
Surjectivity of multiplication and F -regularity of multigraded rings

Mitsuyasu Hashimoto

Graduate School of Mathematics, Nagoya University
Chikusa-ku, Nagoya 464–8602 JAPAN

hasimoto@math.nagoya-u.ac.jp

1 Introduction

Let R be a noetherian Zr-graded integral domain. Then the subset Σ(R) :=
{λ ∈ Zr | Rλ 6= 0} is a finitely generated subsemigroup of Zr. We say that R is
surjectively graded if for any λ, µ ∈ Σ(R), the product Rλ⊗R0 Rµ → Rλ+µ is sur-
jective. This is essentially a generalization of the degree-one generation property
of N-graded rings. The purpose of this paper is to study this property, mainly for
normal domains. After that, we show that surjectively graded normal domains
in positive characteristic behaves well with respect to strong F -regularity, uti-
lizing the notion of global F -regularity defined and studied by Smith [17]. This
approach gives yet another abstraction of beautiful ring theoretic properties of
multicones over G/B, as in [9], [11].

In section 2, we review the definition and some basic properties of global F -
regularity (with an obvious generalization). This section is essentially a proper
subset of [17]. A lemma on multicones will be used later.

In section 3, we define and study the first property of surjectively graded rings.
As is a multihomogeneous coordinate ring of a closed subscheme of a product of
projective spaces, such a ring gives a projective variety. As combinations of the
Segre and the Veronese embeddings give various embeddings of the same projec-
tive variety, we prove that lines in the ‘middle’ of graded part give homogeneous
coordinate rings of the same projective variety.

We can prove more for a normal surjectively graded algebra, and we discuss
this in section 4. Such rings are given as multicones over the projective schemes
given in section 3.

As an application, we prove a criterion for strong F -regularity of surjectively
graded algebras in section 5. Note that if the ring is N-graded, then much more
has long been known [20, (3.4)]. A multicone over G/B is a typical example.
Finally, we prove that a normal semigroup scheme in characteristic zero which
admits a dominating semigroup homomorphism from a reductive group has at
most rational singularities.
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2 Global F -regularity

For a ring A, we denote by A◦ the subset
⋃

P∈Min(A) P , where Min(A) is the set
of minimal primes of A.

Let p be a prime number, and k a perfect field of characteristic p. Let A be
a commutative k-algebra. For e ≥ 0, the Frobenius map A → A (x 7→ xpe

) is
denoted by F e

A. For r ∈ Z, A(r) denotes the ring A with the k-algebra structure
uA ◦F−r

k : k → A, where uA : k → A is the original k-algebra structure of A. For
a k-algebra map f : A → B, we define f (r) : A(r) → B(r) to be f . Then (?)(r) is
an autofunctor of the category of k-algebras, and we have (?)(r′)◦(?)(r) ∼= (?)(r+r′)

and (?)(0) ∼= Id. Note that F e : (?)(r+e) → (?)(r) is a natural transformation for
e ≥ 0.

For an A-module (resp. A-algebra) M , we denote the same additive group
(resp. ring) M viewed as an A(r)-module (resp. A(r)-algebra) by M (r). An element
m of M , viewed as an element of M (r) is denoted by m(r). So if a ∈ A, then
F e

A(a(e+r)) = (ape
)(r). If r = 0, then the superscript (?)(0) may be omitted.

This convention is standard in representation theory of algebraic groups, see
[8]. As we need to consider gradings (or actions of diagonalizable group schemes),
it is convenient to use this convention here. The relationship with the standard
notation in commutative ring theory is explained as follows. A(r) for r ≤ 0 is
denoted |r|A. Sometimes A(e) for e ≥ 0 is denoted Ape

(usually pe is denoted q
for short (so q depends on e), and Aq is used).

A similar convention applies to schemes and quasi-coherent sheaves. For a
k-scheme X, we always assume that X(r) is an X(r+e)-scheme via the Frobenius
map F e

X : X(r) → X(r+e). If G is a k-group scheme, then F e
G : G → G(e) is a

k-group homomorphism. For a G-action X, X(e) is a G(e)-action. So X(e) is also
a G-action via the group homomorphism F e

G : G → G(e), and F e
X : X → X(e) is

a morphism of G-actions. In particular, considering the case where G is a split
torus T over Fp, F e

A : A(e) → A is a graded homomorphism of X(T )-graded rings,
if A is X(T )-graded (if a has degree λ in A, then a(e) has degree peλ in A(e)).

We say that A is F -finite if A is a finite A(1)-module.

(2.1) Let Σ be a finitely generated torsion free abelian group. Let A be a Σ-
graded integral domain which is an Fp-algebra. We say that A is quasiF -regular,
if for any homogeneous nonzero element a of A of degree λ, there exists some e > 0
such that aF e

A : A(e) → A(λ) splits as a homogeneous A(e)-linear map, where (λ)
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denotes the shifting of degree. If A is non-graded, then we consider that A is
trivially graded when we speak of quasiF -regularity of A. If A is noetherian and
F -finite, then A is quasiF -regular if and only if A is strongly F -regular in the
sense of Hochster-Huneke [5]. In particular, quasiF -regularity of a noetherian
F -finite domain A of positive characteristic is independent of grading of A.

(2.2) Let A be a Zr-graded domain, and t a new variable which is homogeneous.
If A is quasiF -regular, then the polynomial ring A[t] is quasiF -regular.

Let f(t) = a0+a1t+· · ·+art
r (ar 6= 0) be a nonzero homogeneous polynomial.

Note that ai is homogeneous for any i. Take e > 0 sufficiently large so that arF
e
A

has a homogeneous splitting π : A(λ) → A(e), and that r < q, where λ is the
degree of ar, and q = pe. Let Ψ : A[t](rµ) → A[tq] = A ⊗A(e) (A[t])(e) be the
homogeneous A[tq]-linear map given by ti 7→ 0 for 0 ≤ i < q and i 6= r, and
tr 7→ 1, where µ is the degree of t. As

(π ⊗ 1)Ψf(t)F e
A[t](1) = 1,

(π ⊗ 1)Ψ is an (A[t])(e)-linear homogeneous splitting of f(t)F e
A[t] : (A[t])(e) →

A[t](λ + rµ).

(2.3) Let Σ ⊂ Zr be a subgroup of Zr, and A a Zr-graded domain of character-
istic p. If A is quasiF -regular, then so is AΣ :=

⊕
λ∈Σ Aλ.

For λ ∈ Σ and a ∈ Aλ\0, there exists some e > 0 and a homogeneous splitting
π : A(λ) → A(e) of aF e

A. Let i : AΣ → A be the inclusion, and η : A → AΣ be the
projection. Then

η(e)πiaF e
AΣ

= η(e)πaF e
Ai(e) = η(e)i(e) = id.

As Σ is a subgroup, i and η are homogeneous and AΣ-linear. So η(e)πi : AΣ(λ) →
A

(e)
Σ is a homogeneous splitting of aF

(e)
AΣ

.

Lemma 2.4 Let A :=
⊕

λ∈Zr Aλ be a Zr-graded commutative ring of charac-
teristic p, and C a rational convex polyhedral cone (see (3.1)) in Rr. If A is
quasiF -regular (resp. strongly F -regular), then so is AC :=

⊕
λ∈C∩Zr Aλ.

