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Abstract

We define canonical and n-canonical modules on a module-finite al-
gebra over a Noether commutative ring and study their basic properties.
Using n-canonical modules, we generalize a theorem on (n,C)-syzygy
by Araya and Iima which generalize a well-known theorem on syzygies
by Evans and Griffith. Among others, we prove a non-commutative
version of Aoyama’s theorem which states that a canonical module de-
scends with respect to a flat local homomorphism. We also prove the
codimension two-argument for modules over a coherent sheaf of alge-
bras with a 2-canonical module, generalizing a result of the author.
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1. Introduction

(1.1) In [EvG], Evans and Griffith proved a criterion of a finite module over
a Noetherian commutative ring R to be an nth syzygy. This was generalized
to a theorem on (n,C)-syzygy for a semidualizing module C over R by Araya
and Iima [ArI]. The main purpose of this paper is to prove a generalization
of these results in the following settings: the ring R is now a finite R-algebra
Λ, which may not be commutative; and C is an n-canonical module.

(1.2) The notion of n-canonical module was introduced in [Has] in an algebro-
geometric situation. The criterion for a module to be an nth syzygy for
n = 1, 2 by Evans–Griffith was generalized using n-canonical modules there,
and the standard ‘codimension-two argument’ (see e.g., [Hart4, (1.12)]) was
also generalized to a theorem on schemes with 2-canonical modules [Has,
(7.34)]. We also generalize this result to a theorem on modules over non-
commutative sheaves of algebras (Proposition 10.5).

(1.3) Let (R,m) be a complete semilocal Noetherian ring, and Λ ̸= 0 a
module-finiteR-algebra. Let I be a dualizing complex ofR. ThenRHomR(Λ, I)
is a dualizing complex of Λ. Its lowest non-vanishing cohomology is denoted
by KΛ, and is called the canonical module of Λ. If (R,m) is semilocal but not
complete, then a Λ-bimodule is called a canonical module if it is the canon-
ical module after completion. An n-canonical module is defined using the
canonical module. A finite right (resp. left, bi-)module C of Λ is said to be n-
canonical over R if (1) C satisfies Serre’s (S ′

n) condition as an R-module, that
is, for any P ∈ SpecR, depthRP

CP ≥ min(n, dimRP ). (2) If P ∈ SuppR C
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with dimRP < n, then ĈP is isomorphic to KΛ̂P
as a right (left, bi-) module

of Λ̂P , where Λ̂P is the PRP -adic completion of ΛP .

(1.4) In order to study non-commutative n-canonical modules, we study
some non-commutative analogue of the theory of canonical modules developed
by Aoyama [Aoy], Aoyama–Goto [AoyG], and Ogoma [Ogo] in commutative
algebra. Among them, we prove an analogue of Aoyama’s theorem [Aoy] which
states that the canonical module descends with respect to flat homomorphisms
(Theorem 7.5).

(1.5) Our main theorem is the following.

Theorem 8.4 (cf. [EvG, (3.8)], [ArI, (3.1)]). Let R be a Noetherian commu-
tative ring, and Λ a module-finite R-algebra, which may not be commutative.
Let n ≥ 1, and C be a right n-canonical Λ-module. Set Γ = EndΛop C. Let
M ∈ modC. Then the following are equivalent.

1 M ∈ TF(n,C).

2 M ∈ UP(n,C).

3 M ∈ Syz(n,C).

4 M ∈ (S ′
n)C.

Here M ∈ (S ′
n)C means that SuppRM ⊂ SuppR C, and for any P ∈

SpecR, depthMP ≥ min(n, dimRP ), and this is a (modified) Serre’s condi-
tion. M ∈ Syz(n,C) means M is an (n,C)-syzygy. M ∈ UP(n,C) means
existence of an exact sequence

0→M → C0 → C1 → · · · → Cn−1

which is still exact after applying (?)† = Hom
Λop (?, C).

(1.6) The conditionM ∈ TF(n,C) is a modified version of Takahashi’s con-
dition “M is n-C-torsion free” [Tak]. Under the assumptions of the theorem,
let (?)† = Hom

Λop (?, C), Γ = End
Λop C, and (?)‡ = HomΓ(?, C). We say that

M ∈ TF(1, C) (resp.M ∈ TF(2, C)) if the canonical map λM :M →M †‡ is in-
jective (resp. bijective). If n ≥ 3, we say thatM ∈ TF(n,C) ifM ∈ TF(2, C),
and ExtiΓ(M

†, C) = 0 for 1 ≤ i ≤ n − 2, see Definition 4.5. Even if Λ is
a commutative ring, a non-commutative ring Γ appears in a natural way, so
even in this case, the definition is slightly different from Takahashi’s original
one. We prove that TF(n,C) = UP(n,C) in general (Lemma 4.7). This is a
modified version of Takahashi’s result [Tak, (3.2)].
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(1.7) As an application of the main theorem, we formulate and prove a
different form of the existence of n-C-spherical approximations by Takahashi
[Tak], using n-canonical modules, see Corollary 8.5 and Corollary 8.6. Our
results are not strong enough to deduce [Tak, Corollary 5.8] in commutative
case. For related categorical results, see below.

(1.8) Section 2 is preliminaries on the depth and Serre’s conditions on mod-
ules. In Section 3, we discuss Xn,m-approximation, which is a categorical ab-
straction of approximations of modules appeared in [Tak]. Everything is done
categorically here, and Theorem 3.16 is an abstraction of [Tak, (3.5)], in view
of the fact that TF(n,C) = UP(n,C) in general (Lemma 4.7). In Section 4,
we discuss TF(n,C), and prove Lemma 4.7 and related lemmas. In Section 5,
we define the canonical module of a module-finite algebra Λ over a Noetherian
commutative ring R, and prove some basic properties. In Section 6, we define
the n-canonical module of Λ, and prove some basic properties, generalizing
some constructions and results in [Has, Section 7]. In Section 7, we prove a
non-commutative version of Aoayama’s theorem which says that the canonical
module descends with respect to flat local homomorphisms (Theorem 7.5). As
a corollary, as in the commutative case, we immediately have that a localiza-
tion of a canonical module is again a canonical module. This is important
in Section 8. In Section 8, we prove Theorem 8.4, and the related results on
n-C-spherical approximations (Corollary 8.5, Corollary 8.6) as its corollaries.
Before these, we prove non-commutative analogues of the theorems of Schen-
zel and Aoyama–Goto [AoyG, (2.2), (2.3)] on the Cohen–Macaulayness of the
canonical module (Proposition 8.2 and Corollary 8.3). In section 9, we define
and discuss non-commutative, higher-dimensional symmetric, Frobenius, and
quasi-Frobenius algebras and their non-Cohen–Macaulay versions. In commu-
tative algebra, the non-Cohen–Macaulay version of Gorenstein ring is known
as quasi-Gorenstein rings. What we discuss here is a non-commutative version
of such rings. Scheja and Storch [SS] discussed a relative notion, and our defi-
nition is absolute in the sense that it is independent of the choice of R. If R is
local, our quasi-Frobenius property agrees with Gorensteinness discussed by
Goto and Nishida [GN], see Proposition 9.7 and Corollary 9.8. In Section 10,
we show that the codimension-two argument using the existence of 2-canonical
modules in [Has] is still valid in non-commutative settings.

(1.9) Acknowledgments: Special thanks are due to Professor Osamu Iyama
for valuable advice and discussion. Special thanks are also due to Professor
Tokuji Araya. This work was motivated by his advice, and Proposition 8.2 is
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an outcome of discussion with him.
The author is also grateful to Professor Kei-ichiro Iima, Professor Takesi

Kawasaki, Professor Ryo Takahashi, Professor Kohji Yanagawa, and Professor
Yuji Yoshino for valuable advice.

2. Preliminaries

(2.1) Unless otherwise specified, a module means a left module. Let B be a
ring. HomB or ExtB mean the Hom or Ext for left B-modules. Bop denotes
the opposite ring of B, so a Bop-module is nothing but a right B-module. Let
BMod denote the category of B-modules. Bop Mod is also denoted by ModB.
For a left (resp. right) Noetherian ring B, Bmod (resp. modB) denotes the
full subcategory of BMod (resp. ModB) consisting of finitely generated left
(resp. right) B-modules.

(2.2) For derived categories, we employ standard notation found in [Hart].
For an abelian category A, D(A) denotes the unbounded derived category

of A. For a plump subcategory (that is, a full subcategory which is closed
under kernels, cokernels, and extensions) B of A, DB(A) denotes the triangu-
lated subcategory of D(A) consisting of objects F such that H i(F) ∈ B for
any i. For a ring B, We denote D(BMod) by D(B), and DBmod(BMod) by
Dfg(B) (if B is left Noetherian).

(2.3) Throughout the paper, let R denote a commutative Noetherian ring.
If R is semilocal (resp. local) and m its Jacobson radical, then we say that
(R,m) is semilocal (resp. local). We say that (R,m, k) is semilocal (resp. local)
if (R,m) is semilocal (resp. local) and k = R/m.

(2.4) We set R̂ := R ∪ {∞,−∞} and consider that −∞ < R < ∞. As
a convention, for a subset Γ of R̂, inf Γ means inf(Γ ∪ {∞}), which exists
uniquely as an element of R̂. Similarly for sup.

(2.5) For an ideal I of R and M ∈ modR, we define

depthR(I,M) := inf{i ∈ Z | ExtiR(R/I,M) ̸= 0},

and call it the I-depth ofM [Mat, section 16]. It is also called theM -grade of I
[BS, (6.2.4)]. When (R,m) is semilocal, we denote depth(m,M) by depthRM
or depthM , and call it the depth of M .

Lemma 2.6. The following functions on M (with valued in R̂) are equal for
an ideal I of R.
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1 depthR(I,M);

2 infP∈V (I) depthRP
MP , where V (I) = {P ∈ SpecR | P ⊃ I};

3 inf{i ∈ Z | H i
I(M) ̸= 0};

4 ∞ if M = IM , and otherwise, the length of any maximal M-sequence
in I.

5 Any function ϕ such that

a ϕ(M) =∞ if M = IM .

b ϕ(M) = 0 if HomR(R/I,M) ̸= 0.

c ϕ(M) = ϕ(M/aM) + 1 if a ∈ I is a nonzerodivisor on M .

Proof. We omit the proof, and refer the reader to [Mat, section 16], [BS,
(6.2.7)].

(2.7) For a subset F of X = SpecR, we define codimF = codimX F , the
codimension of F in X, by inf{htP | P ∈ F}. So ht I = codimV (I) for
an ideal I of R. For M ∈ modR, we define codimM := codimSuppRM =
ht annM , where ann denotes the annihilator. For n ≥ 0, we denote the set
ht−1(n) = {P ∈ SpecR | htP = n} by R⟨n⟩. For a subset Γ of Z, R⟨Γ⟩ means
ht−1(Γ) =

∪
n∈ΓR

⟨n⟩. Moreover, we use notation such as R⟨≤3⟩, which stands
for R⟨{n∈Z|n≤3}⟩. For M ∈ modR, the set of minimal primes of M is denoted
by MinM .

We define M [n] := {P ∈ SpecR | depthMP = n}. Similarly, we use
notation such as M [<n](= {P ∈ SpecR | depthMP < n}).

(2.8) Let M,N ∈ modR. We say that M satisfies the (SN
n )R-condition or

(SN
n )-condition if for any P ∈ SpecR, depthRP

MP ≥ min(n, dimRP
NP ). The

(SR
n )

R-condition or (SR
n )-condition is simply denoted by (S ′

n)
R or (S ′

n). We say
thatM satisfies the (Sn)

R-condition or (Sn)-condition ifM satisfies the (SM
n )-

condition. (Sn) (resp. (S
′
n)) is equivalent to say that for any P ∈ M [<n], MP

is a Cohen–Macaulay (resp. maximal Cohen–Macaulay) RP -module. That is,
depthMP = dimMP (resp. depthMP = dimRP ). We consider that (SN

n )R is
a class of modules, and also write M ∈ (SN

n )R (or M ∈ (SN
n )).

Lemma 2.9. Let 0→ L→M → N → 0 be an exact sequence in modR, and
n ≥ 1.
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1 If L,N ∈ (S ′
n), then M ∈ (S ′

n).

2 If N ∈ (S ′
n−1) and M ∈ (S ′

n), then L ∈ (S ′
n).

Proof. 1 follows from the depth lemma:

∀P depthRP
MP ≥ min(depthRP

LP , depthRP
NP ),

and the fact that maximal Cohen–Macaulay modules are closed under exten-
sions. 2 is similar.

Corollary 2.10. Let

0→M → Ln → · · · → L1

be an exact sequence in modR, and assume that Li ∈ (S ′
i) for 1 ≤ i ≤ n.

Then M ∈ (S ′
n).

Proof. This is proved using a repeated use of Lemma 2.9, 2.

Lemma 2.11 (Acyclicity Lemma, [PS, (1.8)]). Let (R,m) be a Noetherian
local ring, and

(1) L : 0→ Ls
∂s−→ Ls−1

∂s−1−−→→ · · · → L1
∂1−→ L0

be a complex of modR such that

1 For each i ∈ Z with 1 ≤ i ≤ s, depthLi ≥ i.

2 For each i ∈ Z with 1 ≤ i ≤ s, Hi(L) ̸= 0 implies that depthHi(L) = 0.

Then L is acyclic (that is, Hi(L) = 0 for i > 0).

