Cohen-Macaulay and Gorenstein properties of invariant subrings

Mitsuyasu Hashimoto
Graduate School of Mathematics, Nagoya University
Chikusa-ku Nagoya 464-8602 Japan
hasimoto@math.nagoya-u.ac.jp

1 Introduction

Let k be an algebraically closed field, and G a reduced affine algebraic k-group such that G° is reductive and G / G° is linearly reductive, where G° denotes the connected component of G which contains the unit element. Let H be an affine algebraic k-group scheme, and S a $G \times H$-algebra of finite type over k, which is an integral domain. We set $A:=S^{G}$, and we denote the corresponding morphism $X:=\operatorname{Spec} S \rightarrow \operatorname{Spec} A=: Y$ by π. Note that π is an H morphism in a natural way.

Theorem 1 (Hilbert-Nagata-Haboush) A is of finite type over k. If M is an S-finite (G, S)-module, then M^{G} is A-finite.

For this theorem, we refer the reader to [20].
Question 2 Let the notation be as above. Let ω_{S} and ω_{A} be the canonical modules of S and A, respectively.

1 When A is Cohen-Macaulay, F-rational (type), or strongly F-regular (type)?
2 When $\omega_{S}^{G} \cong \omega_{A}$ as (H, A)-modules?
3 When A is Gorenstein?
Note that the question $\mathbf{3}$ is deeply related to $\mathbf{1}$ and $\mathbf{2}$. The ring of invariants A is Gorenstein if and only if A is Cohen-Macaulay and ω_{A} is rank-one projective as an A module.

2 Equivariant twisted inverse and canonical sheaves

Here we are assuming that ω_{S} and ω_{A} have natural equivariant structures. We briefly mention how these structures are introduced. Here we remark that any scheme in consideration is assumed to be separated.

Let G^{\prime} be an affine k-group scheme of finite type. Let H be the coordinate ring $k\left[G^{\prime}\right]$ of G^{\prime}, and we denote its restricted dual Hopf algebra H° by U, see [1]. Note that any G^{\prime}-module has a canonical U-module structure, and this gives a fully faithful exact functor $\phi:{ }_{G} \mathbb{M} \rightarrow{ }_{U} \mathbb{M}$. See [10, I.4], for example.

Let X be a G^{\prime}-scheme of finite type over k. We define the category $\mathcal{G}_{\mathcal{X}}$ by defining ob $\left(\mathcal{G}_{\mathcal{X}}\right)$ to be the set of G^{\prime}-morphisms $f: Y \rightarrow X$ flat of finite type, and defining $\mathcal{G}_{\mathcal{X}}\left(\mathcal{Y}, \mathcal{Y}^{\prime}\right)$ to be the set of flat G^{\prime}-morphisms from Y to Y^{\prime} over X. Note that $\mathcal{G}_{\mathcal{X}}$ is a site with the fppf topology. Then, $\mathcal{O}_{\mathcal{X}}$ given by $\mathcal{O}_{\mathcal{X}}(\mathcal{Y})=-\left(\mathcal{Y}, \mathcal{O}_{\mathcal{Y}}\right)$ is a sheaf of G^{\prime}-algebras. A $\left(U, \mathcal{O}_{\mathcal{X}}\right)$-module and $\left(G^{\prime}, \mathcal{O}_{\mathcal{X}}\right)$-module are defined in an appropriate way [10, II.2], and quasi-coherence and coherence of them are defined. Note that the category of quasi-coherent $\left(G^{\prime}, \mathcal{O}_{\mathcal{X}}\right)$-modules $\mathrm{Qco}\left(G^{\prime}, X\right)$ is equivalent to the category of G^{\prime}-linearlized quasi-coherent $\mathcal{O}_{\mathcal{X}}$-modules in [20], and is embedded in the category of quasi-coherent $\left(U, \mathcal{O}_{\mathcal{X}}\right)$-modules Qco (U, X). Moreover, any quasi-coherent $\left(U, \mathcal{O}_{\mathcal{X}}\right)$-module yields a quasi-coherent $\mathcal{O}_{\mathcal{X}}$-module in the usual Zariski topology (using the descent theory) in a natural way. We have an 'infinitesimally equivariant direct image' $f_{*}: \mathrm{Qco}\left(U, X^{\prime}\right) \rightarrow \mathrm{Q} \operatorname{co}(U, X)$ for any G^{\prime}-morphism of finite type, which is compatible with the forgetful functors $F^{\prime}: \mathrm{Qco}\left(U, X^{\prime}\right) \rightarrow \mathrm{Qco}\left(X^{\prime}\right)$ and $F: \operatorname{Qco}(U, X) \rightarrow \operatorname{Qco}(X)$, i.e., $F f_{*} \cong f_{*} F^{\prime}$.

Let $p: X \rightarrow Y$ be a proper G^{\prime}-morphism, with Y being of finite type over k.
(3) There is an exact left adjoint $\Phi: \operatorname{Qco}(Y) \rightarrow \mathrm{Qco}(U, Y)$ of F given by $\Phi(\mathcal{F})(\mathcal{Z})=$ $\mathcal{U} \otimes_{\|}-(\mathcal{Z}, \mathcal{F})$. Note that we have $\Phi_{Y} R p_{*}=R p_{*} \Phi_{X}$. This shows that $p^{!}$is compatible with the forgetful functor: $p^{!} F=F p^{!}$, where $p^{!}$is the right adjoint of $R p_{*}$, which does exist by Neeman's theorem [23].
(4) If $y \in D^{+}(\operatorname{Qco}(U, Y))$, then $p^{!}(y) \in D^{+}(\operatorname{Qco}(U, X))$.
(5) Let $f: Y^{\prime} \rightarrow Y$ be a flat G^{\prime}-morphism of finite type. Then, the canonical natural transformation $\left(f^{\prime}\right)^{*} \circ p^{!} \rightarrow\left(p^{\prime}\right)^{!} \circ f^{*}$ is an isomorphism between the functors $D^{+}(\mathrm{Qco}(U, Y)) \rightarrow D^{+}\left(\mathrm{Qco}\left(U, X^{\prime}\right)\right)$, where $f^{\prime}: X^{\prime} \rightarrow X$ is the base change of f by p, and $p^{\prime}: X^{\prime} \rightarrow Y^{\prime}$ is the base change of p by f. This is because of the compatibility with forgetful functors and the result of Verdier [27].
(6) We have that the canonical map

