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Abstract

Let G be a flat finite-type group scheme over a scheme S, and X a
noetherian S-scheme on which G-acts. We define and study G-prime
and G-primary G-ideals on X and study their basic properties. In
particular, we prove the existence of minimal G-primary decomposi-
tion and the well-definedness of G-associated G-primes. We also prove
a generalization of Matijevic–Roberts type theorem. In particular, we
prove Matijevic–Roberts type theorem on graded rings for F -regular
and F -rational properties.

1. Introduction

In this introduction, let R be a noetherian base ring, G a flat group scheme
of finite type over R, and consider a noetherian R-algebra A with a G-action,
for simplicity.

2010 Mathematics Subject Classification. Primary 14L30.
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Let H be a finitely generated abelian group, R = Z, and W = RH the
group algebra. Letting each h ∈ H group-like, W is a finitely generated flat
commutative Hopf algebra over R, and hence G = SpecW is an affine flat
R-group scheme of finite type. It is well-known that a G-algebra is nothing
but an H-graded ring, and for a G-algebra A, a (G,A)-module is nothing
but a graded A-module. This is the most typical and important case, and
actually many of our ideas and results in this paper for general G already
appeared in [6], [7], [17], [25], and [23] as those for H-graded rings. Note
that in [17] and [25], non-finitely generated H is treated (until section 5, our
G need not be of finite type, and so the case that H is not finitely generated
is also treated in our discussion).

Let p be a prime ideal of a Zn-graded ring A. Then p∗, the largest
homogeneous ideal contained in p, is again a prime ideal. An associated prime
of a homogeneous ideal of a noetherian Zn-graded ring is again homogeneous.
These well-known facts on graded rings can be generalized to results on
actions of smooth groups with connected fibers, see Corollary 6.25.

However, this is not true any more for more general group scheme actions.
For example, these results fail to be true for torsion-graded rings. But even
for general G-algebra for a group scheme G, the ideal of the form p∗ is very
special among other G-ideals, where p∗ is defined to be the largest G-ideal
contained in p. In general, we define that a G-ideal P is G-prime if P = p∗

for some prime ideal p of A. It is not difficult to show that a G-ideal P of
A is G-prime if and only if the following holds: P 6= A, and if I and J are
G-ideals and IJ ⊂ P , then either I ⊂ P or J ⊂ P , see Lemma 5.3. Thus
our definition is a straightforward generalization of Kamoi’s definition of an
H-prime [17, Definition 1.2].

A G-primary G-ideal is defined similarly, and our definition is a natural
generalization of that of [25] and [23]. The purpose of this paper is to define
G-prime and G-primary G-ideal and study basic properties of these G-ideals.
G-radicals of G-ideals are also defined and studied. We also define and study
basic properties of G-radical and G-maximal G-ideals.

One of the most important motivation of our study is a generalization of
so called Matijevic–Roberts type theorem. This type of theorem asserts that
if A is a noetherian ring with a G-action, P a prime ideal of A, and if AP ∗
enjoys the property P, then AP has the same property P, where P is either
‘Cohen–Macaulay,’ ‘Gorenstein,’ ‘complete intersection,’ or ‘regular.’ The
theorem was originally conjectured by Nagata [21] for Z-graded rings and
Cohen–Macaulay property. The theorem for Zn-graded rings was proved by
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Hochster–Ratliff [16], Matijevic–Roberts [20], Aoyama–Goto [1], Matijevic
[19], Goto–Watanabe [7], Cavaliere–Niesi [4], and Avramov–Achilles [3]. The
theorem was then generalized to the action of affine smooth G with connected
fibers [11, Theorem II.2.4.2]. The affine assumption was recently removed by
M. Ohtani and the first author (unpublished). Note that AP ∗ makes sense
in these cases because P ∗ is a prime ideal. On the other hand, Kamoi [17,
Theorem 2.13] proved the theorem for graded rings, graded by general H,
for Cohen–Macaulay and Gorenstein properties. As P ∗ is not a prime any
more, he modified the statement of the theorem.

Although we need to assume that either G is smooth or R = k is a
perfect field for the property ‘regular,’ we prove this theorem for general G,
see Corollary 7.7. Assuming that A is locally excellent and also assuming
that G is smooth or R = k is a perfect field, we also prove the theorem
for F -regularity and F -rationality. It seems that this assertion has not been
known even as a theorem on Zn-graded rings. Note that P ∗ is not a prime
ideal in the general settings, and as in Kamoi’s work, we need to modify the
statement. That is, we replace the condition ‘AP ∗ enjoys P’ by ‘for some
minimal prime p of P ∗, Ap enjoys P.’ We can prove that “for some minimal
prime” is equivalent to “for any minimal prime,” see Corollary 7.8.

We also discuss G-primary decomposition. It is an analogue of primary
decomposition. Our main results are the existence and the uniqueness of the
G-primary decomposition. The case for H-graded rings is treated in [25] and
[23]. We also prove that a G-primary G-ideal does not have an embedded
prime (see Corollary 6.2). There is a deep connection between primary de-
compositions of a G-ideal I and those of ‘G-primary components’ of I, see
Theorem 6.10. For related results on graded rings, see [17, Proposition 2.2]
and [23, Corollary 4.2].

When we consider a group action, considering only affine schemes is some-
times too restrictive, even if a goal is a theorem on rings. We treat a group
scheme action on a noetherian scheme X.

We also prove some scheme theoretic properties on G-schemes such that
0 is G-primary. If X is a noetherian G-scheme such that 0 is G-primary,
then the dimension of the fiber of the second projection p2 : G×X → X is
constant (Proposition 6.27). If, moreover, X is of finite type over a field or Z
(more generally, X is Ratliff, see (6.28)), then X is equidimensional (Propo-
sition 6.35). We say that a ring B is Ratliff if B is noetherian, universally
catenary, Hilbert, and B/P satisfies the first chain condition for any minimal
prime P of B. A field and Z are Ratliff. A finite-type algebra over a Ratliff
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ring is Ratliff (Lemma 6.33). We say that a scheme Y is Ratliff if Y has a
finite open covering consisting of prime spectra of Ratliff rings.

Section 2 is preliminaries. We review basics on scheme theoretic image,
Fitting ideals, and (G,OX)-modules. In section 3, we study primary decom-
positions of ideal sheaves over a noetherian scheme. In section 4, we define
and study G-prime and G-radical G-ideals. We also study some basic prop-
erties of n∗ (the largest quasi-coherent (G,OX)-module contained in n) used
later. In section 5, assuming that the G-scheme X is noetherian, we define
and study G-primary G-ideals on X and G-primary decomposition. We prove
that G-associated G-prime is well-defined. In section 6, assuming that G is
of finite type (more generally, the second projection p2 : G × X → X is of
finite type), we study further properties of G-prime and G-primary G-ideals.
In section 7, we prove a generalization of Matijevic–Roberts type theorem as
explained above.

After the former version of this paper was posted on the arXiv, we got
aware of the important paper of Perling and Trautmann [24]. Although they
treat only linear algebraic (smooth) groups over an algebraically closed field,
there are some overlaps with [24] and ours. In particular, [24, Theorem 4.11]
for X of finite type follows from our Lemma 5.11, Corollary 6.24, and Corol-
lary 6.25. Note that disconnected G is also treated in [24]. Our paper is
basically written independently of [24], but we added a paragraph (6.41)
which shows how [24, Theorem 4.18] (for the case that X is quasi-compact)
is proved from our approach. The largest difference of our paper from [24] is
that we define and studied G-primary (G,OX)-module for a general group
scheme.

2. Preliminaries

(2.1) A scheme is not required to be separated in general.
Let Y be a scheme and I a quasi-coherent ideal of OY . Then we denote

the closed subscheme defined by I by V (I). For an ideal J of OY , the sum
of all quasi-coherent ideals of OY contained in J is denoted by J ?. Note
that J ? is the largest quasi-coherent ideal contained in J .

Let ϕ : Y → Z be a morphism of schemes. Then V (Ker(OZ → ϕ∗OY )?)
is denoted by SImϕ, and called the scheme theoretic image (or the closed
image) of ϕ [8, (9.5.3)]. Let ψ : Y → SImϕ be the induced map. If W is a
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separated scheme, then

ψ∗ : HomSch(SImϕ,W )→ HomSch(Y,W )

is injective, where Sch denotes the category of schemes [8, (9.5.6)].

(2.2) By definition, SImϕ is the smallest closed subscheme of Z through
which ϕ factors. So it is easy to see that if Y is reduced, then the closure of the
image ϕ(Y ) of Y by ϕ with the reduced structure is SImϕ [10, Exercise II.3.11
(d)]. In particular, SImϕ is reduced if Y is reduced.

(2.3) Let Y be a scheme, and Z a subscheme of Y . The scheme theoretic
image SIm ι is called the closure of Z in Y , and is denoted by Z̄, where
ι : Z ↪→ Y is the inclusion.

(2.4) Let ϕ : Y → Z be a faithfully flat morphism. Then for an OZ-module
M, the unit of adjunction u : ϕ∗M→ ϕ∗ϕ∗ϕ∗M is a split mono. Since ϕ∗

is faithful exact, u :M→ ϕ∗ϕ∗M is also monic. In particular, OZ → ϕ∗OY
is a mono, and hence SImϕ = Z.

(2.5) Let

Y
ϕ−→ Z

ψ−→W

be a sequence of morphisms of schemes. Let ι : SImϕ→ Z be the inclusion.
Then SIm(ψϕ) = SIm(ψι) [8, (9.5.5)].

In particular, if ϕ : Y → Z is a flat finite-type morphism between noethe-
rian schemes, then SImϕ = Imϕ.

(2.6) If ϕ : Y → Z is a quasi-compact morphism, then Ker(OZ → ϕ∗OY )
is quasi-coherent, and hence SIm(ϕ) = V (Ker(OZ → ϕ∗OY )). If this is the
case, SIm(ϕ) agrees with the closure of the image ϕ(Y ) of ϕ, set-theoretically.

To verify this, we may assume that Z = SpecA is affine, and hence
Y is quasi-compact. There is a finite affine open covering (Ui) of Y . Let
U :=

∐
i Ui → Y be the canonical map. Replacing Y by U , we may assume

that Y = SpecB is also affine. Then ϕ∗OY is quasi-coherent, and hence
Ker(OZ → ϕ∗OY ) is also quasi-coherent. It remains to show that if A ↪→ B
is an inclusion of a subring, then the associated map ϕ : SpecB → SpecA
is dominating. Note that for P ∈ SpecA, there exists some minimal prime
Q ∈ SpecA such that Q ⊂ P (this follows from Zorn’s lemma). As κ(Q) =
AQ → BQ = κ(Q) ⊗A B is injective, Spec(κ(Q) ⊗A B) is non-empty. This
shows Q ∈ ϕ(SpecB), and we are done.
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Note that in general, if ϕ is quasi-compact quasi-separated, then ϕ∗OY
is quasi-coherent [8, (9.2.1)].

If ϕ is not quasi-compact, then SIm(ϕ) need not agree with the closure
of ϕ(Y ). For example, let Z = SpecR, where R is a DVR with a uni-
formizing parameter t. Let Y =

∐
i≥1 SpecR/(ti), and ϕ : Y → Z be the

canonical map. Then the closure of the image of ϕ is the closed point of Z
set-theoretically, but SIm(ϕ) is the whole Z.

(2.7) (cf. [8, (9.5.8)]) Let

Y ′
ϕ′ //

g

��

Z ′

f

��
Y

ϕ // Z

be a cartesian square of schemes. Assume that ϕ is quasi-compact quasi-
separated, and f is flat. Then SImϕ′ = f−1(SImϕ). Indeed, if

0→ I → OZ → ϕ∗OY
is exact, then applying the exact functor f ∗ to it,

0→ f ∗I → OZ′ → (ϕ′)∗OY ′
is exact.

(2.8) Let Y be a scheme. For a closed subscheme W of Y , we denote
the defining ideal sheaf of W by I(W ). For a morphism f : Y → Z of
schemes and an ideal sheaf I of OY , the ideal sheaf (η−1(f∗I))? is denoted
by I ∩ OZ , where η : OZ → f∗OY is the canonical map. In other words,
SIm(V (I) ↪→ Y → Z) = V (I ∩ OZ).

If Y
ϕ−→ Z

ψ−→W is a sequence of morphisms and I is an ideal of OY , then
(I ∩ OZ) ∩ OW = I ∩OW by (2.5).

For a morphism f : Y → Z and an ideal J of OZ , the image of f ∗J →
f ∗OZ → OY is denoted JOY . If J is a quasi-coherent ideal, then so is JOY ,
and V (JOY ) = f−1(V (J )). Note that J ⊂ JOY ∩OZ and I ⊃ (I∩OZ)OY .

If f : Y → Z is a quasi-compact immersion, then (I ∩ OZ)OY is I.

(2.9) Let R be a commutative ring. Let ϕ : F → E be a map of R-free
modules with E finite, and n be an integer. If n ≤ 0, we define In(ϕ) = R.
If n ≥ 1, we define In(ϕ) to be the image of ϕn :

∧nF ⊗∧nE∗ → R given by

ϕn(f1 ∧ · · · ∧ fn ⊗ ε1 ∧ · · · ∧ εn) = det(εi(ϕ(fj))).
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Let M be a finitely generated R-module. Take a presentation

(1) F
ϕ−→ Rr →M → 0

with F being R-free (not necessarily finite). For j ∈ Z, Ir−j(ϕ) is independent
of the choice of the presentation (1). We denote Ir−j(ϕ) by Fittj(M), and
call it the jth Fitting ideal of M , see [5, (20.2)].

The construction of Fitting ideals commutes with base change [5, Corol-
lary 20.5]. So for a scheme Y and a quasi-coherent OY -module M of finite
type and j ∈ Z, the quasi-coherent ideal Fittj(M) of OY is defined in an
obvious way. IfM is locally of finite presentation, then Fittj(M) is of finite
type for any j.

2.10 Lemma. Let f : Y → Z be a morphism of schemes,M a quasi-coherent
OZ-module of finite type, and j ∈ Z. Then (Fittj(M))OY = Fittj(f

∗(M)).

Proof. Follows immediately by [5, Corollary 20.5].
As in [5, Proposition 20.8], we can prove the following easily.

2.11 Lemma. Let Y be a scheme, M a quasi-coherent OY -module of finite
type, and r ≥ 0. If Fittr(M) = OY and Fittr−1(M) = 0, then M is locally
free of well-defined rank r.

