusion N' < M is a morphism of
G-linearized Ox-modules. Conversely, if ¢ : /' — M is a morphism of
G-linearized Ox-modules, then the image of ¢ is an equivariant (G,Ox)-
submodule of M.

The following is [4, Corollary 12.8, Lemma 12.12].

Theorem 2.4. The category Qch(G, X) of quasi-coherent G-linearized Ox-
modules is a locally noetherian abelian category, and (M, ®) is a noetherian
object of Qch(G, X) if and only if M is coherent. The forgetful functor
Fx : Qch(G, X) — Qch(X) given by (M, ®) — M is faithful exact, and
admits a right adjoint.

(Quasi-) coherent G-linearized Ox-modules are closed under various ring-
theoretic operations.

Lemma 2.5. Let M, N, £ be in Qch(G, X), Z be a G-ideal, and My,
My, M3, and M, be quasi-coherent equivariant (G, Ox)-submodules of M.
Let £ and M3 be coherent. Then the following modules have structures
of quasi-coherent G-linearized Ox-modules: Tor™* (M, N), Extl, (£, M),
Hy(M) = li_n}m%X(OX/I”,M), the Fitting ideal Fitt;(£), M; N Mo,
Z)\M)\, IMl, Ml : Mg, and ./\/ll 7.

Let M be in Qch(G, X), and m be an Ox-submodule of M. The sum
of all quasi-coherent equivariant (G, Ox)-submodules of M contained in m
is denoted by m*. m* is the largest quasi-coherent equivariant (G,Ox)-
submodule of M contained in m.

Let Y = V(a) be a closed subscheme of X. Then Y* := V(a*) is the
smallest G-stable closed subscheme of X containing Y.

From now on, all ideals and G-ideals are required to be coherent. All
modules and G-linearized modules are required to be quasi-coherent.

Lemma 2.6. Let M be in Qch(G, X), m, n, and my be Ox-submodules of
M, and N be a coherent equivariant (G, Ox)-submodule of M. Let Z be a
G-ideal of Ox. Then we have: 1) ([, m3)* = ([, m)*; 2) m*Nn* = (mNn)*;
) (m:N)=m*: N;4) (m:I)"=m*:Z.



3 G-prime and G-radical G-ideals

Lemma 3.1. Let P be a G-ideal of Ox. Then the following are equivalent.

e There exists some ideal p of Ox such that p is prime (i.e., V(p) is
integral) and p* = P.

e P+ Ox,and if Z and J are G-ideals of Ox and ZJ C P, then Z C P
or J CP.

Definition 3.2. If the equivalent conditions in the lemma are satisfied, we
say that P is a G-prime G-ideal.

Definition 3.3. Let Z be a G-ideal of Ox. Then Vi (Z) denotes the set of
G-prime ideals containing Z. We set {/Z := (MNpeve P)*, and call V7T the
G-radical of 7.

Lemma 3.4. Let Z, J, and P be G-ideals of Ox. Then we have: 1) Z C
VI c VI, VI =VTI . 2)IftT > J, then VI > §T. 3) YIJ =
VINT = VIn §J. 4) VYT = YT 5) If P is a G-prime, then
VP ="P.

Lemma 3.5. Let Z be a G-ideal of Ox. Then the following are equivalent.
1) Z = VTI; 2) T is the intersection of finitely many G-prime G-ideals; 3)
There exists some ideal a of Ox such that a is radical (i.e., V(a) is reduced),
and a* =Z7.

If the equivalent conditions in the lemma are satisfied, then we say that
7 is G-radical. A G-prime G-ideal is G-radical.

4 G-primary submodules

From now on, until the end of this report, let M be a coherent G-linearized
Ox-module, and N its coherent equivariant (G, Ox)-submodule.

Definition 4.1. We say that N is G-primary if N # M, and for any
coherent equivariant (G, Ox)-submodule £ of M, either N’ : £ = Ox or
N :LC VN : M holds.

If N is G-primary, then P = VN : M is G-prime. In this case, we say
that NV is P-G-primary.



Lemma 4.2. For a prime ideal p of Ox, p* is G-prime. For a radical ideal
a of Ox, a* is G-radical. If n is a p-primary Ox-submodule of M, then n*
is a p*-G-primary submodule of M. For a G-primary submodule N of M,
there exists some primary Ox-submodule n of M such that n* = N.

An expression

N=MnNn---nNM,

is called a G-primary decomposition if this equation holds, and each M; is
a G-primary submodule of M. We say that the decomposition is minimal if

N # N M for any i, and /M, : M is distinct.
Proposition 4.3. NV has a minimal G-primary decomposition.