Lemma 2.12 (cf. [IW, (3.4)]). Let (1) be a complex in modR such that

1 For each i ∈ Z with 1 ≤ i ≤ s, Li ∈ (S ′
i).

2 For each i ∈ Z with 1 ≤ i ≤ s, codimHi(L) ≥ s− i+ 1.

Then L is acyclic.

Proof. Using induction on s, we may assume thatHi(L) = 0 for i > 1. Assume
that L is not acyclic. Then H1(L) ̸= 0, and we can take P ∈ AssRH1(L).
By assumption, htP ≥ s. Now localize at P and considering the complex LP

over RP , we get a contradiction by Lemma 2.11.
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Example 2.13. Let f :M → N be a map in modR.

1 If M ∈ (S ′
1) and fP is injective for P ∈ R⟨0⟩, then f is injective. Indeed,

consider the complex

0→M
f−→ N = L0

and apply Lemma 2.12.

2 ([LeW, (5.11)]) IfM ∈ (S ′
2), N ∈ (S ′

1), and fP is bijective for P ∈ R⟨≤1⟩,
then f is bijective. Consider the complex

0→M
f−→ N → 0 = L0

this time.

Lemma 2.14. Let (R,m) be a Noetherian local ring, and N ∈ (Sn)
R. If

P ∈ MinN with dimR/P < n, then we have

dimR/P = depthN = dimN < n.

If, moreover, N ∈ (S ′
n)

R, then depthN = dimR.

Proof. Ischebeck proved that if M,N ∈ modR and i < depthN − dimM ,
then ExtiR(M,N) = 0 [Mat, (17.1)]. As Ext0R(R/P,N) ̸= 0, we have that
depthRN ≤ dimR/P < n. The rest is easy.

Corollary 2.15. Let M ∈ (Sn)
R and N ∈ (S ′

n)
R. If MinM ⊂ MinN , then

M ∈ (S ′
n)

R.

Proof. Let P ∈M [<n]. As M ∈ (Sn), depthMP = dimMP . Take Q ∈ MinM
such that Q ⊂ P and dimRP/QRP = dimMP < n. As MinM ⊂ MinN ,
we have that QRP ∈ MinNP . By Lemma 2.14, dimRP = dimRP/QRP =
depthMP , and hence M ∈ (S ′

n).

Corollary 2.16. Let n ≥ 1, and R ∈ (Sn). Then for M ∈ modR, we have
that (S ′

n)
R = (Sn)

R ∩ (S ′
1).

Proof. Obviously, (S ′
n)

R ⊂ (Sn)
R∩(S ′

1). For the converse, apply Corollary 2.15
for N = R.
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(2.17) Let M,N ∈ modR. We say that M satisfies the (S ′
n)N -condition, or

M ∈ (S ′
n)N = (S ′

n)
R
N , if M ∈ (S ′

n) and SuppRM ⊂ SuppRN .

Lemma 2.18. Let n ≥ 1, N ∈ (S ′
n), and M ∈ modR. Then the following

are equivalent.

1 M ∈ (S ′
n)N .

2 M ∈ (Sn) and MinM ⊂ MinN .

Proof. 1⇒2. As (S ′
n) ⊂ (Sn), M ∈ (Sn). As M ∈ (S ′

n) with n ≥ 1, MinM ⊂
MinR. By assumption, MinM ⊂ SuppN . So MinM ⊂ MinR ∩ SuppN ⊂
MinN .

2⇒1. M ∈ (S ′
n) by Corollary 2.15. SuppM ⊂ SuppN follows from

MinM ⊂ MinN .

(2.19) There is another case that (Sn) implies (S ′
n). An R-module N is said

to be full if SuppRN = SpecR. A finitely generated faithful R-module is full.

Lemma 2.20. Let M,N ∈ modR. If N is a full R-module, then M satisfies
(S ′

n) condition if and only ifM satisfies (SN
n ) condition. If annRN ⊂ annRM ,

thenM satisfies the (SN
n )R condition if and only ifM satisfies the (S ′

n)
R/ annR N

condition.

Proof. The first assertion is because dimNP = dimRP for any P ∈ SpecR.
The second assertion follows from the first, because for an R/ annRN -module,
(SN

n )R and (SN
n )R/ annR N are the same thing.

Lemma 2.21. Let I be an ideal of R, and S a module-finite commutative
R-algebra. For M ∈ modS, we have that depthR(I,M) = depthS(IS,M). In
particular, if R is semilocal, then depthRM = depthS M .

Proof. Note that H i
I(M) ∼= H i

IS(M) by [BS, (4.2.1)]. By Lemma 2.6, we get
the lemma immediately.

Lemma 2.22. Let φ : R→ S be a finite homomorphism of rings, M ∈ modS,
and n ≥ 0.

1 If M ∈ (S ′
n)

R, then M ∈ (S ′
n)

S.

2 Assume that for any Q ∈ MinS, φ−1(Q) ∈ MinR (e.g., S ∈ (S ′
1)

R).
If M ∈ (S ′

n)
S, and RP is quasi-unmixed for any P ∈ R[<n], then M ∈

(S ′
n)

R.
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Proof. 1. Let Q ∈M [<n]. Then depthRP
MP = depthSP

MP ≤ depthSQ
MQ <

n by Lemma 2.21 and Lemma 2.6, where P = φ−1(Q). So MP is a maximal
Cohen–Macaulay RP -module by the (S ′

n)R-property, and hence htQ ≤ htP =
depthRP

MP ≤ depthSQ
MQ, and hence MQ is a maximal Cohen–Macaulay

SQ-module, and M ∈ (S ′
n)S.

2. Let P ∈ SpecR, and depthRP
MP < n. Then by Lemma 2.21 and

Lemma 2.6, there exists some Q ∈ SpecS such that φ−1(Q) = P and

depthSQ
MQ = inf

φ−1(Q′)=P
depthSQ′ MQ′ = depthSP

MP = depthRP
MP < n.

Then htQ = depthRPMP . So it suffices to show htP = htQ. By assumption,
RP is quasi-unmixed. So RP is equi-dimensional and universally catenary
[Mat, (31.6)]. By [Gro4, (13.3.6)], htP = htQ, as desired.

(2.23) We say that R satisfies (Rn) (resp. (Tn)) if RP is regular (resp. Goren-
stein) for P ∈ R⟨≤n⟩.

Lemma 2.24. Let φ : R → S be a flat morphism between Noetherian rings,
and M ∈ modR.

1. If M ∈ (S ′
n)

R and the ring SP/PSP satisfies (Sn) for P ∈ SpecR, then
S ⊗R M ∈ (S ′

n)
S.

2. If φ is faithfully flat and S ⊗R M ∈ (S ′
n)

S, then M ∈ (S ′
n)

R.

3. If R satisfies (Sn) (resp. (Tn), (Rn)) and SP/PSP satisfies (Sn) (resp.
(Tn), (Rn)) for P ∈ SpecR, then S satisfies (Sn) (resp. (Tn), (Rn)).

Proof. Left to the reader (see [Mat, (23.9)]).

3. Xn,m-approximation

(3.1) Let A be an abelian category, and C its additive subcategory closed
under direct summands. Let n ≥ 0. We define

⊥nC := {a ∈ A | ExtiA(a, c) = 0 1 ≤ i ≤ n}.

Let a ∈ A. A sequence

(2) C : 0→ a→ c0 → c1 → · · · → cn−1
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is said to be an (n, C)-pushforward if it is exact with ci ∈ C. If in addition,

C† : 0← a† ← (c0)† ← (c1)† ← · · · ← (cn−1)†

is exact for any c ∈ C, where (?)† = HomA(?, c), we say that C is a universal
(n, C)-pushforward.

If a ∈ A has an (n, C)-pushforward, we say that a is an (n, C)-syzygy, and
we write a ∈ Syz(n, C). If a ∈ A has a universal (n, C)-pushforward, we say
that a ∈ UPA(n, C) = UP(n, C). Obviously, UPA(n, C) ⊂ SyzA(n, C).

(3.2) We write Xn,m(C) = Xn,m := ⊥nC ∩ UP(m, C) for n,m ≥ 0. Also, for
a ̸= 0, we define

Cdim a = inf{m ∈ Z≥0 | there is a resolution

0→ cm → cm−1 → · · · → c0 → a→ 0}.

We define Cdim 0 = −∞. We define Yn(C) = Yn := {a ∈ A | Cdim a < n}. A
sequence E is said to be C-exact if it is exact, and A(E, c) is also exact for each
c ∈ C. Letting a C-exact sequence an exact sequence, A is an exact category,
which we denote by AC in order to distinguish it from the abelian category A
(with the usual exact sequences).

(3.3) Let C0 ⊂ A be a subset. Then ⊥nC0, UP(n, C0), Xn,m(C0), C0dim, and
Yn(C0) = Yn mean ⊥nC, UP(n, C), Xn,m(C), Cdim, and Yn(C), respectively,
where C = add C0, the smallest additive subcategory containing C0 and closed
under direct summands. If c ∈ C, ⊥nc, UP(n, c) and so on mean ⊥n add c,
UP(n, add c) and so on. A C0-exact sequence means an add C0-exact sequence.
A sequence E in A is C0-exact if and only if for any c ∈ C0, A(E, c) is exact.

(3.4) By definition, any object of C is an injective object in AC.

(3.5) Let E be an exact category, and I an additive subcategory of E . Then
for e ∈ E , we define

PushE(n, I) := {e ∈ E | There exists an exact sequence

0→ e→ c0 → c1 → · · · → cn−1 with ci ∈ I}.

Note that PushE(0, I) is the whole E . Thus PushAC(n, C) = UPA(n, C).
If a ∈ E is a direct summand of an object of I, then a ∈ Push(∞, I).
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Lemma 3.6. Let E be an exact category. Let I be an additive subcategory of
E consisting of injective objects. Let

0→ a
f−→ a′

g−→ a′′ → 0

be an exact sequence in E and m ≥ 0. Then

1 If a ∈ Push(m, I) and a′′ ∈ Push(m, I), then a′ ∈ Push(m, I).

2 If a′ ∈ Push(m+ 1, I) and a′′ ∈ Push(m, I), then a ∈ Push(m+ 1, I).

3 If a ∈ Push(m+ 1, I), a′ ∈ Push(m, I), then a′′ ∈ Push(m, I).

Proof. Let i : E ↪→ A be the Gabriel–Quillen embedding [TT]. We consider
that E is a full subcategory of A closed under extensions, and a sequence in
E is exact if and only if it is so in A.

We prove 1. We use induction on m. The case that m = 0 is trivial, and
so we assume that m > 0. Let

0→ a→ c→ b→ 0

be an exact sequence such that c ∈ I and b ∈ Push(m− 1, I). Let

0→ a′′ → c′′ → b′′ → 0

be an exact sequence such that c′′ ∈ I and b′′ ∈ Push(m−1, I). As C(a′, c)→
C(a, c) is surjective, we can form a commutative diagram with exact rows and
columns

0

��

0

��

0

��
0 // a

f //

��

a′
g //

��

a′′ //

��

0

0 // c

(
1
0

)
//

��

c⊕ c′′ (1 0) //

��

c′′ //

��

0

0 // b //

��

b′ //

��

b′′ //

��

0

0 0 0

in A. As E is closed under extensions in A, this diagram is a diagram in E .
By induction assumption, b′ ∈ Push(m− 1, I). Hence a′ ∈ Push(m, I).
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We prove 2. Let 0 → a′ → c → b′ → 0 be an exact sequence in E such
that c ∈ I and b′ ∈ Push(m, I). Then we have a commutative diagram in E
with exact rows and columns

0

��

0

��
0 // a

f //

��

a′

��

g // a′′ // 0

0 // c
1c //

��

c

��

// 0

0 // a′′ // b

��

// b′

��

// 0

0 0

.

Applying 1, which we have already proved, b ∈ Push(m, I), since a′′ and b′ lie
in Push(m, I). So a ∈ Push(m+ 1, I), as desired.

We prove 3. Let 0→ a→ c→ b→ 0 be an exact sequence in E such that
c ∈ I and b ∈ Push(m, I). Taking the push-out diagram

0

��

0

��
0 // a

f //

��

a′
g //

��

a′′ //

1a′′
��

0

0 // c

��

// u

��

// a′′ // 0

b
1b //

��

b

��
0 0

.

Then u ∈ Push(m, I) by 1, which we have already proved. Since c ∈ I, the
middle row splits. Then by the exact sequence 0 → a′′ → u → c → 0 and 2,
we have that a′′ ∈ Push(m, I), as desired.

Corollary 3.7. Let E and I be as in Lemma 3.6. Let m ≥ 0, and a, a′ ∈ E .
Then a⊕ a′ ∈ Push(m, I) if and only if a, a′ ∈ Push(m, I).
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Proof. The ‘if’ part is obvious by Lemma 3.6, 1, considering the exact sequence

(3) 0→ a→ a⊕ a′ → a′ → 0.

We prove the ‘only if’ part by induction on m. If m = 0, then there is
nothing to prove. Let m > 0. Then by induction assumption, a′ ∈ Push(m−
1, I). Then applying Lemma 3.6, 2 to the exact sequence (3), we have that
a ∈ Push(m, I). a′ ∈ Push(m, I) is proved similarly.