Proof. As C is the intersection of some finitely many half-spaces whose bound-
aries are rational hyperplanes through the origin, we may assume that C is such
a half-space. Let H := C ∩ (−C) be the boundary of C, and set N := H ∩ Zr.
Let λ be any element of C ∩ Zr such that λ and N together generate Zr. Let t
be a new variable of degree −λ. Then A[t] is quasiF -regular. Hence AC

∼= A[t]H
is also quasiF -regular. Noetherian F -finite property is also inherited by A[t]H ,
and we are done. 2
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(2.5) Let X be a noetherian integral scheme. For invertible sheaves L1, . . . ,Lr

on X, we define R(X;L1, . . . ,Lr) to be Γ(V,OV ), where V = Spec SymOX
(L1 ⊕

· · · ⊕ Lr). Then we have

R(X;L1, . . . ,Lr) = Γ(X, SymOX
(L1 ⊕ · · · ⊕ Lr)) ∼=

⊕

λ∈Nr

Γ(X,Lλ),

where Lλ := L⊗λ1
1 ⊗ · · · ⊗ L⊗λr

r for λ = (λ1, . . . , λr) ∈ Zr. Set E to be the closed
subset of V defined by the ideal sheaf of SymOX

(L1 ⊕ · · · ⊕ Lr) generated by

L(1,1,...,1). Note that the open subscheme V \ E is nothing but SpecB, where

B = B(X;L1, . . . ,Lr) :=
⊕

λ∈Zr

Lλ.

We denote Γ(V \ E,OV \E) by B = B(X;L1, . . . ,Lr).
The following was proved by Smith [17] (see also [20] and [16]) except that

the condition 3 seems to be new here. Some trivial generalization is also done
here. The whole proof is included for reader’s convenience.

Theorem 2.6 Let the notation be as above, and assume that X is a noethe-
rian integral scheme of characteristic p with an ample invertible sheaf. Then the
following are equivalent.

1 There exists some ample invertible sheaf L over X and some r0 ≥ 0 such that
for any r ≥ r0 and a ∈ Γ(X,L⊗r) \ 0, there exists some e > 0 such that the

composite OX(e) → F e
∗OX

F e∗ a−−→F e
∗L has an OX(e)-linear splitting.

2 For any invertible sheaf L over X such that for any a ∈ Γ(X,L) \ 0, there

exists some e > 0 such that the composite OX(e) → F e
∗OX

F e∗ a−−→F e
∗L has an

OX(e)-linear splitting.

3 For any r ≥ 1 and any invertible sheaves L1, . . . ,Lr, the Zr-graded ring
B(X;L1, . . . ,Lr) is quasiF -regular.

4 For any ample invertible sheaf L over X, the Z-graded ring R(X;L) is quasiF -
regular.

5 For some ample invertible sheaf L over X, R(X;L) is quasiF -regular.

Note that 4⇔5 is proved in [20, (3.4)] for more general graded rings.
Proof. 1⇒2 Let L be an invertible sheaf on X, and a its nonzero section. Take
an ample invertible sheaf A which satisfies the condition in 1. Take r sufficiently
large so that L⊗(−1)⊗A⊗r has a nonzero section b. As ba ∈ Γ(X,A⊗r) is nonzero
(because B is a domain), there exists some e > 0 such that baF e splits. Then
aF e splits, and we are done.
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2⇒1 As X is assumed to have an ample invertible sheaf, this is obvious.
1,2⇒3 Set B := B(X,L1, · · · ,Lr). Note that B is a Zr-graded OX-algebra,

whose degree λ component is Lλ := L⊗λ1
1 ⊗ · · · ⊗ L⊗λr

r for λ = (λ1, . . . , λr) ∈ Zr.
Thus B := B(X;L1, . . . ,Lr) is also Zr-graded whose degree λ component Bλ is
Γ(X,Lλ).

Let a ∈ B be a nonzero homogeneous element of degree λ. Take e sufficiently
large so that aF e : OX(e) → F e

∗OX
a−→F e

∗Lλ splits.
To verify that B is quasiF -regular, it suffices to show that aF e : B(e) →

B(λ) homogeneously splits for this e. To verify this, it suffices to show that
the corresponding B(e)-linear map aF e : B(e) → F e

∗B homogeneously splits. Let
ϕ : Zr → Zr/peZr be the natural map. As B is Zr-graded and (F e)∗B(e) is
peZr-graded, there is a direct sum decomposition

B ∼=
⊕

ν̄∈Zr/peZr

Bν̄

as a Zr-graded (F e)∗B(e)-module, where Bν̄ :=
⊕

µ∈Zr, ϕ(µ)=ν̄ Lµ. Let π(ν̄) denotes
the projection B → Bν̄ . Obviously, the product

(F e)∗B(e) ⊗OX
Lµ → Bϕ(µ)

is a graded isomorphism for µ ∈ Zr. By the projection formula, the product

B(e) ⊗O
X(e)

F e
∗Lµ → F e

∗Bϕ(µ)

is also a graded isomorphism.
It is easy to see that the composite

B(e) aF e
B−−→F e

∗B(λ)
π(ϕ(λ))−−−−→F e

∗Bϕ(λ)(λ)

is the composite

B(e) F e
X−−→B(e) ⊗O

X(e)
F e
∗OX

a−→B(e) ⊗O
X(e)

F e
∗Lλ(λ) ∼= F e

∗Bϕ(λ)(λ).

As aF e
X splits, π(ϕ(λ))aF e

B homogeneously splits, and hence aF e
B also homoge-

neously splits.
3⇒4 Let L be ample. As B(X;L) is assumed to be quasiF -regular, R(X;L)

is quasiF -regular by Lemma 2.4.
4⇒5 As we are assuming that there is an ample invertible sheaf, this is trivial.
5⇒1 Let L be an ample invertible sheaf such that R = R(X,L) is quasiF -

regular. Note that R is a domain. Let r > 0 be arbitrary, and let a ∈ Γ(X,L⊗r)\0.
By assumption, there exists some e > 0 such that aF e : R(e) → R(r) has an

R(e)-linear homogeneous splitting α : R(r) → R(e).
Now passing to the associated morphisms on sheaves on Proj R(e) and re-

stricting it to the open subscheme X(e) ⊂ Proj R(e), we get the splitting
α : F e

∗L⊗r → OX(e) of aF e, as desired. 2
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Definition 2.7 (Smith [17]) Let X be a noetherian integral Fp-scheme with an
ample invertible sheaf. We say that X is globally F -regular if the equivalent
conditions in the proposition are satisfied.

Lemma 2.8 Let X be a noetherian integral Fp-scheme with an ample invertible
sheaf. Then the following hold.

1 If X is globally F -regular, then OX,x is quasiF -regular with respect to the trivial
grading for x ∈ X. In particular, OX,x is F -regular in the sense of Hochster-
Huneke [6] (i.e., any ideal of any localization of OX,x is tightly closed). In
particular, X is normal. If moreover, X is locally excellent, then X is
Cohen-Macaulay.

2 A globally F -regular scheme is a Frobenius split scheme in the sense of Mehta–
Ramanathan [11].

3 If X is globally F -regular, then Γ(X,OX) is quasiF -regular with respect to the
trivial grading. The converse is true if X is affine.

