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Abstract

We define the Frobenius limit of a module over a ring of prime
characteristic to be the limit of the normalized Frobenius direct im-
ages in a certain Grothendieck group. When a finite group acts on a
polynomial ring, we calculate this limit for all the modules over the
twisted group algebra that are free over the polynomial ring; we also
calculate the Frobenius limit for the restriction of these to the ring
of invariants. As an application, we generalize the description of the
generalized F -signature of a ring of invariants by the second author
and Nakajima to the modular case.

1. Introduction

(1.1) In commutative algebra, the study of the asymptotic behavior of the
Frobenius direct images of a ring of prime characteristic p (or a module over
it) has been very fruitful. This includes the study of invariants such as the
Hilbert–Kunz multiplicity [Mon] and the F -signature [HL] and its variants
[San, HasN].

These invariants have been studied for the ring of invariants of a finite
group acting on a ring, see [WY, (2.7), (5.4)], [HL, Example 18], [WY2,
(4.2)], [HasN, (3.9)], and [Nak].
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(1.2) Let T =
⊕

n≥0 Tn be a graded Noetherian commutative ring, where
T0 is a finite direct product of Henselian local rings. Let S =

⊕
n≥0 Sn be a

finite graded T -algebra, which might not be commutative.
Let Θ∗(S) denote the Grothendieck group of the commutative monoid of

finitely generated Q-graded S-modules under direct sum, but tensored with
R; this means that Θ∗(S) is the R-space generated by the finitely generated
Q-graded S-modules subject to the relations [M ] = [M1] + [M2] whenever
M ∼= M1 ⊕M2. We define Θ◦(S) to be the quotient of Θ∗(S) by the relation
[M ] = [M [λ]] for a finitely generated Q-graded S-module M and λ ∈ Q,
where ?[λ] denotes shift of degree by λ.

Because of our hypotheses on S, the Krull–Schmidt property holds and
so the finitely generated indecomposable Q-graded modules form a basis for
Θ∗(S). Thus Ind◦(S), the set of indecomposable Q-graded modules modulo
shift of degree, forms a basis for Θ◦(S). For α ∈ Θ◦(S) we can write

α =
∑

M∈Ind◦ S

cM [M ] (cM ∈ R)

uniquely. We define ∥α∥S :=
∑

M |cM |uS(M), where uS(M) denotes ℓS(M/mSM),
where mS = S+ + J(S0) is the graded Jacobson radical of S and ℓS denotes
the length function. It is easy to see that (Θ(S), ∥ · ∥)S is a normed space.

(1.3) Now let k be an F -finite (that is, [k : kp] < ∞) field of characteristic
p, and R =

⊕
n≥0 Rn a graded Noetherian commutative ring such that R0 is

an F -finite Henselian local ring. We assume that dimk R0/J(R0) < ∞. Let
G be a finite group acting on R as k-algebra automorphisms. Let S = R ∗G
and T = RG. Then T and S are as in (1.2).

Let d be the Krull dimension of R. Set d := logp[k : kp], and δ := d + d.
For any finitely generated S-module M , we define the Frobenius limit of M
to be

FL(M) = lim
e→∞

1

pδe
[eM ]

in Θ(S), provided that this limit exists, where eM is the eth Frobenius direct
image of M . Note that FL(M) is considered to be the limit of the modules
themselves, rather than of some numerical invariant. If the ring is commuta-
tive and FL(M) exists, the Hilbert–Kunz multiplicity and the (generalized)
F -signature can be read off from it; see section 3.

2



(1.4) Suppose that R be commutative. The group Θ(R) is larger than the
Grothendieck group G0(R)R, where the relations come from short exact se-
quences. The latter is isomorphic to A∗(R)R, the Chow group of R (tensored
with R) through the Riemann–Roch isomorphism τR, see [Ful]. Let us write
τR([R]) = cd+cd−1+ · · ·+c0, where ci is the component of dimension i. Then
τR(FL[R]) is just cd, which plays an important role in the intersection theory
of commutative algebra, see [Kur, (2.2)] and [KurO].

Bruns gave a formula for FL(R) for a normal affine semigroup ring (al-
though he did not define Frobenius limits, he proved a theorem [Bru, Theo-
rem 3.1] giving some more information than FL(R), see Example 3.23).

(1.5) Now suppose that a finite group G acts faithfully on a graded polyno-
mial ring B, so we can form the twisted group algebra B ∗G. The generators
of B must be in positive degrees, but not necessarily all the same. Let
A = BG.

Theorem ((4.13), (4.16)). Suppose that F is a Q-graded B ∗G-module that
is free of rank f over B. Then the F -limits of [F ] and [FG] exist and

FL(F ) =
f

|G|
[B ∗G]

in Θ◦(B ∗G) and

FL(FG) =
f

|G|
[B]

in Θ◦(A). Analogous formulas hold after completion at the irrelevant ideal.

As a consequence we obtain the following theorem.

Theorem ((5.1)). Let k = V0, V1, . . . , Vn be the simple kG-modules. For each
i, let Pi → Vi be the projective cover, and Mi := (B⊗k Pi)

G. Suppose that F
is a Q-graded B ∗G-module that is free of rank f over B. Then the F -limit
of [FG] exists, and

FL([FG]) =
f

|G|
[B] =

f

|G|

n∑
i=0

dimk Vi

dimk EndkG(Vi)
[M̂i]

in Θ◦(A). The analogous formula holds after completion at the irrelevant
ideal.

3



In particular, we have a formula for FL[A] and FL([Â]): see Corollary 5.2.
Using this theorem, we generalize a result on the generalized F -signature

[HasN, (3.9)] to the modular case (Corollary 5.7). We also get a new proof
of the theorem of Broer [Bro] and Yasuda [Yas] which says that if G does
not have a pseudo-reflection and p divides the order |G| of G, then A is not
weakly F -regular.

For another application of this work to invariant theory, see [Has2].
In section 2, we fix our notation for Frobenius direct images. In section 3,

we study the group Θ(S) and define the Frobenius limits. In section 4, we
prove the main theorems and in section 5 we derive some consequences.

Acknowledgments: the authors are grateful to Professor Kazuhiko Kurano
for his valuable advice.

