F-rationality of the ring of modular invariants

MITSUYASU HASHIMOTO

Okayama University Okayama 700-8530, JAPAN mh@okayama-u.ac.jp

Dedicated to Professor Kei-ichi Watanabe

Abstract

Using the description of the F-limit of modules over (the completion of) the ring of invariants under a linear action of a finite group on a polynomial ring over an algebraically closed field of characteristic p > 0 developed by Symonds and the author, we give a characterization of the ring of invariants have a positive dual F-signature. Combining the result and Kemper's result on depths of the ring of invariants under an action of a permutation group, we give an example of an F-rational, but non F-regular ring of invariants under the action of a finite group.

1. Introduction

Let k be an algebraically closed field of characteristic p > 0. Let $V = k^d$, and G a finite subgroup of GL(V) without psuedo-reflections. Let B = Sym V, the symmetric algebra of V, and $A = B^G$. Broer [Bro] proved that if p divides the order |G| of G, then A is not a direct summand subring of B hence A is not weakly F-regular (as A is not a splinter). In this paper, we study when A is F-rational.

²⁰¹⁰ Mathematics Subject Classification. Primary 13A50, 13A35. Key Words and Phrases. F-rational, F-regular, dual F-signature, F-limit.

Sannai [San] defined the dual F-signature s(M) of a finite module Mover an F-finite local ring R of characteristic p. He proved that R is Frational if and only if R is Cohen–Macaulay and the dual F-signature $s(\omega_R)$ of the canonical module ω_R of R is positive. Utilizing the description of the F-limit of modules over \hat{A} (the completion of A) by Symonds and the author, we give a characterization of V such that $s(\omega_{\hat{A}}) > 0$, see Theorem 4.4. The characterization is purely representation theoretic in the sense that the characterization depends only on the structure of B as a G-module, rather than a G-algebra.

Using the characterization and Kemper's result on the depth of the ring of invariants under the action of certain groups of permutations [Kem, (3.3)], we give an example of F-rational A for $p \geq 5$. We also give an example of Gorenstein and non-F-rational A for $p \geq 3$. We also get an example of A such that the dual F-signature $s_{\omega_{\hat{A}}}$ of the canonical module of the completion \hat{A} is positive, but A (or equivalently, \hat{A}) is not Cohen–Macaulay. See Theorem 5.12.

In section 2, we introduce the invariant $\operatorname{asn}_N(M)$ for two finitely generated modules M and N ($N \neq 0$) over a Noetherian ring R. In section 3, using the definition and some basic results developed in section 2, we prove the formula $s(M) = \operatorname{asn}_M(\operatorname{FL}([M]))$, where FL denotes the F-limit defined in [HS]. Thus s(M) depends only on $\operatorname{FL}([M])$. Using this, we give a characterization of a module M to have positive s(M) in terms of $\operatorname{FL}([M])$ (Corollary 3.5).

Using this result and the description of the *F*-limits of certain modules over \hat{A} proved in [HS], we give a characterization of *V* such that $s(\omega_{\hat{A}}) > 0$ in section 4.

In section 5, we give the examples.

Acknowledgments. The author is grateful to Professor Anurag Singh and Professor Kei-ichi Watanabe for valuable discussion.

2. Asymptotic surjective number

(2.1) This paper heavily depends on [HS].

(2.2) Let R be a Noetherian commutative ring. Let mod R denote the category of finite R-modules.

(2.3) For $M, N \in \text{mod } R$, we set

$$\operatorname{surj}_{N}^{R}(M) = \operatorname{surj}_{N}(M) := \sup\{n \in \mathbb{Z}_{\geq 0} \mid \text{There is a surjective } R \text{-linear map } M \to N^{\oplus n}\},\$$

and call $\operatorname{surj}_N(M)$ the surjective number of M with respect to N. If N = 0, this is understood to be ∞ .

Lemma 2.4. Let $M, M', N \in \text{mod } R$. Then we have the following.