Proof. 1 Let A be a very ample invertible sheaf over X, and R := R(X,A)
so that X is an open subscheme of Proj R. Replacing X by Proj R and A by
O(1), we may assume that X = Proj R. By assumption, R is quasiF -regular with
respect to the canonical Z-grading. Note that any homogeneous localization of
R is also quasiF -regular. Applying (2.3) to the subgroup {0} of Z, the degree
zero component of any homogeneous localization of R is also quasiF -regular with
respect to the trivial grading. So X is F -regular. Hence X is normal [7, (3.4)].
The last assertion also follows from the F -regularity of X, [7, (4.2)], and [19,
Proposition 0.10].

2 This is trivial.
3 As in 1, apply (2.3) to the ring R = R(X,A) and the subgroup {0} in Z.

The last assertion is trivial. 2

Lemma 2.9 Let X be a noetherian normal connected Fp-scheme with an ample
invertible sheaf, and E a closed subset of X whose codimension is at least two.
Then X is globally F -regular if and only if X \ E is globally F -regular.

Proof. Let L be an ample invertible sheaf of X. Then L|X\E is ample, and
R(X;L) = R(X \ E;L|X\E). 2

Lemma 2.10 Assume that X is globally F -regular. Let D1, . . . , Dr be Weil di-
visors on X, and set B :=

⊕
λ∈Zr OX(

∑
i λiDi)t

λ ⊂ Q(X)[t±1
1 , . . . , t±1

r ], where
Q(X) denotes the rational function field of X, t1, . . . , tr are new variables, and
tλ := tλ1

1 · · · tλr
r for λ = (λ1, . . . , λr) ∈ Zr. Then B is quasiF -regular.
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Proof. Take the locally free locus U of
⊕OX(Di). As X \ U has at least

codimension two, the assertion follows immediately by Lemma 2.9. 2

Similarly, the following is also trivial.

Lemma 2.11 Let X be a noetherian connected normal Fp-scheme with an ample
invertible sheaf. Then X is globally F -regular if and only if for any effective Weil
divisor D of X, there exists some e > 0 such that

OX(e)
F e−→F e

∗OX → F e
∗OX(D)

splits.

Lemma 2.12 An open subscheme U of a globally F -regular scheme X is globally
F -regular.

Proof. Let D be an effective Weil divisor of U . Then D is extended to an
effective Weil divisor D̄ of X. There exists some e > 0 such that OX(e) →
F e
∗OX → F e

∗O(D̄) splits. By restriction, OU(e) → F e
∗OU → F e

∗O(D) splits. 2

Proposition 2.13 ([17, Corollary 4.3]) Let A be a noetherian commutative
ring of characteristic p, and X a globally F -regular projective A-scheme. Let L
be an invertible sheaf on X such that there exists some n0 ≥ 1 such that for any
n ≥ n0 and any ample invertible sheaf A, the tensor product A⊗ L⊗n is ample.
Then H i(X,L) = 0 for i > 0. In particular, we have H i(X,OX) = 0 for i > 0.

Proof. See [17].

3 Surjectively graded rings

(3.1) Let r ≥ 1. By definition, a rational convex polyhedral cone in Rr is a
subset of Rr of the form Rr ∩⋂u

i=1 Qi, where u is a nonnegative integer, and each
Qi is a half space in Rr of the form

{(x1, . . . , xr) ∈ Rr | a(i)
1 x1 + · · ·+ a(i)

r xr ≥ 0},

with (a
(i)
1 , . . . , a

(i)
r ) ∈ Qr \{0}. Let C be a rational convex polyhedral cone in Rr.

Then C ∩ (−C) is a linear subspace of Rr defined over Q. We say that H is a
supporting hyperplane of C if there is a half space U in Rr such that 0 is on its
boundary, U ⊃ C, and H = U ∩ (−U). A face of C is either C itself, or a subset
of C of the form C ∩ H with H a supporting hyperplane of C. We denote the
set of faces of C by F(C). Note that F(C) is a finite ordered set with respect
to the incidence relation. Clearly, C is the maximum element, while C ∩ (−C)
is the minimum element of F(C). For a face σ ∈ F(C), the relative interior

σ \
(⋃

F(C)3ρ(σ ρ
)

of σ is denoted by σ◦.
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(3.2) Let k be a field, and R =
⊕

n∈ZRn a Z-graded k-algebra. We say that
R is a positively graded k-algebra, if Rn = 0 for n < 0, and k → R0 is an
isomorphism. We say that R is a standard graded k-algebra, if R is positively
graded, noetherian, and R is generated by R1 as a k-algebra.

(3.3) Let R =
⊕

λ∈Zr Rλ be a Zr-graded noetherian integral domain. We denote
by Σ(R) the subset {λ ∈ Zr | Rλ 6= 0} of Zr. As R is generated by finitely many
homogeneous elements over R0, Σ(R) is a finitely generated subsemigroup of Zr.

We denote the rational convex polyhedral cone C(R) := R≥0Σ(R) in Rr by
C(R). For x ∈ C(R), we denote by σ(x) the smallest face of C(R) on which x
lies, which equals the intersection of the all faces on which x lies.

(3.4) For any subset S of Rr, and any Zr-graded abelian group M , we set
MS :=

⊕
λ∈S∩Zr Mλ. If S is an additive subsemigroup of Rr, then RS is a graded

R0-subalgebra of R. This notation will be used also for a graded sheaves over a
scheme.

(3.5) Let R be as above. We say that R is surjectively graded if the product
Rλ⊗R0 Rµ → Rλ+µ is surjective for λ, µ ∈ Σ(R). It is easy to see that a homoge-
neous localization of a surjectively graded domain is again a surjectively graded
domain. Any N-graded noetherian domain generated by degree zero and one is
surjectively graded. If R is surjectively graded and Ω is a subsemigroup of Zr,
then RΩ is an R0-subalgebra of R which is surjectively graded.

(3.6) Let R be as above. Set M(R) = M to be the additive group generated
by Σ(R). We denote MR by M ⊗Z R ⊂ Rr. For a commutative ring A, set
TA(R) = TA := Spec AM , where AM denotes the group algebra of M over A. By
a TA(R)-action X we mean an A-scheme X with a left action TA(R)×Spec AX → X
of the A-group scheme TA(R). Note that T (R) := TR0(R) acts on Spec R in a
natural way.

Let A be a commutative ring, Λ a finitely generated abelian group, and λ ∈ Λ.
Set D to be the diagonalizable A-group scheme Spec AΛ. The rank one A-free
(D, A)-module A with the coaction ω : A → AΛ such that ω(1) = λ is denoted
by A(λ). The corresponding (D, Spec A)-module is denoted by Ã(λ). For a D-
action f : X → Spec A and a quasi-coherent (D,OX)-module M, we denote the
(D,OX)-module M⊗OX

f ∗(Ã(λ)) by M(λ).

(3.7) Let R be a Zr-graded integral domain. Then the subset {λ ∈ Σ(R) |
R× ∩ Rλ 6= ∅} is denoted by χ(R), where R× denotes the set of units of R.
Clearly, χ(R) is a subgroup of Σ(R). If R is surjectively graded and λ ∈ χ(R),
then Rλ is a rank one free R0-module. In particular, Rχ(R) is isomorphic to the
Laurent polynomial ring R0χ(R).

Lemma 3.8 Let the notation be as above.
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0 For each σ ∈ C(R), the sum P (σ) := RΣ(R)\σ =
⊕

λ∈Σ(R)\σ Rλ is a graded

prime ideal of R, and R/P (σ) ∼= Rσ.