2. Rings, modules and Frobenius direct image

(2.1) Let k be a field. By a module over a ring we mean a left module,
unless otherwise specified. A graded ring means a ring graded by the semi-
group of non-negative integers. Modules will be graded by Q; since we only
consider finitely generated modules, the graded pieces are only non-zero on a
discrete subgroup, which is contained in 1

r
Z for some r ∈ N. The morphisms

are degree preserving. Let G be a finite group acting on a ring R. By an
(R,G)-module M , we mean an R-module that is also a kG-module in such a
way that g(rm) = (gr)(gm), g ∈ G, r ∈ R,m ∈ M . If M is an (R,G)-module
and V a G-module, then M ⊗k V is an (R,G)-module by r(m⊗ v) = rm⊗ v
and g(m⊗ v) = gm⊗ gv for r ∈ R, m ∈ M , v ∈ V , and g ∈ G.

(2.2) By a virtually commutative ring we mean a ring S that contains
some central subalgebra T such that S is finite over T . The example we
have in mind is when G acts on a commutative ring R and S is the twisted
group algebra R ∗ G. That is, R ∗ G =

⊕
g∈G Rg as an R-module, and the

product is given by (rg)(r′g′) = (r(gr′))(gg′). The ring R ∗ G is finite over
the ring of invariants T = RG in many cases. For example, assume that R
is a commutative Noetherian k-algebra and the action of G is by k-algebra
automorphisms. If R is of finite type over k; R is complete with residue field
k; the characteristic of k is p > 0 and R is F -finite (see 2.10) [Fog], [Has,
(9.6)]; or the order of G is not divisible by the characteristic of k, then R
and S = R ∗G are finite over T = RG.
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An R ∗G-module is an (R,G)-module in an obvious way, and vice versa.
We identify these two objects.

(2.3) Note that the (G,R)-module R⊗kkG as an R∗G-module is identified
with the rank-one free module R ∗G by the obvious map r ⊗ g 7→ rg.

(2.4) Let k be of characteristic p > 0. For a commutative k-algebra R, the
Frobenius homomorphism F : R → R is defined by F (a) = ap. For r ∈ Z,
let rR be a copy of the ring R, except that, in the graded case, the values of
the grading are divided by pr (here we briefly suspend our convention that
all rings are integer graded). For any e ≥ 0, we regard r+eR an rR-algebra
through the Frobenius map F e : rR = R → R = r+eR. An R-module M ,
viewed as an rR-module is denoted by rM ; m ∈ M is denoted by rm when it is
viewed as an element of rM . When e ≥ 0, we can regard eM as an R-module
by a(em) = F e(a)em = e(ap

e
m). Then F e(ra) = r+e(ap

e
) = (r+ea)p

e
. The

R-module eM is sometimes written as F e
∗M , and is called the eth Frobenius

direct image (also called Frobenius pushforward) of M . If R is graded, M is
Q-graded, and m is a homogeneous element of degree λ, then letting rm of
degree λ/pr, we have that rM is a Q-graded rR-module. If e ≥ 0, eM is a
Q-graded R-module via F e : R = 0R → eR.

(2.5) If V is a k-vector space then eV is considered to be a k-vector space
through the map F e for e ≥ 0: more explicitly, ev + ev′ = e(v + v′) and
α · ev = e(αpev) for α ∈ k and v, v′ ∈ V . When k is perfect, rV has a meaning
for r ∈ Z, and it has the same dimension as V . Note that eA is again a
k-algebra, and F e : e′A → e′+eA is a k-algebra map for e, e′ ≥ 0.

(2.6) In the notation above, 0R, 0M , 0m, and so on, are sometimes written
as R, M , m, and so on.

(2.7) Slightly more generally, for a commutative k-algebra R and a finite
group G acting on R, we define the Frobenius map F = FS of S = R ∗ G
by FS(

∑
g∈G rgg) =

∑
g r

p
gg. If G is trivial, then R = S, and FS is the usual

Frobenius map. Thus for an R ∗G-module M , eM is again an R ∗G-module.

(2.8) Applying this to the group ring kG (the case that R = k), we find
that eV is a kG-module by g · ev = e(gv) for g ∈ G and v ∈ V .

If V is n-dimensional, let v1, . . . , vn be a basis of V ; then we can write

gvj =
∑

i cijvi. If k is perfect, then g ·evj = e(gvj) =
e(
∑

i cijvi) =
∑

i c
p−e

ij
evi.

Namely, eV , as a matrix representation, is obtained by taking the peth root
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of each matrix entry.

Lemma 2.9. Let k and G be as above.

1 Let V be a finite dimensional G-module. If V is defined over Fq, the
field with q = pe elements, and d := logp[k : kp] < ∞, then eV ∼= V pde.

2 e(kG) ∼= (kG)p
de

for any e ≥ 0.

Proof. 1. We set r := [ek : k] = pde. Let V0 be the finite dimensional
Fq-module such that k ⊗Fq V0

∼= V . Then

eV ∼= ek ⊗Fq

eV0
∼= kr ⊗Fq V0

∼= V r.

2. Since kG is defined over Fp, the assertion follows from 1.

(2.10) S is said to be F -finite if 1S is a finite S-module. If so, then F e :
rS → r+eS is finite for any r ∈ Z and e ≥ 0.

3. The Grothendieck group Θ(S)

(3.1) Let C be an additive category. We define its (additive) Grothendieck
group to be

[C] := (
⊕

M∈Iso C

Z ·M)/(M −M1 −M2 | M ∼= M1 ⊕M2),

where Iso C is the set of isomorphism classes of objects in C. The class of M
in the group [C] is denoted by [M ]. We define [C]R := R⊗Z [C]. Note that we
only have relations for split exact sequences, not all exact sequences, even if
C is abelian.

