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Abstract

Using the description of the F-limit of modules over (the comple-
tion of) the ring of invariants under a linear action of a finite group
on a polynomial ring over an algebraically closed field of characteris-
tic p > 0 developed by Symonds and the author, we give a charac-
terization of the ring of invariants have a positive dual F-signature.
Combining the result and Kemper’s result on depths of the ring of in-
variants under an action of a permutation group, we give an example
of an F-rational, but non F-regular ring of invariants under the action
of a finite group.

1. Introduction

Let k be an algebraically closed field of characteristic p > 0. Let V = k%, and
G a finite subgroup of GL(V') without psuedo-reflections. Let B = SymV/,
the symmetric algebra of V, and A = B“. Broer [Bro| proved that if p
divides the order |G| of G, then A is not a direct summand subring of B
hence A is not weakly F-regular (as A is not a splinter). In this paper, we
study when A is F-rational.
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Sannai [San] defined the dual F-signature s(M) of a finite module M
over an F-finite local ring R of characteristic p. He proved that R is F-
rational if and only if R is Cohen-Macaulay and the dual F-signature s(wg)
of the canonical module wgr of R is positive. Utilizing the description of
the F-limit of modules over A (the completion of A) by Symonds and the
author, we give a characterization of V' such that s(w4) > 0, see Theorem 4.4.
The characterization is purely representation theoretic in the sense that the
characterization depends only on the structure of B as a G-module, rather
than a G-algebra.

Using the characterization and Kemper’s result on the depth of the ring of
invariants under the action of certain groups of permutations [Kem, (3.3)],
we give an example of F-rational A for p > 5. We also give an example
of Gorenstein and non-F-rational A for p > 3. We also get an example
of A such that the dual F-signature s,  of the canonical module of the

completion Ais positive, but A (or equivalently, fl) is not Cohen—Macaulay.
See Theorem 5.12.

In section 2, we introduce the invariant asny (M) for two finitely generated
modules M and N (N # 0) over a Noetherian ring R. In section 3, using the
definition and some basic results developed in section 2, we prove the formula
s(M) = asnp (FL([M])), where FL denotes the F-limit defined in [HS]. Thus
s(M) depends only on FL([M]). Using this, we give a characterization of a
module M to have positive s(M) in terms of FL([M]) (Corollary 3.5).

Using this result and the description of the F-limits of certain modules
over A proved in [HS], we give a characterization of V' such that s(w;) > 0
in section 4.

In section 5, we give the examples.

Acknowledgments. The author is grateful to Professor Anurag Singh and
Professor Kei-ichi Watanabe for valuable discussion.

2. Asymptotic surjective number

(2.1) This paper heavily depends on [HS].

(2.2) Let R be a Noetherian commutative ring. Let mod R denote the
category of finite R-modules.



(2.3) For M,N € mod R, we set

surjR (M) = surjy (M) =
sup{n € Zso | There is a surjective R-linear map M — N®"},

and call surjy (M) the surjective number of M with respect to N. If N =0,
this is understood to be oco.

Lemma 2.4. Let M, M', N € mod R. Then we have the following.

1 If R’ is any Noetherian R-algebra, then

surj (M) < surjg(gRN(R' ®r M).

2 If (R,m) is local and N # 0, then surjk (M) < pur(M)/ur(N), where
pur = Lr(R/m®g?) denotes the number of generators.

3 If N #0, then surjy(M) < oo, and is a non-negative integer.
4 If N #0, then surjy (M) + surjy(M') < surjy(M & M').
5 If N#0 and r > 0, then rsurjy (M) < surjy (M).

Proof. 1 If there is a surjective R-linear map M — N®" then there is a sur-
jective R'-linear map R'@rM — (R'®rN)®", and hence n < surjg@RN(R’@R
2 By 1, surjh(M) < surj%:lN(M/mM) < ur(M)/ur(N) by dimension
counting.
3 Take m € suppp N. Then

surjy (M) < surjy (M) < piy, (Min) /11, (Nim) < 00,

4 Let n = surjy(M) and n' = surjy(M’). Then there are surjective R-
linear maps M — N®* and M’ — N®". Summing them, we get a surjective
map M & M' — N&O+),

5 follows from 4. O



(2.5) Let N, M € mod R. Assume that N is nonzero. We define
: L. or
nsurjy(M;r) = . surjy (M®")

for r > 1.
Lemma 2.6. Letr > 1, and M, M’', N € mod R. Assume that N # 0. Then

1 nsurjy(M;1) = surjy(M).