(2.12) Throughout the article, S denotes a scheme, and G denotes an S-
group scheme. Throughout, X denotes a G-scheme (i.e., an S-scheme with a
left G-action). We always assume that the second projection p2 : G×S X →
X is flat.

(2.13) As in [12, section 29], let BM
G (X) be the diagram

G×G×X

1G×a //
µ×1X //
p23 //

G×X
a //
p2 // X ,

where a : G × X → X is the action, µ : G × G → G is the product,
and p2 : G × X → X and p23 : G × G × X → G × X are appropriate
projections. Note that BM

G (X) has flat arrows. To see this, it suffices to see
that a : G×X → X is flat. But since a = p2b with b an isomorphism, where
b(g, x) = (g, gx), this is trivial.

By definition, a (G,OX)-module is an OBMG (X)-module. It is said to be
equivariant, quasi-coherent or coherent, if it is so as an OBMG (X)-module, see
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[12]. The category of equivariant (resp. quasi-coherent, coherent) (G,OX)-
modules is denoted by EM(G,X) (resp. Qch(G,X), Coh(G,X)). In general,
Qch(G,X) is closed under kernels, small colimits (in particular, cokernels),
and extensions in the category of (G,OX)-modules. In particular, it is an
abelian category with the (AB5) condition ([12, Lemma 7.6]).

(2.14) Let X be as above. We say that (M,Φ) is a G-linearized OX-
module if M is an OX-module, and Φ : a∗M → p∗2M an isomorphism of
OG×X-modules such that

(µ× 1X)∗Φ : (µ× 1X)∗a∗M→ (µ× 1X)∗p∗2M

agrees with the composite map

(µ× 1X)∗a∗M d−→ (1G × a)∗a∗M Φ−→ (1G × a)∗p∗2M
d−→ p∗23a

∗M Φ−→ p∗23p
∗
2M d−→ (µ× 1X)∗p∗2M,

where d’s are canonical isomorphisms. We call Φ the G-linearization of M.
A morphism ϕ : (M,Φ)→ (N ,Ψ) of G-linearized OX-modules is an OX-

linear map ϕ :M→N such that Ψa∗ϕ = p∗2ϕΦ. We denote the category of
G-linearized OX-modules by Lin(G,X). The full subcategory of G-linearized
quasi-coherent OX-modules is denoted by LQ(G,X).

For M ∈ EM(G,X), (M0, α
−1
δ1(1)αδ0(1)) is in Lin(G,X), and this corre-

spondence gives an equivalence. With this equivalence, Qch(G,X) is equiv-
alent to LQ(G,X). See the proof of [12, Lemma 9.4].

(2.15) If X and G×X are quasi-compact quasi-separated, then Qch(G,X)
is Grothendieck. If, moreover, X is noetherian, then Qch(G,X) is locally
noetherian, and M ∈ Qch(G,X) is a noetherian object if and only if M0 is
coherent ([12, Lemma 12.8]).

(2.16) The restriction functor (?)0 : Qch(G,X) → Qch(X) is faithful ex-
act. With this reason, we sometimes let N ∈ Qch(X) meanM∈ Qch(G,X)
if N = M0. For example, OX means the quasi-coherent (G,OX)-module
OBMG (X), since (OBMG (X))0 = OX . Note thatM∈ Qch(G,X) is coherent (i.e.,

it is in Coh(G,X)) if and only if N =M0 ∈ Coh(X), and no confusion will
occur.

Let M′ be a subobject of M ∈ Qch(G,X). Then M′
0 ⊂ M0 and the

(G,OX)-module structure of M together determine the (G,OX)-submodule
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structure ofM′ uniquely. This is similar to the fact that for a ring A and an
A-module M and its A-submodule N , the subset N ⊂M and the A-module
structure of M together determine the A-submodule structure of N uniquely.
So by abuse of notation, we sometimes say that M′

0 is a quasi-coherent
(G,OX)-submodule of M0, instead of saying that M′ is a quasi-coherent
(G,OX)-submodule ofM. Applying this abuse toOX , we sometimes say that
I ⊂ OX is a quasi-coherent G-ideal of OX (i.e., a quasi-coherent (G,OX)-
submodule of OX).

(2.17) Let (M,Φ) be aG-linearizedOX-module, andN anOX-submodule.
We identify p∗2N by its image in p∗2M, since p2 is flat. Similarly, a is also flat,
and we identify a∗N by its image in a∗M. Then N is a (G,OX)-submodule
if and only if Φ(a∗N ) = p∗2N , since then Φ : a∗N → p∗2N is an isomorphism.

So for a G-equivariant OX-module M and an OX-submodule N of M0,
N is a (G,OX)-submodule if and only if the image of a∗N by the map
α : a∗M0 →M1 agrees with the image of p∗2N by the map α : p∗2M0 →M1.

2.18 Lemma. LetM be a quasi-coherent (G,OX)-module of finite type, and
j ∈ Z. Then the Fitting ideal FittjM is a G-ideal of OX .

Proof. By Lemma 2.10, the two extended ideals (FittjM)OG×X via a : G×
X → X and p2 : G×X → X agree, since the former one is Fittj(a

∗M), the
latter one is Fittj(p

∗
2M), and a∗M∼= p∗2M.

(2.19) The restriction (?)0 : Qch(G,X) → Qch(X) has a right adjoint, if
the second projection p2 : G×X → X is quasi-compact quasi-separated ([12,
Lemma 12.11]).

3. Primary decompositions over noetherian schemes

Let Y be a scheme. An ideal of OY means a quasi-coherent ideal sheaves,
unless otherwise specified. An OY -module means a quasi-coherent module,
unless otherwise specified.

(3.1) An ideal P of OY is said to be a prime if V (P) is integral. An ideal
P of OY is said to be a quasi-prime if P 6= OY , and if I and J are ideals of
OY such that IJ ⊂ P, then I ⊂ P or J ⊂ P holds.

3.2 Lemma. Let P be an ideal of OY . If P is a prime, then P is quasi-
prime. If Y is quasi-compact quasi-separated and P is quasi-prime, then P
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is a prime.

Proof. Replacing Y by V (P), P by 0, I by IOV (P), and J by JOV (P), we
may assume that P = 0.

We prove the first part. Since Y is integral, it is irreducible and hence is
non-empty. Thus OY 6= 0 = P .

Let η be the generic point of Y . Since IJ = 0, IηJη = 0. Since OY,η is
an integral domain, Iη = 0 or Jη = 0. If Iη = 0, then

I ⊂ Iη ∩ OY = 0 ∩ OY .

This is zero by (2.2), applied to SpecOY,η → Y . Similarly, Jη = 0 implies
J = 0.

We prove the second part. Since Y is quasi-compact, it has a finite affine
open covering (Ui)

n
i=1. We may assume that U1, . . . , Us are reduced, and Ui

is not reduced for i > s. Let Ii = 0Ui ∩OY be the pull-back of zero for i ≤ s.
For i > s, there is a non-zero ideal Ji of OUi such that J 2

i = 0, since Ui is
affine and non-reduced. Set Ii = (Ji ∩ OY )2.

Since the inclusion Ui ↪→ Y is quasi-compact, Ii|Ui = 0. Thus I1 · · · In =
0. By assumption, there exists some i such that Ii = 0. If i > s, then
Ji ∩ OY = 0 by assumption again. So Ji = (Ji ∩ OY )|Ui = 0, and this is
a contradiction. So i ≤ s. Thus Y is the scheme theoretic image of the
inclusion Ui ↪→ Y . By (2.2), Y is reduced.

Since OY 6= 0, Y is non-empty. Assume that Y is not irreducible. Then
Y = Y1 ∪ Y2 for some closed subsets Yi 6= Y . Let us consider the reduced
structure of Yi, and set Ki = I(Yi). Then K1 ∩ K2 = 0. By assumption,
K1 = 0 or K2 = 0. This contradicts Yi 6= Y . So Y must be irreducible, and
Y is integral.

(3.3) An idealM of OY is said to be maximal, ifM is a maximal element
of the set of proper (i.e., not equal to OY ) ideals of OY . The defining ideal of
a closed point (with the reduced structure) is maximal. Since a non-empty
quasi-compact T0-space has a closed point, if Y is non-empty and quasi-
compact, then OY has a maximal ideal. It is easy to see that a maximal
ideal is a prime ideal.

3.4 Lemma. If f : Y → Z is a morphism and P is a prime ideal of OY ,
then P ∩ OZ is a prime ideal.
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Proof. This is nothing but the restatement of the fact that the scheme the-
oretic image of the composite

V (P) ↪→ Y
f−→ Z

is integral, see (2.2).

(3.5) Let I be an ideal of OY . For an affine open subset U of Y , we define
Γ(U,

√I) :=
√

Γ(U, I). This defines a quasi-coherent ideal
√I of OY . We

call
√I the radical of I. The formation of

√I is local (that is, for any open
subset U of Y ,

√I|U =
√
I|U), and V (I) is reduced if and only if I =

√I.

Hence P =
√P for a prime ideal P of OY . Note also that

√I = OX if and
only if I = OX , since the formation of

√I is local.

3.6 Lemma. For an ideal I of OY ,

√
I = (

⋂
P)?,

where the intersection is taken over all prime ideals P containing I.

Proof. Note that the assertion is well-known for affine schemes. Set the right
hand side to be J . Since I ⊂ P , we have

√I ⊂ √P = P . So
√I ⊂ J is

obvious.
To prove

√I ⊃ J , it suffices to prove that
√I|U ⊃ J |U for any affine open

subset U of Y . LetQ be a prime ideal ofOU such thatQ ⊃ I|U . ThenQ∩OY
is a prime by Lemma 3.4, and Q∩OY ⊃ I|U ∩OY ⊃ I. Hence Q∩OY ⊃ J .
Thus Q ⊃ (Q∩OY )|U ⊃ J |U . Hence J |U ⊂

⋂Q =
√
I|U =

√I|U .

(3.7) An ideal I of OY is said to be a radical ideal if
√I = I.

3.8 Lemma. Let (Iλ)λ∈Λ be a family of radical ideals of OY . Then (
⋂
λ Iλ)?

is a radical ideal.

Proof. Let Yλ := V (Iλ), and Y ′ :=
∐

λ Yλ. Note that Y ′ is reduced. So the
scheme theoretic image of the canonical map ϕ : Y ′ → Y is also reduced by
(2.2). On the other hand, the defining ideal of SIm(ϕ) is (

⋂
λ Iλ)?, and we

are done.
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(3.9) From now, until the end of this section, let Y be noetherian. For an
OY -module M, the subset

{y ∈ Y | HomOY,y(κ(y),My) 6= 0}
of Y is denoted by Ass(M). A point y in Ass(M) is called an associated
point of M. The closed subscheme V ({y}) with y ∈ Ass(M) is called an
associated component. The defining ideal of an associated component is
called an associated prime.

3.10 Lemma. LetM be a coherent OY -module, and N its submodule. Then
the following are equivalent.

(i) Ass(M/N ) = {y} is a singleton.

(ii) M 6= N , and if L is a submodule of M, I an ideal of OY , IL ⊂ N ,
and L 6⊂ N , then I ⊂ √N :M.

If this is the case,
√N :M is a prime, and y is the generic point of V (

√N :M).

Proof. Replacing M by M/N , we may assume that N = 0. Moreover,
replacing Y by V (annM), we may assume that annM = 0.

(i)⇒(ii). Since AssM is non-empty, M 6= 0.
Note that for any non-empty affine open set U of Y , AssM|U = {y}∩U 6=

∅. So y must be the generic point of Y . In particular, Y is irreducible. The
last assertion is now obvious.

Let IL = 0 and L 6= 0. Then there is a non-empty affine open subset U
of Y such that L|U 6= 0. Since I|UL|U = 0, Ass(M) = {y}, I|nU = 0 for some
n ≥ 1 by the usual commutative ring theory. Assume that In 6= 0, and take
x ∈ Supp In. Let V be an affine open neighborhood of x. Then In|V 6= 0,
and Supp In|V ⊂ V \ U . Set K := ann(In|V ). Then V (K) = Supp(In|V ) ⊂
V \ U ( V . So K 6⊂ √0. Since KIn|V = 0 and the ideal 0 of Γ(OV , V ) is a
primary ideal, In|V = 0, and this is a contradiction. Hence In = 0.

(ii)⇒(i). Since M 6= 0, Y 6= ∅. First, we prove that
√

0 is a prime.
Since Y 6= ∅, we have that

√
0 6= OY . Let I and J be ideals of OY , and

assume that IJ ⊂ √0 and J 6⊂ √0. Then there exists some n ≥ 1 such
that InJ n = 0. Since J n 6= 0 and annM = 0, J nM 6= 0. By assumption,
In ⊂ √0. So I ⊂ √0. So

√
0 is a prime, and Y is irreducible. Let y denote

the generic point of Y .
Next, let U be a non-empty affine open subscheme of Y . Let I be an ideal

of OU , and L be a nonzero submodule of M|U such that IL = 0. Let L′ be
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the kernel of M→ i∗i∗M→ i∗i∗(M/L), where i : U ↪→ Y is the inclusion.
Note that L′ 6= 0, since L′|U = L. Note also that Supp((I ∩OY )L′) ⊂ Y \U .
Set K := ann((I ∩ OY )L′). Then K 6⊂ √0. Since K(I ∩ OY )L′ = 0, we have
(I ∩ OY )L′ = 0 by assumption. Since L′ 6= 0, there exists some n ≥ 1 such
that (I ∩ OY )n = 0. Hence

In = ((I ∩ OY )|U)n = ((I ∩ OY )n)|U = 0.

As U is affine, this shows that Γ(U,M) is
√

0-primary, and hence Ass(M|U) =
{y}. Since U is arbitrary, it is easy to see that AssM = {y}.
(3.11) Let M be a coherent OY -module and N its submodule. If the
equivalent conditions of the lemma is satisfied, then we say that N is a
primary submodule of M. If M = OY , then we say that N is a primary
ideal. If 0 is a primary submodule of M, then we say that M is a primary
module. If OY is a primary module, then we say that Y is primary.

If N is a primary submodule of M, M is coherent, and Ass(M/N ) =
{y}, then we say that N is y-primary. We also say that N is

√N :M-
primary.

Note that if N is a primary submodule of M, then N :M is a primary
ideal (easy).