(3.2) The group [C] is universal for additive maps from C to abelian groups,
i.e. given an abelian group Γ and an additive map f : C → Γ (that is, f is
a map C → Γ such that f(M) = f(M1) + f(M2) for every M , M1, M2 such
that M ∼= M1⊕M2), f extends to a unique homomorphism of abelian groups
f∗ : [C] → Γ. Thus [C]R is universal for additive maps to R-spaces. It follows
that an additive functor h : C → D yields a homomorphism h∗ : [C] → [D]
which maps [M ] to [hM ].
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Example 3.3. Let S be a k-algebra. Let Smod denote the category of
finitely generated S-modules. Let J(S) denote the Jacobson radical of S
and assume that S/J(S) is finite dimensional over k. Then uk,S(M) :=
dimk(M/J(S)M) defines an additive function on Smod, which extends to
[Smod]R.

If S is a commutative integral domain and we let Q(S) denote the field
of fractions of S, then rankS(M) = dimQ(S) Q(S)⊗S M is also additive and
extends to [Smod]R.

(3.4) An additive category C is said to have the Krull–Schmidt property if
the endomorphism ring of any object is semiperfect. If so, the endomorphism
ring of an indecomposable object is local, and hence the Krull–Schmidt the-
orem holds, see [Pop, (5.1.3)]. Thus [C] is a Z-free module with Ind C as
free basis, where Ind C is the set of isomorphism classes of indecomposable
objects of C and Ind C is an R-basis of [C]R.

(3.5) Let T =
⊕

n≥0 Tn be a commutative non-negatively graded Noethe-
rian ring (which might not be a k-algebra) such that T0 is a finite direct prod-
uct of Henselian local rings. Let S =

⊕
n≥0 Sn be a graded T -algebra that

is a finite T -module. For any finite graded S-module M , EndSGrmod M =
(EndS M)0 is a finite T0-algebra and is semiperfect [Fac, (3.8)], where SGrmod
is the category of graded finite S-modules. Thus the Krull–Schmidt theo-
rem holds for the category SGrmod; see [Pop][(5.1.3)]. Let mS denote the
graded Jacobson radical S+ + J(S0), where S+ =

⊕
n>0 Sn is the irrelevant

ideal. We denote by ?̂ the mS-adic completion, which agrees with the mT -adic
completion, where mT is the graded Jacobson radical of T .

(3.6) We write Θ∗(S) := [SGrmod]R, where SGrmod is the category of S-
finite Q-graded modules. It will be convenient to consider the quotient of this
where we identify any two indecomposable modules that differ only by a shift
in degree, which we denote by Θ◦(S) or Θ(S). We write Θ∧(S) := [Smod]R,
where Smod is the category of S-finite ungraded modules.

(3.7) There is a sequence of natural maps Θ∗(S) → Θ◦(S) → Θ∧(S) →
Θ∧(Ŝ).

(3.8) It is easy to see that if S is concentrated in degree zero, then Θ◦ = Θ∧,
and the theory of Θ∧ for ungraded S is contained in that of Θ◦.
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(3.9) From now on we will assume that all our rings are of the type just
described. If f : S ′ → S is a finite degree-preserving map, there is a natural
restriction map f ∗ : Θ(S) → Θ(S ′) and the inflation map f∗ : Θ(S ′) → Θ(S).

If I is an ideal in S and q : S → S/I is the quotient map then we
sometimes write α/Iα for q∗(α).

(3.10) For α ∈ Θ◦(S), we can write

α =
∑

[M ]∈Ind◦ S

cM [M ]

uniquely, where Ind◦(S) denotes Ind(SGrmod)/∼, where M ∼ M ′ if M ∼=
M ′[λ] for some λ ∈ Q (?[λ] denotes shift of degree). We define ∥α∥S :=∑

M |cM |uS(M), where uS(M) = ℓS(M/mSM). Then (Θ(S), ∥ · ∥S) is a
normed space. Thus Θ(S) becomes a metric space with the distance function
d given by d(α, β) := ∥α− β∥S.

Lemma 3.11. Let S be as above.

1 Let J be any ideal of S such that there exists some n ≥ 1 such that mn
S ⊂

J ⊂ mS. Define a norm ∥ · ∥JS on Θ(S) by ∥α∥JS =
∑

M |cM |ℓS(M/JM),
where ℓS(−) denotes the length of an S-module. Then ∥ · ∥JS is equiva-
lent to ∥ · ∥S.

2 Let f : S ′ → S be a degree-preserving ring homomorphism such that
mS′S ⊃ mn

S for some n ≥ 1 and mm
S′S ⊂ mS for some m ≥ 1 (e.g. S

is S ′-finite). Define ∥ · ∥SS′ by ∥α∥SS′ =
∑

M |cM |ℓS′(M/mS′M). Then
∥ · ∥SS′ is equivalent to ∥ · ∥S.

3 Let k be a field, and assume that S is a k-algebra and dimk S/mS < ∞.
Define ∥α∥k,S =

∑
M |cM | dimk M/mSM . Then ∥ · ∥k,S is equivalent to

∥ · ∥S.

Proof. 1. For M ∈ SGrmod we have ℓS(M/JM) ≥ ℓS(M/mSM) and
∥α∥JS ≥ ∥α∥S follows easily. There is a surjective map of graded S-modules
F → M , with F free of rank ℓS(M/mSM), which induces a surjection
F/mn

SF → M/mn
SM . Setting r := ℓS(S/m

n
S), we obtain ℓS(M/JM) ≤

ℓS(M/mn
SM) ≤ ℓS(F/m

n
SF ) = rℓS(M/mSM), and ∥α∥JS ≤ r∥αS∥ follows

easily. It follows that ∥ · ∥JS is equivalent to ∥ · ∥S, as required.
2. Let T ′ be the center of S ′.
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First we assume that S is S ′-finite (or equivalently, T ′-finite) and show
that the hypothesis on f is satisfied. If mT ′S ̸⊂ mS, then there exists some
a ∈ mT ′ such that the ideal a(S/mS) of S/mS is nonzero. As S/mS has
finite length, an(S/mS) = an+1(S/mS) for some n ≥ 1, then by the graded
Nakayama’s lemma an(S/mS) = 0. Since S/mS is semisimple, a(S/mS) is an
idempotent ideal and so an(S/mS) ̸= 0, a contradiction. Therefore mT ′S ⊂
mS. Note that S/mT ′S is a finite T ′/mT ′-algebra and is an Artinian algebra,
so its radical mS/mT ′S is nilpotent, and mn

S ⊂ mT ′S for some n ≥ 1. If S is
T ′-finite, then mn

S ⊂ mT ′S ⊂ mS for some n. Similarly, mm
S′ ⊂ mT ′S ′ ⊂ mS′

for some m. So mm
S′S ⊂ mS and mn

S ⊂ mS′S, and the hypothesis is satisfied.
Now we prove the assertion. Let M ∈ SGrmod. Then

uS(M) = ℓS(M/mSM) ≤ ℓS′(M/mSM) ≤ ℓS′(M/mm
S′M)

≤ ℓS′(S ′/mm
S′S ′) · ℓS′(M/mS′M).