(M
2 nsurjy(M;kr) > nsurjy(M;r) for k> 0.
3 nsurjy(M;r) > surjy (M) > 0.
4 nsurjy(M;r) + nsurjy (M';r) < nsurjy (M & M';r).

5 If R — R’ is a homomorphism of Noetherian rings, then nsurjy(M;r) <
NSUT) prgy v (R @r M7).

6 If (R, m) is local, nsurjy(M;r) < ur(M)/ur(N). In general, nsurjy (M; 1)
s bounded.

Proof. 1 is by definition.

2. krusurjy(M;kr) = surjy (M) > ksurjy(M®) by Lemma 2.4, 5.
Dividing by kr, we get the desired inequality.

3. This is immediate by 1 and 2.

4 follows from Lemma 2.4, 4.

5 follows from Lemma 2.4, 1.

6 The first assertion is by Lemma 2.4, 2. The second assertion follows
from the first assertion and 5 applied to R — R’ = R,, where m is any
element of suppyp N. O

Lemma 2.7. Let M, N € mod R. Assume that N # 0. Then the limit

1
lim nsurjy(M;7) = lim ~ surjy (M)

r—00 r—oo T

exists.

We call the limit the asymptotic surjective number of M with respect to
N, and denote it by asny(M).



Proof. As nsurjy(M;r) is bounded, S = limsup,_, . nsurjy(M;r) and [ =
lim inf,_,  nsurj, (M;r) exist. Assume for contradiction that the limt does
not exist. Then S > I. Set e = (S —1)/2 > 0.

There exists some rq > 1 such that nsurjy(M;rg) > S — /2. Take
no > 1 sufficiently large so that nsurjy (M;ry)/ne < /2. Let r > rong, and
set n:= [r/ro]. Note that nro <r < (n+ 1)ro and n > ny.

Then

nsurjy (M;r) >

surj (M) > surj (M)

1
(n+ 1)rg (n+ 1)ro

1
=(1- +1)nsuer(M;r0) > nsurjy(M;rg) —e/2 > 5 —e.
n

Hence
I'> inf nsurjy(M;r)>S—e>8—2 =1,

r>rono
and this is a contradiction. ]
Lemma 2.8. Let M, M',N € mod R, and N # 0. Then

1 asny(M®") =rasny(M).

2 0 <surjy(M) < nsurjy(M;r) < asny(M) for any r > 1.

3 asny(M) + asny(M') < asny(M & M').

Proof. 1.

1
r~tasny (M®7) = lim — surjy (M®™) = asny (M).

r—oo 7/
2. 0 < surjy(M)
surjy (M) < asny(M
ing by r, nsurjy(M;r)

nsurjy(M;r) is Lemma 2.6, 3. So taking the limit,
So surjy (M%) < aan(M@T) = rasny(M). Divid-
< asny(M). O

<
)-

Lemma 2.9. Let k be a field, and V a k-vector space, and n > 0. Assume
that dim, V' < n. Let T be a set of subspaces of V' such that ) ;..U = V.
Then there exist some Uy, ..., Uy € I' withn’ <n such that Uy +---+ U,y =
V.

Proof. Trivial. m



Lemma 2.10. Let k be a field, V' a k-vector space, and ' a set of subspaces
of V.. Let W and W' be subspaces of V' such that W +W' =V . Assume that
W' C Y yer U, If dim, W' < n, then there exist some Uy, ..., Uy € I' with
n' <n such that W+ Uy +---+ U,y =V.

Proof. Apply Lemma 2.9 to the vector space V/W. [

Lemma 2.11. Let (R, m) be a Noetherian local ring. Let M, M’ N € mod R
with N # 0. Then

surjy (M') < surjy (M & M') — surjy (M) < pr(M').