$$
R p_{*} R \underline{\operatorname{Hom}}_{\mathcal{O}_{\mathcal{X}}}\left(x, p^{\prime} y\right) \rightarrow R \underline{\operatorname{Hom}}_{\mathcal{O}_{\mathcal{Y}}}\left(R p_{*} x, y\right)
$$

is an isomorphism for any $y \in D^{+}(\mathrm{Qco}(U, Y))$ and any $x \in D^{-}(\operatorname{Coh}(U, X))$, where $\operatorname{Coh}(U, X)$ denotes the category of coherent $\left(U, \mathcal{O}_{\mathcal{X}}\right)$-modules.
(7) If V is an G^{\prime}-stable open subset of X such that $\left.p\right|_{V}$ is smooth of relative dimension n, then $\left.p^{!}\left(\mathcal{O}_{\mathcal{Y}}\right)\right|_{\mathcal{U}} \cong \omega_{\mathcal{U} / \mathcal{Y}}[\backslash]$.
(8) If $y \in D^{+}(\mathrm{Q} \operatorname{co}(U, Y))$ and if y lies in the essential image of the canonical functor $D^{+}\left(\operatorname{Qco}\left(G^{\prime}, Y\right)\right) \rightarrow D^{+}(\mathrm{Qco}(U, Y))$, then we have $H^{i}\left(p^{!}(y)\right) \in \mathrm{Qco}\left(G^{\prime}, X\right)$ for all $i \in \mathbb{Z}$.
(9) Assume that G-modules are closed under extensions in the category of U-modules. If $y \in D^{+}(\operatorname{Qco}(U, Y))$ and $H^{i}(y) \in \operatorname{Qco}\left(G^{\prime}, Y\right)$ for $i \in \mathbb{Z}$, then we have $H^{i}\left(p^{\prime}(y)\right) \in$ $\mathrm{Qco}\left(G^{\prime}, X\right)$ for $i \in \mathbb{Z}$.

Let X be a G^{\prime}-scheme of finite type over k. We say that X is G^{\prime}-compactifiable if there is a G^{\prime}-stable open immersion $i: X \hookrightarrow \bar{X}$ with $p: \bar{X} \rightarrow$ Spec k being proper. Assuming that X is equi-dimensional, we define ω_{X} to be the lowest (leftmost) cohomology of $i^{*} p^{!}(k)$, which is independent of choice of factorization (see [27]). Note that $\omega_{X} \in \operatorname{Qco}\left(G^{\prime}, X\right)$. We call ω_{X} the (equivariant) canonical sheaf of X. In case $X=\operatorname{Spec} S$ is affine, ω_{S} is defined to be the global section of ω_{X}, which is a $\left(G^{\prime}, S\right)$-module. Note that any G^{\prime}-stable open subset of Spec S is G^{\prime}-compactifiable. Thus, ω_{S}, as an equivariant module, is defined. We remark that, if S is a normal domain of dimension s, then $\omega_{S}=\left(\bigwedge^{s} \Omega_{S / k}\right)^{\star \star}$, where (? $)^{\star}$ denotes the S-dual $\operatorname{Hom}_{S}(?, S)$.

3 Known results

Here we list some of known results related to Question 2.

Semisimple group action on a UFD whose unit group is trivial Assume that G is (connected) semisimple, S is factorial, and $S^{\times}=k^{\times}$. Then, A is also factorial. Let $0 \neq f \in A$, and $f=f_{1} \cdots f_{r}$ be the prime decomposition of f in S. As G acts on $V(f) \subset X$ and G is geometrically integral, G acts on each component $V\left(f_{i}\right)$. This shows that for each i and $g \in G(k)$, we have $g f_{i}=\chi_{i}(g) f_{i}$ for some $\chi_{i}(g) \in S^{\times}=k^{\times}$. It is easy to see that $\chi_{i}: G(k) \rightarrow k^{\times}$is a character. On the other hand, $G(k)$ is perfect, i.e., $[G(k), G(k)]=G(k)$ [15, p.182]. This shows that χ_{i} is trivial, and $f_{i} \in A$. In particular, we have that A is factorial. Another consequence is that, we have $Q(S)^{G}=Q(A)$ under the same assumption, where $Q(?)$ denotes the fraction field.

Linearly reductive group Assume that G is a linearly reductive (i.e., $H^{1}(G, V)=0$ for any G-module V) group.
a (Boutot [6]) If char $k=0$ and S has rational singularities, then so does A.
b If char $k=p>0$ and S is (strongly) F-regular, then so is A.
c (K.-i. Watanabe [30]) Even if char $k=p>0, S$ is F-rational, A may not be F-rational.
d If char $k=0, S^{\times}=k^{\times}$and S is factorial with rational singularities, then A is of strongly F-regular type.