1 If R' is any Noetherian R-algebra, then

$$\operatorname{surj}_{N}^{R}(M) \leq \operatorname{surj}_{R'\otimes_{R}N}^{R'}(R'\otimes_{R}M).$$

- **2** If (R, \mathfrak{m}) is local and $N \neq 0$, then $\operatorname{surj}_N^R(M) \leq \mu_R(M)/\mu_R(N)$, where $\mu_R = \ell_R(R/\mathfrak{m} \otimes_R ?)$ denotes the number of generators.
- **3** If $N \neq 0$, then $\operatorname{surj}_N(M) < \infty$, and is a non-negative integer.
- 4 If $N \neq 0$, then $\operatorname{surj}_N(M) + \operatorname{surj}_N(M') \leq \operatorname{surj}_N(M \oplus M')$.
- 5 If $N \neq 0$ and $r \geq 0$, then $r \operatorname{surj}_N(M) \leq \operatorname{surj}_N(M^{\oplus r})$.

Proof. **1** If there is a surjective *R*-linear map $M \to N^{\oplus n}$, then there is a surjective *R'*-linear map $R' \otimes_R M \to (R' \otimes_R N)^{\oplus n}$, and hence $n \leq \operatorname{surj}_{R' \otimes_R N}^{R'}(R' \otimes_R M)$.

2 By **1**, $\operatorname{surj}_{N}^{R}(M) \leq \operatorname{surj}_{N/\mathfrak{m}N}^{R/\mathfrak{m}}(M/\mathfrak{m}M) \leq \mu_{R}(M)/\mu_{R}(N)$ by dimension counting.

3 Take $\mathfrak{m} \in \operatorname{supp}_R N$. Then

$$\operatorname{surj}_{N}^{R}(M) \leq \operatorname{surj}_{N_{\mathfrak{m}}}^{R_{\mathfrak{m}}}(M_{\mathfrak{m}}) \leq \mu_{R_{\mathfrak{m}}}(M_{\mathfrak{m}})/\mu_{R_{\mathfrak{m}}}(N_{\mathfrak{m}}) < \infty.$$

4 Let $n = \operatorname{surj}_N(M)$ and $n' = \operatorname{surj}_N(M')$. Then there are surjective *R*-linear maps $M \to N^{\oplus n}$ and $M' \to N^{\oplus n'}$. Summing them, we get a surjective map $M \oplus M' \to N^{\oplus (n+n')}$.

5 follows from 4.

(2.5) Let $N, M \in \text{mod } R$. Assume that N is nonzero. We define

$$\operatorname{nsurj}_N(M;r) := \frac{1}{r}\operatorname{surj}_N(M^{\oplus r})$$

for $r \geq 1$.

Lemma 2.6. Let $r \ge 1$, and $M, M', N \in \text{mod } R$. Assume that $N \ne 0$. Then

- 1 $\operatorname{nsurj}_N(M; 1) = \operatorname{surj}_N(M).$
- **2** $\operatorname{nsurj}_N(M; kr) \ge \operatorname{nsurj}_N(M; r)$ for $k \ge 0$.
- **3** $\operatorname{nsurj}_N(M; r) \ge \operatorname{surj}_N(M) \ge 0.$
- 4 $\operatorname{nsurj}_N(M;r) + \operatorname{nsurj}_N(M';r) \le \operatorname{nsurj}_N(M \oplus M';r).$
- 5 If $R \to R'$ is a homomorphism of Noetherian rings, then $\operatorname{nsurj}_{N}(M; r) \leq \operatorname{nsurj}_{R' \otimes_R N}(R' \otimes_R M; r).$
- 6 If (R, \mathfrak{m}) is local, $\operatorname{nsurj}_N(M; r) \leq \mu_R(M)/\mu_R(N)$. In general, $\operatorname{nsurj}_N(M; r)$ is bounded.

Proof. **1** is by definition.

2. $kr \operatorname{nsurj}_N(M; kr) = \operatorname{surj}_N(M^{\oplus kr}) \ge k \operatorname{surj}_N(M^{\oplus r})$ by Lemma 2.4, **5**. Dividing by kr, we get the desired inequality.