Proof. The first inequality is Lemma 2.4, 4. We prove the second inequality.
Let m = surjy(M @& M') and n = pgr(M’). There is a surjective map ¢ :
M ® M — N®" TLet N; = N be the ith summand of N®". Let ? denote
the functor R/m. Set V = N W = @(M), and W’ = @(M’). Then by
Lemma 2.10, there exists some index set [ C {1,2,...,m} such that #1 <n
and W + >, ., N; = V. By Nakayama’s lemma, o(M) + >, N; = N™.
This shows that

M — M@ M 5 N — N/ " N; = Nom=#D)

i€l
is surjective. Hence surjy (M) > m—#1 > m—n, and the result follows. [

(2.12) Let (R,m) be a Henselian local ring. Let C := mod R. As in [HS],
we define

Cl=(EP2Z M)/(M— M — M, | M =M & M),

MeC

and [C]lg := R®z [C]. In [HS], [C]r is also written as ©"(R) or O(R) (con-
sidering that R is trivially graded). In this paper, we write it as ©(R). For
M € C, we denote by [M] the class of M in O(R). For an isomorphism
class N of modules, [N] is a well-defined element of O(R). Let Ind(R) de-
note the set of isomorphism classes of indecomposable modules in C. The set
[Ind(R)] := {[M] | M € Ind(R)} is an R-basis of O(R) = [C]g. So o € O(R)
can be written o =y cy,q(p) cu[M] with ¢y € R uniquely. We say that
a > 0if ¢py > 0 for any M € Ind(R). For o, 8 € O(R), we define o > g if
«a — 3 > 0. This gives an ordering on O(R).



(2.13) For a =3 ) /cpar) cm[M] € O(R), we define

()= > max(0, |ea|)[M].

MeInd(R)

So there exists some M, € C, unique up to isomorphisms, such that () =
[M,]. For N € mod R with N # 0, we define surjy a to be surjy M,.

(2.14) For a = } )\ cram cvM € O(R), we define suppa = {M €
Ind(R) | cpr > 0}. We define Y (@) = Dyequppa W and v(a) := pr(Y ().

Lemma 2.15. Let N € mod R, N #0, and o, € O(R).
1 Ifa,5 >0, then 0 < surjy a < surjy(a+ 5) —surjy 5.
2 Jsurjy o — suriy B < [la — B + v(inf{a, 8)).

Proof. 1. As a, f > 0, we have that (a) + () < (o + ). So by Lemma 2.4,
4, surjy a + surjy S < surjy((a + B)) < surjy(a+ 5).

2. Replacing « by sup{a, 0} and 8 by sup{3,0}, we may assume that
a, 3 > 0. Moreover, replacing o by sup{«, 5} and § by inf{«, 5}, we may
assume that o > . As we have (o) — (8) < a— 8+ [Y(§)], by Lemma 2.11
we have that

sutjy a — surjy 0 < [[{e) = (B)]| < [la = B+ [V (B)]l]
<l =B+ Y BN = llee = Bl + v(8)-

This is what we wanted to prove. O

Lemma 2.16. The limit
tlgilo n surjy (ta)
exists for N € mod R, N # 0 and o € O(R).
We denote the limit by asny(a).

Proof. Replacing « by sup{0, a}, we may assume that o > 0. Let ¢ > 0
We can take W € mod R and an integer n > 0 such that a — n= W] > 0
and |la —n7HW]|| < ¢/8. As asny W exists, there exists some 19 > 1
such that for any r > rg, |nsurjy(W;r) —asny W| < ne/8. Set R :=



max{ron, 16ur(W)/e,8nlla||/e}. Let t > R. Let r := [t/n]. Then 0 <
t—rn <nandr >ry. We have
[t~ surjy(ta) — n~tasny W| < ¢ Hsurjy (ta) — surjy (W)
+ ((rn) ™t — Y surjy (W) + |(rn) " surjy (W) — n~tasny W|
<t Hta — W]+t ur(W) + (rt) L ur(W) +£/8
< (n/t)|al| + (nr/t)||a — n  [W]|| + /16 + /16 + /8
<e/8+4¢/8+¢/16+¢/16+¢/8 =¢/2.
So for t1,ty > R,
|t surjy (o) — 85 ' surjy (taa)| <,
and limy_,o, £~ ! surjy(ta) exists, as desired. O
Lemma 2.17. Let o, f € O(R) and N € mod R with N # 0.
1 For k >0, we have asny(ka) = kasny(a).
2 Fork >0, 0 <surjy(ka) < kasny(a) < klja|/ur(N).
3 If o, >0, then asny(a+ ) > asny(a) + asnn ().
4 fasny(a) — asny(8)] < la— B
5 asny 1S continuous.