1 The closed subset of non-semi-stable points of Spec R with respect to the T (R)-
linearlized invertible sheaf O(λ) is defined by J(λ) := R · (⊕n≥1 Rnλ). If R
is surjective, then J(λ) is generated by Rλ.

2 If R is surjective, then
√

J(λ) agrees with J :=
⊕

µ Rµ, where the sum is taken
over all µ ∈ Σ(R) such that σ(µ) ⊃ σ(λ), or equivalently, λ ∈ σ(µ).

3 Assume that R is surjective. Let λ ∈ Σ(R) such that σ(λ) = C(R). Set
Y (R) := Spec R \ V (J(λ)), and let π(R) : Y (R) → X(R) be the categorical
quotient. Then π(R) is a principal T (R)-fiber bundle.

Proof. The assertion 0 is trivial. 1 is also trivial by the definition of semi-
stability [12, Definition 1.7] and the fact Γ(Spec R,O(nλ))T = Rnλ.

2 Let µ be an element of Σ(R) such that σ(µ) ⊃ σ(λ). Let N be the subgroup
of M spanned by Σ(R) ∩ σ(µ), and set A := (CΣ(R))σ(µ) and Ā := (CN)σ(µ).
Note that Ā is the normalization of A. As Ā is A-finite, c := [A :A Ā] is a
nonzero homogeneous ideal of A. Take γ ∈ Σ(R)∩σ(µ) such that cγ 6= 0. By the
definition of the conductor ideal c and the surjectivity, we have γ+(Σ(R)∩σ(µ)) =
γ + (N ∩ σ(µ)).

Since µ ∈ σ(µ)◦, there exists some n ≥ 1 such that nµ−γ−λ ∈ N ∩σ(µ). By
the choice of γ, we have nµ ∈ λ + Σ(R). By surjectivity, an ∈ J(λ) for a ∈ Rµ.

In particular, Rµ ⊂
√

J(λ). So J ⊂
√

J(λ).
On the other hand, J ⊃ J(λ) is trivial. So it remains to show that R/J is

reduced. Let Ω be the set of maximal elements of the subset

{σ ∈ F(C(R)) | σ 6⊃ σ(λ)}

of F(C(R)), where F(C(R)) is ordered by the incidence relation. For σ ∈ Ω, we
have that P (σ) ⊃ J , and there is a canonical map R/J → ∏

σ∈Ω R/P (σ). By the
definition of Ω, this map is injective. As a subring of a finite direct product of
integral domains is reduced, R/J is reduced. This completes the proof of 2.

3 Note that the categorical quotient π(R) : Y (R) → X(R) exists by 1 and
GIT [12, Theorem 1.10]. It is independent of λ ∈ C(R)◦ ∩ Σ(R) by 2.

Let λ1, . . . , λn generate Σ(R). As λ is a point in the relative interior of C(R),
there exist a sequence of positive integers c1, . . . , cn and a positive integer m
such that mλ = c1λ1 + · · · + cnλn. By the surjectivity assumption, it suffices to
show that for any nonzero element of the form y = yc1

1 · · · ycn
n with yi ∈ Rλi

, the
morphism Spec R[1/y] → Spec R[1/y]0 is a trivial bundle. This is obvious, since
χ(R[1/y]) = M . 2

Let R be surjectively graded. By the lemma, for σ ∈ F(C(R)) and λ ∈
σ◦ ∩Σ(R), we may write J(σ) or JR(σ) instead of

√
J(λ), since

√
J(λ) depends

9



only on σ(λ) in this case. We set Y (R) := Spec R \ V (J(C(R))), and denote the
quotient under the action of T (R) by π(R) : Y (R) → X(R), as in the lemma.
We denote (π(R)∗OY (R)(λ))T (R) by L[λ]. It is easy to show the following.

Lemma 3.9 Let the notation be as above.

1 L[λ] is an invertible sheaf for each λ ∈ M .

2 The canonical map OX(R) → L[0] is an isomorphism.

3 For λ, µ ∈ M , we have that the canonical map L[λ]⊗OX(R)
L[µ] → L[λ + µ] is

an isomorphism.

The proof is left to the reader.

Lemma 3.10 Let R be surjectively graded as above. Let M be the subgroup of
Zr generated by Σ(R). Set rank M = s, and let λ(1), . . . , λ(s) be a Z-basis of M .
Let L be a line in Rr through the origin such that #(L ∩C(R)◦ ∩M) ≥ 2. Then

1 X(RL) ∼= X(R) in a natural way, and is independent of choice of L.

2 If λ ∈ C(R)◦ ∩ Σ(R), then L[λ] is very ample relative to Spec R0. Moreover,
X(R) is projective over Spec R0.

Proof. As #M ≥ 2, we have that s > 0. Replacing Zr by M , we may assume
that M = Zr and s = r > 0. It is easy to see that the assertion is independent
of choice of Z-basis of M , and so we may assume that λ(j) = εj for 1 ≤ j ≤ r,
where εj is the jth unit vector (0, 0, . . . , 0, 1, 0, . . . , 0).

Let λ be any point on L ∩ Σ(R) ∩ C(R)◦, which exists by assumption. Then
simply λ ∈ Σ(RL) ∩ C(RL)◦. As J(λ) is generated by Rλ ⊂ RL, there is a
canonical morphism η(R,L) : Y (R) → Y (RL) induced by the inclusion RL ↪→ R.
Let y be an element as in the proof of Lemma 3.8, 3. Then it is easy to see
that RL[1/y]0 → R[1/y]0 is an isomorphism. Namely, X(R) → X(RL) is an
isomorphism. This completes the proof of 1.

We prove 2. Assume that λ ∈ Σ(R) ∩ C(R)◦. There are two cases. If
(−Nλ) ∩ Σ(R) 6= {0}, then C(R) = Rr. In this case, we have X(R) = Spec R0,
and the assertion is trivial.

Next, consider the case (−Nλ) ∩ Σ(R) = {0}. Then the cohomology ring
R(X(R);L[λ]) =

⊕
n≥0 Rnλ is generated by Rλ as an R0-algebra by surjectivity,

and Proj R(X(R);L[λ]) = X(R) by the argument above. So L[λ] is very ample
in this case, too.

In both cases, the projectivity of X(R) is obvious. 2
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(3.11) Let A be a commutative ring, T a group scheme of the form Spec AG,
where G is a finitely generated abelian group (and the coalgebra structure is
given so that each element of G is group-like). Let X be an A-scheme on which
T acts trivially. Then a quasi-coherent (T,OX)-module is nothing but a G-graded
quasi-coherent OX-module.

Lemma 3.12 Let T be as above, and f : X → Y a quasi-compact separated
morphism of A-schemes on which T acts trivially. Let M be a quasi-coherent
(T,OX)-module. Then the canonical map f∗MT → (f∗M)T is an isomorphism.

Proof. A (T,OX)-module is nothing but a G-graded OX-module, and the T -
invariance is nothing but the degree zero component. As f∗ preserves the grading
and compatible with direct sums, the assertion is trivial. 2

Lemma 3.13 Let r ≥ 1, and R a noetherian Zr-graded integral domain. As-
sume that R is surjectively graded. Let σ be a face of C(R), and ξ(R, σ) :
X(R) → X(Rσ) be the canonical morphism. Then for λ ∈ M(Rσ), we have
that ξ(R, σ)∗LRσ [λ] ∼= LR[λ].