Corollary 3.8. Let

0→ a
f−→ a′

g−→ a′′ → 0

be a C-exact sequence in A and m ≥ 0. Then

1 If a ∈ UP(m, C) and a′′ ∈ UP(m, C), then a′ ∈ UP(m, C).

2 If a′ ∈ UP(m+ 1, C) and a′′ ∈ UP(m, C), then a ∈ UP(m+ 1, C).

3 If a ∈ UP(m+ 1, C), a′ ∈ UP(m, C), then a′′ ∈ UP(m, C).

(3.9) We define ⊥C = ⊥∞C :=
∩

i≥0
⊥iC and UP(∞, C) :=

∩
j≥0 UP(j, C).

Obviously, C ⊂ UP(∞, C).

Lemma 3.10. We have

UP(∞, C) = {a ∈ A | There exists some C-exact sequence
0→ a→ c0 → c1 → c2 → · · · with ci ∈ C for i ≥ 0}.

Proof. Let a ∈ UP(∞, C), and take any C-exact sequence

0→ a→ c0 → a1 → 0

with c0 ∈ C. Then a1 ∈ UP(∞, C) by Corollary 3.8, and we can continue
infinitely.

(3.11) We define Y∞ :=
∪

i≥0 Yi. We also define Xi,j :=
⊥iC ∩ UP(j, C) for

0 ≤ i, j ≤ ∞.

(3.12) Let 0 ≤ i, j ≤ ∞. We say that a ∈ A lies in Zi,j if there is a short
exact sequence

0→ y → x→ a→ 0

in A such that x ∈ Xi,j and y ∈ Yi.
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(3.13) We define ∞± r =∞ for r ∈ R.

Lemma 3.14. Let 0 ≤ i, j ≤ ∞ with j ≥ 1. Assume that C ⊂ ⊥i+1C. Let

0 → z
f−→ x

g−→ z′ → 0 be a short exact sequence in A with z ∈ Zi,j and
x ∈ Xi+1,j−1. Then z

′ ∈ Zi+1,j−1.

Proof. By assumption, there is an exact sequence

0→ y
j−→ x′

φ−→ z → 0

such that Cdim y < i and x′ ∈ Xi,j. As j ≥ 1, there is an C-exact sequence

0→ x′
h−→ c→ x′′′ → 0

such that c ∈ C. Then we have a commutative diagram with exact rows and
columns

0

��

0

��

0

��
0 // y

hj //

j
��

c(
1
0

)
��

// y′ //

��

0

0 // x′

φ

��

(
h
fφ

)
// c⊕ x

(0 1)
��

// x′′

��

// 0

0 // z
f //

��

x
g //

��

z′ //

��

0

0 0 0

As the top row is exact, y ∈ Yi, and c ∈ C, y′ ∈ Yi+1. By assumption,
c ∈ Xi+1,∞ and x ∈ Xi+1,j−1. So c⊕x ∈ Xi+1,j−1. As the middle row is C-exact
and x′ ∈ Xi,j, we have that x′′ ∈ Xi+1,j−1 by Corollary 3.8. The right column
shows that z′ ∈ Zi+1,j−1, as desired.

Lemma 3.15. Let 0 ≤ i, j ≤ ∞, and assume that i ≥ 1 and C ⊂ ⊥iC. Let

(4) 0→ z
f−→ x

g−→ z′ → 0

be a short exact sequence in A with z′ ∈ Zi,j and x ∈ Xi,j+1. Then z ∈ Zi−1,j+1.
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Proof. Take an exact sequence 0 → y′ → x′′
h−→ z′ → 0 such that x′′ ∈ Xi,j

and y′ ∈ Yi. Taking the pull-back of (4) by h, we get a commutative diagram
with exact rows and columns

0

��

0

��
0 //

��

y′
1y′ //

��

y′ //

��

0

0 // z

1z

��

j // a //

��

x′′ //

h
��

0

0 // z
f //

��

x
g //

��

z′ //

��

0

0 0 0

.

By induction, we can prove easily that ⊥iC ⊂ ⊥i+1−lYl. In particular, ⊥iC ⊂
⊥1Yi, and Ext1A(x, y

′) = 0. Hence the middle column splits, and we can replace
a by x⊕ y′. By the definition of Yi, there is an exact sequence

0→ y → c→ y′ → 0

of A such that y ∈ Yi−1 and c ∈ C. Then adding 1x to this sequence, we get

0→ y → x⊕ c→ x⊕ y′ → 0

is exact. Pulling back this exact sequence with j : z → a = x ⊕ y′, we get a
commutative diagram with exact rows and columns

0

��

0

��

0

��
0 // y //

1y

��

x′

��

// z //

j
��

0

0 // y

��

// x⊕ c

��

// x⊕ y′ //

��

0

0 // x′′
1x′′ //

��

x′′ //

��

0

0 0

.
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As x′′ ∈ ⊥1C, the middle column is C-exact. As x′′ ∈ Xi,j and x ⊕ c ∈ Xi,j+1,
we have that x′ ∈ Xi−1,j+1. As the top row shows, z ∈ Zi−1,j+1, as desired.

Theorem 3.16. Let 0 ≤ n,m ≤ ∞, and assume that C ⊂ ⊥nC. For z ∈ A,
the following are equivalent.

1 z ∈ Zn,m.

2 There is an exact sequence

(5) 0→ xn
dn−→ xn−1

dn−1−−−→ x0
ε−→ z → 0

such that xi ∈ Xn−i,m+i.

If, moreover, for each a ∈ A, there is a surjection x → a with x ∈ Xn,n+m,
then these conditions are equivalent to the following.

3 For each exact sequence (5) with xi ∈ Xn−i,m+i+1 for 0 ≤ i ≤ n− 1, we
have that xn ∈ X0,n+m.

Proof. 1⇒2. There is an exact sequence 0→ y → x0
ε−→ z → 0 with x0 ∈ Xn,m

and y ∈ Yn. So there is an exact sequence

0→ xn
dn−→ xn−1

dn−1−−−→ · · · d2−→ x1 → y → 0

with xi ∈ C for 1 ≤ i ≤ n. As C ⊂ Xn,∞, we are done.
2⇒1. Let zi = Im di for i = 1, . . . , n, and z0 := z. Then by descending

induction on i, we can prove zi ∈ Zn−i,m+i for i = n, n − 1, . . . , 0, using
Lemma 3.14 easily.

1⇒3 is also proved easily, using Lemma 3.15.
3⇒2 is trivial.

4. (n,C)-TF property

(4.1) In the rest of this paper, let Λ be a module-finite R-algebra, which
may not be commutative. A Λ-bimodule means a Λ ⊗R Λop-module. Let
C ∈ modΛ be fixed. Set Γ := EndΛop C. Note that Γ is also a module-
finite R-algebra. We denote (?)† := HomΛop(?, C) : modΛ → (Γmod)op, and
(?)‡ := HomΓ(?, C) : Γmod→ (modΛ)op.

(4.2) We denote SyzmodΛ(n,C), UPmodΛ(n,C), and CdimmodΛM respec-
tively by SyzΛop(n,C), UPΛop(n,C), and CdimΛop M .
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(4.3) Note that for M ∈ modΛ and N ∈ Γmod, we have standard isomor-
phisms

(6) HomΛop(M,N ‡) ∼= HomΓ⊗RΛop(N ⊗R M,C) ∼= HomΓ(N,M
†).

The first isomorphism sends f :M → N ‡ to the map (n⊗m 7→ f(m)(n)). Its
inverse is given by g : N ⊗R M → C to (m 7→ (n 7→ g(n ⊗m))). This shows
that (?)† has ((?)‡)op : (Γmod)op → modΛ as a right adjoint. Hence ((?)†)op

is right adjoint to (?)‡. We denote the unit of adjunction Id→ (?)†‡ = (?)‡(?)†

by λ. Note that for M ∈ modΛ, the map λM : M → M †‡ is given by
λM(m)(ψ) = ψ(m) for m ∈M and ψ ∈M † = HomΛop(M,C). We denote the
unit of adjunction N → N ‡† by µ = µN for N ∈ Γmod. When we view µ
as a morphism N ‡† → N (in the opposite category (Γmod)op), then it is the
counit of adjunction.

Lemma 4.4. (?)† and (?)‡ give a contravariant equivalence between addC ⊂
modΛ and addΓ ⊂ Γmod.

Proof. It suffices to show that λ :M →M †‡ is an isomorphism forM ∈ addC,
and µ : N → N ‡† is an isomorphism for N ∈ addΓ. To verify this, we may
assume that M = C and N = Γ. This case is trivial.

Definition 4.5 (cf. [Tak, (2.2)]). LetM ∈ modΛ. We say thatM is (1, C)-TF
orM ∈ TFΛop(1, C) if λM :M →M †‡ is injective. We say thatM is (2, C)-TF
or M ∈ TFΛop(2, C) if λM :M →M †‡ is bijective. Let n ≥ 3. We say that M
is (n,C)-TF or M ∈ TFΛop(n,C) if M is (2, C)-TF and ExtiΓ(M

†, C) = 0 for
1 ≤ i ≤ n− 2. As a convention, we define that any M ∈ modΛ is (0, C)-TF.

Lemma 4.6. Let Θ : 0→M → L→ N → 0 be a C-exact sequence in modΛ.
Then for n ≥ 0, we have the following.

1 If M ∈ TF(n,C) and N ∈ TF(n,C), then L ∈ TF(n,C).

2 If L ∈ TF(n+ 1, C) and N ∈ TF(n,C), then M ∈ TF(n+ 1, C).

3 If M ∈ TF(n+ 1, C) and L ∈ TF(n,C), then N ∈ TF(n,C).

Proof. We have a commutative diagram

0 //M

λM
��

h // L

λL
��

// N

λN
��

// 0

0 //M †‡ h†‡
// L†‡ // N †‡ // Ext1Γ(M

†, C) // Ext1Γ(L
†, C) // · · ·
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with exact rows.
We only prove 3. We may assume that n ≥ 1. So λM is an isomorphism

and λL is injective. By the five lemma, λN is injective, and the case that n = 1
has been done. If n ≥ 2, then λL is also an isomorphism and Ext1Γ(M

†, C) = 0,
and so λN is an isomorphism. Moreover, for 1 ≤ i ≤ n − 2, ExtiΓ(L

†, C) and
Exti+1

Γ (M †, C) vanish. so ExtiΓ(N
†, C) = 0 for 1 ≤ i ≤ n − 2, and hence

N ∈ TF(n,C).
1 and 2 are also proved similarly.

Lemma 4.7 (cf. [Tak, Proposition 3.2]). 1 For n = 0, 1, SyzΛop(n,C) =
UPΛop(n,C).

2 For n ≥ 0, TFΛop(n,C) = UPΛop(n,C).

Proof. If n = 0, then SyzΛop(n,C) = TFΛop(0, C) = UPΛop(0, C) = modΛ. So
we may assume that n ≥ 1.

Let M ∈ SyzΛop(1, C). Then there is an injection φ : M → N with
N ∈ addC. Then

M

λM
��

� � φ // N

λN
∼=
��

M †‡ φ†‡
// N †‡

is a commutative diagram. So λM is injective, and M ∈ TFΛop(1, C). This
shows UPΛop(1, C) ⊂ SyzΛop(1, C) ⊂ TFΛop(1, C). So 2⇒1.

We prove 2. First, we prove UPΛop(n,C) ⊂ TFΛop(n,C) for n ≥ 1. We
use induction on n. The case n = 1 is already done above.

Let n ≥ 2 and M ∈ UPΛop(n,C). Then by the definition of UPΛop(n,C),
there is a C-exact sequence

0→M → L→ N → 0

such that L ∈ addC and N ∈ UPΛop(n − 1, C). By induction hypothesis,
N ∈ TFΛop(n − 1, C). Hence M ∈ TFΛop(n,C) by Lemma 4.6. We have
proved that UPΛop(n,C) ⊂ TFΛop(n,C).

Next we show that TFΛop(n,C) ⊂ UPΛop(n,C) for n ≥ 1. We use induction
on n.

Let n = 1. Let ρ : F →M † be any surjective Γ-linear map with F ∈ addΓ.
Then the map ρ′ :M → F ‡ which corresponds to ρ by the adjunction (6) is

ρ′ :M
λM−−→M †‡ ρ‡−→ F ‡,
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which is injective by assumption. Then ρ is the composite

ρ : F
µF−→ F ‡† (ρ′)†−−→M †,

which is a surjective map by assumption. So (ρ′)† is also surjective, and hence
ρ′ :M → F ‡ gives a (1, C)-universal pushforward.

Now let n ≥ 2. By what we have proved, M has a (1, C)-universal push-
forward h :M → L. Let N = Cokerh. Then we have a C-exact sequence

0→M → L→ N → 0

with L ∈ addC. As M ∈ TF(n,C), N ∈ TF(n − 1, C) by Lemma 4.6. By
induction assumption, N ∈ UP(n − 1, C). So by the definition of UP(n,C),
we have that M ∈ UP(n,C), as desired.

Lemma 4.8. For any N ∈ Γmod, N ‡ ∈ Syz(2, C).

Proof. Let

F1
h−→ F0 → N → 0

be an exact sequence in Γmod such that Fi ∈ addΓ. Then

0→ N ‡ → F ‡
0

h‡
−→ F ‡

1

is exact, and F ‡
i ∈ addC. This shows that N ‡ ∈ Syz(2, C).