3. This is immediate by **1** and **2**.

4 follows from Lemma 2.4, 4.

5 follows from Lemma 2.4, **1**.

6 The first assertion is by Lemma 2.4, **2**. The second assertion follows from the first assertion and **5** applied to $R \to R' = R_{\mathfrak{m}}$, where \mathfrak{m} is any element of $\operatorname{supp}_R N$.

Lemma 2.7. Let $M, N \in \text{mod } R$. Assume that $N \neq 0$. Then the limit

$$\lim_{r \to \infty} \operatorname{nsurj}_N(M; r) = \lim_{r \to \infty} \frac{1}{r} \operatorname{surj}_N(M^{\oplus r})$$

exists.

We call the limit the asymptotic surjective number of M with respect to N, and denote it by $\operatorname{asn}_N(M)$.

Proof. As $\operatorname{nsurj}_N(M; r)$ is bounded, $S = \limsup_{r \to \infty} \operatorname{nsurj}_N(M; r)$ and $I = \liminf_{r \to \infty} \operatorname{nsurj}_N(M; r)$ exist. Assume for contradiction that the limt does not exist. Then S > I. Set $\varepsilon = (S - I)/2 > 0$.

There exists some $r_0 \geq 1$ such that $\operatorname{nsurj}_N(M; r_0) > S - \varepsilon/2$. Take $n_0 \geq 1$ sufficiently large so that $\operatorname{nsurj}_N(M; r_0)/n_0 < \varepsilon/2$. Let $r \geq r_0 n_0$, and set $n := \lfloor r/r_0 \rfloor$. Note that $nr_0 \leq r < (n+1)r_0$ and $n \geq n_0$.

Then

$$\operatorname{nsurj}_{N}(M;r) \geq \frac{1}{(n+1)r_{0}} \operatorname{surj}_{N}(M^{\oplus nr_{0}}) \geq \frac{n}{(n+1)r_{0}} \operatorname{surj}_{N}(M^{\oplus r_{0}})$$
$$= (1 - \frac{1}{n+1}) \operatorname{nsurj}_{N}(M;r_{0}) \geq \operatorname{nsurj}_{N}(M;r_{0}) - \varepsilon/2 > S - \varepsilon.$$

Hence

$$I \ge \inf_{r \ge r_0 n_0} \operatorname{nsurj}_N(M; r) \ge S - \varepsilon > S - 2\varepsilon = I,$$

and this is a contradiction.

Lemma 2.8. Let $M, M', N \in \text{mod } R$, and $N \neq 0$. Then

- $1 \operatorname{asn}_N(M^{\oplus r}) = r \operatorname{asn}_N(M).$
- **2** $0 \leq \operatorname{surj}_N(M) \leq \operatorname{nsurj}_N(M; r) \leq \operatorname{asn}_N(M)$ for any $r \geq 1$.
- 3 $\operatorname{asn}_N(M) + \operatorname{asn}_N(M') \le \operatorname{asn}_N(M \oplus M').$

Proof. 1.

$$r^{-1}\operatorname{asn}_N(M^{\oplus r}) = \lim_{r' \to \infty} \frac{1}{rr'}\operatorname{surj}_N(M^{\oplus rr'}) = \operatorname{asn}_N(M).$$

2. $0 \leq \operatorname{surj}_N(M) \leq \operatorname{nsurj}_N(M; r)$ is Lemma 2.6, **3**. So taking the limit, $\operatorname{surj}_N(M) \leq \operatorname{asn}_N(M)$. So $\operatorname{surj}_N(M^{\oplus r}) \leq \operatorname{asn}_N(M^{\oplus r}) = r \operatorname{asn}_N(M)$. Dividing by r, $\operatorname{nsurj}_N(M; r) \leq \operatorname{asn}_N(M)$.

