G-prime and G-primary G-ideals on G-schemes

Mitsuhiro Miyazaki

Department of mathematics, Kyoto University of Education 1 Fukakusa-Fujinomori-cho, Fushimi-ku Kyoto 612–8522, Japan

> Mitsuyasu Hashimoto Graduate School of Mathematics Nagoya University Chikusa-ku, Nagoya 464–8602, Japan

1 Introduction

This report is a preliminary version, and a more detailed final version will be published elsewhere.

Let A be a \mathbb{Z}^n -graded ring, I a prime ideal (resp. radical ideal, primary ideal) of A, and I^* the homogeneous ideal generated by the all homogeneous elements of I. Then it is well-known that I^* is again a prime ideal (resp. radical ideal, primary ideal). In particular, if P is a prime ideal of A, then the local ring A_{P^*} makes sense. In particular, the following theorem makes sense.

Theorem 1.1. Let $M = \mathbb{Z}^n$, A be an M-graded noetherian ring, and P a prime ideal of A. If A_{P^*} is Cohen–Macaulay (resp. Gorenstein, complete intersection, regular), then so is A_P .

This theorem was conjectured by Nagata [8] for the case that n = 1 for the Cohen–Macaulay property, and solved by Hochster–Ratliff [5], Matijevic–Roberts [7], Matijevic [6], Aoyama–Goto [1], and Avramov–Achiles [2], affirmatively.

If M is a finitely generated abelian group with torsion elements and A is M-graded, then even if P is a prime ideal, P^* may not be a prime. However, a homogeneous ideal of the form P^* has some special interest. For homogeneous ideals I and J, if $IJ \subset P^*$, then either $I \subset P^*$ or $J \subset P^*$. Our start of this research is to consider a substitute of A_{P^*} in this context.

More generally, let S be a scheme, G an S-group scheme, and X a noetherian G-scheme, where a G-scheme means an S scheme on which G acts. We assume that the second projection $p_2: G \times X \to X$ is flat of finite type. Under these settings, we define a G-prime, G-primary, and G-radical G-ideals. As we will see, these are natural generalization of prime, primary, and radical ideals, respectively. We study some important properties of G-stable closed subschemes defined by G-primary ideals. Moreover, we generalize Theorem 1.1.

Utilizing this research, we can remove the assumption that G is smooth with connected fibers from the talk of Ohtani [9] given at the 29th Symposium on Commutative Algebra in Japan. This will be discussed elsewhere.

2 G-prime ideals

Let S, G, and X be as in the introduction.

Definition 2.1 (Mumford). A *G*-linearized \mathcal{O}_X -module (an equivariant (G, \mathcal{O}_X) -module) is a pair (\mathcal{M}, Φ) such that \mathcal{M} is an \mathcal{O}_X -module, and $\Phi : a^*\mathcal{M} \to p_2^*\mathcal{M}$ is an isomorphism of $\mathcal{O}_{G \times X}$ -modules such that

$$(\mu \times 1_X)^* \Phi : (\mu \times 1_X)^* a^* \mathcal{M} \to (\mu \times 1_X)^* p_2^* \mathcal{M}$$

agrees with

$$(\mu \times 1_X)^* a^* \mathcal{M} \xrightarrow{\cong} (1_G \times a)^* a^* \mathcal{M} \xrightarrow{\Phi} (1_G \times a)^* p_2^* \mathcal{M}$$
$$\xrightarrow{\cong} p_{23}^* a^* \mathcal{M} \xrightarrow{\Phi} p_{23}^* p_2^* \mathcal{M} \xrightarrow{\cong} (\mu \times 1_X)^* p_2^* \mathcal{M},$$

where $p_{23}: G \times G \times X \to G \times X$ is the projection. In this case, we sometimes say that \mathcal{M} is a *G*-linearized \mathcal{O}_X -module with Φ its structure map.

Definition 2.2. A morphism $\varphi : (\mathcal{M}, \Phi) \to (\mathcal{N}, \Psi)$ of *G*-linearized \mathcal{O}_X modules is a morphism $\varphi : \mathcal{M} \to \mathcal{N}$ such that $\Psi \circ (a^* \varphi) = (p_2^* \varphi) \circ \Phi$.