That ∥α∥S ≤ ℓS′(S ′/mm
S′S ′)∥α∥SS′ follows easily. On the other hand, we have

ℓS′(M/mS′M) ≤ ℓS′(M/mn
SM) ≤ ℓS′(S/mn

SS) · uS(M),

and ∥α∥SS′ ≤ ℓS′(S/mn
SS)∥α∥S follows easily. Hence ∥α∥SS′ is equivalent to

∥α∥S.
3. This is because

ℓS(M/mSM) ≤ dimk M/mSM ≤ dimk S/mS · ℓS(M/mSM).

Lemma 3.12. The following R-linear maps are continuous:

1 Θ∗(S) → Θ◦(S);

2 Θ◦(S) → Θ∧(Ŝ);

3 f ∗ : Θ(S) → Θ(S ′), for f : S ′ → S, finite;

4 f∗ : Θ(S ′) → Θ(S) given by f∗(M) = S ⊗S′ M , for f : S ′ → S, finite;

5 ℓS : Θ(S) → R, when ℓS(S) < ∞.

6 rankR := dimQ(R)(Q(R) ⊗R −) : Θ(R) → R, where R is a domain
(graded or not) and Q(R) is its (ungraded) field of fractions.
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Proof. We only prove 3 and leave the routine verifications of the others to
the reader.

Let ∥ · ∥SS′ be as in Lemma 3.11. By Lemma 3.11, there exists some r > 0
such that ∥ · ∥SS′ ≤ r ·∥ · ∥S. For α =

∑
M cM [M ] as a sum of indecomposable

modules in Θ(S), we have

∥f ∗α∥S′ = ∥
∑
M

cM [M ]∥S′ ≤
∑
M

|cM |∥M∥S′ =
∑
M

|cM |∥M∥SS′

≤ r ·
∑
M

|cM |∥M∥S = r · ∥α∥S,

and continuity follows.

(3.13) Define Θ+(S) to be the subset of Θ(S) consisting of the α =
∑

cM [M ]
with all the cM ≥ 0.

Lemma 3.14. Suppose that f : S ′ → S is finite and let {αi}i∈N be a sequence
of elements of Θ(S) such that each αi is in Θ+(S) or −Θ+(S). Then ∥αi∥S →
0 if and only if uS′(f ∗αi) → 0.

Proof. Note that ∥αi∥S → 0 if and only if ∥αi∥SS′ → 0 by Lemma 3.11. As
αi ∈ ±Θ+(S), we have that ∥αi∥SS′ = |uS′(f ∗(αi))|, and we are done.

(3.15) For M,N ∈ SGrmod, we define

sumN M := max{n ∈ Z≥0 |
n⊕

i=1

N [λi] is a direct summand

of M for some λ1, . . . , λn ∈ Q}.
For N ∈ Ind◦ S, sumN : SGrmod → Z is an additive function, and hence
induces a linear map sumN : Θ(S) → R. More precisely, sumN is given by
sumN(

∑
M cM [M ]) = cN , thus sumN is continuous.

(3.16) Let k be a field of prime characteristic p. Let R =
⊕

n≥0 Rn be
a commutative graded k-algebra such that R0 is an F -finite Henselian local
ring. Let mR be the graded maximal ideal of R, and assume that R/mR is
a finite-dimensional k-vector space. Let G be a finite group acting on R as
degree-preserving k-algebra automorphisms (the case that G is trivial is also
important in what follows). Let S := R ∗ G. Note that T is central in R
and S. Note also that R/mR and k are F -finite, and R and S are finite over
T := RG [Has, (9.6)]. It is easy to see that T is F -finite and Henselian.

Let d = dimR, d := logp[k : kp], and set δ = d+ d.
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(3.17) For α =
∑

M∈Ind◦ S cM [M ] ∈ Θ(S), define

eα =
∑

M∈Ind◦ S

cM [eM ],

and call it the eth Frobenius direct image of α. We define NFe(α) =
1
pδe

eα.

Definition 3.18. Let

FL(α) := lim
e→∞

1

pδe
eα = lim

e→∞
NFe(α)

in Θ(S), provided the limit exists. We call FL(α) the Frobenius limit of α.

(3.19) Assume that R is a domain. As we have logp[Q(R) : Q(R)p] = δ
by [Kun, (2.3)], rankR

eM = pδe rankeR
eM = pδe rankR M . It follows that

rankR NFe(α) = rankR α for α ∈ Θ(S). If FL(α) exists, then rankR FL(α) =
rankR α.

(3.20) When I is a G-ideal in R, we sometimes write α/Iα for R/I ⊗R α.
Note that eα/I(eα) = e(α/I [p

e]α), where I [p
e] is the ideal generated by {ape |

a ∈ I}, which is a G-ideal.

(3.21) If q is a homogeneous mT -primary ideal of T , the Hilbert–Kunz
multiplicity of M ∈ T Grmod [Mon] is defined by

eHK(q,M) := lim
e→∞

ℓT (M/q[p
e]M)

pde
= lim

e→∞

ℓT (T/q⊗T
eM)

pδe
.

This is an additive function, so it induces a function on Θ(T ):

eHK(q, α) = lim
e→∞

ℓT (T/q⊗T
eα)

pδe
= lim

e→∞
ℓT (T/q⊗T NFe(α)).

By Lemma 3.12, eHK(q, α) = ℓT (T/q⊗T FL(α)), provided FL(α) exists.
Note that if T is a domain then eHK(q,M) = rankT M · eHK(q, T ).