For F-regularity and F-rationality, see [16]. The point of a and bare explained as follows. If G is linearly reductive, then any G-module V is uniquely decomposed into the direct sum of G-submodules $V=V^{G} \oplus U_{V}$. The corresponding projection $\phi_{V}: V \rightarrow V^{G}$ is called the Reynolds operator. It is easy to see that $\phi_{S}: S \rightarrow A$ is an A-linear splitting of the inclusion map $A \hookrightarrow S$. Hence, A is a direct summand subring of S. In particular, A is a pure subring of S. The assertions a and \mathbf{b} are theorems for direct summand subrings and pure subrings. The assertion \mathbf{d} is due to a theorem of N. Hara, a log-terminal singularity in characteristic zero is of strongly F-regular type [9]. Let $G_{1}:=\left[G^{\circ}, G^{\circ}\right]$ be the semisimple part of G. Then, by the last paragraph and \mathbf{a}, we have that $S^{G_{1}}$ is also factorial with rational singularities, in particular, log-terminal. For sufficiently general modulo p reductions, $S^{G_{1}}$ is strongly F-regular, and G / G_{1} is linearly reductive (as G / G_{1} is an extension of a torus by a finite group, we can avoid primes which divides the order of the finite group), and we use b.

Finite case Let F be a linearly reductive k-finite group scheme, H an affine algebraic k-group scheme, and $1 \rightarrow F \rightarrow G^{\prime} \rightarrow H \rightarrow 1$ be an exact sequence. Let S be a G^{\prime}-algebra domain, and we set $A:=S^{F}$. Then, S is module-finite over A, as is well-known. Moreover, A is a direct summand subring of S, as F is linearly reductive.
a If S is Cohen-Macaulay, then so is A.
b If S is F-rational, then so is A.
c (K.-i. Watanabe $[28,29]) \omega_{S}^{F} \cong \omega_{A}$ as (H, A)-modules.
The statement a is trivial, because we have $H_{\mathfrak{m}}^{i}(A) \cong H_{\mathfrak{m} \mathfrak{S}}^{i}(S)^{F}=0$ for $i \neq d$ and any maximal ideal \mathfrak{m} of A, where $d:=\operatorname{dim} S=\operatorname{dim} A$.

The statement \mathbf{b} is also easy. For any parameter ideal \mathfrak{q} of $A, \mathfrak{q S}$ is a parameter ideal of S because $A \hookrightarrow S$ is finite. As A is a pure subring of S, we have

$$
\mathfrak{q}^{*} \subset(\mathfrak{q S})^{*} \cap \mathfrak{A}=\mathfrak{q S} \cap \mathfrak{A}=\mathfrak{q},
$$

where (?)* denotes the tight closure.
The statement \mathbf{c} is proved as follows. Note that $A=S^{F}$ is a G^{\prime}-submodule of S because F is a normal subgroup of G^{\prime}. This induces (H, A)-linear maps

$$
\omega_{S}^{F} \cong \operatorname{Hom}_{A}\left(S, \omega_{A}\right)^{F} \rightarrow \operatorname{Hom}_{A}\left(S^{F}, \omega_{A}\right)=\omega_{A} .
$$

As F is linearly reductive, the map in the middle must be an isomorphism.
Good linear action A G-module V is called good if for any dominant weight λ of G°, $\operatorname{Ext}_{G^{\circ}}^{1}\left(\Delta_{G^{\circ}}(\lambda), V\right)=0$ holds, where $\Delta_{G^{\circ}}(\lambda)$ denotes the Weyl module of the heighest weight λ. See [17], [10] and references therein for informations on good modules.

Let V be a finite dimensional G-module, and $S:=\operatorname{Sym} V$. If S is good and $\operatorname{char}(k)=$ $p>0$, then A is strongly F-regular. For the proof, see [11].

Torus linear action Let G be a torus, and $S=\operatorname{Sym} V$, with V a finite dimensional G-module. Stanley [24, Theorem 6.7] proved that if for any proper G-submodule $W \subsetneq V$ of $V, A \not \subset \operatorname{Sym} W$ (this is the essential case, because we may replace V by W, if $A \subset \operatorname{Sym} W$), then $\omega_{A} \cong \omega_{S}^{G}$ as A-modules.

Knop's theorem Assume that $\operatorname{char}(k)=0, S$ is factorial, $Q(S)^{G}=Q(A)$ (where $Q(?)$ denotes the fraction field), and $\operatorname{codim}_{X}\left(X-X^{(0)}\right) \geq 2$, where

$$
X^{(0)}:=\left\{x \in X \mid G_{x} \text { is finite }\right\} .
$$

Then, $\left(\left(\omega_{S} \otimes_{k} \theta\right)^{G}\right)^{\vee \vee} \cong \omega_{A}$ as (H, A)-modules, where $\theta:=\bigwedge^{g} \mathfrak{g}, \mathfrak{g}:=\operatorname{Lie} \mathfrak{G}, g:=\operatorname{dim} G$, and $(?)^{\vee}=\operatorname{Hom}_{A}(?, A)$. If, moreover, S has rational singularities, then $\left(\omega_{S} \otimes_{k} \theta\right)^{G} \cong \omega_{A}$, as (H, A)-modules. For the proof, see [18].

Note that θ is a one-dimensional representation of $G \times H$, on which $G^{\circ} \times H$ acts trivially. Hence, if G is connected, then we have $\theta \cong k$.

Examples Let $G=\mathbb{G}_{>}, S=k\left[x_{1}, \ldots, x_{n}\right]$ with $\operatorname{deg} x_{i}=1$. Then, we have $\omega_{S}=S(-n)$. Hence, $\omega_{S}^{G}=0 \neq k=A=\omega_{A}$. If $n \geq 2$, then we have $Q(S)^{G}=k\left(x_{i} / x_{j}\right) \neq k=Q(A)$. If $n=1$, then $X-X^{(0)}=\{(0)\}$ has codimension one in X.