Proof. 1. If k = 0, then both-hand sides are zero, and the assertion is clear.
So we may assume that & > 0. Then

1 1
asny (ka) = tli)l& i surj(tka) = k:tlgg) " surj(tka) = kasny(«).

2. We may assume that £ > 0. By 1, replacing ka by «, we may
assume that k& = 1. Replacing a by sup{0, a}, we may assume that o > 0.
For n > 0, n{a) < (na). Hence, nsurjy(a) < surjy(n{a)) < surjy(na).
So surjy(a) < n~tsurjy(na). Passing to the limit, surjy(a) < asny(a).
Similarly,
< na|l _ Alnefl _ o]
~ npr(N) T npr(N) o pr(N)

- L ) -
Passing to the limit, asny(a) < iy as desired.

L.
- surj ~y(na)

8



3. By Lemma 2.15, 1, for t > 0,

%suer(toz) + %suer(tﬂ) < %suer(t(oz + 5)).

Passing to the limit, asny () + asny(5) < asny(a + ).
4. By Lemma 2.15, 2,

(It(e = B)| + v(inf{ter, 15}))
= [l = Bl + v(inf{a, 5})/2.

Passing to the limit, |asny () — asny(8)| < ||a — B|, as desired.
5 is an immediate consequence of 4. O

| =

| r .
‘; surjy (ta) — n surjy (158)] <

3. Sannai’s dual F-signature

(3.1) In this section, let p be a prime number, and (R, m, k) be an F-
finite local ring of characteristic p of dimension d. Let 0 = log, [k : k"], and
d=d+0.

(3.2) In [San], for M € mod R, Sannai defined the dual F-signature of M
by
surj,, (°M)

sr(M) = s(M) := limsup 5
p &

e—00

s(R) is the (usual) F-signature [HL], which is closely related to the strong
F-regularity of R [AL]. While s(wg) measures the F-rationality of R, pro-
vided R is Cohen—-Macaulay.

Theorem 3.3 ([San, (3.16)]). R is F-rational if and only if R is Cohen—
Macaulay and s(wg) > 0.

Now we connect the F-limit defined in [HS] with dual F-signature.

Theorem 3.4. Let R be Henselian, and M € mod R. Assume that the
F-limit )
FL([M]) = lim —[*M] € ©(R)

e—»00 pée
(see [HS]) exists. Then
i (CM
sp(M) = lim % = asny (FL([M))).
e—00



Proof. By Lemma 2.15,

™ [surjy (p™° FL([M])) — suxjy, ([*M]))]
< [FL([M]) = p~*["M]|| + p~**v(supp(FL([M]))).

Taking the limit e — oo, we get the desired result. O

Corollary 3.5. Let the assumption be as in the theorem. Then the following
are equivalent.

1 s(M)>0.

2 For any N € mod R such that supp([N]) = supp(FL(M)), there exists
some r > 1 and a surjective R-linear map N®" — M.

3 There exist some N € mod R such that supp([N]) C supp(FL(M)) and
a surjective R-linear map N — M.

Proof. 1=2. As asny(FL(M)) > 0, there exists some ¢ > 0 such that
surj, (¢t FL(M)) > 0. By the choice of N, there exists some r > 1 such that
r[N] > t FL(M) and so surj,; N¥" > surj,,(t FL(M)) > 0.

2=3. Let N =W, & --- & W,, where {Wy,..., W, } = supp(FL(M)).
Then there exists some r > 1 and a surjective R-linear map N%" — M, and
supp[N®"] C supp(FL(M)).

3=1. By the choice of N, there exists some k > 0 such that k FL(M) >
[N]. Then s(M) = asny (FL(M)) > k™ asny [N] > k=t surj,, [N] > 0. O

4. The dual F-signature of the ring of invariants

Utilizing the result in [HS] and the last section, we give a criterion for the
condition s(wy4) > 0 for the ring of invariants A, where A is the completion.