We consider that Y is an ordered set with respect to the order given by
y ≤ y′ if and only if y is a generalization of y′. For a coherent OY -module
M, any minimal element of SuppM is a member of Ass(M). The set of
minimal elements of SuppM is denoted by Min(M). IfM is coherent, then
Ass(M) is a finite set. IfM is quasi-coherent, then Ass(M) = ∅ if and only
if M = 0. If M is quasi-coherent, then Supp(M) ⊃ Ass(M) ⊃ Min(M).

(3.12) Coherent prime ideals of OY is in one to one correspondence with
integral closed subschemes of Y (P corresponds to V (P)). So they are also
in one to one correspondences with points in Y (V (P) corresponds to its
generic point). So for a coherent OY -module M, SuppM, AssM, and
MinM are sometimes considered as sets of prime ideals of Y . An element of
AssM\MinM is called an embedded prime of M.

(3.13) Let M be a coherent sheaf over Y , Ass(M) = {y1, . . . , yr}, and
y1, . . . , yr be distinct. Let 0 = Mi,1 ∩ · · · ∩ Mi,ri be a minimal primary
decomposition of 0 ⊂Myi . Since depthMyi = 0, by reordering if necessary,
we may assume that Mi,1 is myi-primary. We set Li = Mi,1. Note that
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H0
myi

(Myi) =
⋂
j≥2 Mi,j. Hence H0

myi
(Myi)∩Li = 0 andMyi/Li has a finite

length.
Let ϕi : SpecOyi → Y be the canonical map. Let Ni be the kernel of the

composite
M→ (ϕi)∗Myi → (ϕi)∗(Myi/Li)

so that there is a monomorphism M/Ni ↪→ (ϕi)∗(Myi/Li). It is easy to see
that Ass(M/Ni) = {yi}.

Since (Ni)yi = Li and H0
myi

(Li) = 0, we have that yi /∈ Ass(Ni). In

particular, Ass(N1 ∩ · · · ∩ Nr) = ∅.
So there is a decomposition

0 = N1 ∩ · · · ∩ Nr
such that Ass(M/Ni) = {yi}. We call such a decomposition a minimal
primary decomposition of 0.

If N is a coherent OY -submodule of M and Ass(M/N ) = {y1, . . . , yr},
(y1, . . . , yr are distinct). then there is a decomposition

(2) N =M1 ∩ · · · ∩Mr

such that Ass(M/Mi) = {yi}. We call such a decomposition a minimal
primary decomposition of N . Such a decomposition is not unique in general.
If a coherent OX-submodule W agrees with some Mi for some minimal
primary decomposition (2), we say that W is a primary component of N .
Note that a primary component Mi for yi ∈ Min(M/N ) is known to be
unique. If M = OX and N is a radical ideal, then OX/N does not have
an embedded prime, andMi is the unique prime ideal such that the generic
point of V (Mi) is yi.

3.14 Lemma. LetM be a coherent OY -module, and N a coherent submodule
of M. Let (2) be a minimal primary decomposition of N . If M/N does not
have an embedded prime, then

(3) N :M =
r⋂
i=1

Mi :M

is a minimal primary decomposition. In particular, AssM/N = AssOX/(N :
M).
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Proof. It is obvious that the equation (3) holds, and it is a primary decom-
position.

Since (2) is minimal,
√Mi :M are distinct, and there is no incidence

relation each other. The minimality of (3) follows easily.

(3.15) Let M be a coherent sheaf over Y . Note that M satisfies Serre’s
(S1)-condition (see [9, (5.7.2)]) if and only ifM has no embedded prime. So
M is primary if and only if M satisfies the (S1) and SuppM is irreducible.

3.16 Lemma. Let U be an open subset of Y , and i : U ↪→ Y be the inclusion.
Let M be a coherent sheaf over Y .

(i) Ass(i∗M) = Ass(M) ∩ U .

(ii) Ass(H0
Y \U(M)) = Ass(M) \ U , where H0

Y \U(M) is the kernel of the
canonical map M→ i∗i∗M.

(iii) The following are equivalent:

(a) Ass(M) ⊂ U ;

(b) Ass(M) = Ass(i∗M);

(c) H0
Y \U(M) = 0;

(d) M→ i∗i∗M is monic,

(iv) Assume that U ∩SuppM is dense in SuppM . IfM satisfies (S1), then
M→ i∗i∗M is monic.

Proof. (i) This is because (i∗M)x ∼=Mx for x ∈ U .
(ii) Note that H0

Y \UM is coherent. Let x ∈ Y \ U . The image of the

injective map (H0
Y \UM)x →Mx is identified with H0

Ix(Mx), where I is any
ideal such that V (I) = Y \ U set theoretically. As any map κ(x) → Mx

factors through H0
Ix(Mx), the assertion follows.

(iii) (a)⇔(b) follows from (i). (c) is equivalent to Ass(H0
Y \U(M)) = ∅.

By (ii), (a)⇔(c) follows. (c)⇔(d) is trivial.
(iv) Note that any associated point ofM in Y \U is embedded by assump-

tion. As M does not have an embedded prime by assumption, AssM⊂ U .
By (iii), M→ i∗i∗M is monic.

3.17 Corollary. Let f : Z → Y be a flat morphism of finite type. If the
image of f is dense in Y and Y satisfies (S1), then SIm f = Y .
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Proof. Replacing Z by Im f , we may assume that f is an open immersion.
The assertion follows immediately by the lemma applied to OY .

3.18 Lemma. Let f : Z → Y be a morphism of noetherian schemes. Let
M be a primary coherent OZ-module. If N is a coherent OY -submodule of
f∗M, then N is either zero or primary. In particular, if Z is primary, then
SIm f is primary.

Proof. First, note that if A → B is an injective homomorphism between
noetherian rings, M a primary finitely generated faithful B-module, and N
a finitely generated A-submodule of M , then either N = 0 or N is primary
and SuppN = SpecA, set theoretically.

Indeed, if n ∈ N \ 0, then 0 :B n ⊂
√

0B. So 0 :A n ⊂
√

0A.
To prove the lemma, replacing Z by V (annM), we may assume that

annM = 0. By Lemma 3.14, Z is primary. In particular, Z is irreducible.
Next, replacing Y by SIm f , we may assume that Y = SIm f . In particular,
Y is irreducible, and OY → f∗OZ is monic. Clearly, we may assume that
N 6= 0. Let U = SpecA be an open subset of Y such that i∗N 6= 0, where
i : U ↪→ Y is the inclusion. Let V = SpecB be a non-empty open subset of
f−1(U). By Lemma 3.16,

i∗N → i∗f∗M∼= g∗j∗M→ g∗k∗k∗j∗M = (gk)∗(jk)∗M
is monic, where j : f−1(U) → Z is the inclusion, k : V → f−1(U) is the
inclusion, and g : f−1(U) → U is the restriction of f . By the affine case
above, Ass(i∗N ) = {η}, where η is the generic point of Y .

The diagram

N

��

// i∗i∗N

��
f∗M // f∗(jk)∗(jk)∗M = i∗(gk)∗(jk)∗M

is commutative. Thus the canonical mapN → i∗i∗N is monic by Lemma 3.16
applied toM. By Lemma 3.16 applied to N , AssN = Ass(i∗N ) = {η}, and
N is primary, as desired.

4. G-prime and G-radical G-ideals

Let S be a scheme, G an S-group scheme, and X a G-scheme. We say that
X is a p-flat G-scheme if the second projection p2 : G × X → X is flat. If
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G is flat over S, then any G-scheme is p-flat. We always assume that X is
p-flat. Although we do not assume that G is S-flat, the sheaf theory as in
[12] and [13] goes well, since we assume that X is p-flat and hence BM

G (X)
has flat arrows.

In the rest of the paper, an OX-module and an ideal of OX are required
to be quasi-coherent, unless otherwise specified. A (G,OX)-module and a G-
ideal of OX are also required to be quasi-coherent unless otherwise specified.

(4.1) Let M be a (G,OX)-module. Note that the sum
∑

λMλ of quasi-
coherent (G,OX)-submodules Mλ is a quasi-coherent (G,OX)-submodule.
If N and L are quasi-coherent (G,OX)-submodules, then N ∩ L is again a
quasi-coherent (G,OX)-submodule. For a quasi-coherent G-ideal I, IN is a
quasi-coherent (G,OX)-submodule. If, moreover, I is coherent, then being
the kernel of the canonical map

(4) M→ HomOX (I,M/N ),

N : I is also a quasi-coherent (G,OX)-submodule, see [12, (7.11)] and [12,
(7.6)]. More generally,

4.2 Lemma. Let Y be a scheme,M a quasi-coherent OY -module, N a quasi-
coherent OY -submodule of M, and I a quasi-coherent ideal of OY . If I is
of finite type, then N : I, the kernel of (4), is a quasi-coherent submodule of
M. If X is a G-scheme, M a quasi-coherent (G,OX)-module, N its quasi-
coherent (G,OX)-submodule, and I a quasi-coherent G-ideal of finite type,
then N : I is a quasi-coherent (G,OX)-submodule of M.

Proof. We prove the first assertion. For an affine open subset U of Y ,
Γ(U,N : I) is the kernel of M → HomA(I,M/N), where A := Γ(U,OX),
I := Γ(U, I), M := Γ(U,M), and N := Γ(U,N ). So Γ(U,N : I) = N : I.
Since (N : I)B = N ⊗A B : IB for a flat A-algebra B, the formation of a
colon module (for of finite type I) is compatible with the localization. So
N : I is quasi-coherent.

Next, we prove the second assertion. By the reason above, formation of
a colon module (for of finite type I) is compatible with a flat base change.
So

Φ(a∗(N : I)) = Φ(a∗N : a∗I) = Φ(a∗N ) : a∗I = p∗2N : p∗2I = p∗2(N : I).

This shows that N : I is a (G,OX)-submodule of M.
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Similarly, if L is a quasi-coherent (G,OX)-submodule ofM of finite type,
then N : L is a quasi-coherent G-ideal of OX .

For an OX-submodule m, quasi-coherent or not, of M, the sum of all
quasi-coherent (G,OX)-submodules ofM contained in m is the largest quasi-
coherent (G,OX)-submodule of M contained in m. We denote this by m∗.
If a is a quasi-coherent ideal of OX and Y = V (a), then we denote V (a∗) by
Y ∗. Y ∗ is the smallest closed G-subscheme of X containing Y .

For a morphism f : Y → X, Ker(OX → f∗OY )∗ defines the smallest
closed G-subscheme Y ′ of X such that f−1(Y ′) = Y . We call Y ′ the G-scheme
theoretic image of Y by f , and denote it by GSIm(f). Clearly, GSIm(f) ⊃
SIm(f) and GSIm(f) = SIm(f)∗. Note that for a closed subscheme Y of X,
Y ∗ is the G-scheme theoretic image of the inclusion Y ↪→ X. It is easy to
verify that, for a closed subscheme Y of X, the G-scheme theoretic image of
the action G× Y → X ((g, y) 7→ gy) is Y ∗.

If f : Y → X is a quasi-compact quasi-separated G-morphism of G-
schemes, then Ker(OX → f∗OY ) is a quasi-coherent G-ideal. So GSIm(f) =
SIm(f) = V (Ker(OX → f∗OY )).

4.3 Lemma. Let f : V → X be a G-morphism of G-schemes. Let Y be a
closed subscheme of V . Then

GSIm(Y ∗ ↪→ V → X) = SIm(Y ↪→ V → X)∗.

Proof.

GSIm(Y ∗ ↪→ V → X) ⊃ GSIm(Y ↪→ V → X) = SIm(Y ↪→ V → X)∗.

We prove the opposite inclusion. f−1(SIm(Y ↪→ V → X)∗) is a G-closed
subscheme of V containing Y . So it also contains Y ∗ by the minimality of
Y ∗. By the minimality of GSIm(Y ∗ ↪→ V → X), we have GSIm(Y ∗ ↪→ V →
X) ⊂ SIm(Y ↪→ V → X)∗.

4.4 Lemma. Let (mλ)λ∈Λ be a family of OX-submodules ofM. Then (
⋂
λ m∗λ)

∗ =
(
⋂
λ mλ)

∗.

Proof. Since m∗λ ⊂ mλ for each λ, we have (
⋂
λ m∗λ)

∗ ⊂ (
⋂
λ mλ)

∗.
On the other hand, since m∗λ ⊃ (

⋂
λ mλ)

∗ for each λ, we have
⋂

m∗λ ⊃
(
⋂
λ mλ)

∗. By the maximality of (
⋂

m∗λ)
∗, we have (

⋂
m∗λ)

∗ ⊃ (
⋂
λ mλ)

∗.

4.5 Corollary. Let m and n be OX-submodules of M. Then m∗ ∩ n∗ =
(m ∩ n)∗.
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Proof. Follows immediately from the lemma, since m∗ ∩ n∗ = (m∗ ∩ n∗)∗.

4.6 Lemma. Let m be an OX-submodule of M. If M is of finite type, then
(m :M)∗ = m∗ :M.

Proof. Set I := (m : M)∗. Then IM ⊂ m and IM is a quasi-coherent
(G,OX)-submodule of M. Hence IM ⊂ m∗ by the maximality, and I ⊂
m∗ :M.

On the other hand, m∗ : M ⊂ m : M. Hence m∗ : M ⊂ I by the
maximality.

4.7 Lemma. Let m be an OX-submodule of M, and J a finite-type G-ideal
of OX . Then (m : J )∗ = m∗ : J .

Proof. Similar.

(4.8) We denote the scheme X with the trivial G action by X ′. Thus
G×X ′ is the principal G-bundle (i.e., the G-scheme with the G-action given
by g(g′, x) = (gg′, x)).

(4.9) Let us consider the diagram

G×G×G×X

1G×µ×1X//
µ×1G×X//
p234 //

G×G×X
µ×1 //
p23 // G×X

p2 // X

on the finite category ∆+
M (see for the definition, [12, (9.1)]). For M ∈

Qch(X), AM is in Qch(G,X), where A = (?)∆M
◦L[−1] is the ascent functor

[12, (12.9)]. Thus we may say that p∗2M is a quasi-coherent (G,OX)-module,
since (AM)0 = p∗2M. The G-linearization of p∗2M is the canonical isomor-
phism d : (µ× 1)∗p∗2M→ p∗23p

∗
2M.