Proof. By Lemma 3.9, we may assume that λ ∈ Σ(Rσ). Note that
JRσ(C(Rσ))R = JR(σ) and JR(σ) ⊃ J(C(R)). This shows that the inclusion
Rσ ↪→ R induces the canonical morphism η(R, σ) : Y (R) → Y (Rσ). Passing to
the quotient by T (R), this induces ξ(R, σ).

Let T (R, σ) be the kernel of the natural map T (R) → T (Rσ) induced by the
inclusion M(Rσ) ↪→ M(R). Note that T (R, σ) ∼= Spec R0(M(R)/M(Rσ)), which
is diagonalizable. Set Z := Y (R)/T (R, σ), and q : Y (R) → Z to be the natural
projection.

Since T (R, σ) acts trivially on Y (Rσ), there is a unique morphism c : Z →
Y (Rσ) such that cq = η(R, σ). Note that q, c and η(R, σ) are T -stable. This
means c is also T (Rσ)-stable.

Taking the quotient by T (Rσ), we obtain a commutative diagram

Z
c−→ Y (Rσ)

↓ q′ ↓ π(Rσ)

X(R)
ξ(R,σ)−−−→ X(Rσ),

(3.14)

where q′ : Z = Y (R)/T (R, σ) → Z/T (Rσ) = Y (R)/T (R) = X(R) is the quotient
map so that q′q = π(R). As the square is T (Rσ)-equivariant and both q′ and
π(Rσ) are T (Rσ)-principal fiber bundles, the square is a fiber square, as can be
seen easily.

As R⊗Rσ Rσ(λ) ∼= R(λ) in a natural way, we have that η(R, σ)∗(OY (Rσ)(λ)) ∼=
OY (R)(λ). Since T (R, σ) acts trivially on c∗(OY (Rσ)(λ)), we have

(q∗OY (R)(λ))T (R,σ) ∼= (q∗(q∗(c∗OY (Rσ)(λ))⊗OY (R)
OY (R)))

T (R,σ) ∼=
(c∗(OY (Rσ)(λ))⊗OZ

q∗OY (R))
T (R,σ) ∼= c∗(OY (Rσ)(λ))⊗OZ

(q∗OY (R))
T (R,σ)

11



by the projection formula. Thus we have c∗(OY (Rσ)(λ)) ∼= (q∗OY (R)(λ))T (R,σ).
Since (3.14) is a fiber square, we have that

ξ(R, σ)∗LRσ [λ] ∼= (ξ(R, σ)∗π(Rσ)∗O(λ))T (Rσ) ∼= (q′∗c
∗O(λ))T (Rσ) ∼= LR[λ],

as can be seen easily, utilizing Lemma 3.12. 2

4 Normal surjectively graded rings

(4.1) Let r ≥ 1, and R a surjectively graded noetherian Zr-graded normal
domain.

Lemma 4.2 Let σ be a face of C(R) such that ht P (σ) = 1. Then we have

1 σ is a maximal face (i.e., a maximal element of F(R) \ {C(R)}).
2 The homogeneous localization R(P (σ)) is isomorphic to the semigroup algebra

K(M(Rσ) + Nλ) for some field K and λ ∈ M(R) \ σ.

3 M(R) ∩ Rσ = M(Rσ).

4 The K in 2 agrees with the degree 0 component of the homogeneous localization
R((0)) at the ideal (0).

Proof. If σ ( τ ( C(R), then 0 ( P (τ) ( P (σ), and this contradicts to the
assumption ht P (σ) = 1. This proves 1.

Set N := M(R) ∩ Rσ. Then M/N ∼= Z, and we may assume that R is
N-graded (if −N-graded, then we change the sign). We take the homogeneous
localization of R at P (σ) with respect to this N-grading. It is nothing but the
localization R′ := R ⊗Rσ Q(Rσ). Obviously, P (σ)R′ is the irrelevant maximal
ideal of the standard graded Q(Rσ)-algebra R′, and its height is still one. So R′

is a one-dimensional normal standard graded Q(Rσ)-algebra, and is isomorphic
to Q(Rσ)[t] for some nonzero homogeneous element t. The degree of t, say λ, is
a generator of M/N . Note that for each n ∈ N, the degree n component of R′ is
a one-dimensional Q(Rσ)-vector space.

Next, consider the homogeneous localization R(P (σ)) with respect to the Zr-
grading. Since this ring is M -graded, it is also M/N ∼= Z-graded, and each
homogeneous component (R(P (σ)))n for n ∈ Z is a graded module over the N -
graded ring (R(P (σ)))N . Clearly, all non-zero homogeneous element whose degree
is in N is a unit in R(P (σ)), and hence (R(P (σ)))N

∼= KM(Rσ), for some field
K. Note that an N -graded module is M(Rσ)-graded, and any finitely generated
M(Rσ)-graded KM(Rσ)-module is free. As each homogeneous component must
be rank one by the first paragraph, we have that R(P (σ))

∼= K(M(Rσ)+Nλ). This
shows that N = M(Rσ). So the proof of 2 and 3 are complete. The assertion 4
is obvious now. 2
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Remark 4.3 The normality assumption can be weakened to Serre’s (R1) condi-
tion in the lemma above. By the lemma, for a homogeneous element a 6= 0 of
R((0)), a ∈ R(P (σ)) if and only if the degree of a lies in the unique half space H in
MR such that H ∩ (−H) = R ·σ and H ⊃ C(R). Note that the latter condition is
only about the degree of a which is always satisfied by a degree in C(R)∩M(R).

Theorem 4.4 Let r ≥ 1, and R a surjectively graded Zr-graded noetherian nor-
mal domain. Then

1 X := X(R) is connected normal.

2 For any Z-basis ν1, . . . , νs of M , there exists an isomorphism of Σ(R)-graded
R0-algebras

R ∼=
⊕

ν∈C(R)

Γ(X,L[ν]) = B(X;L[ν1], . . . ,L[νs])C(R), (4.5)

where ÃL[ν] has degree ν.

Proof. Replacing Rr by MR(R) and Zr by M(R), we may assume that r = s.
The assertion is independent of choice of ν1, . . . , νr, so we may assume νi = εi for
i = 1, . . . , r, where εi = (0, . . . , 0, 1, 0, . . . , 0) with 1 at the ith place.

Set U := Y (R) = Spec R\V (J(C(R))), and let π : U → X(R) be the quotient
map. As U is connected normal and π is faithfully flat, X(R) is connected normal.
The part 1 was proved.

Since π∗OU =
⊕

λ∈Zr(π∗OU(λ))T , we have

U = Spec π∗OU = Spec

(⊕

λ∈Zr

L[λ]

)
.

In particular, Γ(U,OU) =
⊕

λ∈Zr Γ(X,L[λ]).
As R is Zr-graded and normal, we have that R =

⋂
p R(p), where the intersec-

tion is taken in R((0)), and p runs over the all graded height one prime ideals of
R.

For a height one graded prime p of R, we have that either U ∩ V (p) 6= ∅
or p = P (σ) for some maximal face σ of C(R). So it is easy to see that R =
Γ(U,OU) ∩ (

⋂
σ R(Pσ)), where the intersection is taken over the maximal faces σ

of C(R) such that ht P (σ) = 1.
Plainly, R = RΣ(R) ⊂ Γ(U,OU)Σ(R) ⊂ Γ(U,OU)C(R). On the other hand, any

nonzero homogeneous element of Γ(U,OU)C(R) is both in Γ(U,OU) and
⋂

σ R(Pσ)

above by Remark 4.3. Namely, Γ(U,OU)C(R) ⊂ R. Hence R = Γ(U,OU)Σ(R) =
Γ(U,OU)C(R). So 2 follows. 2

Proposition 4.6 Let R be as above, and σ ∈ F(R). Then we have
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1 The canonical morphism ξ(R, σ) : X(R) → X(Rσ) is projective and surjective.