Lemma 2.9. Let k be a field, and V a k-vector space, and $n \ge 0$. Assume that $\dim_k V \le n$. Let Γ be a set of subspaces of V such that $\sum_{U \in \Gamma} U = V$. Then there exist some $U_1, \ldots, U_{n'} \in \Gamma$ with $n' \le n$ such that $U_1 + \cdots + U_{n'} = V$.

Proof. Trivial.

Lemma 2.10. Let k be a field, V a k-vector space, and Γ a set of subspaces of V. Let W and W' be subspaces of V such that W + W' = V. Assume that $W' \subset \sum_{U \in \Gamma} U$. If $\dim_k W' \leq n$, then there exist some $U_1, \ldots, U_{n'} \in \Gamma$ with $n' \leq n$ such that $W + U_1 + \cdots + U_{n'} = V$.

Proof. Apply Lemma 2.9 to the vector space V/W.

Lemma 2.11. Let (R, \mathfrak{m}) be a Noetherian local ring. Let $M, M', N \in \text{mod } R$ with $N \neq 0$. Then

$$\operatorname{surj}_N(M') \le \operatorname{surj}_N(M \oplus M') - \operatorname{surj}_N(M) \le \mu_R(M').$$

Proof. The first inequality is Lemma 2.4, 4. We prove the second inequality. Let $m = \operatorname{surj}_N(M \oplus M')$ and $n = \mu_R(M')$. There is a surjective map $\varphi : M \oplus M' \to N^{\oplus m}$. Let $N_i = N$ be the *i*th summand of $N^{\oplus m}$. Let $\overline{?}$ denote the functor R/\mathfrak{m} . Set $V = \overline{N}^{\oplus m}$, $W = \overline{\varphi}(\overline{M})$, and $W' = \overline{\varphi}(\overline{M'})$. Then by Lemma 2.10, there exists some index set $I \subset \{1, 2, \ldots, m\}$ such that $\#I \leq n$ and $W + \sum_{i \in I} \overline{N_i} = V$. By Nakayama's lemma, $\varphi(M) + \sum_{i \in I} N_i = N^{\oplus m}$. This shows that

$$M \hookrightarrow M \oplus M' \xrightarrow{\varphi} N^{\oplus m} \to N^{\oplus m} / \sum_{i \in I} N_i \cong N^{\oplus (m - \#I)}$$

is surjective. Hence $\operatorname{surj}_N(M) \ge m - \#I \ge m - n$, and the result follows. \Box

(2.12) Let (R, \mathfrak{m}) be a Henselian local ring. Let $\mathcal{C} := \mod R$. As in [HS], we define

$$[\mathcal{C}] := (\bigoplus_{M \in \mathcal{C}} \mathbb{Z} \cdot M) / (M - M_1 - M_2 \mid M \cong M_1 \oplus M_2),$$

and $[\mathcal{C}]_{\mathbb{R}} := \mathbb{R} \otimes_{\mathbb{Z}} [\mathcal{C}]$. In [HS], $[\mathcal{C}]_{\mathbb{R}}$ is also written as $\Theta^{\wedge}(R)$ or $\Theta(R)$ (considering that R is trivially graded). In this paper, we write it as $\Theta(R)$. For $M \in \mathcal{C}$, we denote by [M] the class of M in $\Theta(R)$. For an isomorphism class N of modules, [N] is a well-defined element of $\Theta(R)$. Let $\mathrm{Ind}(R)$ denote the set of isomorphism classes of indecomposable modules in \mathcal{C} . The set $[\mathrm{Ind}(R)] := \{[M] \mid M \in \mathrm{Ind}(R)\}$ is an \mathbb{R} -basis of $\Theta(R) = [\mathcal{C}]_{\mathbb{R}}$. So $\alpha \in \Theta(R)$ can be written $\alpha = \sum_{M \in \mathrm{Ind}(R)} c_M[M]$ with $c_M \in \mathbb{R}$ uniquely. We say that $\alpha \geq 0$ if $c_M \geq 0$ for any $M \in \mathrm{Ind}(R)$. For $\alpha, \beta \in \Theta(R)$, we define $\alpha \geq \beta$ if $\alpha - \beta \geq 0$. This gives an ordering on $\Theta(R)$.