(4.9) We denote by (S ′
n)C = (S ′

n)
Λop,R
C the class of M ∈ modΛ such that M

viewed as an R-module lies in (S ′
n)

R
C , see (2.17).

Lemma 4.10. Assume that C satisfies (S ′
n) as an R-module. Then Syz(r, C) ⊂

(S ′
r)

Λop,R
C for r ≥ 1.

Proof. This follows easily from Corollary 2.10.

(4.11) For an additive category C and its additive subcategory X , we denote
by C/X the quotient of C divided by the ideal consisting of morphisms which
factor through objects of X .
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(4.12) For each M ∈ modΛ, take a presentation

(7) F(M) : F1(M)
∂−→ F0(M)

ε−→M → 0

with Fi ∈ addΛΛ. We denote

Coker(∂†) = Coker(1C ⊗ ∂t) = C ⊗Λ TrM

by TrC M , where (?)t = HomΛop(?,Λ) and Tr is the transpose, see [ASS,
(V.2)], and we call it the C-transpose of M . TrC is an additive functor from
modΛ := modΛ/ addΛΛ to ΓC mod := Γmod / addC.

Proposition 4.13. Let n ≥ 0, and assume that ExtiΓ(C,C) = 0 for i =
1, . . . , n. Then for M ∈ modΛ, we have the following.

0 For 1 ≤ i ≤ n, ExtiΓ(TrC?, C) is a well-defined additive functor modΛ→
modΛ.

1 If n = 1, there is an exact sequence

0→ Ext1Γ(TrC M,C)→M
λM−−→M †‡ → Ext2Γ(TrC M,C).

If n = 0, then there is an injective homomorphism KerλM ↪→ Ext1Γ(TrC M,C).

2 If n ≥ 2, then

i There is an exact sequence

0→ Ext1Γ(TrC M,C)→M
λM−−→M †‡ → Ext2Γ(TrC M,C)→ 0.

ii There are isomorphisms Exti+2 Γ(TrC M,C) ∼= ExtiΓ(M
†, C) for

1 ≤ i ≤ n− 2.

iii There is an injective map Extn−1
Γ (M †, C) ↪→ Extn+1

Γ (TrC M,C).

Proof. 0 is obvious by assumption.
We consider that F(M) is a complex withM at degree zero. Then consider

Q(M) := F(M)†[2] : F1(M)†
∂†
←− F0(M)†

ε†←−M † ← 0

where F1(M)† is at degree zero. As this complex is quasi-isomorphic to
TrC(M), there is a spectral sequence

Ep,q
1 = ExtqΓ(Q(M)−p, C)⇒ Extp+q

Γ (TrC M,C).
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In general, KerλM = E1,0
2
∼= E1,0

∞ ⊂ E1. If n ≥ 1, then E0,1
1 = 0, and

E1,0
∞ = E1. Moreover, as E0,1

1 = 0, CokerλM ∼= E2,0
2
∼= E2,0

∞ ⊂ E2. So 1
follows.

If n ≥ 2, then E0,2
1 = E1,1

1 = 0 by assumption, so E2,0
∞ = E2, and i of 2

follows. Note that Ep,q
1 = 0 for p ≥ 3. Moreover, Ep,q

1 = 0 for p = 0, 1 and
1 ≤ q ≤ n. So for 1 ≤ i ≤ n− 1, we have

E2,i
1
∼= E2,i

∞ ↪→ Ei+2,

and the inclusion is an isomorphism if 1 ≤ i ≤ n − 2. So ii and iii of 2
follow.

Corollary 4.14. Let n ≥ 1. If ExtiΓ(C,C) = 0 for 1 ≤ i ≤ n, then M is
(n,C)-TF if and only if ExtiΓ(TrC M,C) = 0 for 1 ≤ i ≤ n. If ExtiΓ(C,C) = 0
for 1 ≤ i < n and ExtiΓ(TrC M,C) = 0 for 1 ≤ i ≤ n, then M is (n,C)-TF.

5. Canonical module

(5.1) Let R = (R,m) be semilocal, where m is the Jacobson radical of R.

(5.2) We say that a dualizing complex I over R is normalized if for any
maximal ideal n of R, Ext0R(R/n, I) ̸= 0. We follow the definition of [Hart2].

(5.3) For a left or right Λ-module M , dimM or dimΛM denotes the di-
mension dimRM of M , which is independent of the choice of R. We call
depthR(m,M), which is also independent of R, the global depth, Λ-depth, or
depth of M , and denote it by depthΛM or depthM . M is called globally
Cohen–Macaulay or GCM for short, if dimM = depthM . M is GCM if and
only if it is Cohen–Macaulay as an R-module, and all the maximal ideals of R
have the same height. This notion is independent of R, and depends only on Λ
and M . M is called a globally maximal Cohen–Macaulay (GMCM for short)
if dimΛ = depthM . We say that the algebra Λ is GCM if the Λ-module Λ
is GCM. However, in what follows, if R happens to be local, then GCM and
Cohen–Macaulay (resp. GMSM and maximal Cohen–Macaulay) (over R) are
the same thing, and used interchangeably.

(5.4) Assume that (R,m) is complete semilocal, and Λ ̸= 0. Let I be a
normalized dualizing complex of R. The lowest non-vanishing cohomology
group Ext−s

R (Λ, I) (ExtiR(Λ, I) = 0 for i < −s) is denoted by KΛ, and is called
the canonical module of Λ. Note that KΛ is a Λ-bimodule. Hence it is also a
Λop-bimodule. In this sense, KΛ = KΛop . If Λ = 0, then we define KΛ = 0.
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(5.5) Let S be the center of Λ. Then S is module-finite over R, and
IS = RHomR(S, I) is a normalized dualizing complex of S. This shows that
RHomR(Λ, I) ∼= RHomS(Λ, IS), and hence the definition of KΛ is also inde-
pendent of R.

Lemma 5.6. The number s in (5.4) is nothing but d := dimΛ. Moreover,

AssRKΛ = AsshR Λ := {P ∈ MinR Λ | dimR/P = dimΛ}.

Proof. We may replace R by R/ annR Λ, and may assume that Λ is a faithful
module. We may assume that I is a fundamental dualizing complex of R.
That is, for each P ∈ SpecR, E(R/P ), the injective hull of R/P , appears
exactly once (at dimension − dimR/P ). If Ext−i

R (Λ, I) ̸= 0, then there exists
some P ∈ SpecR such that Ext−i

RP
(ΛP , IP ) ̸= 0. Then P ∈ SuppR Λ and

dimR/P ≥ i. On the other hand, Ext−d
RP

(ΛP , IP ) has length l(ΛP ) and is
nonzero for P ∈ AsshR Λ. So s = d.

The argument above shows that each P ∈ AsshR Λ = AsshR supports KΛ.
So AsshR Λ ⊂ MinRKΛ. On the other hand, as the complex I starts at degree
−d, KΛ ⊂ I−d, and AssKΛ ⊂ Ass I−d ⊂ AsshR = AsshR Λ.

Lemma 5.7. Let (R,m) be complete semilocal. Then KΛ satisfies the (SΛ
2 )

R-
condition.

Proof. It is easy to see that (KΛ)n is either zero or KΛn for each maximal ideal
n of R. Hence we may assume that R is local. Replacing R by R/ annR Λ, we
may assume that Λ is a faithfulR-module, and we are to prove thatKΛ satisfies
(S ′

2)
R by Lemma 2.20. Replacing R by a Noether normalization, we may

further assume that R is regular by Lemma 2.22, 1. Then KΛ = HomR(Λ, R).
So KΛ ∈ Syz(2, R) ⊂ (S ′

2)
R by Lemma 4.8 (consider that Λ there is R here,

and C there is also R here).

(5.8) Assume that (R,m) is semilocal which may not be complete. We say
that a finitely generated Λ-bimodule K is a canonical module of Λ if K̂ is
isomorphic to the canonical module KΛ̂ as a Λ̂-bimodule. It is unique up
to isomorphisms, and denoted by KΛ. We say that K ∈ modΛ is a right
canonical module of Λ if K̂ is isomorphic to KΛ̂ in mod Λ̂, where ?̂ is the
m-adic completion. If KΛ exists, then K is a right canonical module if and
only if K ∼= KΛ in modΛ.

These definitions are independent of R, in the sense that the (right) canon-
ical module over R and that over the center of Λ are the same thing. The right
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canonical module of Λop is called the left canonical module. A Λ-bimodule ω
is said to be a weakly canonical bimodule if Λω is left canonical, and ωΛ is
right canonical. The canonical module KΛop of Λop is canonically identified
with KΛ.

(5.9) If R has a normalized dualizing complex I, then Î is a normalized
dualizing complex of R̂, and so it is easy to see that KΛ exists and agrees
with Ext−d(Λ, I), where d = dimΛ(:= dimR Λ). In this case, for any P ∈
SpecR, IP is a dualizing complex of RP . So if R has a dualizing complex and
(KΛ)P ̸= 0, then (KΛ)P , which is the lowest nonzero cohomology group of
RHomRP

(ΛP , IP ), is the RP -canonical module of ΛP . See also Theorem 7.5
below.

Lemma 5.10. Let (R,m) be local, and assume that KΛ exists. Then we have
the following.

1 AssRKΛ = AsshR Λ.

2 KΛ ∈ (SΛ
2 )

R.

3 R/ annKΛ is quasi-unmixed, and hence is universally catenary.

Proof. All the assertions are proved easily using the case that R is complete.

(5.11) A Λ-module M is said to be Λ-full over R if SuppRM = SuppR Λ.

Lemma 5.12. Let (R,m) be local. If KΛ exists and Λ satisfies the (S2)
R-

condition, then R/ annKΛ is equidimensional, and KΛ is Λ-full over R.

Proof. The same as the proof of [Ogo, Lemma 4.1] (use Lemma 5.10, 3).

(5.13) Let (R,m) be local, and I be a normalized dualizing complex. By
the local duality,

K∨
Λ = Ext−d(Λ, I)∨ ∼= Hd

m(Λ)

(as Λ-bimodules), where ER(R/m) is the injective hull of the R-module R/m,
and (?)∨ is the Matlis dual HomR(?, ER(R/m)).
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(5.14) Let (R,m) be semilocal, and I be a normalized dualizing complex.
Note that RHomR(?, I) induces a contravariant equivalence between Dfg(Λ

op)
and Dfg(Λ). Let J ∈ Dfg(Λ⊗R Λop) be RHomR(Λ, I).

RHomR(?, I) : Dfg(Λ
op)→ Dfg(Λ)

is identified with

RHomΛop(?,RHomR(ΛΛR, I)) = RHomΛop(?, J)

and similarly,
RHomR(?, I) : Dfg(Λ)→ Dfg(Λ

op)

is identified with RHomΛ(?, J). Note that a left or right Λ-module M is max-
imal Cohen–Macaulay if and only if RHomR(M, I) is concentrated in degree
−d, where d = dimΛ.

(5.15) J above is a dualizing complex of Λ in the sense of Yekutieli [Yek,
(3.3)].

(5.16) Λ is GCM if and only if KΛ[d] → J is an isomorphism. If so, M ∈
modΛ is GMCM if and only if RHomR(M, I) is concentrated in degree −d
if and only if ExtiΛop(M,KΛ) = 0 for i > 0. Also, in this case, as KΛ[d] is a
dualizing complex, it is of finite injective dimension both as a left and a right
Λ-module. To prove these, we may take the completion, and may assume that
R is complete. All the assertions are independent of R, so taking the Noether
normalization, we may assume that R is local. By (5.14), the assertions follow.

(5.17) For any M ∈ modΛ which is GMCM,

M ∼= RHomR(RHomR(M, I), I) ∼= RHomR(Ext
−d
Λop(M,KΛ[d]), I)[−d].

Hence M † := HomΛop(M,KΛ) is also a GMCM Λ-module, and hence

HomΛ(M
†, KΛ)→ RHomΛ(M

†, J) = RHomR(M
†, I)

is an isomorphism (in other words, ExtiΛ(M
†, KΛ) = 0 for i > 0). So the

canonical map

(8) M → HomΛ(HomΛop(M,KΛ), KΛ) = HomΛ(M
†, KΛ)

m 7→ (φ 7→ φm) is an isomorphism. This isomorphism is true without assum-
ing that R has a dualizing complex (but assuming the existence of a canonical
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module), passing to the completion. Note that if Λ = R and KR exists and
Cohen–Macaulay, then KR is a dualizing complex of R.

Similarly, for N ∈ Λmod which is GMCM,

N → HomΛop(HomΛ(N,KΛ), KΛ)

n 7→ (φ 7→ φn) is an isomorphism.

(5.18) In particular, letting M = Λ, if Λ is GCM, we have that KΛ =
HomΛop(Λ, KΛ) is GMCM. Moreover,

Λ→ EndΛop KΛ

is an R-algebra isomorphism, where a ∈ Λ goes to the left multiplication by
a. Similarly,

Λ→ (EndΛKΛ)
op

is an isomorphism of R-algebras.

(5.19) Let (R,m) be a d-dimensional complete local ring, and dimΛ = d.
Then by the local duality,

Hd
m(KΛ)

∨ ∼= Ext−d
R (KΛ, I) ∼= Ext−d

Λop(KΛ, J) ∼= EndΛop KΛ,

where J = HomR(Λ, I) and (?)∨ = HomR(?, ER(R/m)).