2 We have ξ(R, σ)∗OX(R)
∼= OX(Rσ) as (T,OX(Rσ))-modules in a natural way.

3 We have ξ(R, σ)∗LR[λ] = LRσ [λ] for any λ ∈ M(Rσ).

Proof. 1 The projectivity is trivial by Lemma 3.10. As the composite of
the dominating morphisms η(R, σ) : Y (R) → Y (Rσ) induced by Rσ ↪→ R and
π : Y (Rσ) → X(Rσ) factors through ξ(R, σ), ξ(R, σ) must be dominating. As it
is projective, it is surjective.

To prove 2 and 3, using induction on the codimension of σ in MR, we may
assume that the codimension of σ in C(R) is one.

Let N := M ∩ R · σ, G := Spec R0(M/N) ∼= Gm ↪→ T (R), and Z = Y (R)/G.
Let q : Y (R) → Z be the projection, and c : Z → Y (Rσ) the induced morphism.

Let p̃ : Spec R → Spec Rσ be the canonical morphism, and set Y :=
p̃−1(Y (Rσ)) and p := p̃|Y . Then p is affine, and p∗OY is N-graded with its
degree zero component OY (Rσ). Note that Y ∩ V (J(C(R))) is defined by the
degree positive part (p∗OY )>0 of p∗OY . This is because (

⊕
λ/∈σ Rλ)J(Rσ) defines

V (C(R)) in Spec R.
So c : Z → Y (Rσ) is identified with the projection Z = Proj p∗OY → Y (Rσ).

The morphism ξ(R, σ) : X(R) → X(Rσ) is obtained by taking the quotient of c
under the action of Spec R0N .

Therefore, to prove 2, it suffices to show that c∗OZ = OY (Rσ), because of
Lemma 3.12. The question is local, so we may localize, and replace Y (Rσ) by
an open subscheme of the form Spec Rσ[1/y] with y 6= 0 homogeneous with its
degree lies in C(Rσ)◦ and that χ(Rσ[1/y]) = M(Rσ).

Then, the assertion is reduced to the fact, if A =
⊕

n∈NAn is a noetherian nor-
mal N-graded domain generated by A1 over A0, then A =

⊕
n∈N Γ(Proj A,O(n)),

which is well-known. Hence the part 2 has been proved.
The assertion 3 is an immediate consequence of 2, Lemma 3.13, and the

projection formula. 2

Corollary 4.7 Let R be a surjectively graded Zr-graded noetherian normal do-
main. If λ ∈ Σ(R), then LR[λ] is generated by global sections.

Proof. By Lemma 3.10, 2, we have that LRσ(λ)
[λ] is a very ample invertible sheaf

on X(Rσ(λ)). So LR[λ] ∼= ξ(R, σ(λ))∗LRσ(λ)
[λ] is also generated by global sections,

since Γ(X(R),LR[λ]) = Γ(X(Rσ(λ)),LRσ(λ)
[λ]) by 3 of the proposition. 2

5 F -regularity of surjectively graded rings

Let p be a prime number.
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Theorem 5.1 Let r ≥ 1, and R a surjectively graded noetherian normal Zr-
graded F -finite domain of characteristic p. Let L be a line in Rr through the
origin such that #(L ∩ C(R)◦ ∩ M(R)) ≥ 2. Assume that RL is strongly F -
regular. Let σ ∈ F(R). Then we have

1 Rσ is F -finite noetherian, and strongly F -regular.

2 X(Rσ) is globally F -regular.

3 For any λ ∈ Σ(R), Riξ(R, σ)∗LR[λ] = 0 for i > 0.

4 For any λ ∈ Σ(R), H i(X(R),LR[λ]) = 0 for i > 0.

Proof. As in Theorem 4.4, 2, R = B(X(R),L[ν1], . . . ,L[νs])C(R). The assump-
tion on L simply says that L is defined over Q through the origin, and another
Q-rational point which lies in C(R)◦ ∩ L exists. Thus L ∩M(R) ∼= Z. Let λ be
a generator of the Z-module L ∩M(R) which lies in C(R)◦.

First consider the case that C(R) = R ·C(R). Then σ = C(R), since F(R) =
{C(R)}. In this case, X(R) = Spec R0, and RL =

⊕
n∈ZRnλ. As RL is assumed

to be strongly F -regular, so is R0. As X(R) is affine, X(R) is globally F -regular,
and hence R = B(X(R),L[ν1], . . . ,L[νs]) is also strongly F -regular. Thus parts
1 and 2 are proved. Parts 3 and 4 are trivial this case. So we are done.

Next, consider the case that C(R) 6= R · C(R), or equivalently, C(R) ∩ L is
a half line. Then X(R) ∼= X(RL) = Proj

⊕
n≥0 Rnλ is globally F -regular. Set

U := X(R) \ V (J(C(R))). Then Γ(U,OU) is strongly F -regular by Theorem 2.6.
By Lemma 2.4 and Theorem 4.4, 2, R is strongly F -regular. By Lemma 2.4
again, 1 follows. Now take any λ ∈ C(Rσ)◦ ∩ Σ(R), and consider RZλ. It is
a direct summand subring of R, and is strongly F -regular. Hence RNλ is also
strongly F -regular by Lemma 2.4. As LRσ [λ] is very ample on X(Rσ), we have
that X(Rσ) is globally F -regular. To prove 3 for this case, as the question is
local on X(Rσ), we may and shall assume that σ is a linear subspace of Rr, and
X(Rσ) is affine. Thus 3 is reduced to prove 4. Since L[λ] is generated by global
sections by Corollary 4.7, the assertion follows from Proposition 2.13. 2

As a corollary to the theorem, we have a special case (the case where both
A and B are standard graded normal domains) of Theorem 5.2 by M. Hochster
below. A proof is included here, as the author couldn’t find a reference.

Theorem 5.2 Let k be a perfect field of characteristic p > 0, and A and B be
positively graded noetherian k-algebras such that A1⊗B1 6= 0. Then, the following
are equivalent.

1 The Segre product A#B :=
⊕

n≥0 An ⊗Bn is strongly F -regular.

2 Both A and B are strongly F -regular.
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3 A⊗B is strongly F -regular.

Proof. 1⇒2 We prove that A is strongly F -regular. The proof for B is the
same. For this implication, k need not be perfect (but F -finite).

Note that A#B is normal. As it is positively graded, it must be a normal
domain. By assumption, we can take a ∈ A1 \ {0} and b ∈ B1 \ {0}. As
k[a]#B ⊂ A#B, k[a]#B is an integral domain. It follows that a is transcendental
over k, hence B ∼= k[a]#B, and B is also an integral domain. In particular, b is
a nonzerodivisor of B, and is transcendental over k.