Next, we consider a less trivial example. Let us consider the case $S=\operatorname{Sym} V$, with V being an n-dimensional G-module. In this case, we have $\omega_{S} \cong \omega_{S / k} \cong S \otimes \bigwedge^{n} V$. Hence, the representation $\rho: G \rightarrow G L(V)$ factors through $S L(V)$ if and only if $S \cong \omega_{S}$ as a (G, S) module. If these conditions are satisfied, then we have $A \cong S^{G} \cong \omega_{S}^{G}$. So assuming that A is Cohen-Macaulay (this is the case, if G is linearly reductive or S is good) and $S \cong \omega_{S}$, A is Gorenstein if and only if $\omega_{S}^{G} \cong \omega_{A}$ as A-modules. M. Hochster [12] conjectured that if G is linearly reductive, $S=\operatorname{Sym} V$, and $G \rightarrow G L(V)$ factors through $S L(V)$, then A is Gorenstein. We have seen that this conjecture is true if G is semisimple or finite. This is also true for the case G being a torus. We may choose a basis $\left\{x_{1}, \ldots, x_{n}\right\}$ of V so that $k \cdot x_{i}$ is a G-submodule of V for any i. As $x_{1} \cdots x_{n} \in A$, it is easy to see that $A \not \subset \operatorname{Sym} W$ for any proper G-submodule W of V. Hence, we have $A \cong \omega_{S}^{G} \cong \omega_{A}$ by Stanley's theorem.

However, Hochster's conjecture is not true in general. Here is a counterexample essentially due to Knop (more is true, see [18, Satz 1]). Let $\operatorname{char}(k)=0, W=k^{2}$, and set $G:=S L(W) \times \mathbb{G}_{\gtrdot}$. Let $V:=W \oplus k^{\oplus 2} \oplus k^{\oplus 4}$, which is an $S L(W)$-module. We assign degree -1 to vectors of W and $k^{\oplus 2}$, and degree 1 to $k^{\oplus 4}$, which makes V a G-module. As $S L(W)$ is semisimple, and the sum of degrees of homogeneous basis elements of V is zero, we have that $G \rightarrow G L(V)$ factors through $S L(V)$. However, $A=S^{G}$ is not Gorenstein. Let x_{1}, x_{2} be a basis of $k^{\oplus 2}$, and $y_{1}, y_{2}, y_{3}, y_{4}$ be a basis of $k^{\oplus 4}$. Then, as we have $(\operatorname{Sym} W)^{S L(W)}=k$,

$$
\begin{aligned}
S^{G} \cong\left((\operatorname{Sym} W)^{S L(W)} \otimes k\left[x_{1}, x_{2}, y_{1}, y_{2}, y_{3}, y_{4}\right]\right)^{G_{>}} & \\
& =k\left[x_{i} y_{j} \mid 1 \leq i \leq 2,1 \leq j \leq 4\right] \cong k\left[x_{i j}\right] / I_{2}\left(x_{i j}\right)
\end{aligned}
$$

and S^{G} is not Gorenstein.

4 Knop's theorem in positive characteristic

In this section, we discuss the characteristic p version of Knop's theorem.
Theorem 10 Let k be an algebraically closed field of characteristic $p>0, G$ a reduced affine algebraic group over k such that G° is reductive and G / G° is linearly reductive. Let H be an affine algebraic k-group scheme. Let S be a $G \times H$-algebra domain which is of finite type over k. We set $X:=\operatorname{Spec} S$ and $A:=S^{G}$. Assume
(α) S is factorial with $S^{\times}=k^{\times}$,
(β) $Q(S)^{G}=Q(A)$,
(γ) There exists some $c \geq 1$ such that $\operatorname{codim}_{X}\left(X-\left(X^{(0)} \cap X_{c}^{(00)}\right)\right) \geq 2$, where

$$
X^{(0)}:=\left\{x \in X \mid G_{x} \text { is finite }\right\}
$$

and

$$
\begin{aligned}
& X_{c}^{(00)}:=\left\{x \in X \mid\left(G_{1}\right)_{x}:=\left[G^{\circ}, G^{\circ}\right]_{x} \text { is finite étale over } \kappa(x)\right. \\
& \left.\left.\quad \text { and } \operatorname{dim}_{\kappa(x)} \Gamma\left(\left(G_{1}\right)_{x}, \mathcal{O}_{\left.\left(\mathcal{G}_{\infty}\right)_{\S}\right)}\right)=\right\rfloor\right\} .
\end{aligned}
$$

Then, we have $\left(\left(\omega_{S} \otimes \theta\right)^{G}\right)^{\vee \vee} \cong \omega_{A}$ as (H, A)-modules, where $\theta:=\bigwedge^{g} \mathfrak{g}, \mathfrak{g}=$ Lie $\mathfrak{G}, g:=$ $\operatorname{dim} G$, and $(?)^{\vee}=\operatorname{Hom}_{A}(?, A)$. If, moreover, G° is semisimple or $S^{\left[G^{\circ}, G^{\circ}\right]}$ is F-rational, then we have $\left(\omega_{S} \otimes \theta\right)^{G} \cong \omega_{A}$ as (H, A)-modules.

The following questions seem to be natural to ask.
Question 11 Assume that S is good and F-rational in the theorem.
1 Is $S^{\left[G^{\circ}, G^{\circ}\right]} F$-rational?
$2 X_{c}^{(00)} \supset X^{(0)}$?
As $\left[G^{\circ}, G^{\circ}\right]$ is semisimple and we are assuming (α), we have that $S^{\left[G^{\circ}, G^{\circ}\right]}$ is factorial. Hence, the F-rationality of $S^{\left[G^{\circ}, G^{\circ}\right]}$ is equivalent to the strong F-regularity of $S^{\left[G^{\circ}, G^{\circ}\right]}$, see [13].

Corollary 12 Let G be a (connected) reductive group over a field k of positive characteristic, H an affine algebraic k-group scheme, and V a finite dimensional $G \times H$-module. We set $S:=\operatorname{Sym} V$. Assume (β) and (γ) in the theorem, and assume also that S is good. Then,
$1 A$ is strongly F-regular.
$2 \omega_{S}^{G}=\omega_{A}$ as (H, A)-modules.
3 If H is reductive and ω_{S} is $G \times H$-good, then ω_{A} is good as an H-module.

4 If $G \rightarrow G L(V)$ factors through $S L(V)$, then A is Gorenstein, and $a(A)=a(S)=-\operatorname{dim} V$, where a denotes the a-invariant.