6. n-canonical module

(6.1) We say that ω is anR-semicanonical right Λ-module (resp.R-semicanonical
left Λ-module, weaklyR-semicanonical Λ-bimodule, R-semicanonical Λ-bimodule)
if for any P ∈ SpecR, RP ⊗R ω is the right canonical module (resp. left
canonical module, weakly canonical module, canonical module) of RP ⊗R

Λ for any P ∈ suppR ω. If we do not mention what R is, then it may
mean R is the center of Λ. An R-semicanonical right Λop-module (resp.
R-semicanonical left Λop-module, weakly R-semicanonical Λop-bimodule, R-
semicanonical Λop-bimodule) is nothing but an R-semicanonical left Λ-module
(resp. R-semicanonical right Λ-module, weakly R-semicanonical Λ-bimodule,
R-semicanonical Λ-bimodule).
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(6.2) Let C ∈ modΛ (resp. Λmod, (Λ ⊗R Λop)mod, (Λ ⊗R Λop)mod). We
say that C is an n-canonical right Λ-module (resp. n-canonical left Λ-module,
weakly n-canonical Λ-bimodule, n-canonical Λ-bimodule) over R if C ∈ (S ′

n)
R,

and for each P ∈ R⟨<n⟩, we have that CP is an RP -semicanonical right ΛP -
module (resp. RP -semicanonical left ΛP -module, weakly RP -semicanonical
ΛP -bimodule, RP -semicanonical ΛP -bimodule). If we do not mention what
R is, it may mean R is the center of Λ.

Example 6.3. 0 The zero module 0 is an R-semicanonical Λ-bimodule.

1 If R has a dualizing complex I, then the lowest non-vanishing cohomol-
ogy group K := Ext−s

R (Λ, I) is an R-semicanonical Λ-bimodule.

2 By Lemma 5.10, any left or right R-semicanonical module K of Λ sat-
isfies the (SΛ

2 )
R-condition. Thus a (right) semicanonical module is 2-

canonical over R/ annR Λ.

3 If K is (right) semicanonical (resp. n-canonical) and L is a projective
R-module such that LP is rank at most one, then K⊗RL is again (right)
semicanonical (resp. n-canonical).

4 If R is a normal domain and C its rank-one reflexive module of R, then
C is a 2-canonical R-module (here Λ = R).

5 The R-module R is n-canonical if and only if for P ∈ R[<n], RP is
Gorenstein. This is equivalent to say that R satisfies (Tn−1) + (Sn).

(6.4) As in section 4, let C ∈ modΛ, and set Γ = EndΛop C, (?)† =
HomΛop(?, C), and (?)‡ = HomΓ(?, C). Moreover, we set Λ1 := (EndΓC)

op.
The R-algebra map Ψ1 : Λ→ Λ1 is induced by the right action of Λ on C.

Lemma 6.5. Let C ∈ modΛ be a 1-canonical Λop-module over R. Let M ∈
modΛ. Then the following are equivalent.

1 M ∈ TF(1, C).

2 M ∈ UP(1, C).

3 M ∈ Syz(1, C).

4 M ∈ (S ′
1)

R
C.
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Proof. 1⇔2 is Lemma 4.7. 2⇒3 is trivial. 3⇒4 follows from Lemma 4.10
immediately.

We prove 4⇒1. We want to prove that λM : M → M †‡ is injective. By
Example 2.13, localizing at each P ∈ R⟨0⟩, we may assume that (R,m) is
zero-dimensional local. We may assume that M is nonzero. By assumption,
C is nonzero, and hence C = KΛ by assumption. As R is zero-dimensional,
Λ is GCM, and hence Λ → Γ = EndΛop KΛ is an isomorphism by (5.18). As
Λ is GCM and M is GMCM, (8) is an isomorphism. As Λ = Γ, the result
follows.

Lemma 6.6. Let C be a 1-canonical right Λ-module over R, and N ∈ Γmod.
Then N ‡ ∈ TFΛop(2, C). Similarly, for M ∈ modΛ, we have that M † ∈
TFΓ(2, C).

Proof. Note that λN‡ : N ‡ → N ‡†‡ is a split monomorphism. Indeed, (µN)
‡ :

N ‡†‡ → N ‡ is the left inverse. Assume that N ‡ /∈ TF(2, C), then W :=
CokerλN‡ is nonzero. Let P ∈ AssRW . As W is a submodule of N ‡†‡,
P ∈ AssRN

‡†‡ ⊂ AssR C ⊂ MinR. So CP is the right canonical module KΛP
.

So ΓP = ΛP , and (λN‡)P is an isomorphism. This shows that WP = 0, and
this is a contradiction. The second assertion is proved similarly.

Lemma 6.7. Let (R,m) be local, and assume that KΛ exists. Let C := KΛ.
If Λ is GCM, Ψ1 : Λ→ Λ1 is an isomorphism.

Proof. As C possesses a bimodule structure, we have a canonical map Λ →
Γ = EndΛop C, which is an isomorphism as Λ is GCM by (5.18). So Λ1 is iden-
tified with ∆ = (EndΛC)

op. Then Ψ1 : Λ → (EndΛC)
op is an isomorphism

again by (5.18).

Lemma 6.8. If C satisfies the (S ′
1)

R condition, then Γ ∈ (S ′
1)

R
C and Λ1 ∈

(S ′
1)

R
C. Moreover, AssR Γ = AssR Λ1 = AssR C = MinR C.

Proof. The first assertion is by Γ = HomΛop(C,C) ∈ SyzΓ(2, C), and Λ1 =
HomΓ(C,C) = SyzΛ1

(2, C). We prove the second assertion. AssR Γ ⊂ AssR EndR C =
AssR C. AssR Λ1 ⊂ AssR EndR C = AssR C = MinR C. It remains to show
that SuppR C = SuppR Γ = SuppR Λ1. Let P ∈ SpecR. If CP = 0, then
ΓP = 0 and (Λ1)P = 0. On the other hand, if CP ̸= 0, then the identity map
CP → CP is not zero, and hence ΓP ̸= 0 and (Λ1)P ̸= 0.
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(6.9) Let C be a 1-canonical right Λ-module overR. DefineQ :=
∏

P∈MinR C RP .
If P ∈ MinR C, then CP = KΛP

. Hence ΦP : ΛP → (Λ1)P is an isomorphism
by Lemma 6.7. So 1Q ⊗Ψ1 : Q⊗R Λ→ Q⊗R Λ1 is also an isomorphism. As
AssR Λ1 = MinR C, we have that Λ1 ⊂ Q⊗R Λ1.

Lemma 6.10. Let C be a 1-canonical right Λ-module over R. If Λ is com-
mutative, then so are Λ1 and Γ.

Proof. As Λ1 ⊂ Q ⊗R Λ1 = Q ⊗R Λ and Q ⊗R Λ is commutative, Λ1 is a
commutative ring. We prove that Γ is commutative. As AssR Γ ⊂ MinR C, Γ
is a subring of Q⊗ Γ. As

Q⊗R Γ ∼=
∏

P∈MinR C

EndΛP
CP
∼=

∏
P

EndΛP
(KΛP

)

and ΛP → EndΛP
(KΛP

) is an isomorphism (as ΛP is zero-dimensional), Q⊗RΓ
is, and hence Γ is also, commutative.

Lemma 6.11. Let C be a 1-canonical right Λ-module over R. Let M and N
be left (resp. right, bi-) modules of Λ1, and assume that N ∈ (S ′

1)
Λ1,R. Let

φ : M → N be a Λ-homomorphism of left (resp. right, bi-) modules. Then φ
is a Λ1-homomorphism of left (resp. right, bi-) modules.

Proof. Let Q =
∏

P∈MinR C RP . Then we have a commutative diagram

M
φ //

iM
��

N

iN
��

Q⊗R M
1⊗φ // Q⊗R N

,

where iM(m) = 1 ⊗m and iN(n) = 1 ⊗ n. Clearly, iM and iN are Λ1-linear.
As φ is Λ-linear, 1⊗ φ is Q⊗ Λ-linear. Since Λ1 ⊂ Q⊗ Λ1 = Q⊗ Λ, 1⊗ φ is
Λ1-linear. As iN is injective, it is easy to see that φ is Λ1-linear.

Lemma 6.12. Let C be a 1-canonical right Λ-module over R. Then the re-
striction M 7→M is a full and faithful functor from (S ′

1)
Λ1,R to (S ′

1)
Λ,R
C . Simi-

larly, it gives a full and faithful functors (S ′
1)

Λop
1 ,R → (S ′

1)
Λop,R
C and (S ′

1)
Λ1⊗RΛop

1 ,R →
(S ′

1)
Λ⊗RΛop,R
C .

Proof. We only consider the case of left modules. If M ∈ Λ1mod, then it is a
homomorphic image of Λ1⊗RM . Hence suppRM ⊂ suppR Λ1 ⊂ suppR C. So
the functor is well-defined and obviously faithful. By Lemma 6.11, it is also
full, and we are done.
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(6.13) Let C be a 1-canonical Λ-bimodule over R. Then the left action
of Λ on C induces an R-algebra map Φ : Λ → Γ = EndΛop C. Let Q =∏

P∈MinR C RP . Then Γ ⊂ Q⊗R Γ = Q⊗R Λ. From this we get

Lemma 6.14. Let C be a 1-canonical Λ-bimodule over R. Let M and N
be left (resp. right, bi-) modules of Γ, and assume that N ∈ (S ′

1)
Γ,R. Let

φ : M → N be a Λ-homomorphism of left (resp. right, bi-) modules. Then φ
is a Γ-homomorphism of left (resp. right, bi-) modules.

Proof. Similar to Lemma 6.11, and left to the reader.

Corollary 6.15. Let C be as above. (?)†‡ = HomΓ(HomΛop(?, C), C) is canon-
ically isomorphic to (?)†⋆ = HomΛ(HomΛop(?, C), C), where (?)⋆ = HomΛ(?, C).

Proof. This is immediate by Lemma 6.14.

Lemma 6.16. Let C be a 1-canonical Λ-bimodule over R. Then Φ induces a
full and faithful functor (S ′

1)
Γ,R → (S ′

1)
Λ,R
C . Similarly, (S ′

1)
Γop,R → (S ′

1)
Λop,R
C

and (S ′
1)

Γ⊗RΓop,R → (S ′
1)

Λ⊗RΛop,R
C are also induced.

Proof. Similar to Lemma 6.12, and left to the reader.

Corollary 6.17. Let C be a 1-canonical Λ-bimodule. Set ∆ := (EndΛC)
op.

Then the canonical map Λ→ Γ induces an equality

Λ1 = (EndΓC)
op = (EndΛC)

op = ∆.

Similarly, we have

Λ2 := End∆op C = EndΛop C = Γ.

Proof. As C ∈ (S ′
1)

Γ,R, the first assertion follows from Lemma 6.16. The
second assertion is proved by left-right symmetry.

Lemma 6.18. Let C be a 1-canonical right Λ-module over R. Set Λ1 :=
(EndΓC)

op. Let Ψ1 : Λ→ Λ1 be the canonical map induced by the right action
of Λ on C. Then Ψ1 is injective if and only if Λ satisfies the (S ′

1)
R condition

and C is Λ-full over R.

Proof. Ψ1 : Λ → Λ1 is nothing but λΛ : Λ → Λ†‡, and the result follows from
Lemma 6.5 immediately.

Lemma 6.19. Let C be a 1-canonical Λ-bimodule over R. Then the following
are equivalent.
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1 The canonical map Ψ : Λ→ ∆ is injective, where ∆ = (EndΛC)
op, and

the map is induced by the right action of Λ on C.

2 Λ satisfies the (S ′
1)

R condition, and C is Λ-full over R.

3 The canonical map Φ : Λ→ Γ is injective, where the map is induced by
the left action of Λ on C.

Proof. By Corollary 6.17, we have that Λ1 = (EndΓC)
op = ∆. So 1⇔2 is a

consequence of Lemma 6.18.
Reversing the roles of the left and the right, we get 2⇔3 immediately.

Lemma 6.20. Let C be a 1-canonical right Λ-module over R. Then the canon-
ical map

(9) HomΛop(Λ1, C)→ HomΛop(Λ, C) ∼= C

induced by the canonical map Ψ1 : Λ → Λ1 is an isomorphism of Γ ⊗R Λop
1 -

modules.

Proof. The composite map

C ∼= HomΛ1(Λ1, C) = HomΛ(Λ1, C)→ HomΛ(Λ, C) ∼= C

is the identity. The map is a Γ ⊗R Λop-homomorphism. It is also Λop
1 -linear

by Lemma 6.12.

(6.21) When (R,m) is local and C = KΛ, then Λ1 = ∆, and the map
(9) is an isomorphism of Γ ⊗R ∆op-modules from K∆ and KΛ, where ∆ =
(EndΛKΛ)

op. Indeed, to verify this, we may assume that R is complete regular
local with annR Λ = 0, and hence C = HomR(Λ, R), and C is a 2-canonical
Λ-bimodule over R, see (6.3). So (6.17) and Lemma 6.20 apply. Hence we
have

Corollary 6.22. Let (R,m) be a local ring with a canonical module C = KΛ

of Λ. Then K∆ = HomΛop(∆, KΛ) is isomorphic to KΛ as a Γ⊗R∆
op-module,

where ∆ = (EndΛKΛ)
op.