(3.22) Let N ∈ Ind◦ S. We define

FSN(α) := lim
e→∞

sumN(NFe(α)),

provided the limit exists. We call it the generalized F -signature of M with
respect to N , see [HasN]. If FL(α) exists, then FSN(α) = sumN(FL(α)),
since sumN is continuous.
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Example 3.23. In [Bru], Bruns studied the asymptotic behavior of the
Frobenius direct images of normal affine semigroup rings; we follow the no-
tation used there. In [Bru, Theorem 3.1], assume for simplicity that M is
positive in the sense that there is a rational hyperplane H of Rd through
the origin such that H ∩M = {0}. Let h : Rd → R be a defining equation
of H (that is, h−1(0) = H) such that h(Zd) ⊂ Z and h(M) ⊂ Z≥0. Then
R =

⊕
n∈Z Rn is positively graded (that is, Rn = 0 for n < 0 and R0 = K),

where Rn =
⊕

x∈h−1(n)∩M Kx. Let m =
⊕

n>0 Rn. By [Bru, Theorem 3.1],
we immediately have that

FL(R) =
∑
γ

vol(γ)[Cγ]

in Θ◦(R).

4. The Frobenius limit for a group acting on a polynomial ring

(4.1) Let k be a field, and let B be a graded polynomial ring over k with the
degrees of the generators all positive integers, but not necessarily the same.
Let G be a finite group that acts faithfully on B as a graded k-algebra.
We can form the twisted group algebra B ∗ G and we define the Frobenius
operator on it as in (2.7).

Let A = BG, the ring of invariants. Let mA and mB denote the irrelevant
maximal ideals of A and B, respectively. Let Â be the mA-adic comple-
tion of A and let B̂ be the mB-adic completion of B (it is also the mA-adic
completion).

Let V be the category of Q-graded kG-modules and letM be the category
of Q-graded B ∗G-modules.

Let F denote the full subcategory of M consisting of F ∈ M such that
F is B-finite and B-free. In other words, F is a Q-graded B ∗G-lattice.

(4.2) Let V =
⊕

λ Vλ be an object of V . Then V is a projective ob-
ject of V if and only if it is so as a kG-module, since HomV(V,W ) =∏

λHomkG(Vλ,Wλ). We denote the category of finite dimensional projec-
tive objects of V by P0. Then clearly P0 = add{kG[λ] | λ ∈ Q}, where [λ]
denotes shift of degree by λ.

Lemma 4.3. Let R =
⊕

i≥0 Ri be a commutative positively-graded (that is,
R0 = k) k-algebra. Let F and F ′ be graded R-finite R-free modules, and
h : F → F ′ a graded R-homomorphism. Then the following are equivalent:

12



1 h is injective, and C := Cokerh is R-free;

2 1⊗ h : R/m⊗R F → R/m⊗R F ′ is injective;

where m =
⊕

i>0Ri is the irrelevant ideal.

Proof. 1⇒2. As the sequence

0 → F
h−→ F ′ → C → 0

is exact,

0 = TorR1 (R/m, C) → R/m⊗R F
1⊗h−−→ R/m⊗R F ′

is exact.
2⇒1. Take a homogeneous free basis f1, . . . , fr of F , and take homoge-

neous elements f ′
1, . . . , f

′
s of F ′ such that their images in C form a minimal

set of generators for C. As

0 → R/m⊗R F → R/m⊗R F ′ → R/m⊗R C → 0

is exact, we have that rankF ′ = r+s, and h(f1), . . . , h(fr), f
′
1, . . . , f

′
s generate

F ′ by the graded version of Nakayama’s lemma (this applies since the grading
on the modules must be discrete). Thus it is easy to see that this set of
elements forms a free basis for F ′. In particular, h(f1), . . . , h(fr) are linearly
independent and hence h is injective. Also, C = F ′/F is a free module with
basis f ′

1, . . . , f
′
s.

Lemma 4.4. 1 P := {(B ⊗ kG)[λ] | λ ∈ Q} is a set of Noetherian
projective objects that generate M. In particular, P := addP is the
full subcategory of Noetherian projective objects of M.

2 For M ∈ M, the following are equivalent.

a M ∈ P;

b M ∼= B ⊗k V as graded modules, for some V ∈ P0;

c M ∈ F , and M/mBM ∈ P0.

If these conditions are satisfied, then M ∼= B ⊗k M/mBM as graded
modules.

13



3 F is a Frobenius category with respect to all short exact sequences (see
[Hap] for definition), and P is its full subcategory of projective and
injective objects.

Proof. 1 Obviously, each (B ⊗k kG)[λ] is a Noetherian object. On the other
hand,

HomM(B ⊗ kG[λ], N) ∼= HomV(kG[λ], N) ∼= HomGrMod k(k[λ], N) ∼= N−λ,

and each object of P is a projective object, and P generates M, where
GrMod k denotes the category of graded k-vector spaces.

2. a⇔b⇒c is trivial. We show the last assertion, assuming c. This
also proves c⇒b. As M/mBM is projective in V , the canonical map M →
M/mBM has a splitting j : M/mBM → M in V . Then, defining φ : B ⊗k

M/mBM → M by φ(b⊗ v) = bj(v), φ is B ∗G-linear. By Lemma 4.3, it is
easy to see that φ is an isomorphism.

3. By 1, P is the category of the projectives of F , and F has enough
projectives. On the other hand, HomB(?, B) is a dualizing functor on the
exact category F and P is mapped to itself by it. Thus P is also the category
of injectives of F , and F has enough injectives.

Lemma 4.5. Let F ∈ F . Then there is a filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F

in M such that for each i = 1, . . . , n, there exist λi ∈ Q and Vi ∈ kGmod
such that Fi/Fi−1

∼= B⊗kVi[−λi] (so Fi and Fi/Fi−1 are in F), where kGmod
denotes the category of finite dimensional kG-modules, and each object of
kGmod is viewed as an object of V of degree zero.

Proof. We use induction on rankB F . If rankB F = 0, there is nothing to
prove. Assume that rankF > 0 and take the smallest λ ∈ Q such that
Fλ ̸= 0. Set V1 = Fλ[λ], λ1 = λ, and F1 = B ⊗k V1[−λ]. There is a canonical
map

q : F1 = B ⊗k V1[−λ] = B ⊗k Fλ
a−→ F,

where a(b⊗ f) = bf . Then, by Lemma 4.3, q is injective, and C ∈ F , where
C = Coker q. Applying the induction hypothesis to C, we are done.