(4.10) Let a : G×X ′ → X be the action. Then a is a G-morphism. Thus
a∗M is a quasi-coherent G-linearized OX-module for M ∈ Qch(G,X). The
G-linearization is the composite map

(µ× 1)∗a∗M d−→ (1× a)∗a∗M Φ−→ (1× a)∗p∗2M d−→ p∗23a
∗M.

Since Φ : a∗M→ p∗2M is a G-linearization, Φ : a∗M→ p∗2M is an isomor-
phism of G-linearized OX-modules. In particular, the composite map

ω :M u−→ a∗a∗M Φ−→ a∗p∗2M
is (G,OX)-linear.
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4.11 Lemma. Let M be a quasi-coherent (G,OX)-module, and n a quasi-
coherent OX-submodule of M. Assume that the second projection G×X →
X is quasi-compact quasi-separated. Then n∗ agrees with the kernel of the
composite map

M ω−→ a∗p∗2M πn−→ a∗p∗2(M/n),

where πn :M→M/n is the projection.

Proof. The diagram

M
u

��

ω //
GF

@A

id

//

a∗p∗2M

u

��

π // a∗p∗2(M/n)

u

��

a∗a∗M

Φ
66mmmmmmmmmmmmm

u

��
a∗E∗E∗a∗M Φ //

∼=

((QQQQQQQQQQQQQQQ
a∗E∗E∗p∗2M π //

∼=
��

a∗E∗E∗p∗2(M/n)

∼=
��

M π //M/n

is commutative, where e : SpecS → G is the unit element, and E = e ×
1 : X → G × X. Thus Ker(πω) ⊂ Ker(uπω) = Ker π = n. Moreover,
Ker(πω) ⊂ M is a quasi-coherent (G,OX)-submodule of M, since πω is
(G,OX)-linear.

So it suffices to show that any (G,OX)-submodule N ofM contained in
n is also contained in Ker(πω). This is trivial, since the diagram

M ω //

π

��

a∗p∗2M π //

π

��

a∗p∗2(M/n)

M/N ω // a∗p∗2M/N

π
77ooooooooooo

is commutative.

4.12 Definition. We say that X is G-integral (resp. G-reduced) if there is
an integral (resp. reduced) closed subscheme Y of X such that Y ∗ = X. A
G-ideal P of OX is said to be G-prime (resp. G-radical), if V (P) is G-integral
(resp. G-reduced).

4.13 Lemma. Let f : V → X be a G-morphism of G-schemes. If V is
G-integral (resp. G-reduced), then GSIm(f) is G-integral (resp. G-reduced).

20



Proof. There is an integral (resp. reduced) closed subscheme Y of V such
that Y ∗ = V . Then Z := SIm(Y ↪→ V → X) is integral (resp. reduced), see
(2.2). Then GSIm(f) = Z∗ by Lemma 4.3, and we are done.

4.14 Corollary. Let f : V → X be a G-morphism of G-schemes. If I is
a G-prime (resp. G-radical) ideal of OV , then (I ∩ OX)∗ is G-prime (resp.
G-radical).

Proof. This is because (I ∩ OX)∗ defines GSIm(V (I) ↪→ V → X), which is
G-integral (resp. G-reduced).

4.15 Lemma. Let f : W → V and g : V → X be G-morphisms of G-
schemes, and let ι : GSIm f ↪→ V be the inclusion. Then GSIm(gf) =
GSIm(gι).

Proof. Similar to [8, (9.5.5)].

4.16 Lemma. For a family (Iλ) of G-radical G-ideals of OX , (
⋂
λ Iλ)∗ is

G-radical.

Proof. There exists a family (Jλ) of radical ideals of OX such that J ∗λ = Iλ.
By Lemma 4.4, we have

(
⋂

λ

Iλ)∗ = (
⋂

λ

Jλ)∗ = ((
⋂

λ

Jλ)?)∗.

By Lemma 3.8, (
⋂
λ Jλ)? is a radical ideal. So (

⋂
λ Iλ)∗ is G-radical.

4.17 Corollary. The intersection of finitely many G-radical G-ideals is G-
radical.

4.18 Lemma. Let Y be an S-scheme which is integral (resp. reduced). As-
sume that the principal G-bundle G× Y is p-flat. Then G× Y is G-integral
(resp. G-reduced).

Proof. Let us consider the closed subscheme {e} × Y of G × Y , where e is
the unit element. Then

G× Y ∼= G× {e} × Y ↪→ G×G× Y µ×1−−→ G× Y

is the identity, and its G-scheme theoretic image is ({e}×Y )∗. Hence ({e}×
Y )∗ = G × Y . Since {e} × Y ∼= Y is integral (resp. reduced), G × Y is
G-integral (resp. G-reduced).
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4.19 Corollary. Let f : Y → X be an S-morphism. Assume that Y is
integral (resp. reduced). Set g to be the composite

G× Y 1G×f−−−→ G×X a−→ X.

Then GSIm g is G-integral (resp. G-reduced).

Proof. Follows from Lemma 4.18 and Lemma 4.13.

4.20 Lemma. Assume that the second projection p2 : G×X → X is quasi-
compact quasi-separated. If X is G-integral (resp. G-reduced) and U is a
non-empty G-stable open subscheme of X, then U is G-integral (resp. G-
reduced).

Proof. Take an integral closed subscheme Y of X such that Y ∗ = X. Then

G× (Y ∩ U) a //
� _

��

U� _

��
G× Y a // X

is a fiber square. By (2.7), U = (Y ∩U)∗. Since Y ∩U is an integral (reduced)
closed subscheme of U , U is G-integral (resp. G-reduced).

4.21 Lemma. Assume that the second projection p2 : G×X → X is quasi-
compact quasi-separated. Let ϕ : X ′ → X be a reduced G-morphism between
locally noetherian G-schemes. If X is G-reduced, then X ′ is G-reduced.

Proof. Similar.

(4.22) A G-ideal P of OX is said to be G-quasi-prime if P 6= OX , and if I
and J are G-ideals of OX such that IJ ⊂ P, then I ⊂ P or J ⊂ P holds.

4.23 Lemma. If P is a G-prime ideal of OX , then P is G-quasi-prime.

Proof. Let P = p∗ for a prime ideal p of OX . Since P ⊂ p 6= OX , P 6= OX .
Let I and J be G-ideals of OX such that IJ ⊂ P. Then IJ ⊂ p. Since p

is a prime, we have I ⊂ p or J ⊂ p. Since I and J are G-ideals, we have
I ⊂ p∗ = P or J ⊂ p∗ = P .
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(4.24) For a G-ideal I ⊂ OX , we denote the set of G-prime G-ideals con-
taining I by VG(I). The set VG(0) is denoted by SpecG(X). We define the
G-radical of I by

G
√
I := (

⋂

P∈VG(I)

P)∗,

where the right hand side is defined to be OX if VG(I) = ∅.
4.25 Definition. For a G-ideal I, we define

Ω(I) = {J | J is a quasi-cohernt G-ideal of OX , and I ⊂ J 6= OX}.
A maximal element of Ω(0) is said to be G-maximal.

4.26 Lemma. A G-maximal G-ideal is G-quasi-prime. If X is quasi-compact,
then a G-maximal G-ideal of OX is of the form m∗ for some maximal ideal
m. In particular, it is G-prime.

Proof. We prove the first assertion. Let M be a G-maximal G-ideal of OX ,
and I and J be G-ideals such that IJ ⊂ M. Assume that I 6⊂ M and
J 6⊂ M. Then I +M = OX and J +M = OX by the G-maximality. So

OX = (I +M)(J +M) ⊂M+ IJ ⊂M.

This contradicts M 6= OX .
We prove the second assertion. Let M be a G-maximal G-ideal of OX .

Since X is quasi-compact, V (M) is quasi-compact, and is clearly non-empty.
So there is a maximal ideal m of OX containing M. Since M⊂ m, we have
M ⊂ m∗. By the maximality, M = m∗. Since m is a prime, M is G-
prime.

4.27 Lemma. Let I be a G-ideal of OX . If I 6= OX and X is quasi-compact,
then Ω(I) has a maximal element. In particular, a non-empty quasi-compact
p-flat G-scheme has a G-maximal G-ideal.

Proof. Since I ∈ Ω(I), Ω(I) is non-empty. So it suffices to show that, by
Zorn’s lemma, for any non-empty chain (i.e., a totally ordered family) of
elements (Jλ)λ∈Λ of Ω(I), J :=

∑
λ Jλ is again in Ω(I). It is obvious that

J is a quasi-coherent G-ideal and J ⊃ I. It suffices to show that J 6= OX .
Assume the contrary. Let X =

⋃n
i=1 Ui be a finite affine open covering

of X, which exists. Let Jλ,i := Γ(Ui,Jλ), and Ji = Γ(Ui,J ) =
∑

λ Jλ,i.
As 1 ∈ Ji, there exists some µi such that 1 ∈ Jµi,i. When we set µ =
max(µ1, . . . , µn), then Jµ = OX . This is a contradiction.
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4.28 Lemma. Let I, J , P, and Iλ (λ ∈ Λ) be G-ideals of OX . Then the
following hold:

(i) G
√I ⊃ I.

(ii) If I ⊃ J , then VG(I) ⊂ VG(J ). In particular, G
√I ⊃ G

√J .

(iii) VG( G
√I) = VG(I). In particular,

G
√

G
√I = G

√I.

(iv) VG(IJ ) = VG(I ∩ J ) = VG(I) ∪ VG(J ). So G
√IJ = G

√I ∩ J =
G
√I ∩ G

√J .

(v) VG(
∑

λ Iλ) =
⋂
λ VG(Iλ).

(vi) For n ≥ 1, G
√In = G

√I.

(vii) If P is G-prime, then G
√P = P.

(viii) If there exists some n ≥ 1 such that J n ⊂ G
√I, then J ⊂ G

√I.

Proof. (i) If P ∈ VG(I), then P ⊃ I. So
⋂
P∈VG(I)P ⊃ I. By the maximal-

ity,
G
√
I = (

⋂

P∈VG(I)

P)∗ ⊃ I.

(ii) If I ⊃ J and P ∈ VG(I), then P ⊃ I ⊃ J . So P ∈ VG(J ). Thus
VG(I) ⊂ VG(J ). Hence

G
√
I = (

⋂

P∈VG(I)

P)∗ ⊃ (
⋂

P∈VG(J )

P)∗ = G
√J .

(iii) By (i) and (ii), VG( G
√I) ⊂ VG(I). If P ∈ VG(I), then

P ⊃ (
⋂

Q∈VG(I)

Q)∗ =
G
√
I.

Hence P ∈ VG( G
√I). So VG( G

√I) ⊃ VG(I), and VG( G
√I) = VG(I) holds.

This shows

G

√
G
√
I = (

⋂

P∈VG( G
√I)

P)∗ = (
⋂

P∈VG(I)

P)∗ =
G
√
I.
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(iv) By (ii), VG(IJ ) ⊃ VG(I ∩ J ) ⊃ VG(I) ∪ VG(J ) is trivial. If P ∈
VG(IJ ), then since P ⊃ IJ and P is G-quasi-prime, P ⊃ I or P ⊃ J
holds. So P ∈ VG(I)∪VG(J ). Thus VG(IJ ) = VG(I ∩J ) = VG(I)∪VG(J ).
Hence G

√IJ = G
√I ∩ J = G

√I ∩ G
√J .

(v) P ∈ VG(
∑

λ Iλ) ⇐⇒ ∀λ P ⊃ Iλ ⇐⇒ P ∈ ⋂λ VG(Iλ).
(vi) G

√In = G
√II · · · I = G

√I ∩ I ∩ · · · ∩ I = G
√I.

(vii) If P is G-prime, then P is the minimum element of VG(P). So
G
√P = (

⋂
Q∈VG(P)Q)∗ = P∗ = P .

(viii) J ⊂ G
√J = G

√J n ⊂ G
√

G
√I = G

√I.

4.29 Lemma. Let I be a G-ideal of OX . Then G
√I =

√I ∗. In particular,

I ⊂ G
√I ⊂ √I and hence

√
G
√I =

√I. If, moreover, X is noetherian, then
there exists some n ≥ 1 such that G

√I n ⊂ I.

Proof. In view of Lemma 4.28, (i), it suffices to prove the first assertion. By
Lemma 4.4,

G
√
I = (

⋂

P∈VG(I)

P)∗ = (
⋂

p∈V (I)

p∗)∗ = (
⋂

p∈V (I)

p)∗ =
√
I ∗.

4.30 Corollary. Let I be a G-ideal of OX . Then I is G-radical if and only
if I = G

√I.

Proof. Assume that I is G-radical so that I = a∗ for a radical ideal a. Since
I = a∗ ⊂ a,

√I ⊂ √a = a. So I ⊂ G
√I =

√I ∗ ⊂ a∗ = I, and hence
I = G

√I.
Conversely, assume that I = G

√I. Then I = G
√I =

√I ∗, and since
√I

is a radical ideal, I is G-radical.

4.31 Corollary. For a G-ideal I of OX , I = OX if and only if G
√I = OX

if and only if VG(I) = ∅.
Proof. VG(OX) = ∅ is trivial. If VG(I) = ∅, then G

√I = OX by definition. If
G
√I = OX , then

√I = OX , and hence I = OX .

4.32 Lemma. Assume that X is noetherian. If a is an ideal of OX , then
G
√

a∗ =
√

a
∗
.
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Proof. Since G
√

a∗ ⊂ √a∗ ⊂ √a and G
√

a∗ is a quasi-coherent G-ideal, we have
G
√

a∗ ⊂ √a
∗
.

Next, set J :=
√

a
∗
. Since J ⊂ √a, there exists some n ≥ 1 such that

J n ⊂ a. Then J n ⊂ a∗ ⊂ G
√

a∗. Hence J ⊂ G
√

a∗.

4.33 Definition. We say that X is a G-point if X has exactly two quasi-
coherent G-ideals of OX . In other words, X is a G-point if and only if 0 is a
G-maximal G-ideal.

4.34 Corollary. Let X be a G-point, and M a quasi-coherent (G,OX)-
module of finite type. Then M is locally free of a well-defined rank.

Proof. Let r be the smallest integer such that Fittr(M) 6= 0. Since FittrM
is a nonzero G-ideal, FittrM = OX . By Lemma 2.11, M is locally free of
rank r.