Lemma 6.23. Let n ≥ 1. If C is an n-canonical right Λ-module over R, then

1 C is an n-canonical right Λ1-module over R.

2 C is an n-canonical left Γ-module over R.
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Proof. 1. As the (S ′
n)-condition holds, it suffices to prove that for P ∈ R⟨<n⟩,

CP
∼= (KΛ1)P as a right (Λ1)P -module. After localization, replacing R by RP ,

we may assume that R is local and C = KΛ. Then C ∼= KΛ
∼= KΛ1 as right

Λ-modules. Both C and KΛ1 are in (S ′
1)

Λop
1 ,R, and isomorphic in modΛ. So

they are isomorphic in modΛ1 by Lemma 6.12.
2. Similarly, assuming that R is local and C = KΛ, it suffices to show that

C ∼= KΓ as left Γ-modules. Identifying Γ = End∆op C = Λ2 and using the
left-right symmetry, this is the same as the proof of 1.

Lemma 6.24. Let C ∈ modΛ be a 2-canonical right Λ-module over R. Let
M ∈ modΛ. Then the following are equivalent.

1 M ∈ TF(2, C).

2 M ∈ UP(2, C).

3 M ∈ Syz(2, C).

4 M ∈ (S ′
2)

R
C.

Proof. We may assume that Λ is a faithful R-module. 1⇔2⇒3⇒4 is easy. We
show 4⇒1. By Example 2.13, localizing at each P ∈ R⟨≤1⟩, we may assume
that R is a Noetherian local ring of dimension at most one. So the formal
fibers of R are zero-dimensional, and hence M̂ ∈ (S ′

2)
R̂
Ĉ
, where ?̂ denotes the

completion. So we may further assume that R = (R,m) is complete local.
We may assume that M ̸= 0 so that C ̸= 0 and hence C = KΛ. The case
dimR = 0 is similar to the proof of Lemma 6.5, so we prove the case that
dimR = 1. Note that I = H0

m(Λ) is a two-sided ideal of Λ, and any module
in (S ′

1)
Λop,R is annihilated by I. Replacing Λ by Λ/I, we may assume that Λ

is a maximal Cohen–Macaulay R-module. Then (8) is an isomorphism. As
C = KΛ and

Λ→ EndΛop KΛ = EndΛop C = Γ

is an R-algebra isomorphism, we have that λM : M → M †‡ is identified with
the isomorphism (8), as desired.

Corollary 6.25. Let C be a 2-canonical right Λ-module over R. Then the
canonical map Φ : Λ→ Λ1 is an isomorphism if and only if Λ satisfies (S ′

2)
R

and C is full.

Proof. Follows immediately by Lemma 6.24 applied to M = Λ.
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(6.26) Let C be a 2-canonical Λ-bimodule. Let Γ = EndΛop C and ∆ =
(EndΛC)

op. Then by the left multiplication, an R-algebra map Λ → Γ is in-
duced, while by the right multiplication, an R-algebra map Λ→ ∆ is induced.
Let Q =

∏
P∈MinR C RP . Then as Γ ⊂ Q⊗R Γ = Q⊗R Λ = Q⊗R ∆ ⊃ ∆, both

Γ and ∆ are identified with Q-subalgebras of Q ⊗R Λ. As ∆ = Λ1 = Λ†‡, we
have a commutative diagram

Λ
λΛ //

ν

��

Λ†‡

ν†‡
��

= ∆

Γ
λΓ // Γ†‡

.

As Γ = Hom
Λop (C,C) = C†, Γ ∈ SyzΛ(2, C) by Lemma 4.8. By Lemma 6.24,

we have that Γ ∈ (S ′
2)C . Hence by Lemma 6.24 again, λΓ : Γ → Γ†‡ is an

isomorphism. Hence ∆ ⊂ Γ. By symmetry ∆ ⊃ Γ. So ∆ = Γ. With this
identification, Γ acts on C not only from left, but also from right. As the
actions of Γ extend those of Λ, C is a Γ-bimodule. Indeed, for a ∈ Λ, the
left multiplication λa : C → C (λa(c) = ac) is right Γ-linear. So for b ∈ Γ,
ρb : C → C (ρb(c) = cb) is left Λ-linear, and hence is left Γ-linear.

Theorem 6.27. Let C be a 2-canonical right Λ-module. Then the restriction
M 7→M gives an equivalence ρ : (S ′

2)
Λop
1 ,R → (S ′

2)
Λop,R
C .

Proof. The functor is obviously well-defined, and is full and faithful by Lemma 6.12.
On the other hand, given M ∈ (S ′

2)
Λop,R
C , we have that λM : M → M †‡ is an

isomorphism. As M †‡ has a Λop
1 -module structure which extends the Λop-

module structure of M ∼= M †‡, we have that ρ is also dense, and hence is an
equivalence.

Corollary 6.28. Let C be a 2-canonical Λ-bimodule. Then the restriction
M 7→M gives an equivalence

ρ : (S ′
2)

Γ⊗RΓop,R
C → (S ′

2)
Λ⊗RΛop,R
C .

Proof. ρ is well-defined, and is obviously faithful. If h :M → N is a morphism
of (S2)

Λ⊗RΛop,R
C between objects of (S2)

Γ⊗RΓop,R
C , then h is Γ-linear Γop-linear

by Theorem 6.27 (note that Λ1 = ∆ = Γ here). Hence ρ is full.
Let M ∈ (S2)

Λ⊗RΛop,R
C , the left (resp. right) Λ-module structure of M is

extendable to that of a left (resp. right) Γ-module structure by Theorem 6.27.
It remains to show that these structures make M a Γ-bimodule. Let a ∈ Λ.
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Then λa : M → M given by λa(m) = am is a right Λ-linear, and hence is
right Γ-linear. So for b ∈ Γ, ρb :M →M given by ρb(m) = mb is left Λ-linear,
and hence is left Γ-linear, as desired.

Proposition 6.29. Let C be a 2-canonical right Λ-module. Then (?)† :
(S ′

2)
Λop,R
C → (S ′

2)
Γ,R and (?)‡ : (S ′

2)
Γ,R → (S ′

2)
Λop,R
C give a contravariant equiv-

alence.

Proof. As we know that (?)† and (?)‡ are contravariant adjoint each other, it
suffices to show that the unit λM :M →M †‡ and the (co-)unit µN : N → N ‡†

are isomorphisms. λM is an isomorphism by Lemma 6.24. Note that C is
a 2-canonical left Γ-module by Lemma 6.23. So µN is an isomorphism by
Lemma 6.24 applied to the right Γop-module C.

Corollary 6.30. Let C be a 2-canonical Λ-bimodule. Then (?)† = HomΛop(?, C)
and HomΛ(?, C) give a contravariant equivalence between (S ′

2)
Λop,R
C and (S ′

2)
Λ,R
C .

They also give a duality of (S ′
2)

Λ⊗Λop,R
C .

Proof. The first assertion is immediate by Proposition 6.29 and Theorem 6.27.
The second assertion follows easily from the first and Corollary 6.28.

7. Non-commutative Aoyama’s theorem

Lemma 7.1. Let (R,m, k) → (R′,m′, k′) be a flat local homomorphism be-
tween Noetherian local rings.

1 Let M be a Λ-bimodule such that M ′ := R′ ⊗R M is isomorphic to
Λ′ := R′ ⊗R Λ as a Λ′-bimodule. Then M ∼= Λ as a Λ-bimodule.

2 Let M be a right Λ module such that M ′ := R′ ⊗R M is isomorphic to
Λ′ := R′ ⊗R Λ as a right Λ′-module. Then M ∼= Λ as a right Λ-module.

Proof. Taking the completion, we may assume that both R and R′ are com-
plete. Let 1 = e1 + · · · + er be the decomposition of 1 into the mutually
orthogonal primitive idempotents of the center S of Λ. Then replacing R
by Sei, Λ by Λei, and R′ by the local ring of R′ ⊗R Sei at any maximal
ideal, we may further assume that S = R. This is equivalent to say that
R→ EndΛ⊗RΛop Λ is isomorphic. So R′ → EndΛ′⊗R′ (Λ′)op Λ

′ is also isomorphic,
and hence the center of Λ′ is R′.

1. Let ψ :M ′ → Λ′ be an isomorphism. Then we can write ψ =
∑m

i=1 uiψi

with ui ∈ R′ and ψi ∈ HomΛ⊗RΛop(M,Λ). Also, we can write ψ−1
i =

∑n
j=1 vjφj
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with vj ∈ R′ and φj ∈ HomΛ⊗RΛop(Λ,M). As
∑

i,j uivjψiφj = ψψ−1 = 1 ∈
EndΛ′⊗R′ (Λ′)op Λ

′ ∼= R′ and R′ is local, there exists some i, j such that uivjψiφj

is an automorphism of Λ′. Then ψi : M
′ → Λ′ is also an isomorphism. By

faithful flatness, ψi :M → Λ is an isomorphism.
2. It is easy to see that M ∈ modΛ is projective. So replacing Λ by Λ/J ,

where J is the radical of J , and changing R and R′ as above, we may assume
that R is a field and Λ is central simple. Then there is only one simple right
Λ-module, and M and Λ are direct sums of copies of it. As M ′ ∼= Λ′, by
dimension counting, the number of copies are equal, and hence M and Λ are
isomorphic.

Lemma 7.2. Let (R,m, k) → (R′,m′, k′) be a flat local homomorphism be-
tween Noetherian local rings.

1 Let C be a 2-canonical bimodule of Λ over R. Let M be a Λ-bimodule
such that M ′ := R′ ⊗R M is isomorphic to C ′ := R′ ⊗R C as a Λ′-
bimodule. Then M ∼= C as a Λ-bimodule.

2 Let C be a 2-canonical right Λ-module over R. Let M be a right Λ-
module such that M ′ := R′ ⊗R M is isomorphic to C ′ := R′ ⊗R C as a
right Λ′-module. Then M ∼= C as a right Λ-module.

Proof. 1. As M ′ ∼= C ′ and C ∈ (S ′
2)C , it is easy to see that M ∈ (S ′

2)C .
Hence M is a Γ-bimodule, where Γ = EndΛop C = EndΛC, see (6.26) and
Corollary 6.28. Note that (M †)′ ∼= (C†)′ ∼= Γ′ as Γ′-bimodules. By Lemma 7.1,
1, we have that M † ∼= Γ as a Γ-bimodule. Hence M ∼= M †‡ ∼= Γ‡ ∼= C.

2. As (M †)′ ∼= (C†)′ ∼= Γ′ as Γ′-modules, M † ∼= Γ as Γ-modules by
Lemma 7.1, 2. Hence M ∼= M †‡ ∼= Γ‡ ∼= C.

Proposition 7.3. Let (R,m, k) → (R′,m′, k′) be a flat local homomorphism
between Noetherian local rings. Assume that R′/mR′ is zero-dimensional, and
M ′ := R′⊗RM is the right canonical module of Λ′ := R′⊗R Λ. Then R′/mR′

is Gorenstein.

Proof. We may assume that both R and R′ are complete. Replacing R by
R/ annR Λ and R′ by R′ ⊗R R/ annR Λ, we may assume that Λ is a faithful
R-module. Let d = dimR = dimR′.

Then

R′ ⊗R H
d
m(M) ∼= Hd

m′(R′ ⊗R M) ∼= Hd
m′(KΛ′) ∼= HomR′(Γ′, E ′),

35



where Λ′ = R′⊗R Λ, E ′ = ER′(R′/m′) is the injective hull of the residue field,
Γ = EndΛop M , Γ′ = R′⊗R Γ ∼= EndΛ′ KΛ′ , and the isomorphisms are those of
Γ′-modules. The last isomorphism is by (5.19). So R′ ⊗R H

d
m(M) ∈ ModΓ′ is

injective. Considering the spectral sequence

Ep,q
2 = ExtpR′⊗R(Γ⊗Rk)(W,Ext

q
Γ′(R

′ ⊗R (Γ⊗R k), R
′ ⊗R H

d
m(M)))

⇒ Extp+q
Γ′ (W,R′ ⊗R H

d
m(M))

for W ∈ Mod(R′ ⊗R (Γ⊗R k)), E
1,0
2 = E1,0

∞ ⊂ Ext1Γ′(W,R′ ⊗RH
d
m(M)) = 0 by

the injectivity of R′ ⊗R H
d
m(M). It follows that

HomΓ′(R′ ⊗R (Γ⊗R k), R
′ ⊗R H

d
m(M)) ∼= (R′/mR′)⊗k HomR(k,H

d
m(M))

is an injective (R′/mR′)⊗k (Γ⊗R k)-module. However, as an R′/mR′-module,
this is a free module. Also, this module must be an injective R′/mR′-module,
and hence R′/mR′ must be Gorenstein.

Lemma 7.4. Let (R,m, k) → (R′,m′, k′) be a flat local homomorphism be-
tween Noetherian local rings such that R′/mR′ is Gorenstein. Assume that
the canonical module KΛ of Λ exists. Then R′⊗RKΛ is the canonical module
of R′ ⊗R Λ.

Proof. We may assume that both R and R′ are complete. Let I be the nor-
malized dualizing complex of R. Then R′⊗R I[d′−d] is a normalized dualizing
complex of R′, where d′ = dimR′ and d = dimR, since R→ R′ is a flat local
homomorphism with the d′−d-dimensional Gorenstein closed fiber, see [AvF,
(5.1)] (the definition of a normalized dualizing complex in [AvF] is different
from ours. We follow the one in [Hart2, Chapter V]). So

R′ ⊗R KΛ
∼= R′ ⊗R Ext−d

R (Λ, I) ∼= Ext−d′

R (R′ ⊗R Λ, R′ ⊗R I[d′ − d]) ∼= KΛ′ .