Before showing some examples, we briefly review what the conditions β and γ in the theorem mean.

Lemma 13 Let k be an algebraically closed field, G be a reduced geometrically reductive algebraic group over k, and S an integral domain G-algebra of finite type over k. We set $A:=S^{G}$, and let $\pi: X=\operatorname{Spec} S \rightarrow \operatorname{Spec} A=Y$ denote the associated morphism. We define $\Phi: G \times X \rightarrow X \times_{Y} X$ by $\Phi(g, x)=(g x, x)$. Moreover, we set $r:=\operatorname{dim} X-\operatorname{dim} Y$, $g:=\operatorname{dim} G$, and $s:=\max \{\operatorname{dimG} x \mid x \in X(k)\}$. Then, we have:

1 We have that the extension $Q(S) / Q(S)^{G}$ is a separable extension.
2 The following are equivalent for $x \in X(k)$.
a G_{x} is finite (resp. finite and reduced).
b Φ is quasi-finite (resp. unramified) at (g, x) for some $g \in G(k)$.
c Φ is quasi-finite (resp. unramified) at (g, x) for any $g \in G(k)$.
3 We have $r \geq s$ and $g \geq s$.
4 Consider the following conditions.
a There exists some non-empty open set U of X such that for any $x \in U(k)$, the orbit $G x$ is closed in X.
b There exists some non-empty open set U of X such that for any $x \in U(k), \overline{G x}=$ $\pi^{-1}(\pi(x))$, scheme theoretically.
b' There exists some non-empty open set U of X such that for any $x \in U(k), \overline{G x}=$ $\pi^{-1}(\pi(x))$, set theoretically.
c $Q(S)^{G}=Q(A)$.
$\mathbf{d} \Phi$ is dominating (i.e., the image is dense in a topological sense) and there exists some $a \in A, a \neq 0$ such that $\left(S \otimes_{A} S\right)[1 / a]$ is reduced.
$\mathbf{d}^{\prime} \Phi$ is dominating.
e $r=s$.
f The extension $Q(S)^{G} / Q(A)$ is finite algebraic.
Then, we have $\mathbf{b} \Leftrightarrow \mathbf{c} \Leftrightarrow \mathbf{d} \Rightarrow \mathbf{b}^{\prime} \Leftrightarrow \mathbf{d}^{\prime} \Rightarrow \mathbf{e} \Leftrightarrow \mathbf{f}$. If G is geometrically reductive, then $\mathbf{a} \Rightarrow \mathbf{b}$. If S is normal, then we have $\mathbf{f} \Rightarrow \mathbf{c}$.

5 Assume that S is normal. If two of the following are true, then so is the third.
a $Q(S)^{G}=Q(A)$, or equivalently, $r=s$.
b $X^{(0)} \neq \emptyset$, or equivalently, $s=g$.
c $\operatorname{dim} X=\operatorname{dim} Y+\operatorname{dim} G$, or equivalently, $r=g$.
The lemma is more or less well-known, and some part of the lemma is proved in [22].
Proof 1 We use Artin's theorem [4]: Let G be a group, L a field on which G acts. If e_{1}, \ldots, e_{r} is a sequence of elements in L which is linearly independent over L^{G}, then there exists some g_{1}, \ldots, g_{r} such that $\operatorname{det}\left(g_{i} e_{j}\right) \neq 0$. It is easy to show that $Q(S)$ is linearly disjoint from $\left(Q(S)^{G}\right)^{1 / p}$. 2 The fiber $\Phi^{-1}(\Phi(g, x))=\Phi^{-1}(g x, x)$ agrees with $g G_{x} \times\{x\}$. As G_{x} is equidimensional, and G_{x} is either reduced or non-reduced at any point, we are done. $3 g \geq s$ is obvious. As the dimension $\sigma(x)$ of the stabilizer G_{x} at $x \in X$ is upper-semicontinuous [20, p.7], s is the dimension of the general orbit. On the other hand, each orbit must be contained in the same fiber of π. This shows $r \geq s .4 \mathbf{a} \Rightarrow \mathbf{b}$ ' follows from the fact that if G is geometrically reductive, then each fiber of π contains exactly one closed orbit, see [20, Corollary A.1.3]. The implication $\mathbf{b} \Rightarrow \mathbf{b}^{\prime}$ is obvious. We show $\mathbf{d} \Rightarrow \mathbf{b}$. There exists some $b \in S \otimes_{A} S$ such that $b / 1$ is a nonzerodivisor in $\left(S \otimes_{A} S\right)[1 / a]$, and that $(k[G] \otimes S)[1 / a b]$ is faithfully flat over $\left(S \otimes_{A} S\right)[1 / a b]$, by generic freeness [14]. By the generic-freeness again, $\left(S \otimes_{A} S\right) /(b)$ is free over some non-empty open subset U of $X=\operatorname{Spec} S$. After replacing U by $U \cap \operatorname{Spec} S[1 / a]$, we may assume that U is contained in $\operatorname{Spec} S[1 / a]$. Then, for any $x \in U$, we have that as a function over $p_{2}^{-1}(x)=\pi^{-1}(\pi(x)) \times\{x\}, b$ is a nonzerodivisor, because $x \in U$. For $x \in U$, off the locus of $b=0, G \rightarrow \pi^{-1}(\pi(x))$ given by $g \mapsto g x$ is faithfully flat by the choice of a, U and b. Thus, after localizing by the nonzerodivizor $b, \pi^{-1}(\pi(x))$ is reduced. This shows $\pi^{-1}(\pi(x))$ is reduced. Another consequence is that, $G x$ is dense in $\pi^{-1}(\pi(x))$. This shows $\overline{G x}=\pi^{-1}(\pi(x))$ for $x \in U$, as desired. The proof of $\mathbf{d}^{\prime} \Rightarrow \mathbf{b}$ ' is similar and easier. We just take $b \in S \otimes_{A} S$ so that b is a non-zerodivisor in $\left(S \otimes_{A} S\right)_{\text {red }}$ and $(k[G] \otimes S)[1 / b]$ is $\left(S \otimes_{A} S\right)_{\text {red }}[1 / b]$-faithfully flat, and do the same trick. We show $\mathbf{b}^{\prime} \Rightarrow \mathbf{d}^{\prime}$. Let Z be the non-flat locus of $\pi: X \rightarrow Y$, and we set $V:=\pi^{-1}(Y-\overline{\pi(Z)})$. As π is dominating and Y is integral, we have that V is a non-empty open set of X, which is obviously G-stable. Replacing U by $G U$ (note that the action $G \times X \rightarrow X$ is universally open), we may and shall assume that U is G-stable. Replacing U by $U \cap V$, we may assume that π is flat at any point of U. Let $\left(u, u^{\prime}\right) \in\left(U \times_{Y} U\right)(k)$. Then, both $G u$ and $G u^{\prime}$ are dense constructible sets in $\pi^{-1}(\pi(u))=\pi^{-1}\left(\pi\left(u^{\prime}\right)\right)$. This shows $G u \cap G u^{\prime} \neq \emptyset$, and $G u=G u^{\prime}$. Namely, we have $\left(u, u^{\prime}\right) \in \operatorname{Im} \Phi$. Hence, $\Phi_{U}: G \times U \rightarrow U \times_{Y} U$ is surjective. This shows that Φ is dominating, set-theoretically. We now show $\mathbf{b} \Rightarrow \mathbf{d}$. We have $\pi^{-1}(\pi(u)) \cap U=G u$ scheme-theoretically. As we are assuming that π is flat at any point of U, π is smooth at any point of U. Let us take $a \in A, a \neq 0$ so that $S[1 / a]$ is $A[1 / a]$-free. Then, $\left(S \otimes_{A} S\right)[1 / a]$ is a subring of $Q(S) \otimes_{Q(A)} Q(S)$. As the field extension $Q(S) / Q(A)$ is separable, we are done. For $\mathbf{c} \Rightarrow \mathbf{d}$, see [22]. Next, we remark that when we invert some element $0 \neq a \in A$ such that $S[1 / a]$ is $A[1 / a]$-free, then $r, s, Q(A)$ and $Q(S)$ does not change. $\mathbf{d}^{\prime} \Rightarrow \mathbf{e}$ We may assume π is flat. Each component of $X \times_{Y} X$ is of dimension $\operatorname{dim} X+r$, and each component of $G \times X$ has dimension $\operatorname{dim} X+g$. The generic fiber of Φ has dimension $g-s$, and by assumption, we have $\operatorname{dim} X+r+g-s=\operatorname{dim} X+g$. Namely, $r=s$.