5. G-primary G-ideals

(5.1) As in the last section, let S be a scheme, G an S-group scheme, and
X a p-flat G-scheme. In this section, we always assume that X is noethe-
rian. Let M be a coherent (G,OX)-module. Unless otherwise specified,
a submodule of a coherent OX-module means a coherent submodule. In
particular, an ideal of OX means a coherent ideal. Let N be a (coherent)
(G,OX)-submodule of M.

5.2 Lemma. Let P be a G-quasi-prime G-ideal of OX . Then P =
√P ∗.

Proof. Since P ⊂ √P , we have P ⊂ √P ∗.
Now we set J :=

√P ∗ and we prove J ⊂ P . Since X is noetherian,
there exists some n ≥ 1 such that

√P n ⊂ P . Then J n ⊂ √P n ⊂ P . Since
P is G-quasi-prime, J ⊂ P , as desired.

5.3 Lemma. Let P be a G-ideal of OX . Then P is a G-prime if and only if
P is a G-quasi-prime. If this is the case, P = p∗ for some minimal prime p

of P.

Proof. The ‘only if’ part is Lemma 4.23.
Assume that P is a quasi-prime. Let

√
P = p1 ∩ · · · ∩ pr
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be a minimal prime decomposition so that each pi is a minimal prime of P .
Then by Lemma 5.2,

P =
√
P ∗ = p∗1 ∩ · · · ∩ p∗r.

As P is aG-quasi-prime, there exists some i such that p∗i ⊂ P . So p∗i = P .

5.4 Definition. A (G,OX)-submodule N is said to be a G-primary sub-
module of M if

(i) M 6= N , and

(ii) For a (G,OX)-submodule L ofM and for a G-ideal I of OX , if IL ⊂ N
and L 6⊂ N , then I ⊂ G

√N :M.

A G-primary (G,OX)-submodule of OX is said to be a G-primary G-ideal.
If 0 is a G-primary submodule of M, then we say that M is a G-primary
(G,OX)-module. If OX is a G-primary module, then we say that X is G-
primary.

5.5 Lemma. Let Q be a G-primary ideal of OX . Then G
√Q is G-prime.

Proof. It suffices to prove that G
√Q is a G-quasi-prime.

Since Q 6= OX , we have G
√Q 6= OX by Corollary 4.31.

Let I and J be quasi-coherent G-ideals. Assume that IJ ⊂ G
√Q and

J 6⊂ G
√Q. Then there exists some n ≥ 1 such that InJ n ⊂ Q and J n 6⊂

G
√Q. Hence In ⊂ Q. This shows that I ⊂ G

√Q.

5.6 Lemma. Let N be a G-primary coherent (G,OX)-submodule of M.
Then N :M is G-primary. In particular, G

√N :M is G-prime.

Proof. Let I and J be coherent G-ideals, and assume that IJ ⊂ N :M and
that J 6⊂ N :M. Then JM 6⊂ N and IJM ⊂ N . Hence I ⊂ G

√N :M.
The last assertion follows from Lemma 5.5.

(5.7) If N is G-primary and G
√N :M = P , then we say that N is P-G-

primary.

5.8 Lemma. If m is a p-primary submodule ofM, then m∗ is a p∗-G-primary
(G,OX)-submodule of M.
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Proof. By Lemma 4.32 and Lemma 4.6,

p∗ =
√

m :M ∗
= G
√

(m :M) ∗ =
G
√

m∗ :M.

Let I be a coherent G-ideal of OX and L a coherent (G,OX)-submodule
ofM. Assume that IL ⊂ m∗ and L 6⊂ m∗. Then IL ⊂ m and L 6⊂ m. Hence
I ⊂ √m :M. Hence

I ⊂
√

m :M ∗
= p∗ =

G
√

m∗ :M.

Since m 6=M, we have m∗ 6=M.

5.9 Lemma. Let N and N ′ be P-G-primary coherent (G,OX)-submodules
of M. Then N ∩N ′ is also P-G-primary.

Proof. (N :M) ∩ (N ′ :M) = (N ∩N ′) :M. So

G
√

(N ∩N ′) :M = G
√

(N :M) ∩ (N ′ :M)

=
G
√
N :M∩ G

√
N ′ :M = P ∩ P = P .

Let I be a coherent G-ideal, and L a coherent (G,OX)-submodule ofM such
that IL ⊂ N ∩ N ′ and L 6⊂ N ∩ N ′. Then L 6⊂ N or L 6⊂ N ′. If L 6⊂ N ,
then I ⊂ G

√N :M = P . If L 6⊂ N ′, then I ⊂ G
√N ′ :M = P .

5.10 Definition. Let M be a coherent (G,OX)-module, and N a coherent
(G,OX)-submodule of M. An expression

(5) N = N1 ∩ · · · ∩ Nr
is called a G-primary decomposition if this equation holds, and each Ni is
G-primary. The G-primary decomposition (5) is said to be irredundant if
for each i,

⋂
j 6=iNj 6= N . It is said to be minimal if it is irredundant and

G
√Ni :M 6= G

√Nj :M for i 6= j.

5.11 Lemma. Let M be a coherent (G,OX)-module, and N a coherent
(G,OX)-submodule ofM. Then N has a minimal G-primary decomposition.

Proof. Let N = n1 ∩ · · · ∩ ns be a primary decomposition, which exists by
(3.13). Then

N = N ∗ = (n1 ∩ · · · ∩ ns)
∗ = n∗1 ∩ · · · ∩ n∗s.
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This is a G-primary decomposition by Lemma 5.8. Omitting redundant
terms, we get an irredundant decomposition. Let

N = N1 ∩ · · · ∩ Nt
be the decomposition so obtained. We say that i ∼ j if G

√Ni :M =
G
√Nj :M. Let E1, . . . , Er be the equivalence classes with respect to the
equivalence relation ∼. Then letting Ei =

⋂
j∈Ei Nj,

N = E1 ∩ · · · ∩ Er
is a minimal G-primary decomposition by Lemma 5.9.

5.12 Lemma. LetM be a coherent (G,OX)-module, N a coherent (G,OX)-
submodule of M, and P a coherent G-ideal of OX . Then the following are
equivalent.

(i) N is P-G-primary.

(ii) The following three conditions hold:

(a) N 6=M.

(b) P ⊂ G
√N :M.

(c) If L is a coherent (G,OX)-submodule of M, J is a G-ideal, L 6⊂
N , and J 6⊂ P, then JL 6⊂ N .

Proof. (i)⇒(ii) is clear.
(ii)⇒(i) Set K := G

√N :M. We show P = K. There exists some n ≥ 1
KnM ⊂ N and Kn−1M 6⊂ N by (a). Then by (c), K ⊂ P . So K = P by
(b). By (a) and (c), we have that N is P-G-primary.

5.13 Lemma. Let M be a coherent (G,OX)-module, and N a G-primary
coherent (G,OX)-submodule of M. Set P = G

√N :M. Let L be a coher-
ent (G,OX)-submodule of M, and I a coherent G-ideal of OX . Then the
following hold.

(i) If L ⊂ N , then N : L = OX .

(ii) If L 6⊂ N , then N : L is P-G-primary.

(iii) If I ⊂ N :M, then N : I =M.
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(iv) If I 6⊂ N :M, then N : I is P-G-primary.

(v) If I 6⊂ P, then N : I = N .

Proof. (i) and (iii) are trivial.
(ii) N : L 6= OX is trivial. G

√N : L ⊃ G
√N :M = P . Let J and K be

coherent G-ideals of OX such that J 6⊂ N : L and K 6⊂ P . Then JL 6⊂ N ,
and K 6⊂ P . So JKL 6⊂ N . This shows JK 6⊂ N : L. By Lemma 5.12,
N : L is P-G-primary.

(iv) Since IM 6⊂ N , M 6= N : I. We have

G
√

(N : I) :M =
G
√
N : IM ⊃ G

√
N :M = P .

Let L be a coherent (G,OX)-submodule ofM, and J be a coherent G-ideal
of OX such that L 6⊂ N : I and J 6⊂ P . Since IL 6⊂ N and J 6⊂ P , we
have that IJL 6⊂ N . This shows JL 6⊂ N : I. By Lemma 5.12, N : I is
P-G-primary.

(v) If N : I 6⊂ N , then as I 6⊂ P, we have that I(N : I) 6⊂ N . This is a
contradiction.

(5.14) Let M be a coherent (G,OX)-module, and N a coherent (G,OX)-
submodule of M. Let

(6) N = Q1 ∩ · · · ∩ Qr
be a minimal G-primary decomposition, which exists by Lemma 5.11. Set
Mi =

⋂
j 6=iQj, and Pi = G

√Qi :M.

5.15 Theorem. We have

{P1, . . . ,Pr} = {N : L | L is a coherent (G,OX)-submodule of M,

and N : L is G-prime}.

In particular, this set depends only on M/N , and independent of the choice
of minimal G-primary decomposition of N .

Proof. Since the decomposition (6) is irredundant,

N :Mi =
r⋂
j=1

(Qj :Mi) = Qi :Mi 6= OX .
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ThusN :Mi is Pi-G-primary by Lemma 5.13, (ii). Take the minimum n ≥ 1
such that Pni ⊂ N : Mi, and set L := Pn−1

i Mi. Since Pn−1
i 6⊂ N : Mi,

N : L = N : Pn−1
i Mi = (N : Mi) : Pn−1

i is Pi-G-primary. In particular,
N : L ⊂ G

√N : L = Pi. On the other hand,

(N : L) : Pi = N : PniMi = (N :Mi) : Pni = OX .

Thus Pi ⊂ N : L. Hence N : L = Pi. Thus each Pi is of the form N : L for
some L.

Conversely, let L ⊂ M, and assume that N : L is G-prime. Set P =
N : L. We show that P = Pi for some i. Renumbering if necessary, we may
assume that L 6⊂ Qi if and only if i ≤ s. Then by Lemma 5.13, (ii),

P =
G
√
P =

G
√
N : L = G

√√√√
s⋂
i=1

(Qi : L) =
s⋂
i=1

G
√
Qi : L =

s⋂
i=1

Pi.

So s ≥ 1, and there exists some i such that Pi = P .

5.16 Definition. We set AssG(M/N ) = {P1, . . . ,Pr}. Note that AssG(M/N )
depends only onM/N . An element of AssG(M/N ) is called a G-associated
G-prime of M/N (however, also called a G-associated G-prime of the sub-
module N ). The set of minimal elements in AssG(M/N ) is denoted by
MinG(M/N ). An element of MinG(M/N ) is called a minimal G-prime of
M/N . An element of AssG(M/N ) \ MinG(M/N ) is called an embedded
G-prime.

5.17 Proposition. Let Ω be a poset ideal of {P1, . . . ,Pr} with respect to the
incidence relation. Then

⋂
Pj∈ΩQj is independent of the choice of minimal

G-primary decomposition.

Proof. Set J :=
⋂
Pi /∈ΩPi. It suffices to prove that

⋂
Pj∈ΩQj = N : J n for

n� 0.
For Pi /∈ Ω, J ⊂ Pi = G

√Qi :M. Hence there exists some n0 such that
J n0 ⊂ Qi : M for all i such that Pi /∈ Ω. Take n so that n ≥ n0. Then
Qi : J n =M, since J nM⊂ Qi, for Pi /∈ Ω.

If Pi /∈ Ω and Pj ∈ Ω, then Pi 6⊂ Pj by assumption. Hence J 6⊂ Pj.
Hence J n 6⊂ Pj. Thus Qj : J n = Qj for Pj ∈ Ω by Lemma 5.13, (v).

So N : J n =
⋂
iQi : J n =

⋂
Pj∈ΩQj.
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5.18 Lemma. Let M be a coherent (G,OX)-module, and N a coherent
(G,OX)-submodule of M. If P ∈ AssG(M/N ) and p ∈ Ass(OX/P), then
p ∈ Ass(M/N ).

Proof. There exists some coherent (G,OX)-submodule L of M such that
N : L = P . Moreover, there exists some coherent ideal a of OX such that
p = P : a. Then

p = P : a = (N : L) : a = N : aL.
Thus p ∈ Ass(M/N ).

5.19 Lemma. Let M be a coherent (G,OX)-module, and N a coherent
(G,OX)-submodule ofM. Then we have VG(N :M) =

⋃
P∈MinG(M/N ) VG(P).

In particular, for a quasi-coherent G-prime G-ideal P of OX , P ∈ MinG(M/N )
if and only if P is a minimal element of VG(N : M). Moreover, we have⋂
Q∈VG(N :M)Q =

⋂
P∈MinG(M/N )P.

Proof. We may assume that N = 0. Let

0 = Q1 ∩ · · · ∩ Qr
be a minimal primary decomposition of 0 in M. Set Pi := G

√Qi :M. Then

Pi ⊃ Qi :M⊃ 0 :M.

In particular, VG(Pi) ⊂ VG(0 : M). On the other hand, M is a submodule
of
⊕r

i=1M/Qi. So 0 :M⊃ 0 :
⊕

iM/Qi. So

VG(0 :M) ⊂ VG(0 :
⊕
i

M/Qi) = VG(
⋂
i

(Qi :M)) =
⋃
i

VG(Pi) ⊂ VG(0 :M).

So VG(0 : M) =
⋃
i VG(Pi). If Pi is an embedded G-prime, then VG(Pi) in

the union is redundant, and we have VG(0 : M) =
⋃
P∈MinGM VG(P). The

rest of the assertions are now obvious.

5.20 Corollary. For an ideal I of OX , G
√I =

⋂
P∈VG(I)P =

⋂
P∈MinG(OX/I)P.

Proof. By Lemma 5.19,

G
√
I = (

⋂

P∈VG(I)

P)∗ = (
⋂

P∈MinG(OX/I)

P)∗ =
⋂

P∈MinG(OX/I)

P =
⋂

P∈VG(I)

P ,

since MinG(OX/I) is a finite set and the intersection of finitely many quasi-
coherent G-ideals is a quasi-coherent G-ideal.
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5.21 Lemma. Let M be a coherent (G,OX)-module, and N a G-primary
coherent (G,OX)-submodule. Let

N = n1 ∩ · · · ∩ nr

be a minimal primary decomposition. If
√

n1 :M is a minimal prime, then
n∗1 = N . In particular,

√
n1 :M ∗

= G
√N :M.

Proof. First assume that N : n∗1 ⊂ G
√N :M. Then

⋂
i≥2

(ni :M) ⊂
⋂
i≥1

(ni : n∗1) = N : n∗1 ⊂ G
√
N :M⊂

√
N :M⊂

√
n1 :M.