Thus we have a category of G-linearized \mathcal{O}_X -modules in a natural way.

Definition 2.3. Let (\mathcal{M}, Φ) be a *G*-linearized \mathcal{O}_X -module. We say that \mathcal{N} is an equivariant (G, \mathcal{O}_X) -submodule of \mathcal{M} if \mathcal{N} is an \mathcal{O}_X -submodule of \mathcal{M} , and $\Phi(a^*\mathcal{N}) = p_2^*\mathcal{N}$ (note that *a* and p_2 are flat). If, moreover, $\mathcal{M} = \mathcal{O}_X$, then we say that \mathcal{N} is a *G*-ideal of \mathcal{O}_X .

If \mathcal{N} is an equivariant (G, \mathcal{O}_X) -submodule of \mathcal{M} , then $(\mathcal{N}, \Phi|_{\mathcal{N}})$ is a G-linearized \mathcal{O}_X -module, and the inclusion $\mathcal{N} \hookrightarrow \mathcal{M}$ is a morphism of G-linearized \mathcal{O}_X -modules. Conversely, if $\varphi : \mathcal{N} \to \mathcal{M}$ is a morphism of G-linearized \mathcal{O}_X -modules, then the image of φ is an equivariant (G, \mathcal{O}_X) -submodule of \mathcal{M} .

The following is [4, Corollary 12.8, Lemma 12.12].

Theorem 2.4. The category $\operatorname{Qch}(G, X)$ of quasi-coherent *G*-linearized \mathcal{O}_X modules is a locally noetherian abelian category, and (\mathcal{M}, Φ) is a noetherian object of $\operatorname{Qch}(G, X)$ if and only if \mathcal{M} is coherent. The forgetful functor $F_X : \operatorname{Qch}(G, X) \to \operatorname{Qch}(X)$ given by $(\mathcal{M}, \Phi) \mapsto \mathcal{M}$ is faithful exact, and admits a right adjoint.

(Quasi-) coherent G-linearized \mathcal{O}_X -modules are closed under various ringtheoretic operations.

Lemma 2.5. Let $\mathcal{M}, \mathcal{N}, \mathcal{L}$ be in $\operatorname{Qch}(G, X), \mathcal{I}$ be a *G*-ideal, and $\mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3$, and \mathcal{M}_λ be quasi-coherent equivariant (G, \mathcal{O}_X) -submodules of \mathcal{M} . Let \mathcal{L} and \mathcal{M}_3 be coherent. Then the following modules have structures of quasi-coherent *G*-linearized \mathcal{O}_X -modules: $\operatorname{\underline{Tor}}_i^{\mathcal{O}_X}(\mathcal{M}, \mathcal{N}), \operatorname{\underline{Ext}}_{\mathcal{O}_X}^i(\mathcal{L}, \mathcal{M}),$ $\underline{H}^i_{\mathcal{I}}(\mathcal{M}) \cong \varinjlim \operatorname{\underline{Ext}}_{\mathcal{O}_X}^i(\mathcal{O}_X/\mathcal{I}^n, \mathcal{M})$, the Fitting ideal $\operatorname{\underline{Fitt}}_j(\mathcal{L}), \mathcal{M}_1 \cap \mathcal{M}_2,$ $\sum_{\lambda} \mathcal{M}_{\lambda}, \mathcal{I} \mathcal{M}_1, \mathcal{M}_1 : \mathcal{M}_3$, and $\mathcal{M}_1 : \mathcal{I}$.

Let \mathcal{M} be in $\operatorname{Qch}(G, X)$, and \mathfrak{m} be an \mathcal{O}_X -submodule of \mathcal{M} . The sum of all quasi-coherent equivariant (G, \mathcal{O}_X) -submodules of \mathcal{M} contained in \mathfrak{m} is denoted by \mathfrak{m}^* . \mathfrak{m}^* is the largest quasi-coherent equivariant (G, \mathcal{O}_X) submodule of \mathcal{M} contained in \mathfrak{m} .