(4.1) Let k be an algebraically closed field, V = k¢, G a finite subgroup of
GL(V). In this section, we assume that G does not have a pseudo-reflection,
where we say that ¢ € GL(V) is a pseudo-reflection if rank(g — 1y) = 1.
Let vy,...,v4 be a fixed k-basis of V. Let B := SymV = k[vy,...,v,4], and
A = BY. Let m and n be the irrelevant ideals of A and B, respectively. Let
A and B be the completion of A and B, respectively.

For a G-module W, we define My, := (B®, W)%. Let k =V, Vi,...,V,
be the irreducible representations of GG. Let P, — V; be the projective cover.

10



Set M; := Mp, = (B ®;, P,)¢. For a finite dimensional G-module W, dety,
denote the determinant representation /\dlmWW of W. Let V, = dety be
the determinant representation of V.

Lemma 4.2. The canonical module wa of A is isomorphic to M, = Mget,, -
Proof. See [Has2, (14.28)] and references therein. O

Lemma 4.3. Let A be a selfinjective finite dimensional k-algebra, L a simple
(left) A-module, and h : P — L its projective cover. Let M be a finitely
generated indecomposable A-module. Then the following are equivalent.

1 Ext)(M,rad P) = 0.
2 h, : Homy (M, P) — Homy (M, L) is surjective.
3 M is either projective, or M /rad M does not contain L.

Proof. 1<2. This is because
Homy (M, P) 2 Homy (M, L) — Ext (M, rad P) — Extl (M, P)

is exact and Ext} (M, P) = 0 (since P is injective).

2=3. Assume the contrary. Then as M/rad M contains L, there is a
surjective map M — L. By assumption, this map lifts to M — P, and this
is surjective by Nakayama’s lemma. As P is projective, this map splits. As
M is indecomposable, M = P, and this is a contradiction.

3=2. If M is projective, then h, is obviously surjective. If M/rad M
does not contain L, then Homy (M, L) = 0, and h, is obviously surjective. [

Theorem 4.4. Let p divide the order |G| of G. Then the following are
equivalent.

1 s(wy) > 0.
2 The canonical map M, — My, = wa 1S surjective.
3 HY(G,B®,rad P,) = 0.

4 For any non-projective finitely generated indecomposable G-summand
M of B, M does not contain det;l, the k-dual of dety, .

If these conditions hold, then s(wj;) > 1/|Gl.

11



Proof. We prove the equivalence of 2 and 3 first. Let B = @ i Nj be a
decomposition into finitely generated indecomposable G-modules. Such a
decomposition exists, since B is a direct sum of finitely generated G-modules.
The map M, — My, in 2 is the map

(B® P,)¢ — (B ® dety)“

Y

induced by the projective cover P, — dety . By the isomorphism Ext (N 57)
H'(G, N;®7), this map can be identified with the sum of

Homg(N;, Pl,) — HOIIlg(N;, detv).

On the other hand, 3 is equivalent to say that Exté(N +,rad P,) =0 for any
J. So the equivalence 2<-3 follows from Lemma 4.3.

Similarly, 4 is equivalent to say that each N} is injective (or equivalently,
projective, as kG is selfinjective) or N7 /rad Ni = (soc N;)* does not contain
dety. This is equivalent to say that N; is either projective, or N; (or equiv-
alently, soc N;) does not contain det™". So 4<>2 follows from Lemma 4.3.

We prove 2=1. As there is a surjective map M, — w4 and

FL(wy]) = ﬁ S (dim Vi) (4

by [HS, (5.1)], s(wj;) > 0 by Corollary 3.5. Moreover,

dim V,, ~ 1 ) 1

s(wy) = asnwA(FL([wA])) > Il asnwA(M,,) >

and the last assertion has been proved.
We prove 1=2. By [HS, (4.16)],

1

FL([w4]) = @[

Bl.

So by Corollary 3.5, there is some r > 0 and a surjective map h : B" — Wi
By the equivalence v = (B® ;7)™ : Ref(A) — Ref(G, B) (see [HasN, (2.4)]
and [HS, (5.4)]), there corresponds

h=~(h): (B ® kG)" — B ®y det.

12



As BRykG is a projective object in the category of (G, B)-modules, h factors
through the surjection ) )
B ®, P, — B ®, det.

Returning to the category Ref A, h factors through M, = (B ®4iP,)¢ = wj.
So this map must be surjective, and 2 follows. n

Corollary 4.5. Assume that p divides |G|. If s(wy) > 0, then det;' is not
a direct summand of B.