This contradicts the minimality of
√

n1 :M. Hence N : n∗1 6⊂ G
√N :M.

Since n∗1(N : n∗1) ⊂ N and N is G-primary, n∗1 ⊂ N . As n∗1 ⊃ N is trivial,
n∗1 = N .

Hence,
√

n1 :M ∗
= G
√

(n1 :M)∗ = G
√

n∗1 :M =
G
√
N :M.

5.22 Corollary. Let P be a G-prime G-ideal. For any minimal prime p of
P, we have p∗ = P.

Proof. Let P = q1 ∩ · · · ∩ qr be a minimal primary decomposition such that√
q1 = p. Then, p∗ =

√
q1
∗ = G
√

q∗1 = G
√P = P .

5.23 Corollary. Let M be a coherent (G,OX)-module, and N a (G,OX)-
submodule. Then N is a G-primary submodule of M if and only if N = n∗

for some primary submodule n of M.

Proof. The ‘if’ part is Lemma 5.8. The ‘only if’ part follows from Lemma 5.21.

5.24 Lemma. For a G-ideal I of OX , the following are equivalent.

(i) I is G-radical.

(ii) There are finitely many G-prime ideals P1, . . . ,Pr of OX such that I =
P1 ∩ · · · ∩ Pr.

Proof. (i)⇒(ii) follows from Corollary 5.20 and Corollary 4.30.
(ii)⇒(i) G

√I = G
√P1 ∩ · · · ∩ Pr = G

√P1 ∩ · · · ∩ G
√Pr = P1 ∩ · · · ∩ Pr =

I.
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6. Group schemes of finite type

In this section, S is a scheme, G an S-group scheme, X a p-flat noetherian
G-scheme, and M a coherent (G,OX)-module. In this section, we assume
that p2 : G×X → X is of finite type.

Let N be a coherent (G,OX)-submodule of M.

6.1 Lemma. Let

N = n1 ∩ · · · ∩ nr ∩ nr+1 ∩ · · · ∩ nr+s

be a minimal primary decomposition such that

Min(M/N ) = {p1, . . . , pr},

where pi =
√

ni :M. Then

(i) The (S1)-locus of M/N is X \⋃s
i=1 Supp(M/ni+r).

(ii) The (S1)-locus of M/N is a G-stable open subset of X.

(iii) n1 ∩ · · · ∩ nr is a coherent (G,OX)-submodule of M.

Proof. Replacing M by M/N , we may assume that N = 0. Since X \
SuppM is G-stable open, replacing X by V (annM), we may assume that
annM = 0.

(i) Note that a coherent OX-module L satisfies Serre’s (S1)-condition at
x ∈ X if and only if Lx does not have an embedded prime. The assertion
follows from this.

(ii) Let U be the (S1) locus X \ ⋃s
i=1 Supp(M/ni+r) of M. It is an

open subset. Since the action a : G × X → X and the second projection
p2 : G × X → X are Cohen–Macaulay morphisms by [12, Lemma 31.14],
both a−1(U) and p−1

2 (U) = G × U are the (S1)-locus of a∗M ∼= p∗2M by [9,
(6.4.1)]. So a−1(U) = G× U , and U is G-stable.

(iii) Let ι : U ↪→ X be the inclusion. It suffices to show that ΓX,U(M) :=
Ker(M→ ι∗ι∗M) agrees with n1 ∩ · · · ∩ nr, see for the notation, [13, (3.1)].

Since the composite

n1 ∩ · · · ∩ nr ↪→M→
s⊕
i=1

M/ni+r
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is a mono, ι∗(n1 ∩ · · · ∩ nr) = 0. Hence n1 ∩ · · · ∩ nr ⊂ ΓX,U(M). It
suffices to show that ΓX,U(M/n1 ∩ · · · ∩ nr) = 0. (If so, n1 ∩ · · · ∩ nr =
ΓX,U(n1 ∩ · · · ∩ nr) = ΓX,U(M)). As M/n1 ∩ · · · ∩ nr ⊂

⊕r
i=1M/ni, it

suffices to show that ΓX,U(M/ni) = 0 for i ≤ r. Assume the contrary.
Then since Ass(ΓX,U(M/ni)) ⊂ Ass(M/ni), Ass(M/ni) contains a point in
X \ U . On the other hand, Ass(M/ni) is a singleton, and its point is a
generic point of an irreducible component of X. As U is dense in X, this is
a contradiction.

6.2 Corollary. If N is G-primary, then M/N does not have an embedded
prime.

Proof. We may assume that N = 0 and annM = 0. Let

0 = n1 ∩ · · · ∩ nr ∩ nr+1 ∩ · · · ∩ nr+s

be a minimal primary decomposition such that Min(M) = {p1, . . . , pr},
where pi =

√
ni :M. Set L = n1 ∩ · · · ∩ nr. It suffices to show that L = 0.

Set J := annL. Note that L is a coherent (G,OX)-submodule of M by
the lemma, and J is a coherent G-ideal. Since V (J ) ⊂ X \ U , where
U = X \⋃s

i=1 Supp(M/ni+r), J 6⊂ G
√

0. Since JL = 0 and 0 is G-primary,
L = 0, as desired.

6.3 Corollary. If N is G-primary and

N = n1 ∩ · · · ∩ nr

is a minimal primary decomposition, then n∗i = N for i = 1, . . . , r.

Proof. Follows immediately from Corollary 6.2 and Lemma 5.21.

6.4 Corollary. If P is a G-prime G-ideal of OX , then for any associated
prime p of P, p∗ = P.

Proof. Follows immediately from Corollary 6.2 and Corollary 5.22.

(6.5) Assume that X satisfies the (S1) condition (i.e., OX satisfies the (S1)
condition). Let

(7) 0 = q1 ∩ · · · ∩ qr

be the minimal primary decomposition. Set Xi := V (qi), and Yi := Xi \⋃
j 6=iXj. Define Gij = p−1

2 Yi ∩ a−1Yj. We say that i→ j if X∗i ⊃ Xj.
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6.6 Lemma. Let the notation be as above. For 1 ≤ i, j ≤ r, the following
are equivalent.

(i) i→ j.

(ii) Gij 6= ∅.
Proof. (i)⇒(ii) Since the closure of G× Yi in G×X is G×Xi, the scheme
theoretic image of the action a|G×Yi : G × Yi → X is X∗i . Since X∗i ⊃ Xj,
G× Yi intersects a−1(Yj). Namely, Gij 6= ∅.

(ii)⇒(i) Applying Corollary 3.17, the scheme theoretic image of a|Gij :
Gij → Xj is Xj. This shows X∗i ⊃ Xj.

6.7 Corollary. → is an equivalence relation of {1, . . . , r}.
Proof. Since X∗i ⊃ Xi, i→ i.

Consider the isomorphism Θ : G × X → G × X given by Θ(g, x) =
(g−1, gx). Then Θ(Gij) = Gji. Thus i→ j if and only if j → i.

Assume that i → j and j → k. Then X∗i = X∗∗i ⊃ X∗j ⊃ Xk. Hence
i→ k.

6.8 Lemma. Assume that M/N does not have an embedded prime. Let

(8) N = n1 ∩ · · · ∩ nr

be a minimal primary decomposition. Then

n∗i =
⋂
i→j

nj,

where we say that i→ j if ann(M/ni)
∗ ⊂ ann(M/nj).

Proof. ReplacingM byM/N and nj by nj/N , we may assume that N = 0.
Replacing X by SuppM := V (annM), we may assume that annM = 0.
Set qj := ann(M/nj) and Xj := V (qj). Note that (7) is a minimal primary
decomposition by Lemma 3.14, and X satisfies the (S1) condition.

Now we define Yj and Gij as in (6.5). The definition of i→ j is consistent
with that in (6.5).

Let ρi : Yi → X be the inclusion, ρ :
∐

i→j Yj → X be the inclusion,
ϕ :

∐
i→j Gij → G × X be the inclusion, a0 :

∐
i→j Gij →

∐
i→j Yj be the
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restriction of a, and p0 :
∐

i→j Gij → Yi be the restriction of p2, so that the
diagrams

∐
i→j Gij

ϕ //

a0

��

G×X
a

��∐
i→j Yj

ρ // X

∐
i→j Gij

ϕ //

p0

��

G×X
p2

��
Yi

ρi // X

are commutative.
Since a(G × Yi) ⊂

⋃
i→j Xj and

∐
i→j Yj is dense in

⋃
i→j Xj,

∐
i→j Gij

is dense in G × Yi by (2.7). As G × Yi is dense in G ×Xi,
∐

i→j Gij is also
dense in G×Xi. Since Supp p∗2(M/ni) = G×Xi and p∗2(M/ni) satisfies the
(S1) condition, u : a∗p∗2(M/ni) → a∗ϕ∗ϕ∗p∗2(M/ni) is a monomorphism by
Lemma 3.16.

Similarly, u : ρ∗ρ∗M→ ρ∗(a0)∗a∗0ρ
∗M is a monomorphism.

Since the diagram

ρ∗ρ∗M � � u // ρ∗(a0)∗a∗0ρ
∗M ∼= // a∗ϕ∗ϕ∗a∗M

∼=
��

M
u

OO

ω // a∗p∗2M u //

πni
��

a∗ϕ∗ϕ∗p∗2M
∼=

��
a∗p∗2(M/ni)

u

��

a∗ϕ∗p∗0ρ
∗
iM
∼=

��
a∗ϕ∗ϕ∗p∗2(M/ni)

∼= // a∗ϕ∗p∗0ρ
∗
i (M/ni)

is commutative,

n∗i = Ker(M ω−→ a∗p∗2M
πni−−→ a∗p∗2(M/ni)) = Ker(u :M→ ρ∗ρ∗M) =

⋂
i→j

nj

by Lemma 4.11.

6.9 Corollary. Let N be G-primary in Lemma 6.8. Then for i, j ∈ {1, . . . , r},
i→ j.

Proof. By Corollary 6.3 and Lemma 6.8, N = n∗i =
⋂
i→j nj. Since the

decomposition (8) is irredundant, i→ j holds for all j ∈ {1, . . . , r}.
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6.10 Theorem. Let

(9) N =M1 ∩ · · · ∩Ms

be a minimal G-primary decomposition, and let

(10) Ml = ml,1 ∩ · · · ∩ml,rl

be a minimal primary decomposition. Then

N =
s⋂

l=1

(ml,1 ∩ · · · ∩ml,rl)

is a minimal primary decomposition.

Proof. Note that
√

ml,j :M are distinct. Indeed, we have

√
ml,j :M ∗

= G

√
(ml,j :M)∗ = G

√
m∗l,j :M = G

√
Ml :M.

Since (9) is minimal,
√

ml,j :M is different if l is different. On the other

hand, if l is the same and j is different, then
√

ml,j :M is different, since
(10) is minimal.

So it suffices to prove that each
√

ml,j :M is an associated prime of N .
By Lemma 5.6, Ml : M is G-primary, and G

√Ml :M is a G-prime. So
neitherMl :M nor G

√Ml :M has an embedded prime by Corollary 6.2. So

Ass(OX/(Ml :M)) = Ass(OX/( G
√
Ml :M)) = Ass(OX/

√
Ml :M).

By Lemma 3.14,

Ml :M =
⋂
j

ml,j :M

is a minimal primary decomposition. So G
√Ml :M ∈ AssGM/N and√

ml,j :M∈ Ass(OX/ G
√Ml :M). By Lemma 5.18,

√
ml,j :M∈ Ass(M/N ),

as desired.

6.11 Corollary. A prime ideal p of OX is an associated prime of some
coherent (G,OX)-module M if and only if p is a minimal prime of p∗.
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Proof. The ‘if’ part is trivial. We prove the converse. Take a minimal G-
primary decomposition (9) and minimal primary decompositions (10). We
may assume that p =

√
m1,1 :M. Then p∗ = G

√M1 :M. As M/M1

does not have an embedded prime, m1,1 : M is a primary component of
M1 :M corresponding to a minimal prime, and hence p is a minimal prime
of M1 :M. Since M1 :M and p∗ = G

√M1 :M have the same radical, we
are done.

6.12 Corollary. Let (9) be a minimal G-primary decomposition. Then

Ass(M/N ) =
s∐

l=1

Ass(M/Ml) =
∐

P∈AssG(M/N )

Ass(OX/P)

and
AssG(M/N ) = {p∗ | p ∈ Ass(M/N )}.

Proof. Follows immediately by Theorem 6.10.

6.13 Corollary. We have

Min(M/N ) =
∐

P∈MinG(M/N )

Ass(OX/P)

and
MinG(M/N ) = {p∗ | p ∈ Min(M/N )}

Proof. Assume that p ∈ Min(M/N ) and p∗ /∈ MinG(M/N ). Then there
exists some P ∈ MinG(M/N ) such that P ( p∗. If

√
P = p1 ∩ · · · ∩ ps

is a minimal prime decomposition, then each pi is an element of Ass(M/N )
by Corollary 6.12. Since

p1 ∩ · · · ∩ ps =
√
P ⊂ √p∗ ⊂ √p = p,

there exists some i such that pi ⊂ p. Since p∗i = P 6= p∗, we have pi ( p.
This contradicts the minimality of p. So p ∈ Min(M/N ) implies p∗ ∈
MinG(M/N ). By Corollary 6.11, p ∈ Min(M/N ) implies that p is an asso-
ciated prime of p∗. So the ⊂ direction of the first equation and ⊃ direction
of the second equation have been proved.
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Conversely, assume that P ∈ MinG(M/N ), and p ∈ Ass(OX/P). By
Lemma 5.18, p ∈ Ass(M/N ). Assume that p is not minimal. Then there
exists some p′ ∈ Min(M/N ) such that p′ ( p. Then (p′)∗ ⊂ p∗ = P . By the
minimality of P , (p′)∗ = p∗ = P . So p′ ∈ Ass(OX/P) by Corollary 6.11. As
OX/P does not have an embedded prime by Corollary 6.2, this contradicts
p′ ( p. So p must be minimal. This proves the ⊃ direction of the first
equation. As P = p∗ with p ∈ Min(M/N ), the ⊂ direction of the second
equation has also been proved.

6.14 Corollary. We have Ass(M/N ) = Min(M/N ) if and only if AssG(M/N ) =
MinG(M/N ).

Proof. Obvious by Corollary 6.12 and Corollary 6.13.

6.15 Corollary. A G-radical G-ideal does not have an embedded prime.

Proof. Obvious by Corollary 6.14.