Take Ωn ⊂ Bn for n ≥ 0 so that Ω0 = {1}, and Ωn ↪→ Bn → (B/bB)n is
injective and its image is a k-basis of (B/bB)n. Then by [4, (2.3)], Ω =

⋃
n≥0 Ωn

is a free basis of B as a k[b]-module, and we have a direct sum decomposition

A#B =
⊕
n≥0

⊕
c∈Ωn

[⊕
j≥0

An+j ⊗ kbjc

]

of A#B as an A#k[b]-module. So A ∼= A#k[b] is a direct summand subring of
A#B, and hence A is strongly F -regular.

2⇒3 Take a homogeneous element a ∈ A \ {0} such that A[1/a] is regular,
or k-smooth. Take b ∈ B \ {0} similarly. Then A[1/a]⊗ B[1/b] is k-smooth and
hence is regular. Take e sufficiently large so that both aF e

A and bF e
B split. Then

(a⊗ b)F e
A⊗B splits, and this proves that A⊗B is strongly F -regular, see [5].

3⇒1 This is because A#B is a direct summand subring of A⊗B. 2

In view of Watanabe-Hara theorem [3], [2], which says that a Q-Gorenstein
normal domain of finite type over C has at most log-terminal singularities if and
only if it is of strongly F -regular type, Theorem 5.2 is deeply related with the
following characteristic zero result.

Remark 5.3 Tomari [18] kindly communicated the author with his result deeply
related with the theorem above. Let A and B be positively graded finitely gen-
erated normal C-algebras. If Spec(A#B) has at most log-terminal singularities,
then both Spec A and Spec B have at most log-terminal singularities. The con-
verse is true, if Spec(A#B) is Q-Gorenstein. He also studied what conditions on
A and B imply the Q-Gorenstein property of Spec(A#B).

Example 5.4 Let G be a connected reductive algebraic group over an alge-
braically closed field k, and T its maximal torus. Fix a base of the root system of
G, and let B be the negative Borel subgroup of G defined accordingly. Then the
multigraded algebra R :=

⊕
λ∈X(T ) Γ(G/B,Lλ) is a normal domain, surjectively

graded, and is of finite type over k, where Lλ is the G-equivariant invertible
sheaf corresponding to the one-dimensional B-module λ, see [8]. The surjectively
graded property was first proved by Ramanan and Ramanathan [15]. For the
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history, see the introduction therein. This is also a consequence of Mathieu’s
tensor product theorem on modules with good filtrations [10].

A B-stable closed subvariety of G/B is called a Schubert variety in G/B. Ra-
manan and Ramanathan [15] also proved that the canonical map Γ(G/B,Lλ) →
Γ(X ,Lλ|X ) is surjective for λ dominant and a Schubert subvariety X in G/B. It
follows that

⊕
λ Γ(X ,Lλ|X ) is also surjectively graded.

The author does not know any proof of the assertion; any Schubert subvariety
X in G/B is globally F -regular. The problem is reduced to the case where G
is semisimple and simply connected. Mehta [14] pointed out that as there is an
ample Cartier divisor D of X which eventually splits (see e.g., [13]), the question
is local. That is, X is globally F -regular if and only if the all local rings of X are
F -regular by [17, (3.10)].

Lemma 5.5 Let Σ be a subsemigroup of Zr, k a field, and Λ a commutative Σ-
graded k-algebra such that each homogeneous component Λσ is one-dimensional
for σ ∈ Σ. If ΛσΛτ 6= 0 for σ, τ ∈ Σ, then Λ is isomorphic to the semigroup
algebra kΣ as a Σ-graded k-algebra.

Proof. If Λ is not an integral domain, then Λ must have homogeneous elements
a, b ∈ Λ \ {0} such that ab = 0. So Λ is an integral domain by assumption. By
assumption, Σ = Σ(Λ).

Let A be the total homogeneous localization of Λ. Let Γ := Σ − Σ, γ ∈ Γ,
and a/b and a′/b′ be nonzero elements of Aγ, where a, a′, b, b′ are nonzero
homogeneous elements of Λ of degree α, α′, β, β′, respectively. Then both ab′

and ba′ are nonzero homogeneous elements of Λα+β′ . So ab′ = cba′ for some
c ∈ k×. Thus Σ(A) = Γ, and Aγ is one-dimensional for γ ∈ Γ.

Let γ1, . . . , γs be a Z-basis of Γ, and ti be a nonzero element of Aγi
for i =

1, . . . , s. Then it is easy to see that A = k[t±1
1 , . . . , t±s

s ] ∼= kΓ as Γ-graded k-
algebras. We have an inclusion

Λ ↪→ AΣ
∼= (kΓ)Σ = kΣ,

but the inclusion must be surjective by dimension counting of homogeneous com-
ponents. Hence Λ ∼= kΣ. 2

Lemma 5.6 Let k be an algebraically closed field, G a reductive k-group, Γ a
finitely generated normal subsemigroup of the semigroup of dominant weights
X+ (we fix a maximal torus T of G and a base of the root system of G). Let
A =

⊕
γ∈Γ Aγ be a Γ-graded commutative G-algebra such that Aγ

∼= ∇G(γ) for
γ ∈ Γ, and Aγ ⊗ Aγ′ → Aγ+γ′ is nonzero for γ, γ′ ∈ Γ, where ∇G(γ) is the dual
Weyl module of highest weight γ. Then A is F -regular if char(k) > 0, and A is
of F -regular type if char(k) = 0.

17



Proof. We may assume that G = G′ × T ′, where G′ is semisimple simply
connected, and T ′ is a torus. For λ ∈ X(T ), let Lλ be the G-equivariant invertible
sheaf over G/B corresponding to λ, where B is the negative Borel subgroup of G.
Note that H0(G/B,Lλ) 6= 0 if and only if λ ∈ X+, and H0(G/B,Lγ) ∼= ∇G(γ) if
γ ∈ X+.

Consider the cohomology ring

C = B(G/B;Lλ1 , . . . ,Lλs ,Lµ1 , . . . ,Lµt),

where s = rank G′, t = rank T ′, λ1, . . . , λs are the fundamental dominant weights
of G′, and µ1, . . . , µt are a Z-basis of X(T ′). Note that C is a X(T )-graded
G-algebra defined over Z. Moreover, when we set

CZ := B(GZ/BZ;Lλ1,Z, . . . ,Lλs,Z,Lµ1,Z, . . . ,Lµt,Z),

then CZ⊗ZK is the similar cohomology ring over K for any field K, by Kempf’s
vanishing [8, (II.4.5)] and the universal coefficient theorem [8, (I.4.18.b)]. By
Example 5.4, Lemma 2.4 and (2.3), CΓ is strongly F -regular if char(k) > 0, and
is of strongly F -regular type if char(k) = 0.

So it suffices to show that A ∼= CΓ. Let γ, γ′ ∈ Γ. By Mathieu’s tensor
product theorem [10], there is a short exact sequence of the form

0 → V → Aγ ⊗ Aγ′
µ−→∇G(γ + γ′) → 0

such that V admits a filtration

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vu = V

of G-modules such that Vi/Vi−1
∼= ∇G(λ(i)) for some λ(i) < γ +γ′. In particular,

Exti
G(V,∇G(γ + γ′)) = 0 for i = 0, 1. So

k ∼= HomG(∇G(γ + γ′),∇G(γ + γ′))
µ∗−→HomG(Aγ ⊗ Aγ′ ,∇G(γ + γ′))

are isomorphisms. In particular, any nonzero G-linear map from Aγ ⊗ Aγ′ to
∇G(γ + γ′) is surjective. As we assume that the product Aγ ⊗Aγ′ → ∇G(γ + γ′)
is nonzero, it must be surjective.