Proof. Being a one-dimensional representation, det‘_/1 is not projective by
assumption. Thus the result follows from 1=-4 of the theorem. O

Lemma 4.6. Let M and N be in Ref(G, B). There is a natural isomorphism
v : Hom, (MY, N) — Homp(M, N)°.

Proof. This is simply because v = (B®47)** : Ref(A) — Ref(G, B) is an
equivalence, and Hompg (M, N)¢ = Homg (M, N). O

Theorem 4.7. A is F-rational if and only if the following three conditions
hold.

1 A is Cohen—Macaulay.
2 HY(G,B) =0.

3 (B®y (I1/k))¢ is a mazimal Cohen—Macaulay A-module, where I is the
injective hull of k.

Proof. 1f the order |G| of G is not divisible by p, then A is F-rational, and
the three conditions hold. So we may assume that |G| is divisible by p.

Assume that A is F-rational. Then A is Cohen-Macaulay. As s(w;) > 0,
we have that H!(G, B ® rad P,) = 0, and

(1) 0= (B®radP,)¢ - (B® P,)¢ = (B®dety)? = 0

is exact. As M, = (B® P,)% is a direct summand of B = My = (B®kG)Y,
it is a maximal Cohen—Macaulay module. As (B ® det)¥ = wy, it is also
a maximal Cohen-Macaulay module. So the canonical dual of the exact
sequence (1) is still exact. As there is an identification

HomA((B®k?)G,wA) = HOIHB(B®k?, B Rk detv)G = (B®k7* Rk detv)G,

13



we get the exact sequence of maximal Cohen—Macaulay A-modules
(2) 0— A— (B® P ®pdety)® = (B®y, (rad P,)* @y, dety)¥ — 0.

As (rad P,)*®dety = I /k, (B®(I/k))¢ is maximal Cohen—Macaulay. As [ is
an injective G-module, B®,I is so as a G-module, and hence H' (G, B 1) =
0. By the long exact sequence of the G-cohomology, we get H'(G, B) = 0.

The converse is similar. Dualizing (2), we have that (1) is exact. O
Corollary 4.8. If A is F-rational, then H (G, k) = 0.
Proof. k is a direct summand of B, and H'(G, B) = 0. O

Example 4.9. If p = 2 and G = 5 or S3, the symmetric groups, then
H'(G,k) # 0. So A is not F-rational, provided G does not have a pseudo-
reflection.

5. An example of F-rational ring of invariants which are not F-
regular

(5.1) Let p be an odd prime number, and k an algebraically closed field of
characteristic p.

(5.2) Let us identify Map(FF,, F,)* with the symmetric group S,. We write
F, ={0,1,...,p—1}. Define

G = {p€S,|JacF; IeF,VreF, ¢(r) =ar+b} C Sy

Q = {peQ|IeF,VzeF, p(x)=x+b} CG;

[ = {¢eS,|JacF; VoeF,¢(x)=ar} CG.
G is a subgroup of S, () is a normal subgroup of G, and I' is a subgroup of

G such that G = @ x I'. Note that @) is cyclic of order p. I' is cyclic of order
p— 1. So G is of order p(p — 1).

(5.3) Let a be a primitive element of [F, (that is, a generator of the cyclic
group F), and let 7 € I' be the element given by 7(z) = ax. The only
involution of I' is 7(®~1/2 the multiplication by —1. As a permutation, it is

QTp-1))2@p-2) - (p-1)/2(@+1)/2),
which is a transposition if and only if p = 3. As I' contains a Sylow 2-
subgroup, a transposition of G, if any, is conjugate to an element of ', and
it must be a transposition again. It follows that GG has a transposition if and
only if p = 3.
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(5.4) Now let G C S, act on P = k? = (wp,wy,...,w,_1) by the permu-
tation action, that is, ¢pw; = we; for ¢ € G and i € F,. g € G C GL(P)
is a pseudo-reflection if and only if it is a transposition. So G has a pseudo-
reflection if and only if p = 3.

Let r > 1, and set V = P®". G C GL(V) has a pseudo-reflection if and
only if p=3 and r = 1.

(5.5) Let S =SymP.