(2.13) For $\alpha = \sum_{M \in \text{Ind}(R)} c_M[M] \in \Theta(R)$, we define

$$\langle \alpha \rangle := \sum_{M \in \operatorname{Ind}(R)} \max(0, \lfloor c_M \rfloor)[M].$$

So there exists some $M_{\alpha} \in \mathcal{C}$, unique up to isomorphisms, such that $\langle \alpha \rangle = [M_{\alpha}]$. For $N \in \text{mod } R$ with $N \neq 0$, we define $\text{surj}_N \alpha$ to be $\text{surj}_N M_{\alpha}$.

(2.14) For $\alpha = \sum_{M \in \text{Ind}(R)} c_M M \in \Theta(R)$, we define $\text{supp } \alpha = \{M \in \text{Ind}(R) \mid c_M > 0\}$. We define $Y(\alpha) = \bigoplus_{W \in \text{supp } \alpha} W$ and $\nu(\alpha) := \mu_R(Y(\alpha))$.

Lemma 2.15. Let $N \in \text{mod } R$, $N \neq 0$, and $\alpha, \beta \in \Theta(R)$.

- **1** If $\alpha, \beta \ge 0$, then $0 \le \operatorname{surj}_N \alpha \le \operatorname{surj}_N(\alpha + \beta) \operatorname{surj}_N \beta$.
- 2 $|\operatorname{surj}_N \alpha \operatorname{surj}_N \beta| \le ||\alpha \beta|| + \nu(\inf\{\alpha, \beta\}).$

Proof. **1**. As $\alpha, \beta \geq 0$, we have that $\langle \alpha \rangle + \langle \beta \rangle \leq \langle \alpha + \beta \rangle$. So by Lemma 2.4, 4, $\operatorname{surj}_N \alpha + \operatorname{surj}_N \beta \leq \operatorname{surj}_N(\langle \alpha + \beta \rangle) \leq \operatorname{surj}_N(\alpha + \beta)$.

2. Replacing α by $\sup\{\alpha, 0\}$ and β by $\sup\{\beta, 0\}$, we may assume that $\alpha, \beta \geq 0$. Moreover, replacing α by $\sup\{\alpha, \beta\}$ and β by $\inf\{\alpha, \beta\}$, we may assume that $\alpha \geq \beta$. As we have $\langle \alpha \rangle - \langle \beta \rangle \leq \alpha - \beta + [Y(\beta)]$, by Lemma 2.11 we have that

$$\operatorname{surj}_{N} \alpha - \operatorname{surj}_{N} \beta \leq \|\langle \alpha \rangle - \langle \beta \rangle\| \leq \|\alpha - \beta + [Y(\beta)]\|$$
$$\leq \|\alpha - \beta\| + \|[Y(\beta)]\| = \|\alpha - \beta\| + \nu(\beta).$$

This is what we wanted to prove.

Lemma 2.16. The limit

$$\lim_{t \to \infty} \frac{1}{t} \operatorname{surj}_N(t\alpha)$$

exists for $N \in \text{mod } R$, $N \neq 0$ and $\alpha \in \Theta(R)$.

We denote the limit by $\operatorname{asn}_N(\alpha)$.

Proof. Replacing α by $\sup\{0, \alpha\}$, we may assume that $\alpha \geq 0$. Let $\varepsilon > 0$. We can take $W \in \mod R$ and an integer n > 0 such that $\alpha - n^{-1}[W] \geq 0$ and $\|\alpha - n^{-1}[W]\| < \varepsilon/8$. As $\operatorname{asn}_N W$ exists, there exists some $r_0 \geq 1$ such that for any $r \geq r_0$, $|\operatorname{nsurj}_N(W; r) - \operatorname{asn}_N W| < n\varepsilon/8$. Set R := $\max\{r_0n, 16\mu_R(W)/\varepsilon, 8n\|\alpha\|/\varepsilon\}$. Let t > R. Let $r := \lfloor t/n \rfloor$. Then $0 \le t - rn < n$ and $r \ge r_0$. We have