Let us consider the associated k-algebra map $\Phi^{\prime}: S \otimes_{A} S \rightarrow k[G] \otimes S$ to Φ. When we denote by $\mu^{\prime}: S \rightarrow k[G] \otimes S$ the associated ring homomorphism with the action $\mu: G \times X \rightarrow$
X, then we have $\Phi^{\prime}\left(f \otimes f^{\prime}\right)=\mu^{\prime}(f)\left(1 \otimes f^{\prime}\right)$. This induces a map $\Phi^{\prime \prime}: L \otimes_{Q(A)} L \rightarrow k(G \times X)$, where $L=Q(S)$. It is easy to see that this map induces a map $\phi: L \otimes_{L^{G}} L \rightarrow k(G \times X)$. In fact, for $\alpha \in L^{G}$ and sufficiently general (g, x), we have $\Phi^{\prime \prime}(\alpha \otimes 1-1 \otimes \alpha)(g, x)=$ $\alpha(g x)-\alpha(x)=0$. This shows that $\Phi^{\prime \prime}(\alpha \otimes 1-1 \otimes \alpha)=0$ in $k(X \times G)$, and $\Phi^{\prime \prime}$ induces ϕ. So $\mathbf{d} \Rightarrow \mathbf{c}$ is now obvious. Next we show that ϕ is injective. For this purpose, we may assume that $Q(A)=Q(S)^{G}$, as $Q(S)^{G}$ is a finitely generated field over k, and we may even assume that S is A-free. Then, the assertion follows from Luna's theorem $\mathbf{c} \Rightarrow \mathbf{d}$. Now we know that $Q\left(Q(S) \otimes_{Q(S)^{G}} Q(S)\right)$ is the total quotient ring of the image of Φ^{\prime}. As the generic fiber of Φ has dimension $g-s$, we have that trans. $\operatorname{deg}_{Q(S)^{G}} Q(S)=s$. On the other hand, we have that trans. $\operatorname{deg}_{Q(A)} Q(S)=r$. Hence, we have $\mathbf{e} \Leftrightarrow \mathbf{f}$.

Now assuming that S is normal, we show $\mathbf{f} \Rightarrow \mathbf{c}$. Let $\alpha \in Q(S)^{G}$. Then, by assumption, it is integral over $A[1 / a]$, for some $0 \neq a \in A$. As α is integral over $S[1 / a]$ and $S[1 / a]$ is normal, we have $\alpha \in S[1 / a] \cap Q(S)^{G}=A[1 / a] \subset Q(A)$.

The assertion 5 is now obvious.