Theorem 7.5 ((Non-commutative Aoyama’s theorem) cf. [Aoy, Theorem 4.2]).
Let (R,m) → (R′,m′) be a flat local homomorphism between Noetherian local
rings.

1 If M is a Λ-bimodule and M ′ = R′ ⊗R M is the canonical module of
Λ′ = R′ ⊗R Λ, then M is the canonical module of Λ.

2 If M is a right Λ-module such that M ′ is the right canonical module of
Λ′, then M is the right canonical module of Λ.
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Proof. We may assume that both R and R′ are complete. Then the canonical
module exists, and the localization of a canonical module is a canonical mod-
ule, and hence we may localize R′ by a minimal element of {P ∈ SpecR′ |
P ∩R = m}, and take the completion again, we may further assume that the
fiber ring R′/mR′ is zero-dimensional. Then R′/mR′ is Gorenstein by Propo-
sition 7.3. Then by Lemma 7.4, M ′ ∼= KΛ′ ∼= R′ ⊗R KΛ. By Lemma 7.2,
M ∼= KΛ. In 1, the isomorphisms are those of bimodules, while in 2, they are
of right modules. The proofs of 1 and 2 are complete.

Corollary 7.6. Let (R,m) be a Noetherian local ring, and assume that K
is the canonical (resp. right canonical) module of Λ. If P ∈ SuppRK, then
the localization KP is the canonical (resp. right canonical) module of ΛP . In
particular, K is a semicanonical bimodule (resp. right module), and hence is
2-canonical over R/ annR Λ.

Proof. Let Q be a prime ideal of R̂ lying over P . Then (K̂)Q ∼= R̂Q ⊗RP
KP

is nonzero by assumption, and hence is the canonical (resp. right canonical)
module of R̂Q ⊗R Λ. Using Theorem 7.5, KP is the canonical (resp. right
canonical) module of ΛP . The last assertion follows.

(7.7) Let (R,m) be local, and assume that KΛ exists. Assume that Λ is
a faithful R-module. Then it is a 2-canonical Λ-bimodule over R by Corol-
lary 7.6. Letting Γ = EndΛop KΛ, KΓ

∼= KΛ as Λ-bimodules by Corollary6.22.
So by Corollary 6.28, there exists some Γ-bimodule structure of KΛ such that
KΓ
∼= KΛ as Γ-bimodules. As the left Γ-module structure of KΛ which ex-

tends the original left Λ-module structure is unique, and it is the obvious
action of Γ = EndΛop KΛ. Similarly the right action of Γ is the obvious action
of Γ = ∆ = (EndΛKΛ)

op, see (6.26).

8. Evans–Griffith’s theorem for n-canonical modules

Lemma 8.1 (cf. [Aoy, Proposition 2], [Ogo, Proposition 4.2], [AoyG, Propo-
sition 1.2]). Let (R,m) be local and assume that Λ has a canonical module
C = KΛ. Then we have

1 λR : Λ → EndΛop KΛ is injective if and only if Λ satisfies the (S1)
R

condition and SuppR Λ is equidimensional.

2 λR : Λ → EndΛop KΛ is bijective if and ony if Λ satisfies the (S2)
R

condition.
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Proof. Replacing R by R/ annR Λ, we may assume that Λ is a faithful R-
module. Then KΛ is a 2-canonical Λ-bimodule over R by Corollary 7.6. KΛ

is full if and only if SuppR Λ is equidimensional by Lemma 5.10, 1.
Now 1 is a consequence of Lemma 6.19. 2 follows from Corollary 6.25 and

Lemma 5.12.

Proposition 8.2 (cf. [AoyG, (2.3)]). Let (R,m) be a local ring, and assume
that there is an R-canonical module KΛ of Λ. Assume that Λ ∈ (S2)

R, and KΛ

is a Cohen–Macaulay R-module. Then Λ is Cohen–Macaulay. If, moreover,
KΛ is maximal Cohen–Macaulay, then so is Λ.

Proof. The second assertion follows from the first. We prove the first assertion.
Replacing R by R/ annR Λ, we may assume that Λ is faithful. Let d = dimR.
So Λ satisfies (S ′

2), and KΛ is maximal Cohen–Macaulay. As KΛ is the lowest
non-vanishing cohomology of J := RHomR(Λ, I), there is a natural map σ :
KΛ[d] → J which induces an isomorphism on the −dth cohomology groups.
Then the diagram

Λ λ //

λ
��

HomΛop(KΛ[d], KΛ[d])

σ∗
��

RHomΛop(J, J) σ∗
// RHomΛop(KΛ[d], J)

is commutative. The top horizontal arrow λ is an isomorphism by Lemma 8.1.
Note that

RHomΛop(J, J) ∼= RHomR(J, I) = RHomR(RHomR(Λ, I), I) = Λ,

and the left vertical arrow is an isomorphism. As KΛ is maximal Cohen–
Macaulay, RHomΛop(KΛ[d], J) is concentrated in degree zero. As H i(J) = 0
for i < −d, we have that the right vertical arrow σ∗ is an isomorphism. Thus
the bottom horizontal arrow σ∗ is an isomorphism. Applying RHomΛ(?, J)
to this map, we have that KΛ[d] → J is an isomorphism. So Λ is Cohen–
Macaulay, as desired.

Corollary 8.3 (cf. [AoyG, (2.2)]). Let (R,m) be a local ring, and assume
that there is an R-canonical module KΛ of Λ. Then KΛ is a Cohen–Macaulay
(resp. maximal Cohen–Macaulay) R-module if and only if Γ = EndΛop KΛ is
so.
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Proof. As KΛ and Γ has the same support, if both of them are Cohen–
Macaulay and one of them are maximal Cohen–Macaulay, then the other is
also. So it suffices to prove the assertion on the Cohen–Macaulay property.
To verify this, we may assume that Λ is a faithful R-module. Note that Γ
satisfies (S ′

2). By Corollary 6.22, KΛ is Cohen–Macaulay if and only if KΓ is.
If Γ is Cohen–Macaulay, then KΓ is Cohen–Macaulay by (5.18). Conversely,
if KΓ is Cohen–Macaulay, then Γ is Cohen–Macaulay by Proposition 8.2.

Theorem 8.4 (cf. [EvG, (3.8)], [ArI, (3.1)]). Let R be a Noetherian commu-
tative ring, and Λ a module-finite R-algebra, which may not be commutative.
Let n ≥ 1, and C be a right n-canonical Λ-module. Set Γ = EndΛop C. Let
M ∈ modC. Then the following are equivalent.

1 M ∈ TF(n,C).

2 M ∈ UP(n,C).

3 M ∈ Syz(n,C).

4 M ∈ (S ′
n)C.

Proof. 1⇒2⇒3⇒4 is easy. We prove 4⇒1. By Lemma 6.5, we may assume
that n ≥ 2. By Lemma 6.24, M ∈ TF(2, C). Let

F : 0←M † ← F0 ← F1 ← · · · ← Fn−1

be a resolution of M † in Γmod with each Fi ∈ addΓ. It suffices to prove its
dual

F‡ : 0→M → F ‡
0 → F ‡

1 → · · · → F ‡
n−1

is acyclic. By Lemma 2.12, we may localize at P ∈ R⟨<n⟩, and may assume
that dimR < n. IfM = 0, then F is split exact, and so F‡ is also exact. So we
may assume that M ̸= 0. Then by assumption, C ∼= KΛ in modΛ, and C is a
maximal Cohen–Macaulay R-module. Hence Γ is Cohen–Macaulay by Corol-
lary 8.3. So by (5.16) and Lemma 6.22, RHomΓ(M

†, C) = RHomΓ(M
†, KΓ) =

M , and we are done.

Corollary 8.5. Let the assumptions and notation be as in Theorem 8.4. Let
n ≥ 0. Assume further that

1 ExtiΛop(C,C) = 0 for 1 ≤ i ≤ n;

2 C is Λ-full.
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3 Λ satisfies the (S ′
n)

R condition.

Then for 0 ≤ r ≤ n, ⊥rC is contravariantly finite in modΛ.

Proof. For any M ∈ modΛ, the nth syzygy module ΩnM satisfies the (S ′
n)

R
C-

condition by 2 and 3. By Theorem 8.4, ΩnM ∈ TFΛop(n,C). By Theo-
rem 3.16, M ∈ Zr,0, and there is a short exact sequence

0→ Y → X
g−→M → 0

with X ∈ Xr,0 =
⊥rC and Y ∈ Yr. As Ext1Λop(X, Y ) = 0, we have that g is a

right ⊥rC-approximation, and hence ⊥rC is contravariantly finite.

Corollary 8.6. Let the assumptions and notation be as in Theorem 8.4. Let
n ≥ 0, and C a Λ-full (n + 2)-canonical Λ-bimodule over R. Assume that Λ
satisfies the (S ′

n+2)
R condition. Then ⊥nC is contravariantly finite in modΛ.

Proof. By Corollary 8.5, it suffices to show that ExtiΛop(C,C) = 0 for 1 ≤ i ≤
n. Let ∆ = (EndΛC)

op. Then the canonical map Λ → ∆ is an isomorphism
by Lemma 6.25, since C is a Λ-full 2-canonical Λ-bimodule over R. As Λ ∈
(S ′

n+2)
R and C is a Λ-full (n + 2)-canonical left Λ-module over R, applying

Theorem 8.4 to Λop, we have that Exti∆op(C,C) = 0 for 1 ≤ i ≤ n. As we have
Λop → ∆op is an isomorphism, we have that ExtiΛop(C,C) = 0, as desired.

9. Symmetric and Frobenius algebras

(9.1) Let (R,m) be a Noetherian semilocal ring, and Λ a module-finite R-
algebra. We say that Λ is quasi-symmetric if Λ is the canonical module of Λ.
That is, Λ ∼= KΛ as Λ-bimodules. It is called symmetric if it is quasi-symmetric
and GCM. Note that Λ is quasi-symmetric (resp. symmetric) if and only if Λ̂
is so, where ?̂ denotes the m-adic completion. Note also that quasi-symmetric
and symmetric are absolute notion, and is independent of the choice of R in
the sense that the definition does not change when we replace R by the center
of Λ.

(9.2) For (non-semilocal) Noetherian ring R, we say that Λ is locally quasi-
symmetric (resp. locally symmetric) over R if for any P ∈ SpecR, ΛP is a
quasi-symmetric (resp. symmetric) RP -algebra. This is equivalent to say that
for any maximal ideal m of R, Λm is quasi-symmetric (resp. symmetric). In
the case that (R,m) is semilocal, Λ is locally quasi-symmetric (resp. locally
symmetric) over R if it is quasi-symmetric (resp. symmetric), but the converse
is not true in general.
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Lemma 9.3. Let (R,m) be a Noetherian semilocal ring, and Λ a module-finite
R-algebra. Then the following are equivalent.

1 ΛΛ is the right canonical module of Λ.

2 ΛΛ is the left canonical module of Λ.

Proof. We may assume that R is complete. Then replacing R by a Noether
normalization of R/ annR Λ, we may assume that R is regular and Λ is a
faithful R-module.

We prove 1⇒2. By Lemma 5.10, Λ satisfies (S ′
2)

R. As R is regular and
dimR = dimΛ, KΛ = Λ∗ = HomR(Λ, R). So we get an R-linear map

φ : Λ⊗R Λ→ R

such that φ(ab ⊗ c) = φ(a ⊗ bc) and that the induced map h : Λ → Λ∗

given by h(a)(c) = φ(a⊗ c) is an isomorphism (in modΛ). Now φ induces a
homomorphism h′ : Λ→ Λ∗ in Λmod given by h′(c)(a) = φ(a⊗ c). To verify
that this is an isomorphism, as Λ and Λ∗ are reflexive R-modules, we may
localize at P ∈ R⟨<2⟩, and then take a completion, and hence we may further
assume that dimR ≤ 1. Then Λ is a finite free R-module, and the matrices of
h and h′ are transpose each other. As the matrix of h is invertible, so is that
of h′, and h′ is an isomorphism.

2⇒1 follows from 1⇒2, considering the opposite ring.

Definition 9.4. Let (R,m) be semilocal. We say that Λ is a pseudo-Frobenius
R-algebra if the equivalent conditions of Lemma 9.3 are satisfied. If Λ is GCM
in addition, then it is called a Frobenius R-algebra. Note that these definitions
are independent of the choice of R. Moreover, Λ is pseudo-Frobenius (resp.
Frobenius) if and only if Λ̂ is so, where ?̂ is the m-adic completion. For a
general R, we say that Λ is locally pseudo-Frobenius (resp. locally Frobenius)
over R if ΛP is pseudo-Frobenius (resp. Frobenius) for P ∈ SpecR.

Lemma 9.5. Let (R,m) be semilocal. Then the following are equivalent.

1 (KΛ̂)Λ̂ is projective in mod Λ̂.