6.16 Lemma. If X is G-integral and I a nonzero G-ideal, then V (I) is
nowhere dense in X.

Proof. Assume the contrary. Then there exists some minimal prime p of 0
such that I ⊂ p. Then I = I∗ ⊂ p∗ = 0, since 0 is a G-prime. This is a
contradiction.

6.17 Lemma. Let X be G-integral, and M a coherent (G,OX)-module.
Then there exists some r and some dense G-stable open subset U of X such
that for x ∈ X, it holds x ∈ U if and only if Mx

∼= OrX,x. In this case, M|U
is locally free of rank r.

Proof. Let r be the smallest integer such that FittrM 6= 0. Then r ≥ 0, and
letting U := X \ V (FittrM), U is G-stable open, and for x ∈ X, it holds
x ∈ U if and only if Mx

∼= OrX,x by [5, Proposition 20.8].
U is dense, since V (FittrM) is nowhere dense by Lemma 6.16 and closed.

6.18 Lemma. Let X be G-reduced, and M a coherent (G,OX)-module.
Then U := {x ∈ X | Mx is projective} is a dense G-stable open subset
of X.
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Proof. It is easy to see that U =
⋃
r≥0(X \ (V (FittrM) ∪ Supp Fittr−1M))

is G-stable open, and if x ∈ U , then Mx is projective. Conversely, if Mx

is projective of rank r, then Fittr(Mx) = OX,x and Fittr−1(Mx) = 0 by [5,
Proposition 20.8], and hence x ∈ U .

It remains to show that U is dense. Let p be any associated (or equiv-
alently, minimal, by Corollary 6.15) prime of 0. We need to show that the
generic point ξ of V (p) is in U .

Let 0 = P1 ∩ · · · ∩ Pr be a minimal G-prime decomposition. Then we
may assume that p is a minimal prime of P1. As X is G-reduced, p 6⊃ Pi for
i ≥ 2. Hence ξ ∈ Y := X \ (

⋃
i≥2 V (Pi)). As Y is a non-empty G-stable open

subscheme of V (P1), it is G-integral by Lemma 4.20, and ξ is a generic point
of an irreducible component of Y . Since Y ∩U is dense in Y by Lemma 6.17
and its proof, ξ ∈ U , as desired.

6.19 Corollary. Let X be G-reduced, and L a quasi-coherent (G,OX)-
module. Then for the generic point ξ of an irreducible component of X,
Lξ is OX,ξ-flat.

Proof. Since L is a filtered inductive limit lim−→Mλ of its coherent (G,OX)-
submodulesMλ by (2.15) and (Mλ)ξ is a free module by Lemma 6.18, Lξ is
OX,ξ-flat.

6.20 Corollary. Let X be G-reduced, and f : V → X an affine G-morphism.
Let v ∈ V , and assume that f(v) is a generic point of X, then f is flat at v.

Proof. This is because (f∗OV )f(v) is OX,f(v)-flat, and OV,v is a localization of
(f∗OV )f(v).

6.21 Lemma. Let p2 : G×X → X have regular fibers. Then

(i) If a is a radical quasi-coherent ideal of OX , then a∗ is also radical.

(ii) A G-radical G-ideal of OX is radical.

Proof. Clearly, (ii) follows from (i). We prove (i).
Set Y := V (a). Then Y is reduced. By assumption, G×Y is reduced. So

the scheme theoretic image Y ∗ of the action a : G× Y → X is also reduced.
Since Y ∗ = V (a∗), we have that a∗ is radical.

6.22 Corollary. Let p2 : G ×X → X have regular fibers. If I is a G-ideal
of OX , then

√I = G
√I is a G-radical G-ideal.
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Proof. Note that G
√I is G-radical, and hence is radical by the lemma. Hence

√
I =

√
G
√
I =

G
√
I

is a G-radical G-ideal.

6.23 Lemma. Let p2 : G×X → X have connected fibers. Then

(i) If n is a primary submodule of M, then n∗ is also primary.

(ii) A G-primary G-submodule of M is a primary submodule.

Proof. Since (ii) follows from (i) and Corollary 6.3, we only need to prove
(i).

By assumption, M/n is primary, and hence it satisfies (S1). As p2 : G×
X → X is flat with Cohen–Macaulay fibers (see e.g., [12, (31.14)]), p∗2(M/n)
also satisfies (S1) by [9, (6.4.1)]. As p2 is faithfully flat, Supp p∗2(M/n) =
p−1

2 (Supp(M/n)), which is irreducible by the irreducibility of Supp(M/n),
and the assumption that p2 has connected (or equivalently, geometrically
irreducible) fibers. Thus p∗2(M/n) is a primary module. By Lemma 4.11,
there is a monomorphism M/n∗ ↪→ a∗p∗2(M/n). By Lemma 3.18, n∗ is a
primary submodule, as desired.

6.24 Corollary. Let p2 : G × X → X have connected fibers. If M is a
coherent OX-module and N is a coherent (G,OX)-submodule, then a minimal
G-primary decomposition of N is also a minimal primary decomposition of
N .

Proof. Follows from Lemma 6.23 and Theorem 6.10.

6.25 Corollary. Let p2 : G × X → X have regular and connected fibers.
Then

(i) If p is a prime ideal of OX , then p∗ is also a prime ideal.

(ii) A G-prime G-ideal of OX is prime.

(iii) For a coherent (G,OX)-module M of OX , AssG(M) = Ass(M) and
MinG(M) = Min(M). In particular, any associated prime of a coher-
ent (G,OX)-module is a G-prime G-ideal.

Proof. (i) and (ii) follow immediately from Lemma 6.21 and Lemma 6.23.
(iii) follows from (ii), Corollary 6.12, and Corollary 6.13.
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6.26 Lemma. Let S be locally noetherian and G be flat of finite type over
S. Let π be the structure map G→ S. Then h(s) := dim(π−1(s)) is a locally
constant function on S.

Proof. We may assume that S = SpecA is affine and reduced. Then it
suffices to show that h is constant on each irreducible component. So we
may further assume that S is irreducible. Let σ be the generic point of S.
The fiber π−1(σ) is a finite-type group scheme over the field κ(σ), and is
equidimensional of dimension h(σ).

Let s ∈ S. Note that π is an open map (follows easily from [9, (1.10.4)]).
By [9, (14.2.4)], each irreducible component of π−1(s) is h(σ)-dimensional.
Hence, h(s) = h(σ), and this value is independent of s.

6.27 Proposition. Assume that MinG(0) is a singleton, where 0 is the zero
ideal of OX . Then the dimension of the fiber of p2 : G×X → X is constant.
In particular, if X is G-primary, then the dimension of the fiber of p2 :
G×X → X is constant.

Proof. Set h(x) = dim p−1
2 (x). We want to prove that h is constant. By

Lemma 6.26, h is locally constant. Let 0 = Q1 ∩Q2 ∩ · · · ∩Qr be a minimal
G-primary decomposition where G

√Q1 is a minimal G-prime. Then Y =
V (Q2∩· · ·∩Qr) is nowhere dense in X. By the local constantness, replacing
X by X \ Y , we may assume that X is G-primary. Let 0 = q1 ∩ · · · ∩ qs be
the minimal primary decomposition of 0 in OX . Set Xi := V (qi), and let
ξi be the generic point of Xi. Let π : X → S be the structure map. Let
Yi := Xi \

⋃
j 6=iXj.

It suffices to show that for 1 ≤ i, j ≤ s, h(ξi) = h(ξj). Note that Gij =
a−1Yj ∩ p−1

2 Yi is non-empty by Corollary 6.9 and Lemma 6.6. Let γ be the
generic point of an irreducible component of Gij. By flatness, a(γ) = ξj and
p2(γ) = ξi. Hence σ := π(ξj) = πa(γ) = πp2(γ) = π(ξi). Since {ξj} → {σ}
associates with a field extension, and is faithfully flat quasi-compact, and
G × {ξj} is of finite type over {ξj}, we have that G × {σ} is of finite type
over {σ} by [9, (2.7.1)]. It is easy to see that G×{σ} and G×{ξj} have the
same dimension, h(ξj). By the same reason, G × {σ} is h(ξi)-dimensional.
Hence h(ξi) = h(ξj).

(6.28) A commutative ring A is said to be Hilbert if any prime ideal P
of A equals the intersection

⋂
m m, where the intersection is taken over the

maximal ideals containing P . We say that A satisfies the first chain condition
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(FCC for short) if each maximal chain of prime ideals in A has the length
equals to dimA. We say that A is Ratliff if A is noetherian, universally
catenary, Hilbert, and for any minimal prime P of A, A/P satisfies the FCC.

6.29 Lemma. A noetherian ring A is Ratliff if and only if Ared is.

Proof. By assumption, both A and Ared are noetherian. Almost by definition,
A is Hilbert if and only if Ared is. A finite-type algebra over Ared is of
finite type over A. So plainly, if A is universally catenary, then Ared is
universally catenary. Let B be a finite type algebra over A. Then B is
catenary if and only if Bred is, and Bred is a finite-type algebra over Ared. So
if Ared is universally catenary, then so is A. Note that Min(Ared) = {PAred |
P ∈ Min(A)}, and A/P ∼= Ared/PAred. So A/P satisfies the FCC for any
P ∈ Min(A) if and only if Ared/P̄ satisfies the FCC for any P̄ ∈ Min(Ā).

(6.30) An artinian ring is Ratliff. A one-dimensional noetherian domain
with infinitely many prime ideals is Ratliff. For example, Z is Ratliff.

6.31 Lemma. Let A be a catenary noetherian ring such that for each min-
imal prime P of A, A/P satisfies the FCC. Then for any prime ideal Q of
A, A/Q satisfies the FCC.

Proof. Easy.

6.32 Corollary. A homomorphic image of a Ratliff ring is Ratliff.

Proof. Follows from Lemma 6.31.

6.33 Lemma. If A is Ratliff and A→ B is of finite type, then B is Ratliff.

Proof. Note that B is noetherian by Hilbert’s basis theorem. B is universally
catenary, since a finite-type algebra C over B is also of finite type over A.
It is well-known that a finite-type algebra over a Hilbert ring is Hilbert [22,
Chapter 6, Theorem 1]. It remains to show that for any minimal prime P ,
B̄ := B/P satisfies the FCC. Since we know that B̄ is catenary, it suffices to
show that dim B̄m is independent of the choice of a maximal ideal m of B̄.
Let p := P ∩ A, and set Ā := A/p. Note that Ā is Ratliff. Note also that
n := m∩Ā is a maximal ideal of Ā [22, Chapter 6, Theorem 2], and dim Ān =
dim Ā is independent of n. Clearly, κ(m) is an algebraic extension of κ(n).
By the dimension formula [9, (5.6.1)], dim B̄m = dim Ā + trans.degĀ B̄ is
independent of m.
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(6.34) We say that a scheme Y is Ratliff if Y has a finite affine open
covering (Ui) such that each Ui is isomorphic to the prime spectrum of a
Ratliff ring. Y is Ratliff if and only if Y is quasi-compact, and each point of
Y has an affine Ratliff open neighborhood. A Ratliff scheme Y has a finite
dimension.

If Y is Ratliff and Z → Y is of finite type, then Z is Ratliff.
A noetherian scheme Y is said to be equidimensional, if the irreducible

components of Y have the same dimension. If Y is Ratliff and equidimen-
sional, then dimY = dimOY,y for any closed point y of Y . Let Z be a closed
subset of a Ratliff scheme Y . Let W be the set of closed points of Z. Then
the closure of W is Z. It follows that any non-empty open subscheme U of
a Ratliff scheme Y contains a closed point of Y . In particular, if Y is Ratliff
equidimensional and U is a non-empty open subset, then dimU = dimY . In
particular, for any point y of Y , dimy Y = dimY .

Let f : Z → Y be of finite type and dominating, Y be Ratliff, and Z and
Y be irreducible. Then dimZ = dimY + trans.degκ(η) κ(ζ), where η and ζ
are respectively the generic points of Y and Z.

6.35 Proposition. Assume that X is Ratliff, and assume that MinG(0) is a
singleton, where 0 is the zero ideal of OX . Then X is equidimensional.

Proof. Discarding a nowhere dense G-stable closed subscheme form X, we
may assume that X is G-primary.

Let Xi, Yi, and Gij be as in the proof of Proposition 6.27. Let g be a
closed point of Gij. Then p2(g) is a closed point of Yi, and we have dimOG,g =
dimYi + h, where h is the dimension of the fibers of p2 : G × X → X, see
Proposition 6.27. Since a(g) is a closed point of Yj, dimOG,g = dimYj + h
(note that the dimension of the fibers of a also have the constant value h).
Hence, dimXj = dimYj = dimYi = dimXi, as desired.

6.36 Example. Let R be a DVR, and t a prime element of R, and K =
R[t−1] the field of fractions of R. Set S = SpecR. Let G̃ = S0

∐
S1 be the

constant group Z/2Z over S, where S = S0 = S1, and S0 corresponds to
the unit element, and S1 corresponds to the other element of Z/2Z. Then
G = S0

∐
SpecK is a flat of finite type group scheme over S. Letting X = G,

the left regular action, X is G-primary. But X is not equidimensional.
This example also shows that the following statement is false. Let P and

Q be G-primes of OX such that Q ⊃ P . Then for any minimal prime p of P ,
there exists some minimal prime q of Q such that q ⊃ p. Indeed, let P = 0,
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and Q be the defining ideal of the closed point of S0. Then the component
SpecK ⊂ S1 of V (P) does not contain a component of V (Q).

6.37 Example. Let (R, t) be a DVR of mixed characteristic p. Then µp,R =
SpecR[x]/(xp−1) is a local scheme with two or more irreducible components.

6.38 Example. A primary ideal q of OX which is a primary component of
some G-ideal of OX , but not a primary component of q∗.

Construction. Let S = Spec k with k a field. Let G = G2
m, and X = SpecA,

A = k[x, y]. G acts on A with deg x = (1, 0) and deg y = (0, 1). Let
q = (x4, yx3, y2x2 + y3x, y4). It is a primary component of the homogeneous
ideal I = (x4, yx3) = (x3) ∩ q. But q is not a primary component of q∗ =
(x4, yx3, y3x2, y4).

6.39 Lemma. Let N be a (G,OX)-submodule of M. If m is the primary
component of N corresponding to a minimal prime of N , then m is the
primary component of m∗ corresponding to a minimal prime of m∗.