$$\begin{split} |t^{-1} \operatorname{surj}_{N}(t\alpha) - n^{-1} \operatorname{asn}_{N} W| &\leq t^{-1} |\operatorname{surj}_{N}(t\alpha) - \operatorname{surj}_{N}(W^{\oplus r})| \\ &+ ((rn)^{-1} - t^{-1}) \operatorname{surj}_{N}(W^{\oplus r}) + |(rn)^{-1} \operatorname{surj}_{N}(W^{\oplus r}) - n^{-1} \operatorname{asn}_{N} W| \\ &< t^{-1} ||t\alpha - r[W]|| + t^{-1} \mu_{R}(W) + (rt)^{-1} \mu_{R}(W^{\oplus r}) + \varepsilon/8 \\ &\leq (n/t) ||\alpha|| + (nr/t) ||\alpha - n^{-1}[W]|| + \varepsilon/16 + \varepsilon/16 + \varepsilon/8 \\ &< \varepsilon/8 + \varepsilon/8 + \varepsilon/16 + \varepsilon/16 + \varepsilon/8 = \varepsilon/2. \end{split}$$

So for $t_1, t_2 > R$,

$$|t_1^{-1}\operatorname{surj}_N(t_1\alpha) - t_2^{-1}\operatorname{surj}_N(t_2\alpha)| < \varepsilon,$$

and $\lim_{t\to\infty} t^{-1} \operatorname{surj}_N(t\alpha)$ exists, as desired.

Lemma 2.17. Let $\alpha, \beta \in \Theta(R)$ and $N \in \text{mod } R$ with $N \neq 0$.

- **1** For $k \ge 0$, we have $\operatorname{asn}_N(k\alpha) = k \operatorname{asn}_N(\alpha)$.
- **2** For $k \ge 0$, $0 \le \operatorname{surj}_N(k\alpha) \le k \operatorname{asn}_N(\alpha) \le k \|\alpha\| / \mu_R(N)$.
- **3** If $\alpha, \beta \ge 0$, then $\operatorname{asn}_N(\alpha + \beta) \ge \operatorname{asn}_N(\alpha) + \operatorname{asn}_N(\beta)$.
- 4 $|\operatorname{asn}_N(\alpha) \operatorname{asn}_N(\beta)| \le ||\alpha \beta||.$
- **5** asn_N is continuous.

Proof. **1**. If k = 0, then both-hand sides are zero, and the assertion is clear. So we may assume that k > 0. Then

$$\operatorname{asn}_N(k\alpha) = \lim_{t \to \infty} \frac{1}{t} \operatorname{surj}(tk\alpha) = k \lim_{t \to \infty} \frac{1}{tk} \operatorname{surj}(tk\alpha) = k \operatorname{asn}_N(\alpha).$$

2. We may assume that k > 0. By 1, replacing $k\alpha$ by α , we may assume that k = 1. Replacing α by $\sup\{0, \alpha\}$, we may assume that $\alpha \ge 0$. For $n \ge 0$, $n\langle\alpha\rangle \le \langle n\alpha\rangle$. Hence, $n \operatorname{surj}_N(\alpha) \le \operatorname{surj}_N(n\langle\alpha\rangle) \le \operatorname{surj}_N(n\alpha)$. So $\operatorname{surj}_N(\alpha) \le n^{-1} \operatorname{surj}_N(n\alpha)$. Passing to the limit, $\operatorname{surj}_N(\alpha) \le \operatorname{asn}_N(\alpha)$. Similarly,

$$\frac{1}{n}\operatorname{surj}_N(n\alpha) \le \frac{\|\langle n\alpha \rangle\|}{n\mu_R(N)} \le \frac{\|n\alpha\|}{n\mu_R(N)} = \frac{\|\alpha\|}{\mu_R(N)}$$

Passing to the limit, $\operatorname{asn}_N(\alpha) \leq \frac{\|\alpha\|}{\mu_R(N)}$, as desired.