Let $Y = V(\mathfrak{a})$ be a closed subscheme of X. Then $Y^* := V(\mathfrak{a}^*)$ is the smallest G-stable closed subscheme of X containing Y.

From now on, all ideals and G-ideals are required to be coherent. All modules and G-linearized modules are required to be quasi-coherent.

Lemma 2.6. Let \mathcal{M} be in $\operatorname{Qch}(G, X)$, \mathfrak{m} , \mathfrak{n} , and \mathfrak{m}_{λ} be \mathcal{O}_X -submodules of \mathcal{M} , and \mathcal{N} be a coherent equivariant (G, \mathcal{O}_X) -submodule of \mathcal{M} . Let \mathcal{I} be a G-ideal of \mathcal{O}_X . Then we have: 1) $(\bigcap_{\lambda} \mathfrak{m}_{\lambda}^*)^* = (\bigcap_{\lambda} \mathfrak{m}_{\lambda})^*$; 2) $\mathfrak{m}^* \cap \mathfrak{n}^* = (\mathfrak{m} \cap \mathfrak{n})^*$; 3) $(\mathfrak{m} : \mathcal{N})^* = \mathfrak{m}^* : \mathcal{N}$; 4) $(\mathfrak{m} : \mathcal{I})^* = \mathfrak{m}^* : \mathcal{I}$.

3 *G*-prime and *G*-radical *G*-ideals

Lemma 3.1. Let \mathcal{P} be a *G*-ideal of \mathcal{O}_X . Then the following are equivalent.

- There exists some ideal \mathfrak{p} of \mathcal{O}_X such that \mathfrak{p} is prime (i.e., $V(\mathfrak{p})$ is integral) and $\mathfrak{p}^* = \mathcal{P}$.
- $\mathcal{P} \neq \mathcal{O}_X$, and if \mathcal{I} and \mathcal{J} are *G*-ideals of \mathcal{O}_X and $\mathcal{I}\mathcal{J} \subset \mathcal{P}$, then $\mathcal{I} \subset \mathcal{P}$ or $\mathcal{J} \subset \mathcal{P}$.

Definition 3.2. If the equivalent conditions in the lemma are satisfied, we say that \mathcal{P} is a *G*-prime *G*-ideal.

Definition 3.3. Let \mathcal{I} be a *G*-ideal of \mathcal{O}_X . Then $V_G(\mathcal{I})$ denotes the set of *G*-prime ideals containing \mathcal{I} . We set $\sqrt[G]{\mathcal{I}} := (\bigcap_{\mathcal{P} \in V_G(\mathcal{I})} \mathcal{P})^*$, and call $\sqrt[G]{\mathcal{I}}$ the *G*-radical of \mathcal{I} .

Lemma 3.4. Let $\mathcal{I}, \mathcal{J}, \text{ and } \mathcal{P}$ be *G*-ideals of \mathcal{O}_X . Then we have: **1**) $\mathcal{I} \subset \sqrt[S]{\mathcal{I}} \subset \sqrt{\mathcal{I}}, \sqrt[G]{\mathcal{I}} = \sqrt{\mathcal{I}}^*$. **2**) If $\mathcal{I} \supset \mathcal{J}, \text{ then } \sqrt[G]{\mathcal{I}} \supset \sqrt[G]{\mathcal{J}}.$ **3**) $\sqrt[G]{\mathcal{I}}\mathcal{J} = \sqrt[G]{\mathcal{I} \cap \mathcal{J}} = \sqrt[G]{\mathcal{I}} \cap \sqrt[G]{\mathcal{J}}.$ **4**) $\sqrt[G]{\sqrt[G]{\mathcal{I}}} = \sqrt[G]{\mathcal{I}}.$ **5**) If \mathcal{P} is a *G*-prime, then $\sqrt[G]{\mathcal{P}} = \mathcal{P}.$

Lemma 3.5. Let \mathcal{I} be a *G*-ideal of \mathcal{O}_X . Then the following are equivalent. **1)** $\mathcal{I} = \sqrt[G]{\mathcal{I}}$; **2)** \mathcal{I} is the intersection of finitely many *G*-prime *G*-ideals; **3)** There exists some ideal \mathfrak{a} of \mathcal{O}_X such that \mathfrak{a} is radical (i.e., $V(\mathfrak{a})$ is reduced), and $\mathfrak{a}^* = \mathcal{I}$.