Lemma 4.6. Let F ∈ F and f ≥ 0. Then the following are equivalent.
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1 F ∼= B⊗k F0 for some Q-graded G-module F0 such that F0
∼= (kG)f as

G-modules.

2 F ∼= (B ⊗k kG)f as a B ∗G-module.

3 F/mBF ∼= (kG)f as a G-module.

Proof. 1⇒2⇒3 is trivial. 3⇒1 follows from Lemma 4.4, 2.

(4.7) We denote the full subcategory of F with objects the F ∈ F satisfying
the equivalent conditions in Lemma 4.6 by G. Note that G is closed under
extensions and shift of degree.

Lemma 4.8. Let V be a kG-module. Let V ′ be the k-vector space V with
the trivial G-action. Then kG ⊗ V ∼= kG ⊗ V ′. Hence kG ⊗ V is a direct
sum of copies of kG.

Proof. The map g ⊗ v 7→ g ⊗ g−1v gives a kG-isomorphism kG ⊗ V ∼=
kG⊗ V ′.

(4.9) From now on, we assume that k is of characteristic p, and is F -finite.
We set d := logp[k : kp] and δ := d+ d.

Lemma 4.10. If F ∈ G, then eF ∈ G.

Proof. We can write F = B⊗k F0 with F0
∼= (kG)f as a kG-module for some

f . We have eF ∈ F and

eF/mB
eF ∼= e(B/m

[pe]
B ⊗B (B ⊗k F0)) ∼= e(B/m

[pe]
B ⊗k F0).

As F0
∼= (kG)f , we have that B/m

[pe]
B ⊗kF0

∼= (kG)fp
de
by Lemma 4.8. Hence

eF/mB
eF ∼= e((kG)fp

de
) = (kG)fp

δe
by Lemma 2.9. By Lemma 4.6, we have

that eF ∈ G.

Lemma 4.11. There exists some e0 ≥ 1 such that for each F ∈ F of rank
f , there exists some direct summand F ′ of e0F in F such that F ′ ∼= (B ⊗k

kG)fp
de0 as B ∗G-modules.

Proof. Let Q(A) and Q(B) denote the fields of fractions of A and B respec-
tively. Then Q(B) is a Galois extension of Q(A) with Galois group G (here
we use the assumption G acts faithfully on B). So u : Q(B)⊗Q(A) Q(B)′ →
kG ⊗k Q(B)′ given by u(x ⊗ y) =

∑
g∈G g−1 ⊗ (gx)y is an isomorphism of
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(G,Q(B)′)-modules, where Q(B)′ is the field Q(B) with the trivial G-action.
So Q(B) as a G-module is a direct sum of copies of kG. Thus there is at
least one injective kG-map kG → Q(B). Multiplying by an appropriate ele-
ment of A \ {0}, we get an injective G-linear map kG → B. Its image is in
B0 ⊕ B1 ⊕ · · · ⊕ Br for some r ≥ 1, and it is a direct summand, since kG is
an injective module. Then by the Krull–Schmidt theorem, there is a graded
kG-direct summand E0 of B which is isomorphic to kG as a G-module. The
argument so far, which we have given for the convenience of the reader, can
be found in [Sym].

We can take e0 sufficiently large that E0∩m
[pe0 ]
B = 0 for degree reasons, so

E0 → B/m
[pe0 ]
B is injective. We claim that this choice of e0 has the required

property.
Let V be any finite-dimensional kG-module. Then the inclusion E0 ↪→ B

induces a split monomorphism ϕ : e0(E0 ⊗k V ) → e0(B ⊗k V ). Note that the
composite

e0(E0 ⊗k V )
ϕ−→ e0(B ⊗k V ) → B/mB ⊗B

e0(B ⊗k V ) ∼= e0(B/m
[pe0 ]
B ⊗k V )

is injective, since e0(? ⊗k V ) is an exact functor. Note that e0(E0 ⊗k V ) ∼=
(kG)p

de0 dimk V as G-modules. By Lemma 4.3, it is easy to see that

B ⊗k
e0(E0 ⊗k V ) → e0(B ⊗k V )

given by b⊗m 7→ bϕ(m) is an injective map of F whose cokernel DV lies in
F . As B ⊗k

e0(E0 ⊗k V ) ∈ G ⊂ P , we have a decomposition

e0(B ⊗k V [λ]) = B ⊗k
e0(E0 ⊗k V )[λ/pe0 ]⊕DV [λ/p

e0 ].

So if F ∼= B ⊗k V [λ] for some finite-dimensional kG-module V and λ ∈ Q,
the lemma holds.

Now let
0 → E → F → H → 0

be a short exact sequence in F such that the assertion of the lemma (for our
e0) is satisfied for E and H. That is, e0E has a direct summand E ′ such that
E ′ ∼= (B⊗k kG)⊕pde0 rankE as a B ∗G-module, and e0H has a direct summand
H ′ such that H ′ ∼= (B ⊗k kG)⊕pde0 rankH as a (G,B)-module. As H ′ is a
projective object of F , the inclusion H ′ ↪→ H lifts to H ′ ↪→ F . So we have
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a commutative diagram of B ∗G-modules, with exact rows and columns

0

��

0

��

0

��
0 // E ′ //

��

E ′ ⊕H ′ //

��

H ′

��

// 0

0 // E //

��

F //

��

H //

��

0

0 // E ′′ //

��

F ′′ //

��

H ′′ //

��

0

0 0 0

.

As E ′ and H ′ are direct summands of E and H, respectively, we have that
E ′′ ∈ F and H ′′ ∈ F . So F ′′ ∈ F , and hence E ′ ⊕H ′ is a direct summand
of F by Lemma 4.4. As E ′ ⊕ H ′ ∼= (B ⊗k kG)⊕(pde0 (rankB E+rankB H)) and
rankB E + rankB H = rankB F , we conclude that the assertion of the lemma
is also true for F .

Now by Lemma 4.5, we are done.