3. By Lemma 2.15, **1**, for t > 0,

$$\frac{1}{t}\operatorname{surj}_N(t\alpha) + \frac{1}{t}\operatorname{surj}_N(t\beta) \le \frac{1}{t}\operatorname{surj}_N(t(\alpha + \beta)).$$

Passing to the limit, $\operatorname{asn}_N(\alpha) + \operatorname{asn}_N(\beta) \le \operatorname{asn}_N(\alpha + \beta)$.

4. By Lemma 2.15, **2**,

$$\left|\frac{1}{t}\operatorname{surj}_{N}(t\alpha) - \frac{1}{t}\operatorname{surj}_{N}(t\beta)\right| \leq \frac{1}{t}(\|t(\alpha - \beta)\| + \nu(\inf\{t\alpha, t\beta\}))$$
$$= \|\alpha - \beta\| + \nu(\inf\{\alpha, \beta\})/t.$$

Passing to the limit, $|\operatorname{asn}_N(\alpha) - \operatorname{asn}_N(\beta)| \le ||\alpha - \beta||$, as desired. 5 is an immediate consequence of 4.

. Sannai's dual *F*-signature

3.

(3.1) In this section, let p be a prime number, and (R, \mathfrak{m}, k) be an F-finite local ring of characteristic p of dimension d. Let $\mathfrak{d} = \log_p[k : k^p]$, and $\delta = d + \mathfrak{d}$.

(3.2) In [San], for $M \in \text{mod } R$, Sannai defined the dual *F*-signature of *M* by

$$s_R(M) = s(M) := \limsup_{e \to \infty} \frac{\sup_M (^eM)}{p^{\delta e}}$$

s(R) is the (usual) *F*-signature [HL], which is closely related to the strong *F*-regularity of *R* [AL]. While $s(\omega_R)$ measures the *F*-rationality of *R*, provided *R* is Cohen–Macaulay.

Theorem 3.3 ([San, (3.16)]). *R* is *F*-rational if and only if *R* is Cohen-Macaulay and $s(\omega_R) > 0$.

Now we connect the F-limit defined in [HS] with dual F-signature.

Theorem 3.4. Let R be Henselian, and $M \in \text{mod } R$. Assume that the F-limit

$$\operatorname{FL}([M]) = \lim_{e \to \infty} \frac{1}{p^{\delta e}} [{}^{e}M] \in \Theta(R)$$

(see [HS]) exists. Then

$$s_R(M) = \lim_{e \to \infty} \frac{\operatorname{surj}_M({}^eM)}{p^{\delta e}} = \operatorname{asn}_M(\operatorname{FL}([M])).$$

Proof. By Lemma 2.15,

$$\begin{aligned} p^{-\delta e}|\operatorname{surj}_{M}(p^{\delta e}\operatorname{FL}([M])) - \operatorname{surj}_{M}([^{e}M])| \\ &\leq \|\operatorname{FL}([M]) - p^{-\delta e}[^{e}M]\| + p^{-\delta e}\nu(\operatorname{supp}(\operatorname{FL}([M]))). \end{aligned}$$

Taking the limit $e \to \infty$, we get the desired result.

Corollary 3.5. Let the assumption be as in the theorem. Then the following are equivalent.

- **1** s(M) > 0.
- **2** For any $N \in \text{mod } R$ such that supp([N]) = supp(FL(M)), there exists some $r \geq 1$ and a surjective R-linear map $N^{\oplus r} \to M$.
- **3** There exist some $N \in \text{mod } R$ such that $\text{supp}([N]) \subset \text{supp}(\text{FL}(M))$ and a surjective R-linear map $N \to M$.