Proof (sketch). Let
N=mn---Nm,

be a usual primary decomposition. Then
N=N'=mn---Nm) =mjN---Nm’
is a G-primary decomposition. We can make it minimal, as usual. O
Theorem 4.4. The set
AssgM/N) = {/M; - M |i=1,...,r}
is independent of the choice of minimal G-primary decomposition
N=Mn---NM,,
and depends only on M /N

We call an element of Assg(M/N) a G-associated G-prime. The set
of minimal elements of Assg(M/N) is denoted by Ming(M/N), and its
element is called a G-minimal G-prime. An element of the set Assg(M/N)\
Ming(M/N) is called a G-embedded G-prime.

Theorem 4.5. Let
N=Mn---NM,

be a minimal G-primary decomposition and

MZ' =m; n--- ﬂmijsi



a minimal primary decomposition. Then
T
N = ﬂ(mm N---N miysi)
i=1

is a minimal primary decomposition.

Proposition 4.6. A G-primary submodule N of M does not have an em-
bedded prime. For each minimal prime p of M /N, we have p* = YN : M.
Corollary 4.7. We have

Ass(M/N) = HASS(M/Mi) = H Ass(Ox /P)
i=1 PeAssq(M/N)
and
Assg(M/N) ={p" | p € Ass(M/N)}
Corollary 4.8. Ass(M/N) = Min(M/N) if and only if Assg(M/N) =
Ming(M/N).

5 Smooth group schemes and Group schemes
with connected fibers

For some groups, the notion of G-prime G-ideal agrees with that of G-ideal
which is a prime ideal.

Lemma 5.1. Assume that G is S-smooth. If a is a radical ideal of Oy, then
a* is also radical. In particular, any G-radical G-ideal is radical.

Corollary 5.2. Assume that G is S-smooth. If 7 is a G-ideal of Ox, then
VZ = Y/Z. In particular, V7 is a G-radical G-ideal.

Lemma 5.3. Assume that G — S has connected fibers. If q is a primary
ideal of Ox, then q* is also primary. In particular, a G-primary G-ideal is
primary.

Corollary 5.4. Assume that G — S has connected fibers. If 7 is a G-ideal,

then a minimal G-primary decomposition of Z is also a minimal primary
decomposition.

Corollary 5.5. Assume that G — S is smooth with connected fibers. If p
is a prime, then p* is also a prime. Any G-prime G-ideal is a prime. For a
G-ideal 7 of Oy, any associated prime of 7 is a G-prime G-ideal.



6 (-stable closed subschemes defined by G-
primary G-ideals

Theorem 6.1. Let 0 be G-primary in Ox. Then the dimension of the fiber
of po : G x X — X is constant.

Theorem 6.2. Let 0 be G-primary in Ox. If X has an affine open covering
(Spec A;) such that each A; is Hilbert, universally catenary, and for
any minimal prime P of A;, the heights of maximal ideals of A;/P
are the same (for example, X is of finite type over a field or Z). Then the
dimensions of the irreducible components of X are the same.

Remark 6.3. There is an example of G = X such that the dimensions of
the irreducible components are different. The bold face assumptions are
necessary. The bold face property is preserved by of-finite-type extensions.

The following is a generalization of Theorem 1.1.

Theorem 6.4. Let y € X and Y = y. Let n be the generic point of an
irreducible component of Y*. Then: 1) dimOx, > dimOx,. 2) If M,
is maximal Cohen—Macaulay (resp. of finite injective dimension, projective
dimension m, dim — depth = n, torsionless, reflexive, G-dimension g), then
so is M,. 3) If Ox, is a complete intersection, then so is Ox,. 4) If G
is smooth and Oy, is regular, then Oy, is regular. 5) Assume that G is
smooth and X is a locally excellent F)-scheme. If Ox, is weakly F-regular
(resp. F-regular, F-rational), then so is Ox,.

Some special cases of Theorem 6.4 was proved by the author [3], and the
author and M. Ohtani (unpublished).

Consider the case S = SpecZ, G = G}, and X = Spec A is affine. Then
A is a Z"-graded ring.

Corollary 6.5. Let A be a locally excellent Z"-graded F,-algebra. Let P be
a prime ideal of A, and let P* be the prime ideal generated by homogeneous
elements of P. If Ap- is weakly F-regular (resp. F-regular, F-rational), then
sois Ap.

Corollary 6.6. Let Y be a G-stable closed subscheme of X defined by a
G-primary G-ideal. If n and ( are generic points of irreducible components
of Y, then dim Ox, = dim Ox .



X is said to be G-artinian if every G-prime of O is a G-minimal G-prime

of 0.

Corollary 6.7. A G-artinian G-scheme is Cohen—Macaulay.
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