5 Examples

Let k be an algebraically closed field of arbitrary characteristic, and $m, n, t \in \mathbb{Z}$ with $2 \leq$ $t \leq m, n$, and $E:=k^{t-1}, F:=k^{n}$ and $W:=k^{m}$. We define

$$
X:=\operatorname{Hom}(E, W) \times \operatorname{Hom}(F, E) \xrightarrow{\pi} Y:=\{\varphi \in \operatorname{Hom}(F, W) \mid \operatorname{rank} \varphi<t\}
$$

by $\left(f_{1}, f_{2}\right) \mapsto f_{1} \circ f_{2}$. Note that both $X=\operatorname{Spec} S$ and $Y=\operatorname{Spec} A$ are affine, where $S:=k\left[x_{i l}, \xi_{l j} \mid 1 \leq i \leq m, 1 \leq j \leq n, 1 \leq l<t\right]$ is the polynomial ring in $(t-1)(m+n)$ variables, and $A:=k\left[y_{i j}\right] / I_{t}\left(y_{i j}\right)$, where $y_{i j}$ are variables, and $I_{t}\left(y_{i j}\right)$ denotes the ideal of $k\left[y_{i j}\right]$ generated by all t-minors of the $m \times n$-matrix $\left(y_{i j}\right)$. The morphism π is given by the k-algebra map $y_{i j} \mapsto \sum_{l=1}^{t-1} x_{i l} \xi_{l j}$. We set $G:=G L(E)$ and $H:=G L(W) \times G L(F)$. The reductive group $G \times H$ acts on X and Y by

$$
\left(g, h_{1}, h_{2}\right)\left(f_{1}, f_{2}\right)=\left(h_{1} f_{1} g^{-1}, g f_{2} h_{2}^{-1}\right) \text { and }\left(g, h_{1}, h_{2}\right) \varphi=h_{1} \varphi h_{2}^{-1}
$$

Note that the associated action of $G \times H$ on S is linear, and π is a $G \times H$-morphism.
The following is known.
(14) S is good as a $G \times H$-module.
(15) (De Concini-Procesi [8]) $S^{G}=A$. Namely, the k-algebra map $A \rightarrow S$ given above is injective, and induces an isomorphism $A \cong S^{G}$.

The assertion (14) follows from Akin-Buchsbaum-Weyman straightening formula (Cauchy formula) [2] and Donkin-Mathieu tensor product theorem [19], see also Boffi [5] and AndersenJantzen [3].

We check that this example enjoys the assumption of Corollary 12.
(16) Unless rank $f_{1}<t-1$ and $\operatorname{rank} f_{2}<t-1$, we have that the G-orbit of $\left(f_{1}, f_{2}\right)$ is isomorphic to G. This shows $\operatorname{codim}_{X}\left(X-\left(X^{(0)} \cap X_{c}^{(00)}\right)\right) \geq 2$ with $c=1$.
(17) Unless rank $f_{1}<t-1$ or rank $f_{2}<t-1$, the G-orbit of $\left(f_{1}, f_{2}\right)$ is closed. By Lemma 13 4, we have $Q(S)^{G}=Q(A)$, as S is normal.

To verify (17), we may assume that

$$
\left(f_{1}, f_{2}\right)=\left(\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1 \\
& & & \\
& & & \\
& & & \\
& & \ddots & \\
& & & 1
\end{array}\right]\right.
$$

and in this case, we have

$$
\left(f_{1} g^{-1}, g f_{2}\right)=\left(\binom{g^{-1}}{0},(g, 0)\right)
$$

and the G-orbit is defined by a set of polynomial equations. The assertion (16) is proved similarly.

Now we have the following by Lemma 13 and Corollary 12.
a (Conca-Herzog [7]) A is strongly F-regular (type).
b (Akin-Buchsbaum-Weyman [2]) A is good as an H-module.
c $\omega_{S}^{G} \cong \omega_{A}$ as an (H, A)-module, and hence ω_{A} is good as an H-module.
d (Svanes [26], Lascoux [21]) If $m=n$, then A is Gorenstein, and $a(A)=a(S)=2 m(t-1)$ in this case.

The fact ω_{A} is good is proved in [10], and is used to prove the existence of resolution of determinantal ideals of certain type.

Next, we show that the assumption on $X_{c}^{(00)}$ in Theorem 10 is indispensable.
Example 18 Even if $S=\operatorname{Sym} V, Q(S)^{G}=Q(A), \operatorname{codim}_{X}\left(X-X^{(0)}\right) \geq 2, G$ is connected reductive, A is strongly F-regular and $\omega_{S} \cong S$ (i.e., $G \rightarrow G L(V)$ factors through $S L(V)$), A may not be Gorenstein (the assumption $\operatorname{codim}_{X}\left(X-X_{c}^{(00)}\right) \geq 2$ is missing).

Proof Let k be an algebraically closed field of characteristic $p>0$. We set $W=k^{2}$, and $G:=S L(W) \times \mathbb{G}_{\gtrdot}$. Giving degree $2,-1,-1$ and -1 respectively on the $S L(W)$-modules $W, W^{(1)}, k$ and k, we have a G-module structure on $V:=W \oplus W^{(1)} \oplus k \oplus k$, where $W^{(1)}$ denotes the first Frobenius twisting of the vector representation W, see [17]. We take a basis x_{1}, x_{2} of W, and we consider that $W^{(1)}$ is the k-span of $y_{1}:=x_{1}^{p}$ and $y_{2}:=x_{2}^{p}$ in $\operatorname{Sym}_{p} W$. We take a basis s, t of $k \oplus k$ so that $x_{1}, x_{2}, y_{1}, y_{2}, s, t$ forms a basis of V. As the sum of
degrees of these basis elements is zero, we have that the representation $G \rightarrow G L(V)$ factors through $S L(V)$. We set $S:=\operatorname{Sym} V$. If $w_{1}^{p} \neq w_{2}$ and $(\alpha, \beta) \neq(0,0)$, then the stabilizer of $\left(w_{1}, w_{2}, \alpha, \beta\right) \in V^{*}=(\operatorname{Spec} S)(k)$ is finite (but not reduced). In fact, the stabilizer of $\left(x_{1}^{*}, w_{2}, \alpha, \beta\right)$ with $w_{2} \neq\left(x_{1}^{*}\right)^{p}$ and $(\alpha, \beta) \neq(0,0)$ is

$$
\left[\begin{array}{cc}
1 & \alpha_{p} \\
0 & 1
\end{array}\right] \times\{1\},
$$

where α_{p} denotes the first Frobenius kernel of the additive group \mathbb{G}_{∂}. This shows $\operatorname{codim}_{X}(X-$ $\left.X^{(0)}\right) \geq 2$.