If the equivalent conditions in the lemma are satisfied, then we say that \mathcal{I} is *G*-radical. A *G*-prime *G*-ideal is *G*-radical.

4 G-primary submodules

From now on, until the end of this report, let \mathcal{M} be a coherent *G*-linearized \mathcal{O}_X -module, and \mathcal{N} its coherent equivariant (G, \mathcal{O}_X) -submodule.

Definition 4.1. We say that \mathcal{N} is *G*-primary if $\mathcal{N} \neq \mathcal{M}$, and for any coherent equivariant (G, \mathcal{O}_X) -submodule \mathcal{L} of \mathcal{M} , either $\mathcal{N} : \mathcal{L} = \mathcal{O}_X$ or $\mathcal{N} : \mathcal{L} \subset \sqrt[G]{\mathcal{N} : \mathcal{M}}$ holds.

If \mathcal{N} is *G*-primary, then $\mathcal{P} = \sqrt[G]{\mathcal{N} : \mathcal{M}}$ is *G*-prime. In this case, we say that \mathcal{N} is \mathcal{P} -*G*-primary.

Lemma 4.2. For a prime ideal \mathfrak{p} of \mathcal{O}_X , \mathfrak{p}^* is *G*-prime. For a radical ideal \mathfrak{a} of \mathcal{O}_X , \mathfrak{a}^* is *G*-radical. If \mathfrak{n} is a \mathfrak{p} -primary \mathcal{O}_X -submodule of \mathcal{M} , then \mathfrak{n}^* is a \mathfrak{p}^* -*G*-primary submodule of \mathcal{M} . For a *G*-primary submodule \mathcal{N} of \mathcal{M} , there exists some primary \mathcal{O}_X -submodule \mathfrak{n} of \mathcal{M} such that $\mathfrak{n}^* = \mathcal{N}$.

An expression

$$\mathcal{N} = \mathcal{M}_1 \cap \cdots \cap \mathcal{M}_r$$

is called a *G*-primary decomposition if this equation holds, and each \mathcal{M}_i is a *G*-primary submodule of \mathcal{M} . We say that the decomposition is minimal if $\mathcal{N} \neq \bigcap_{i \neq i} \mathcal{M}_j$ for any *i*, and $\sqrt[G]{\mathcal{M}_i : \mathcal{M}}$ is distinct.

Proposition 4.3. \mathcal{N} has a minimal *G*-primary decomposition.

Proof (sketch). Let

$$\mathcal{N} = \mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_r$$

be a usual primary decomposition. Then

$$\mathcal{N} = \mathcal{N}^* = (\mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_r)^* = \mathfrak{m}_1^* \cap \cdots \cap \mathfrak{m}_r^*$$

is a G-primary decomposition. We can make it minimal, as usual.

Theorem 4.4. The set

Ass_G(
$$\mathcal{M}/\mathcal{N}$$
) = { $\sqrt[G]{\mathcal{M}_i : \mathcal{M}} \mid i = 1, ..., r$ }

is independent of the choice of minimal G-primary decomposition

$$\mathcal{N}=\mathcal{M}_1\cap\cdots\cap\mathcal{M}_r,$$

and depends only on \mathcal{M}/\mathcal{N} .

We call an element of $\operatorname{Ass}_G(\mathcal{M}/\mathcal{N})$ a *G*-associated *G*-prime. The set of minimal elements of $\operatorname{Ass}_G(\mathcal{M}/\mathcal{N})$ is denoted by $\operatorname{Min}_G(\mathcal{M}/\mathcal{N})$, and its element is called a *G*-minimal *G*-prime. An element of the set $\operatorname{Ass}_G(\mathcal{M}/\mathcal{N}) \setminus$ $\operatorname{Min}_G(\mathcal{M}/\mathcal{N})$ is called a *G*-embedded *G*-prime.