2 Λ̂(KΛ̂) is projective in Λ̂mod,

where ?̂ denotes the m-adic completion.
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Proof. We may assume that (R,m, k) is complete regular local and Λ is a
faithful R-module. Let ?̄ denote the functor k⊗R?. Then Λ̄ is a finite di-
mensional k-algebra. So mod Λ̄ and Λ̄mod have the same number of simple
modules, say n. An indecomposable projective module in modΛ is nothing
but the projective cover of a simple module in mod Λ̄. So modΛ and Λmod
have n indecomposable projectives. Now HomR(?, R) is an equivalence be-
tween add(KΛ)Λ and add ΛΛ. It is also an equivalence between add Λ(KΛ) and
addΛΛ. So both add(KΛ)Λ and add Λ(KΛ) also have n indecomposables. So 1
is equivalent to add(KΛ)Λ = addΛΛ. 2 is equivalent to add Λ(KΛ) = add ΛΛ.
So 1⇔2 is proved simply applying the duality HomR(?, R).

(9.6) Let (R,m) be semilocal. If the equivalent conditions in Lemma 9.5
are satisfied, then we say that Λ is pseudo-quasi-Frobenius. If it is GCM
in addition, then we say that it is quasi-Frobenius. These definitions are
independent of the choice of R. Note that Λ is pseudo-quasi-Frobenius (resp.
quasi-Frobenius) if and only if Λ̂ is so.

Proposition 9.7. Let (R,m) be semilocal. Then the following are equivalent.

1 Λ is quasi-Frobenius.

2 Λ is GCM, and dimΛ = idim ΛΛ, where idim denotes the injective di-
mension.

3 Λ is GCM, and dimΛ = idimΛΛ.

Proof. 1⇒2. By definition, Λ is GCM. To prove that dimΛ = idim ΛΛ, we
may assume that R is local. Then by [GN, (3.5)], we may assume that R
is complete. Replacing R by the Noetherian normalization of R/ annR Λ, we
may assume that R is a complete regular local ring of dimension d, and Λ
its maximal Cohen–Macaulay module. As add ΛΛ = add Λ(KΛ) by the proof
of Lemma 9.5, it suffices to prove idim Λ(KΛ) = d. Let IR be the minimal
injective resolution of the R-module R. Then J = HomR(Λ, IR) is an injective
resolution of KΛ = HomR(Λ, R). As the length of J is d and

ExtdΛ(Λ/mΛ, KΛ) ∼= ExtdR(Λ/mΛ, R) ̸= 0,

we have that idim Λ(KΛ) = d.
2⇒1. We may assume that R is complete regular local and Λ is maximal

Cohen–Macaulay. By [GN, (3.6)], we may further assume that R is a field.
Then ΛΛ is injective. So (KΛ)Λ = HomR(Λ, R) is projective, and Λ is quasi-
Frobenius, see [SkY, (IV.3.7)].

1⇔3 is proved similarly.
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Corollary 9.8. Let R be arbitrary. Then the following are equivalent.

1 For any P ∈ SpecR, ΛP is quasi-Frobenius.

2 For any maximal ideal m of R, Λm is quasi-Frobenius.

3 Λ is a Gorenstein R-algebra in the sense that Λ is a Cohen–Macaulay
R-module, and idimΛP ΛP

ΛP = dimΛP for any P ∈ SpecR.

Proof. 1⇒2 is trivial.
2⇒3. By Proposition 9.7, we have idim ΛmΛm = dimΛm for each m. Then

by [GN, (4.7)], Λ is a Gorenstein R-algebra.
3⇒1 follows from Proposition 9.7.

(9.9) Let R be arbitrary. We say that Λ is a quasi-Gorenstein R-algebra if
ΛP is pseudo-quasi-Frobenius for each P ∈ SpecR.

Definition 9.10 (Scheja–Storch [SS]). Let R be general. We say that Λ is
symmetric (resp. Frobenius) relative to R if Λ is R-projective, and Λ∗ :=
HomR(Λ, R) is isomorphic to Λ as a Λ-bimodule (resp. as a right Λ-module).
It is called quasi-Frobenius relative to R if the right Λ-module Λ∗ is projective.

Lemma 9.11. Let (R,m) be local.

1 If dimΛ = dimR, R is quasi-Gorenstein, and Λ∗ ∼= Λ as Λ-bimodules
(resp. Λ∗ ∼= Λ as right Λ-modules, Λ∗ is projective as a right Λ-module),
then Λ is quasi-symmetric (resp. pseudo-Frobenius, pseudo-quasi-Frobenius).

2 If R is Gorenstein and Λ is symmetric (resp. Frobenius, quasi-Frobenius)
relative to R, then Λ is symmetric (resp. Frobenius, quasi-Frobenius).

3 If Λ is nonzero and R-projective, then Λ is quasi-symmetric (resp. pseudo-
Frobenius, pseudo-quasi-Frobenius) if and only if R is quasi-Gorenstein
and Λ is symmetric (resp. Frobenius, quasi-Frobenius) relative to R.

4 If Λ is nonzero and R-projective, then Λ is symmetric (resp. Frobenius,
quasi-Frobenius) if and only if R is Gorenstein and Λ is symmetric (resp.
Frobenius, quasi-Frobenius) relative to R.

Proof. We can take the completion, and we may assume that R is complete
local.
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1. Let d = dimΛ = dimR, and let I be the normalized dualizing complex
of R. Then

KΛ = Ext−d
R (Λ, I) ∼= HomR(Λ, H

−d(I)) ∼= Hom(Λ, KR) ∼= Hom(Λ, R) = Λ∗

as Λ-bimodules, and the result follows.
2. We may assume that Λ is nonzero. As R is Cohen–Macaulay and Λ is

a finite projective R-module, Λ is a maximal Cohen–Macaulay R-module. By
1, the result follows.

3. The ‘if’ part follows from 1. We prove the ‘only if’ part. As Λ
is R-projective and nonzero, dimΛ = dimR. As Λ is R-finite free, KΛ

∼=
HomR(Λ, KR) ∼= Λ∗ ⊗R KR. As KΛ is R-free and Λ∗ ⊗R KR is nonzero and is
isomorphic to a direct sum of copies of KR, we have that KR is R-projective,
and hence R is quasi-Gorenstein, and KR

∼= R. Hence KΛ
∼= Λ∗, and the

result follows.
4 follows from 3 easily.

(9.12) Let (R,m) be semilocal. Let a finite group G act on Λ by R-algebra
automorphisms. Let Ω = Λ ∗ G, the twisted group algebra. That is, Ω =
Λ ⊗R RG =

⊕
g∈G Λg as an R-module, and the product of Ω is given by

(ag)(a′g′) = (a(ga′))(gg′) for a, a′ ∈ Λ and g, g′ ∈ G. This makes Ω a module-
finite R-algebra.

(9.13) We simply call an RG-module a G-module. We say that M is a
(G,Λ)-module ifM is a G-module, Λ-module, the R-module structures coming
from that of the G-module structure and the Λ-module structure agree, and
g(am) = (ga)(gm) for g ∈ G, a ∈ Λ, and m ∈ M . A (G,Λ)-module and an
Ω-module are one and the same thing.

(9.14) By the action (a⊗a′)g)a1 = a(ga1)a
′, we have that Λ is a (Λ⊗Λop)∗G-

module in a natural way. So it is an Ω-module by the action (ag)a1 = a(ga1).
It is also a right Ω-module by the action a1(ag) = g−1(a1a). If the action of
G on Λ is trivial, then these actions make an Ω-bimodule.

(9.15) Given an Ω-module M and an RG-module V , M ⊗R V is an Ω-
module by (ag)(m ⊗ v) = (ag)m ⊗ gv. HomR(M,V ) is a right Ω-module by
(φ(ag))(m) = g−1φ(a(gm)). It is easy to see that the standard isomorphism

HomR(M ⊗R V,W )→ HomR(M,HomR(V,W ))

is an isomorphism of right Ω-modules for a left Ω-module M and G-modules
V and W .
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(9.16) Now consider the case Λ = R. Then the pairing ϕ : RG⊗R RG→ R
given by ϕ(g ⊗ g′) = δgg′,e (Kronecker’s delta) is non-degenerate, and induces
an RG-bimodule isomorphism Ω = RG→ (RG)∗ = Ω∗. As Ω = RG is a finite
free R-module, we have that Ω = RG is symmetric relative to R.

Lemma 9.17. If Λ is quasi-symmetric (resp. symmetric) and the action of G
on Λ is trivial, then Ω is quasi-symmetric (resp. symmetric).

Proof. Taking the completion, we may assume that R is complete. Then
replacing R by a Noether normalization of R/ annR Λ, we may assume that R
is a regular local ring, and Λ is a faithful R-module. As the action of G on Λ
is trivial, Ω = Λ⊗R RG is quasi-symmetric (resp. symmetric), as can be seen
easily.

(9.18) In particular, if Λ is commutative quasi-Gorenstein (resp. Gorenstein)
and the action of G on Λ is trivial, then Ω = ΛG is quasi-symmetric (resp.
symmetric).

(9.19) In general, ΩΩ ∼= Λ⊗R RG as Ω-modules.

Lemma 9.20. Let M and N be right Ω-modules, and let φ : M → N be a
homomorphism of right Λ-modules. Then ψ : M ⊗ RG → N ⊗ RG given by
ψ(m⊗ g) = g(φ(g−1m))⊗ g is an Ω-homomorphism. In particular,

1 If φ is a Λ-isomorphism, then ψ is an Ω-isomorphism.

2 If φ is a split monomorphism in modΛ, then ψ is a split monomorphism
in modΩ.

Proof. Straightforward.

Proposition 9.21. Let G be a finite group acting on Λ. Set Ω := Λ ∗G.

1 If the action of G on Λ is trivial and Λ is quasi-symmetric (resp. sym-
metric), then so is Ω.

2 If Λ is pseudo-Frobenius (resp. Frobenius), then so is Ω.

3 If Λ is pseudo-quasi-Frobenius (resp. quasi-Frobenius), then so is Ω.

Proof. 1 is Lemma 9.17. To prove 2 and 3, we may assume that (R,m) is
complete regular local and Λ is a faithful module.
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2.

(KΩ)Ω ∼= HomR(Λ⊗R RG,R) ∼= HomR(Λ, R)⊗ (RG)∗ ∼= KΛ ⊗RG

as right Ω-modules. It is isomorphic to ΛΩ ⊗ RG ∼= ΩΩ by Lemma 9.20, 1,
since KΛ

∼= Λ in modΛ. Hence Ω is pseudo-Frobenius. If, in addition, Λ is
Cohen–Macaulay, then Ω is also Cohen–Macaulay, and hence Ω is Frobenius.

3 is proved similarly, using Lemma 9.20, 2.

Note that the assertions for Frobenius and quasi-Frobenius properties also
follow easily from Lemma 9.11 and [SS, (3.2)].

10. Codimension-two argument

(10.1) Let X be a locally Noetherian scheme, U its open subscheme, and Λ
a coherent OX-algebra. Assume the (S ′

2) condition on Λ. Let i : U ↪→ X be
the inclusion. In what follows we use the notation for rings and modules to
schemes and coherent algebras and modules in an obvious manner.

(10.2) LetM∈ modΛ. That is,M is a coherent right Λ-module. Then by
restriction, i∗M∈ mod i∗Λ.

(10.3) For a quasi-coherent i∗Λ-module N , we have an action

i∗N ⊗OX
Λ

u⊗1−−→ i∗N ⊗OX
i∗i

∗Λ→ i∗(N ⊗OU
i∗Λ)

a−→ i∗N .

So we get a functor i∗ : Mod i∗Λ → ModΛ, where Mod i∗Λ (resp. ModΛ)
denote the category of quasi-coherent i∗Λ-modules (resp. Λ-modules).

Lemma 10.4. Let the notation be as above. Assume that U is large in X
(that is, codimX(X \ U) ≥ 2). If M ∈ (S ′

2)
Λ,, then the canonical map u :

M→ i∗i
∗M is an isomorphism.

Proof. Follows immediately from [Has, (7.31)].

Proposition 10.5. Let the notation be above, and let U be large in X. Assume
that there is a 2-canonical right Λ-module. Then we have the following.

1 If N ∈ (S ′
2)

i∗Λ,U , then i∗N ∈ (S ′
2)

Λ,X .

2 i∗ : (S ′
2)

Λ,X → (S ′
2)

i∗Λ,U and i∗ : (S ′
2)

i∗Λ,U → (S ′
2)

Λ,X are quasi-inverse
each other.
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Proof. The question is local, and we may assume that X is affine.
1. There is a coherent subsheaf Q of i∗N such that i∗Q = i∗i∗N = N by

[Hart2, Exercise II.5.15]. Let V be the Λ-submodule of i∗N generated by Q.
That is, the image of the composite

Q⊗OX
Λ→ i∗N ⊗OX

Λ→ i∗N .

Note that V is coherent, and i∗Q ⊂ i∗V ⊂ i∗i∗N = i∗Q = N .
Let C be a 2-canonical right Λ-module. Let ?† := HomΛop(?, C), Γ =

EndΛ C, and ?‡ := HomΓ(?, C). Let M be the double dual V†‡. Then M ∈
(S ′

2)
Λ,X , and hence

M∼= i∗i
∗M∼= i∗i

∗(V†‡) ∼= i∗(i
∗V)†‡ ∼= i∗(N †‡) ∼= i∗N .

So i∗N ∼=M lies in (S ′
2)

Λ,X .
2 follows from 1 and Lemma 10.4 immediately.
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