Proposition 4.12. There exists some c > 0 and 0 ≤ α < 1 such that for
any F ∈ F of rank f and any e ≥ 0, there exists some decomposition

(1) eF ∼= F0,e ⊕ F1,e

such that F1,e ∈ G and rankB F0,e ≤ cαefpδe.

Proof. If the dimension d = 0, then A = B = k and G is trivial, and this
case is obvious, since we may set c = 1, α = 0, F0,e = 0 and F1,e = eF for
each e.

So we may assume that d ≥ 1. Take e0 as in Lemma 4.11, and set
α := (1− |G| · p−de0)1/e0 so that 0 ≤ α < 1. Set c = α−e0 > 0.

We prove the existence of a decomposition by induction on e ≥ 0.
If 0 ≤ e < e0, then we set F0,e =

eF and F1,e = 0. As we have rankB F0,e =
fpδe and cαe = αe−e0 > 1, we are done.

Now assume that e ≥ e0. By the induction hypothesis, we have a decom-
position

e−e0F ∼= F0,e−e0 ⊕ F1,e−e0
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such that F1,e−e0 ∈ G and rankB F0,e−e0 ≤ cαe−e0fpδ(e−e0). Then

eF ∼= e0F0,e−e0 ⊕ e0F1,e−e0 .

By Lemma 4.10, that e0F1,e−e0 ∈ G. Moreover,

rankB
e0F0,e−e0 = pδe0 rankB F0,e−e0 .

By the choice of e0, there is a decomposition

e0F0,e−e0
∼= F ′ ⊕ F ′′

such that F ′ ∈ G and rankB F ′ = |G| · pde0 rankB F0,e−e0 .
Now let F0,e := F ′′ and F1,e := e0F1,e−e0 ⊕ F ′. As e0F1,e−e0 ∈ G and

F ′ ∈ G, we have F1,e ∈ G. On the other hand,

rankB F0,e = rankB
e0F0,e−e0 − rankB F ′ = (pδe0 − |G| · pde0) rankB F0,e−e0

≤ αe0pδe0cαe−e0fpδ(e−e0) = cαefpδe,

and we are done.

Theorem 4.13. For any B ∗ G-module F that is free of rank f over B we
have

FL(F ) =
f

|G|
[B ∗G]

in Θ◦(B ∗G) and the analogous formula

FL(F̂ ) =
f

|G|
[B̂ ∗G]

in Θ∧(B̂ ∗G).

Proof. From Proposition 4.12, we have

(†) [eF ]

pδe
− f

|G|
[B ∗G] =

(
[F1,e]

pδe
− f

|G|
[B ∗G]

)
+

[F0,e]

pδe
.

Notice that [F0,e]/p
δe ∈ Θ◦

+(B∗G) and lime→∞ rankB([F0,e]/p
δe) = 0. But F0,e

is free as a B-module, so uB(F0,e) = rankB(F0,e). It follows from Lemma 3.14
that lime→∞∥[F0,e]/p

δe∥B∗G = 0.
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By Lemma 4.6, the term [F1,e]/p
δe is of the form ae[B∗G] for some number

ae; taking ranks shows that lime→∞ ae = f/|G|. Thus

lim
e→∞

(
[F1,e]

pδe
− f

|G|
[B ∗G]) = 0

and the first part of the theorem is proved.
The second part follows from Lemma 3.12.

Lemma 4.14. B ∼= (B ⊗k kG)G as graded A-modules. More explicitly, b 7→∑
g gb⊗g gives a graded A-isomorphism. The inverse is given by

∑
g bg⊗g 7→

be.

Proof. Easy.

Lemma 4.15. For any B ∗G-module M , rankAMG = rankB M .

Proof. It is well known that Q(B) ∗ G is isomorphic to a matrix ring over
Q(A) ([CR, 28.3]), hence Q(B) is its only indecomposable module. Thus

Q(A)⊗A MG ∼= (Q(A)⊗A M)G ∼= (Q(B)⊗B M)G ∼= (Q(B)m)G ∼= Q(A)m,

where m = rankB M .

Theorem 4.16. For any B ∗ G-module F that is free of rank f over B we
have

FL(FG) =
f

|G|
[B]

in Θ◦(A) and

FL(F̂G) =
f

|G|
[B̂]

Θ∧(Â), where A = BG.

Proof. From the proof of Theorem 4.13 we have [eF ]/pδe = ae[B ⊗k kG] +
[F0,e]/p

δe, where lime→∞ ae = f/|G|. Applying the fixed point functor and
using Lemma 4.14 yields

[eFG]/pδe = ae[B] + [FG
0,e]/p

δe.

The theorem will follow once we can show that lime→∞ uA([F
G
0,e]/p

δe) = 0,
since this takes place in Θ+(A).
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Applying uA gives

uA([
eFG]/pδe) = uA(ae[B]) + uA([F

G
0,e]/p

δe).

Clearly,

lim
e→∞

uA(ae[B]) = (f/|G|)uA(B) = (f/|G|) dimk B/mAB.

Now we use the Hilbert-Kunz multiplicity (see (3.21)).

lim
e→∞

uA

(
[eFG]

pδe

)
= eHK(mA, F

G) = rankA(F
G) · eHK(mA, A).

But rankA(F
G) = rankB(F ) = f , by Lemma 4.15.

It was shown by Watanabe and Yoshida [WY, 2.7] that eHK(mA, A) =
1
|G|ℓB(B/mAB), and this right hand side is equal to 1

|G| dimk B/mAB. Com-

bining these, we see that lime→∞ uA([F
G
0,e]/p

δe) = 0, as required.

Remark 4.17. When p does not divide |G| it is easy to see that the map
induced by the fixed point functor Θ◦(B ∗ G) → Θ◦(A) is continuous, so
Theorem 4.16 follows immediately from Theorem 4.13.

5. Applications

We continue to use the notation of (4.1).

Theorem 5.1. Let k be a field of characteristic p > 0 such that [k : kp] < ∞,
and let V be a faithful G-module. Let k = V0, V1, . . . , Vn be the simple kG-
modules. For each i, let Pi → Vi be the projective cover, and set Mi :=
(B ⊗k Pi)

G. Let F be a Q-graded B-finite B-free B ∗ G-module. Then the
F -limit of [FG] exists in Θ◦(A), where A = BG, and

FL([FG]) =
f

|G|
[B] =

f

|G|

n∑
i=0

dimk Vi

dimk EndkG(Vi)
[Mi],

where f = rankB F . An analogous formula holds for FL([F̂G]) in Θ∧(Â).