Lemma 5.6. Let M be any finitely generated non-projective indecomposable
G-summand of S. Then M = k.

Proof. Let @ = {w* = w)® - w1 | A= (Ao, .., Ap1) € Z2} be the set
of monomials of S. G acts on the set ). Let © be the set of orbits of this
action of G on €. Let Gu* € ©.

IfX=(r,r,...,r)forsomer > 0, then Guw* = {w*}, and hence (kG)w* =
k.

Otherwise, @ does not have a fixed point on the action on Guw?. As the
order of Q is p, @ acts freely on Guw?*. Hence (kG)w” is kQ-free.

Since the order of G/Q) = I"is p—1, the Lyndon—Hochschild-Serre spectral
sequence collapses, and we have H (G, M) = HY(Q, M)" for any G-module
M. So a Q-injective (or equivalently, Q-projective) G-module is G-injective
(or equivalently, G-projective).

As we have S = @, g kb as a G-module, S is a direct sum of G-projective

modules and copies of k. Using Krull-Schmidt theorem, it is easy to see that
M = k. O

Lemma 5.7. Let U and W be G-modules.

1 kG @ W =2 kG @, W', where W' is the k-vector space W with the
trivial G-action.

2 If U is G-projective, then U @ W is G-projective.

Proof. 1. g @ w — g ® g~ 'w gives such an isomorphism.
2 follows from 1. O]

(5.8) Let B:=SymV = Sym P = 5%,

Lemma 5.9. Let M be any finitely generated non-projective indecomposable
G-summand of B. Then M = k.
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Proof. Follows immediately from Lemma 5.6 and Lemma 5.7. O

Lemma 5.10. Let k_ denote the sign representation. Then dety = k_ if r
1s odd, and dety = k if r is even. k_ is not isomorphic to k.

Proof. As the determinant of a sign matrix is the signature of the permuta-
tion, detp = k_. Hence dety = (detp)®” = (k_)®", and we get the desired
result. The last assertion is clear, since 7 = (z — ax) € I' is a cyclic
permutation of order p — 1, and is an odd permutation. O

Theorem 5.11. We have
depth, = min{rp,2(p — 1) + r}.
Hence A is Cohen—Macaulay if and only if r < 2.

Proof. This is an immediate consequence of [Kem, (3.3)]. O

Theorem 5.12. Let p, r, G, P, V = P%", B = SymV be as above, and
A= B%. Then

1 G is a finite subgroup of GL(V') of order p(p — 1).

2 G C GL(V) has a pseudo-reflection if and only if p = 3 and r =
1. If so, G = Ss is the symmetric group acting reqularly on B =
k[wo, wy, ws] by permutations on wy, wy,ws. The ring of invariants A
is the polynomial ring. Otherwise, A is not weakly F-regular.

3 Ifp>5andr =1, then A is F-rational, but not weakly F-reqular.

4 Ifr =2, then A is Gorenstein, but not F-rational.

5 Ifr >3 and r is odd, then s(wy) > 0 but A is not Cohen-Macaulay.
6 Ifr > 4 and even, then A is quasi-Gorenstein, but not Cohen—Macaulay.

Proof. We have already seen 1 and the first statement of 2. If p = 3 and
r =1, then G C S35 has order 6, and G = S3. So A is the polynomial ring
generated by the symmetric polynomials. Otherwise, as G does not have a
pseudo-reflection and the order |G| of G is divisible by p, A is not weakly
F-regular, see [Bro], [Yas], and [HS, (5.8)].
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The only non-projective finitely generated indecomposable G-summand
of B is k by Lemma 5.9, and dety,' C k if and only if r is even by Lemma 5.10.
Hence we have that s(w;) > 0 if and only if r is odd by Theorem 4.4.

3. A is not weakly F-regular by 2. Asr =1is odd, s(wy) > 0. On the
other hand, A is Cohen—Macaulay by Theorem 5.11. Hence A is F-rational
by Theorem 3.3.

4. By Theorem 5.11, A is Cohen—Macaulay. On the other hand, by
Lemma 5.10, dety = k, and hence wy = (B ®; dety)® = BY =~ A by
Lemma 4.2. So A is Gorenstein. As A is Gorenstein but not weakly F-
regular, it is not F-rational by [HH2, (4.7)].

5 and 6 are easy. O
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