Let G_{1} be the first Frobenius kernel of $S L(W)$. Then, $(\operatorname{Sym} W)^{G_{1}}=k\left[x_{1}, x_{2}\right]^{G_{1}}$ is contained in the constant ring of the derivations $e=x_{2} \partial_{1}$ and $f=x_{1} \partial_{2}$. Thus, we have $(\operatorname{Sym} W)^{G_{1}} \subset k\left[x_{1}^{p}, x_{2}^{p}\right]$. The opposite incidence is obvious, so we have $(\operatorname{Sym} W)^{G_{1}}=$ $k\left[x_{1}^{p}, x_{2}^{p}\right]$. This shows,

$$
\left.\begin{array}{rl}
A:=S^{G}=\left((\operatorname{Sym} W)^{G_{1}} \otimes \operatorname{Sym}\left(W^{(1)} \oplus k \oplus k\right)\right)^{(S L(W)) / G_{1} \times G_{>}} \\
& =k\left[x_{1}^{p} y_{2}-x_{2}^{p} y_{1}, s, t\right]^{G}>
\end{array}\right)=k\left[r s^{i} t^{j} \mid i+j=2 p-1\right], ~ \$
$$

where $r:=x_{1}^{p} y_{2}-x_{2}^{p} y_{1}$, which is of degree $2 p-1$. Hence, we have $\operatorname{dim} S^{G}=2$, and $\operatorname{dim} S^{G}+\operatorname{dim} G=2+4=6=\operatorname{dim} S$. Hence, we have $Q(S)^{G}=Q(A)$. As A is a direct summand subring of the regular ring $k[r, s, t], A$ is strongly F-regular. However, by Stanley's theorem, ω_{A} is generated by ($r s^{i} t^{j} \mid i+j=2 p-1, i>0, j>0$), which is not cyclic as an A-module. This shows A is not Gorenstein.

References

[1] E. Abe, "Hopf Algebras," Cambridge tracts in math. 74, Cambridge (1977).
[2] K. Akin, D. A. Buchsbaum and J. Weyman, Schur functors and Schur complexes, Adv. Math. 44 (1982), 207-278.
[3] H. H. Andersen and J. C. Jantzen, Cohomology of induced representations for algebraic groups, Math. Ann. 269 (1984), 487-525.
[4] N. Bourbaki, "Algèbre," Chap. V, Hermann (1959).
[5] G. Boffi, The universal form of the Littlewood-Richardson rule, Adv. Math. 68 (1988), 49-63.
[6] J.-F. Boutot, Singularités rationnelles et quotients par les groupes réductifs, Invent. Math. 88 (1987), 65-68.
[7] A. Conca and J. Herzog, Ladder determinantal rings have rational singularities, Adv. Math. 132 (1997), 120-147.
[8] C. De Concini and D. Procesi, A characteristic free approach to invariant theory, Adv. Math. 41 (1981), 57-77.
[9] N. Hara, A characterization of rational singularities in terms of injectivity of Frobenius, preprint.
[10] M. Hashimoto, "Auslander-Buchweitz approximations of equivariant modules," Tokyo Metropolitan Univ. Seminar Reports (1997), in Japanese.
[11] M. Hashimoto, Good filtrations of reductive groups and strong F-regularity of invariant subrings, preprint.
[12] M. Hochster, The canonical module of a ring of invariants, in Contemp. Math. 88 (1989), 43-83.
[13] M. Hochster and C. Huneke, Tight closure and strong F-regularity, Soc. Math. de France, Mém. 38 (1989), 119-133.
[14] M. Hochster and J. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Adv. Math. 13 (1974), 115-175.
[15] J. E. Humphreys, "Linear Algebraic Groups," GTM 21, Springer (1975).
[16] C. Huneke, "Tight closure and its applications," AMS CBMS 88, AMS (1996).
[17] J. C. Jantzen, "Representations of algebraic groups," Academic Press (1987).
[18] F. Knop, "Der kanonische Modul eines Invariantenrings," J. Algebra 127 (1989), 40-54.
[19] O. Mathieu, Filtrations of G-modules, Ann. scient. Éc. Norm. Sup. (4) 23 (1990), 625-644.
[20] D. Mumford and J. Fogarty, "Geometric invariant theory," second ed., Springer (1982).
[21] A. Lascoux, Syzygies des varietiés déterminantales, Adv. Math. 30 (1978), 202-237.
[22] D. Luna, Slices étales, Bull. Soc. Math. France 33 (1973), 81-105.
[23] A. Neeman, The derived category of an exact category, J. Algebra 135 (1990), 388-394.
[24] R. P. Stanley, Hilbert functions and graded algebras, Adv. Math. 28 (1978), 57-83.
[25] H. Sumihiro, Equivariant completion II, J. Math. Kyoto Univ. 15 (1975), 573-605.
[26] T. Svanes, Coherent cohomology of Schubert subschemes of flag schemes and applications, Adv. Math. 14 (1974), 369-453.
[27] J.-L. Verdier, Base change for twisted inverse images of coherent sheaves, in "Algebraic Geometry," Tata Inst. Fund. Res., Bombay (1968), pp. 393-408.
[28] K.-i. Watanabe, Certain invariant subrings are Gorenstein I, Osaka J. Math. 11 (1974), 1-8.
[29] K.-i. Watanabe, Certain invariant subrings are Gorenstein II, Osaka J. Math. 11 (1974), 379-388.
[30] K.-i. Watanabe, F-rationality of certain Rees algebras and counterexamples to "Boutot's Theorem" for F-rational rings, J. Pure Appl. Algebra 122 (1997), 323-328.