Theorem 4.5. Let

$$\mathcal{N} = \mathcal{M}_1 \cap \cdots \cap \mathcal{M}_r$$

be a minimal G-primary decomposition and

$$\mathcal{M}_i = \mathfrak{m}_{i,1} \cap \cdots \cap \mathfrak{m}_{i,s_i}$$

a minimal primary decomposition. Then

$$\mathcal{N} = \bigcap_{i=1}^r (\mathfrak{m}_{i,1} \cap \cdots \cap \mathfrak{m}_{i,s_i})$$

is a minimal primary decomposition.

Proposition 4.6. A *G*-primary submodule \mathcal{N} of \mathcal{M} does not have an embedded prime. For each minimal prime \mathfrak{p} of \mathcal{M}/\mathcal{N} , we have $\mathfrak{p}^* = \sqrt[G]{\mathcal{N} : \mathcal{M}}$. Corollary 4.7. We have

$$\operatorname{Ass}(\mathcal{M}/\mathcal{N}) = \prod_{i=1}^{\circ} \operatorname{Ass}(\mathcal{M}/\mathcal{M}_i) = \prod_{\mathcal{P} \in \operatorname{Ass}_G(\mathcal{M}/\mathcal{N})} \operatorname{Ass}(\mathcal{O}_X/\mathcal{P})$$

and

 $\operatorname{Ass}_G(\mathcal{M}/\mathcal{N}) = \{\mathfrak{p}^* \mid \mathfrak{p} \in \operatorname{Ass}(\mathcal{M}/\mathcal{N})\}$

Corollary 4.8. Ass $(\mathcal{M}/\mathcal{N}) = Min(\mathcal{M}/\mathcal{N})$ if and only if Ass $_G(\mathcal{M}/\mathcal{N}) = Min_G(\mathcal{M}/\mathcal{N})$.

5 Smooth group schemes and Group schemes with connected fibers

For some groups, the notion of G-prime G-ideal agrees with that of G-ideal which is a prime ideal.

Lemma 5.1. Assume that G is S-smooth. If \mathfrak{a} is a radical ideal of \mathcal{O}_X , then \mathfrak{a}^* is also radical. In particular, any G-radical G-ideal is radical.

Corollary 5.2. Assume that G is S-smooth. If \mathcal{I} is a G-ideal of \mathcal{O}_X , then $\sqrt{\mathcal{I}} = \sqrt[G]{\mathcal{I}}$. In particular, $\sqrt{\mathcal{I}}$ is a G-radical G-ideal.

Lemma 5.3. Assume that $G \to S$ has connected fibers. If \mathfrak{q} is a primary ideal of \mathcal{O}_X , then \mathfrak{q}^* is also primary. In particular, a *G*-primary *G*-ideal is primary.

Corollary 5.4. Assume that $G \to S$ has connected fibers. If \mathcal{I} is a *G*-ideal, then a minimal *G*-primary decomposition of \mathcal{I} is also a minimal primary decomposition.

Corollary 5.5. Assume that $G \to S$ is smooth with connected fibers. If \mathfrak{p} is a prime, then \mathfrak{p}^* is also a prime. Any *G*-prime *G*-ideal is a prime. For a *G*-ideal \mathcal{I} of \mathcal{O}_X , any associated prime of \mathcal{I} is a *G*-prime *G*-ideal.

6 G-stable closed subschemes defined by Gprimary G-ideals

Theorem 6.1. Let 0 be *G*-primary in \mathcal{O}_X . Then the dimension of the fiber of $p_2: G \times X \to X$ is constant.

Theorem 6.2. Let 0 be *G*-primary in \mathcal{O}_X . If *X* has an affine open covering (Spec A_i) such that each A_i is **Hilbert**, **universally catenary**, and for any minimal prime *P* of A_i , the heights of maximal ideals of A_i/P are the same (for example, *X* is of finite type over a field or \mathbb{Z}). Then the dimensions of the irreducible components of *X* are the same.