Proof. The first equality is just Theorem 4.16.
We can write kG =

⊕n
i=0 P

⊕ui
i for some ui ≥ 0, so B ∼= (B ⊗k kG)G ∼=⊕n

i=0M
⊕ui
i . Applying dimk HomkG(−, Vi) to the first equality shows that

ui = dimk(Vi)/ dimk EndkG(Vi).
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Corollary 5.2. Under the conditions of Theorem 5.1, we have

FL([A]) =
1

|G|
[B] =

1

|G|

n∑
i=0

dimk Vi

dimk EndkG(Vi)
[Mi]

in Θ◦(A) and similarly after completion.

(5.3) Let the notation be as in Theorem 5.1. We say that the action of G
on B (or on X := SpecB) is small if there is a G-stable open subset U of X
such that the action of G on U is free, and the codimension of X \ U in X
is at least two.

For g ∈ G, let Xg be the locus in X that the action of g and the identity
map agree. Note that Xg is a closed subscheme of X. If all the generators
of B are in degree one, then Xg is nothing but the eigenspace in V with
eigenvalue 1 of the action of g on V , where V = B1. We say that g is a
pseudo-reflection if the codimension of Xg in X is one. The action of G on
B is small if and only if G does not have a pseudo-reflection.

Now assume further that the action of G on B is small.

Theorem 5.4. Let the notation be as in (5.3). Then (B⊗A?) : Ref(A) →
Ref(G,B) is an equivalence with quasi-inverse (?)G : Ref(G,B) → Ref(A),
where Ref(A) denotes the category of reflexive A-modules, and Ref(G,B)
denotes the full subcategory of (G,B)mod consisting of (G,B)-modules which
are reflexive as B-modules. A similar assertion for Â → B̂ also holds.

Proof. This is a special case of [Has, (14.24)]. See also [HasN, (2.4)].

Using Theorem 5.4, we can obtain the following equivalences.

Corollary 5.5. Let the notation be as in (5.3). For V ∈ kGmod, define
MV := (B ⊗k V )G.

1 For V ∈ Gmod, the following are equivalent.

a V is an indecomposable kG-module.

b B ⊗k V is an indecomposable object in (B ∗G)mod.

b̂ B̂ ⊗k V is an indecomposable object in (B̂ ∗G)mod.

c MV is an indecomposable A-module.

ĉ M̂V is an indecomposable Â-module.
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2 Let V, V ′ ∈ Gmod. Then the following are equivalent.

a V ∼= V ′ in Gmod.

b B ⊗k V ∼= B ⊗k V
′ in (B ∗G)mod.

b̂ B̂ ⊗k V ∼= B̂ ⊗k V
′ in (B̂ ∗G)mod.

c MV
∼= MV ′ as A-modules.

ĉ M̂V
∼= M̂V ′.

Proof. We only prove 1.
b⇒a. This is because B⊗k? is a faithful exact functor from Gmod to

B ∗Gmod.
a⇒b. This is because B/mB⊗B? is an additive functor from the category

of B-finite B-free B ∗ G-modules to kGmod, which sends a nonzero object
to a nonzero object.

a⇔b̂ is similar. b⇔c and b̂⇔ĉ are by Theorem 5.4.

Theorem 5.6. Let the notation be as in (5.3), so in particular the action of
G on B is small. Then for each 0 ≤ i, j ≤ n, FSMj

(Mi) exists, and

FSMj
(Mi) =

(dimk Pi)(dimk Vj)

|G| dimk EndkG(Vi)
.

A similar formula holds in the complete case.

Proof. By Theorem 5.1, FSMj
(Mi) exists and

FSMj
(Mi) = sumMj

(FL(Mi)) =
rankB(B ⊗k Pi)

|G|

n∑
l=0

dimk Vl

dimk EndkG(Vi)
sumMj

[Ml].

Because each Pl is indecomposable and Pl
∼= Pj if and only if l = j, it follows

from Corollary 5.5 that each Ml is indecomposable and Mj
∼= Ml (after shift

of degree) if and only if l = j. This shows that sumMj
[Ml] = δjl (Kronecker’s

delta). The theorem follows.

Corollary 5.7 ([HasN, (3.9)]). Let the notation be as in (5.3) and assume
that k is algebraically closed and that |G| is not divisible by the characteristic
of k. Then, for each 0 ≤ i, j ≤ n, FSM̂j

(M̂i) exists, and

FSM̂j
(M̂i) =

(dimk Vi)(dimk Vj)

|G|
.
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Proof. This is because Pi
∼= Vi, by Maschke’s theorem.

Corollary 5.8 ([Bro, Corollary 2], [Yas, Corollary 3.3]). Let the notation be
as in (5.3). If p divides |G|, then none of Â, AmA

, nor A is weakly F -regular.

Proof. By Corollary 5.5, 1, M̂j is indecomposable for j = 0, 1, . . . , n. By

Corollary 5.5, 2, M̂j = M̂Pj
∼= M̂k = Â if and only if Pj

∼= k. This happens if
and only if j = 0 and P0 → k is an isomorphism. This is equivalent to saying
that p does not divide |G| and j = 0. By our assumption, sumÂ(M̂j) = 0 for
j = 0, . . . , n. So by Theorem 5.1,

FSÂ(Â) = sumÂ(FL(Â)) =
n∑

j=0

dimk Vj

dimk EndkG(Vi)
sumÂ(M̂j) = 0.

Since FSÂ(Â) is just the F -signature of Â of Huneke–Leuschke [HL], we see

that Â is not strongly F -regular, by the theorem of Aberbach and Leuschke
[AL]. So Â cannot be a direct summand subring of the regular local ring
B̂. As a weakly F -regular ring is a splinter [HH, (5.17)], Â is not weakly F -
regular. By smooth base change [HH2, (7.3)], AmA

is not weakly F -regular.
It follows that A is not weakly F -regular.
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