It follows that if a is a highest weight vector of Aγ and a′ is a highest weight
vector of Aγ′ , then aa′ 6= 0. By Lemma 5.5, AU+ ∼= kΓ, where U+ is the unipotent
radical of the positive Borel subgroup B+ of G. Similarly, we have CU+

Γ
∼= kΓ.

Combining these, we have a Γ-graded k-algebra isomorphism ϕ : AU+ → CU+

Γ .
For λ ∈ Γ,

k → HomG(∇G(λ),∇G(λ)) → Homk(∇G(λ)U+

,∇G(λ)U+

) ∼= k

are isomorphisms. It follows that ϕ is uniquely extended to a graded G-linear
isomorphism ϕ̃ : A → CΓ.
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It suffices to show that ϕ̃ is a k-algebra map. To prove this, it suffices to
show that for γ, γ′ ∈ Γ, we have mCΓ

◦ (ϕ̃⊗ ϕ̃) = ϕ̃ ◦mA as maps in HomG(Aγ ⊗
Aγ′ , Aγ+γ′) ∼= k, where mCΓ

and mA are the product maps. As the hom-group is
one-dimensional and both hand sides are nonzero, there exists some c ∈ k× such
that m ◦ (ϕ̃ ⊗ ϕ̃) = cϕ̃ ◦m. Let a be a highest weight vector of Aγ, and a′ be a
highest weight vector of Aγ′ . Since ϕ is a k-algebra map,

m ◦ (ϕ̃⊗ ϕ̃)(a⊗ a′) = ϕ(a)ϕ(a′) = ϕ(aa′) = cϕ̃(aa′).

As ϕ̃(aa′) = ϕ(aa′) 6= 0, we have that c = 1, as desired. 2

Theorem 5.7 Let G be a reductive group over C, and H an affine semigroup
scheme over C which is normal and of finite type over C. If there is a dominating
homomorphism of semigroup schemes ϕ : G → H, then H has at most rational
singularities.

Proof. To prove the theorem, we may assume that G is a direct product of a
simply connected semisimple group G′ and a torus T ′.

Let T be a maximal torus of G, and X := X(T ) the set of weights. We fix a
base ∆ of the set of roots Φ of G. Each α ∈ Φ yields a one-parameter subgroup
α∨ of G. α∨ gives an element of HomR(X ⊗Z R,R) determined by 〈λ, α∨〉 = 0
for λ ∈ X(G), and 〈β, α∨〉 = 2(β, α)/(α, α) for β ∈ Φ, where X(G) is the set
of isomorphism classes of one-dimensional representations of G, and ( , ) is the
Killing form of the semisimple Lie algebra Lie(G′). We denote the set of dominant
weights by X+. The set of positive roots is denoted by Φ+.

Via the left and right regular action, the coordinate ring C[G] is a G × G-
algebra, which is decomposed into a multiplicity free direct sum

C[G] =
⊕

λ∈X+

∇G(λ)⊗∇G(λ∗), (5.8)

where ∇G(λ) := Γ(G/B,Lλ) is the dual Weyl module of highest weight λ, and
λ∗ := −w0λ, where B is the negative Borel subgroup of G, and w0 is the longest
element of the Weyl group W (G). Set M(λ) := ∇G(λ)⊗∇G(λ∗).

Since ϕ is dominating, H is connected, and hence is integral. So the homo-
morphism C[H] → C[G] associated with ϕ is an injective G×G-algebra map. In
particular, C[H] is a partial sum of (5.8). Let Σ be the subset of X+ such that
C[H] =

⊕
λ∈Σ M(λ).

Let U+ be the unipotent radical of the positive Borel subgroup B+ of G. Then
C[G]U

+×U+
is isomorphic to CX+ by Lemma 5.5, and C[H]U

+×U+
is identified

with the subspace spanned by Σ. As CΣ is a subalgebra, Σ is a subsemigroup
of X+. By Grosshans theorem [1], CΣ must be finitely generated. Hence Σ is
finitely generated. Moreover, CΣ must be integrally closed. Hence Σ is normal.
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Let us consider ρ∨ := 1
2

∑
α∈Φ+ α∨. Then 2ρ∨ =

∑
α∈∆ c∨αα∨ with each

(uniquely determined) c∨α a positive integer. It follows that 〈λ, 2ρ∨〉 is a nonneg-
ative integer for λ ∈ X+. Note also that 〈α, 2ρ∨〉 = 2 for α ∈ ∆. In particular,
〈λ− µ, 2ρ∨〉 > 0, if λ, µ ∈ X(T ) and λ > µ.

For λ, µ ∈ X+, the tensor product M(λ) ⊗ M(µ) has the highest weight
(λ + µ, (λ + µ)∗) as a G × G-module, and any other weight of M(λ) ⊗M(µ) is
smaller than (λ+µ, (λ+µ)∗). It follows that the product M(λ)M(µ) is contained
in

⊕
γ≤λ+µ M(γ).

Let us define a C[t]-algebra Λ(G). We define Λ = C[t] ⊗C C[G] as a C[t]-
module. For λ, µ ∈ X+, a ∈ M(λ) and b ∈ M(µ), let ab =

∑
γ cγ be the original

product in C[G], where cγ ∈ M(γ), and the sum is taken over γ ∈ X+ such that
γ ≤ λ + µ. We define the new product of Λ by

(tu ⊗ a)(tv ⊗ b) =
∑

γ

tu+v+〈λ+µ−γ,2ρ∨〉 ⊗ cγ.

It is easy to see that Λ(G) is a commutative C[t]-algebra. Note that Λ(H) =
C[t] ⊗C C[H] ⊂ Λ(G) is a C[t]-subalgebra. Letting G × G acts on C[t] trivially,
Λ(G) is a G × G-algebra, and Λ(H) is its G × G-subalgebra. It is easy to see
that Λ(H)[t−1] ∼= C[t, t−1]⊗C[H], where the algebra structure of the right hand
side is the real tensor product of algebras. In particular, it suffices to show that
Λ(H) has at most rational singularities.

The principal ideal generated by t is a G × G-ideal of Λ(H). Then
Λ(H)/tΛ(H) ∼= C[H] as G-modules, and the product of this ring is given by
ab = cλ+µ for λ, µ ∈ Σ, a ∈ M(λ) and b ∈ M(µ), where ab =

∑
γ cγ is the orig-

inal product of C[H]. It suffices to show that Λ(H)/tΛ(H) has at most rational
singularities. As Λ(H)/tΛ(H) is identified with (Λ(G)/tΛ(G))Σ of the X+-graded
algebra Λ(G)/tΛ(G) and Σ is a finitely generated normal subsemigroup, it suffices
to show that A = Λ(G)/tΛ(G) has at most rational singularities.

Note that A =
⊕

λ∈X+ M(λ) is an X+-graded G × G-algebra. That is,
M(λ)M(µ) ⊂ M(λ+µ) for λ, µ ∈ X+, and the product M(λ)⊗M(µ) → M(λ+µ)
is G×G-linear. The product is nonzero, since the product of highest weight vec-
tors is nonzero. So the proof is completed by Lemma 5.6, applied to G×G and
the subsemigroup Γ := {(λ, λ∗) | λ ∈ X+(G)} ⊂ X+(G×G). 2
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