Remark 6.3. There is an example of G = X such that the dimensions of the irreducible components are different. The **bold face** assumptions are necessary. The **bold face** property is preserved by of-finite-type extensions.

The following is a generalization of Theorem 1.1.

Theorem 6.4. Let $y \in X$ and $Y = \overline{y}$. Let η be the generic point of an irreducible component of Y^* . Then: 1) dim $\mathcal{O}_{X,y} \geq \dim \mathcal{O}_{X,\eta}$. 2) If \mathcal{M}_{η} is maximal Cohen–Macaulay (resp. of finite injective dimension, projective dimension m, dim – depth = n, torsionless, reflexive, G-dimension g), then so is \mathcal{M}_y . 3) If $\mathcal{O}_{X,\eta}$ is a complete intersection, then so is $\mathcal{O}_{X,y}$. 4) If G is smooth and $\mathcal{O}_{X,\eta}$ is regular, then $\mathcal{O}_{X,y}$ is regular. 5) Assume that G is smooth and X is a locally excellent \mathbb{F}_p -scheme. If $\mathcal{O}_{X,\eta}$ is weakly F-regular (resp. F-regular, F-rational), then so is $\mathcal{O}_{X,y}$.

Some special cases of Theorem 6.4 was proved by the author [3], and the author and M. Ohtani (unpublished).

Consider the case $S = \operatorname{Spec} \mathbb{Z}$, $G = \mathbb{G}_m^n$, and $X = \operatorname{Spec} A$ is affine. Then A is a \mathbb{Z}^n -graded ring.

Corollary 6.5. Let A be a locally excellent \mathbb{Z}^n -graded \mathbb{F}_p -algebra. Let P be a prime ideal of A, and let P^* be the prime ideal generated by homogeneous elements of P. If A_{P^*} is weakly F-regular (resp. F-regular, F-rational), then so is A_P .

Corollary 6.6. Let Y be a G-stable closed subscheme of X defined by a G-primary G-ideal. If η and ζ are generic points of irreducible components of Y, then dim $\mathcal{O}_{X,\eta} = \dim \mathcal{O}_{X,\zeta}$.

X is said to be *G*-artinian if every *G*-prime of \mathcal{O}_X is a *G*-minimal *G*-prime of 0.

Corollary 6.7. A G-artinian G-scheme is Cohen–Macaulay.

References

- Y. Aoyama and S. Goto, On the type of graded Cohen–Macaulay rings, J. Math. Kyoto Univ. 15 (1975), 19–23.
- [2] L. L. Avramov and R. Achilles, Relations between properties of a ring and of its associated graded ring, in "Seminar Eisenbud/Singh/Vogel, Vol. 2," Teubner, Leipzig (1982), pp. 5–29.
- [3] M. Hashimoto, Auslander-Buchweitz Approximations of Equivariant Modules, London Mathematical Society Lecture Note Series 282, Cambridge (2000).
- [4] M. Hashimoto, Equivariant twisted inverses, in "Foundations of Grothendieck Duality for Diagrams of Schemes" (J. Lipman, M. Hashimoto), Lecture Notes in Math. 1960, Springer (2009), pp. 261– 478, to appear.
- [5] M. Hochster and L. J. Ratliff, Jr., Five theorems on Macaulay rings, *Pacific J. Math.* 44 (1973), 147–172.
- [6] J. Matijevic, Three local conditions on a graded ring, Trans. Amer. Math. Soc. 205 (1975), 275–284.
- [7] J. Matijevic and P. Roberts, A conjecture of Nagata on graded Cohen-Macaulay rings, J. Math. Kyoto Univ. 14 (1974), 125–128.
- [8] M. Nagata, Some questions on Cohen–Macaulay rings, J. Math. Kyoto Univ. 13 (1973), 123–128.
- [9] M.Ohtani, On G-local G-schemes, in "The 29th Symposium on Commutative Algebra in Japan," Nagoya 2007, (2008), pp. 207-214, http://www.math.nagoya-u.ac.jp/~hasimoto/commalg-proc.html