Proof. Let (9) be a minimal G-primary decomposition of N , and (10) be a
minimal primary decomposition of Ml. By the uniqueness of the primary
component for minimal primes, we may assume that m1,1 = m. Then m is
a primary component of M1 = m∗ corresponding to a minimal prime by
Corollary 6.3 and Corollary 6.2.

6.40 Example. Even if m is a maximal ideal of OX , m∗ may not be a G-
maximal G-ideal. Let S = Spec k with k a field, G = Gm, and X = A1 on
which G acts by multiplication. For any maximal ideal m of k[X] = k[t] not
corresponding to the origin, m∗ = 0 is not G-maximal.

(6.41) Let us consider the case that S = Spec k, where k is an alge-
braically closed field. Let G be a linear (smooth) algebraic group over
k. Let G◦ denote the identity component of G. Then there exists some
h0, h1, . . . , hm ∈ G(k) such that h0 = e is the unit element of G, and
G = h0G

◦∐h1G
◦∐ · · ·∐hmG

◦. Let N be a coherent (G,OX)-submodule
of M. Let p ∈ Ass(M/N ). Then p is G◦-stable by Corollary 6.25. Let
Yp,0 = V (p), and Yp,i = hiYp,0 for i = 1, . . . ,m. Then

(11) Yp =
m⋃
i=0

Yp,i
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with the reduced structure is G-stable. So Y ∗p,i = Yp for each i, as can be
seen easily. So AssG(M/N ) = {I(Yp) | p ∈ Ass(M/N )} by Corollary 6.12,
where I(Yp) is the defining ideal of Yp.

We can show that for a coherent (G,OX)-module L, L is I(Yp)-G-primary
if and only if AssL = {I(Yp,i) | i = 0, . . . ,m}. To verify this, note that Yp,i
in (11) are isomorphic one another, and (11) is an irreducible decomposition
without embedded component (but there may be some redundancy). The
‘only if’ part follows from the fact that L does not have an embedded prime
by Corollary 6.2, and V (

√
0 : L) = Yp. The if part follows from the fact that

I(Yp,i)
∗ = I(Yp) for i = 0, . . . ,m.

In particular, the existence of G-primary decomposition of N gives an-
other proof of [24, Thoerem 4.18] for the case that X is quasi-compact.

7. Matijevic–Roberts type theorem

In this section, S, G, X, and M are as in the last section. As in the last
section, we assume that p2 : G×X → X is of finite type.

(7.1) A flat homomorphism of noetherian rings ϕ : A → B is said to be
l.c.i. (local complete intersection) (resp. regular) if for any prime ideal P of
A, the fiber ring BP/PBP is l.c.i. (resp. geometrically regular over the field
AP/PAP ). By the openness of l.c.i. locus [11, (I.2.12.4)] (resp. smooth locus
[9, (6.8.7)]) for a finite-type morphism, a flat local homomorphism essentially
of finite type (A,m)→ (B, n) is l.c.i. (resp. regular) if and only if the closed
fiber B/mB is a complete intersection (resp. geometrically regular).

7.2 Theorem. Let y be a point of X, and Y the integral closed subscheme
of X whose generic point is y. Let η be the generic point of an irreducible
component of Y ∗. Then there are a noetherian local ring A and flat l.c.i. local
homomorphisms essentially of finite type ϕ : OX,y → A and ψ : OX,η → A,
such that dimA = dimOX,y and that A⊗OX,η Lη ∼= A⊗OX,y Ly for any quasi-
coherent (G,OX)-module L of X. If, moreover, p2 : G×X → X is smooth,
then ϕ and ψ can be taken to be regular.

Proof. The action a : G × Y → Y ∗ is dominating, so there is a point z ∈
G × Y such that a(z) = η. Let ζ be the generic point of an irreducible
component of G × Y containing z. Then a(ζ) is a generalization of η, and
hence a(ζ) = η by the choice of η. Since the second projection p2 : G ×
Y → Y is flat, p2(ζ) = y. Set A := OG×X,ζ . Let ϕ : OX,y → A and
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ψ : OX,η → A be the homomorphisms induced by p2 : G × X → X and
a : G×X → X, respectively. As p2 and a are finite-type flat local complete
intersection morphisms [12, (31.14)], ϕ and ψ are essentially of finite type flat
homomorphisms with complete intersection fibers. As ζ is the generic point
of a component of p−1

2 (y), it is easy to see that dimA = dimOX,y. Moreover,

A⊗OX,η Lη ∼= (a∗L)ζ ∼= (p∗2L)ζ ∼= A⊗OX,y Ly.

The last assertion is trivial.

7.3 Corollary. Let S = Spec k, with k a perfect field, and let G be of finite
type over S. Let y, Y , and η be as in the theorem. Then there exist A, ϕ
and ψ as in the theorem such that ϕ and ψ are regular.

Proof. Replacing G by Gred if necessary, we may assume that G is k-smooth.
The assertion follows immediately by the theorem.

7.4 Corollary. Let y and η be as in the theorem. Then dimOX,y ≥ dimOX,η.
Proof. dimOX,y = dimA ≥ dimOX,η.
7.5 Corollary. Let Y be as in the theorem, and η1 and η2 be the generic
points of irreducible components of Y ∗. Then dimOX,η1 = dimOX,η2. There
are a noetherian local ring A such that dimA = dimOX,η1 and flat l.c.i. local
homomorphisms ϕi : OX,ηi → A essentially of finite type such that for any
quasi-coherent (G,OX)-module L, A⊗OX,η1 Lη1

∼= A⊗OX,η2 Lη2. If, moreover,
p2 : G×X → X is smooth, or S = Spec k with k a perfect field and G is of
finite type over S, then ϕi can be taken to be regular.

Proof. Let p be the defining ideal of Y . Let qi be the defining ideal of
Zi, where Zi is the closed integral subscheme of X whose generic point is
ηi, for i = 1, 2. By Corollary 6.13, q∗i ∈ MinG(OX/p∗) = {p∗}. Apply-
ing Corollary 7.4 to y = η1 and η = η2, dimOX,η1 ≥ dimOX,η2 . Similarly,
dimOX,η2 ≥ dimOX,η1 , and hence dimOX,η1 = dimOX,η2 . The other asser-
tions are clear by Theorem 7.2.

7.6 Corollary. Let C and D be classes of noetherian local rings, and P(A,M)
a property of a finite module M over a noetherian local ring A. Assume that:

(i) If A ∈ C, M a finite A-module with P(A,M), and A → B a flat l.c.i.
(resp. regular) local homomorphism essentially of finite type, then B ∈
D and P(B,B ⊗AM) holds.
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(ii) If A → B is a flat l.c.i. (resp. regular) local homomorphism essentially
of finite type of noetherian local rings, M is a finite A-module, and if
B ∈ D and P(B,B ⊗AM) holds, then A ∈ D and P(A,M) holds.

If OX,η ∈ C and P(OX,η,Mη) holds (resp. P(OX,η,Mη) holds and either
p2 : G × X → X is smooth, or S = Spec k with k a perfect field and G is
of finite type over S), then OX,y ∈ D and P(OX,y,My) holds. Conversely,
if OX,y ∈ C and P(OX,y,My) holds (resp. P(OX,y,My) holds and either
p2 : G×X → X is smooth, or S = Spec k with k a perfect field and G is of
finite type over S), then OX,η ∈ D and P(OX,η,Mη) holds.

Proof. Because of ψ : OX,η → A, A ∈ D and P(A,A⊗OX,ηMη) holds, by the
condition (i). Since A⊗OX,ηMη

∼= A⊗OX,yMy and we have ϕ : OX,y → A,
OX,y ∈ D and P(OX,y,My) by the condition (ii).

The proof of the converse is similar.

7.7 Corollary. Let y and η be as in the theorem, and m, n, and g be non-
negative integers or ∞. Then

(i) If Mη is maximal Cohen–Macaulay (resp. of finite injecctive dimension,
projective dimension m, dim− depth = n, torsionless, reflexive, G-
dimension g, zero) as an OX,η-module if and only if My is so as an
OX,y-module.

(ii) If OX,η is a complete intersection, then so is OX,y.
(iii) Assume that p2 : G×X → X is smooth, or S = Spec k with k a perfect

field and G is of finite type over S. If OX,η is regular, then so is OX,y.
(iv) Assume that p2 : G × X → X is smooth, or S = Spec k with k a

perfect field and G is of finite type over S. Let p be a prime number,
and assume that OX,η is excellent. If OX,η is weakly F -regular (resp.
F -regular, F -rational) of characteristic p, then so is OX,y. If OX,y is
excellent and weakly F -regular of characteristic p, then OX,η is weakly
F -regular of characteristic p.

Proof. (i) Let C = D be the class of all noetherian local rings, and P(A,M)
be the property “M is a maximal Cohen–Macaulay A-module” in Corol-
lary 7.6. The assertion follows immediately by Corollary 7.6. Similarly for
other properties.
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(ii) Let C = D be the class of complete intersection noetherian local rings,
and P(A,M) be “always true.”

(iii) Let C = D be the class of regular local rings.
(iv) Let C be the class of excellent weakly F -regular local rings of charac-

teristic p, and D be the class of weakly F -regular local rings of characteristic
p. By [14], (i) and (ii) of Corollary 7.6 holds. Similarly for F -regularity, see
[14]. For F -rationality, see [26].

7.8 Corollary. Let Y be a G-primary closed subscheme of X. Let η1 and η2

be the generic points of irreducible components of Y . Let d, δ, m, and g be
nonnegative integers or ∞.

(i) Mη1 is maximal Cohen–Macaulay (resp. of finite injective dimension,
dimension d, depth δ, projective dimension m, torsionless, reflexive,
G-dimension g, zero) as an OX,η1-module if and only if the same is
true of Mη2 as an OX,η2-module.

(ii) OX,η1 is a complete intersection if and only if OX,η2 is so.

(iii) Assume that p2 : G×X → X is smooth, or S = Spec k with k a perfect
field and G is of finite type over S. Then OX,η1 is regular if and only if
OX,η2 is so. Assume further that X is locally excellent (that is, the all
local rings of X are excellent). Then OX,η1 is of characteristic p and
weakly F -regular (resp. F -regular, F -rational) if and only if OX,η2 is
so.

Proof. Follows immediately from Corollary 7.5.

(7.9) Let Y = V (Q) be as in the corollary. Then we say thatM is maximal
Cohen–Macaulay (resp. of finite injective dimension, dimension d, depth δ,
projective dimension m, torsionless, reflexive, G-dimension g) along Y (or
at Q) if Mη is so for the generic point η of some (or equivalently, any)
irreducible component of Y . We say that X is complete intersection along
Y (or at Q) if OX,η is a complete intersection for some (or equivalently, any)
η. Assume that p2 : G×X → X is smooth, or S = Spec k with k a perfect
field and G is of finite type over S. We say that X is regular along Y (or at
Q) if OX,η is a regular local ring for some (or equivalently, any) η. Assume
further that X is a locally excellent Fp-scheme. We say that X is weakly
F -regular (resp. F -regular, F -rational) along Y (or at Q) if OX,η is so for
some (or equivalently, any) η.
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7.10 Corollary. Let p be a prime number, and A a Zn-graded noetherian
ring. Let P be a prime ideal of A, and P ∗ be the prime ideal of A generated
by the homogeneous elements of P . If AP ∗ is excellent of characteristic p
and is weakly F -regular (resp. F -regular, F -rational), then AP is weakly F -
regular (resp. F -regular, F -rational). If AP is excellent of characteristic p
and is weakly F -regular, then AP ∗ is weakly F -regular.

Proof. Let S = SpecZ, G = Gn
m, and X = SpecA. If y = P , then η in the

theorem is P ∗. The assertion follows immediately by Corollary 7.7.

7.11 Corollary (Cf. [15, (4.7)]). Let A be a Zn-graded locally excellent
ring of characteristic p. If Am is F -regular (resp. F -rational) for any graded
maximal ideals (that is, G-maximal ideal for G = Gn

m), then A is F -regular
(resp. F -rational).

Proof. If Q is a graded prime ideal, then it is contained in a graded maximal
ideal. So AQ is F -regular (resp. F -rational, see [14, (4.2)]).

Now consider any prime ideal p of A. Then Ap∗ is F -regular (resp. F -
rational), since p∗ is a graded prime ideal. Hence Ap is so by Corollary 7.10.
So A is F -regular (resp. F -rational).

7.12 Remark. Let k be an (F -finite) field of characteristic p, and A =⊕
n≥0 An, A0 = k, a positively graded finitely generated k-algebra. Set

m :=
⊕

n>0 An. Lyubeznik and Smith [18] proved that if Am is weakly F -
regular, then A is (strongly) F -regular.

7.13 Corollary. Let A =
⊕

n≥0 An be an N-graded locally excellent noethe-
rian ring of characteristic p. Let t ∈ A+ :=

⊕
n>0 An be a nonzerodivisor of

A. If A/tA is F -rational, then A is F -rational.

Proof. Note that A/tA is Cohen–Macaulay [26, Proposition 0.10]. By Corol-
lary 7.11, it suffices to show that Am is F -rational for any graded maximal
ideal (i.e., G-maximal ideal for G = Gn

m). It is easy to see that m = m0 +A+.
Hence t ∈ m. Since Am/tAm is Cohen–Macaulay F -rational, Am is also F -
rational by [14, (4.2)].

7.14 Corollary. Let A be a ring of characteristic p, and (Fn)n≥0 a filtration
of A. That is, F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ A, 1 ∈ F0, FiFj ⊂ Fi+j, and

⋃
n≥0 Fn =

A. Set R =
⊕

n≥0 Fnt
n ⊂ A[t], and G = R/tR. If G is (locally) excellent

noetherian and F -rational, then A is also (locally) excellent noetherian and
F -rational.
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Proof. There exist homogeneous elements a1t
n1 , · · · , artnr of R such that

their images in G generate the ideal G+, the irrelevant ideal of G. Then R+

is generated by t, a1t
n1 , . . . , art

nr . Since F0
∼= G/G+, F0 is (locally) excellent

noetherian. Since R is generated by t, a1t
n1 , . . . , art

nr as an F0-algebra, R is
also (locally) excellent noetherian. Then by Corollary 7.13, R is F -rational.
Hence R[t−1] ∼= A[t, t−1] is (locally) excellent and F -rational. Hence A is
(locally) excellent and F -rational.
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