Proof. 1⇒2. As $\operatorname{asn}_M(\operatorname{FL}(M)) > 0$, there exists some t > 0 such that $\operatorname{surj}_M(t\operatorname{FL}(M)) > 0$. By the choice of N, there exists some $r \ge 1$ such that $r[N] \ge t\operatorname{FL}(M)$ and so $\operatorname{surj}_M N^{\oplus r} \ge \operatorname{surj}_M(t\operatorname{FL}(M)) > 0$.

2⇒**3**. Let $N = W_1 \oplus \cdots \oplus W_r$, where $\{W_1, \ldots, W_r\} = \operatorname{supp}(\operatorname{FL}(M))$. Then there exists some $r \ge 1$ and a surjective *R*-linear map $N^{\oplus r} \to M$, and $\operatorname{supp}[N^{\oplus r}] \subset \operatorname{supp}(\operatorname{FL}(M))$.

3⇒**1**. By the choice of N, there exists some k > 0 such that $k \operatorname{FL}(M) \ge [N]$. Then $s(M) = \operatorname{asn}_M(\operatorname{FL}(M)) \ge k^{-1} \operatorname{asn}_M[N] \ge k^{-1} \operatorname{surj}_M[N] > 0$. \Box

4. The dual *F*-signature of the ring of invariants

Utilizing the result in [HS] and the last section, we give a criterion for the condition $s(\omega_{\hat{A}}) > 0$ for the ring of invariants A, where \hat{A} is the completion.

(4.1) Let k be an algebraically closed field, $V = k^d$, G a finite subgroup of GL(V). In this section, we assume that G does not have a pseudo-reflection, where we say that $g \in GL(V)$ is a pseudo-reflection if $\operatorname{rank}(g - 1_V) = 1$. Let v_1, \ldots, v_d be a fixed k-basis of V. Let $B := \operatorname{Sym} V = k[v_1, \ldots, v_d]$, and $A = B^G$. Let \mathfrak{m} and \mathfrak{n} be the irrelevant ideals of A and B, respectively. Let \hat{A} and \hat{B} be the completion of A and B, respectively.

For a *G*-module *W*, we define $M_W := (B \otimes_k W)^G$. Let $k = V_0, V_1, \ldots, V_n$ be the irreducible representations of *G*. Let $P_i \to V_i$ be the projective cover.

Set $M_i := M_{P_i} = (B \otimes_k P_i)^G$. For a finite dimensional *G*-module *W*, det_{*W*} denote the determinant representation $\bigwedge^{\dim W} W$ of *W*. Let $V_{\nu} = \det_V$ be the determinant representation of *V*.

Lemma 4.2. The canonical module ω_A of A is isomorphic to $M_{\nu} = M_{\text{det}_{\nu}}$.

Proof. See [Has2, (14.28)] and references therein.

Lemma 4.3. Let Λ be a selfinjective finite dimensional k-algebra, L a simple (left) Λ -module, and $h : P \to L$ its projective cover. Let M be a finitely generated indecomposable Λ -module. Then the following are equivalent.

- 1 $\operatorname{Ext}^{1}_{\Lambda}(M, \operatorname{rad} P) = 0.$
- 2 $h_* : \operatorname{Hom}_{\Lambda}(M, P) \to \operatorname{Hom}_{\Lambda}(M, L)$ is surjective.
- **3** M is either projective, or $M/\operatorname{rad} M$ does not contain L.

Proof. $1 \Leftrightarrow 2$. This is because

$$\operatorname{Hom}_{\Lambda}(M, P) \xrightarrow{n_*} \operatorname{Hom}_{\Lambda}(M, L) \to \operatorname{Ext}^1_{\Lambda}(M, \operatorname{rad} P) \to \operatorname{Ext}^1_{\lambda}(M, P)$$

is exact and $\operatorname{Ext}^{1}_{\Lambda}(M, P) = 0$ (since P is injective).

 $2\Rightarrow3$. Assume the contrary. Then as $M/\operatorname{rad} M$ contains L, there is a surjective map $M \to L$. By assumption, this map lifts to $M \to P$, and this is surjective by Nakayama's lemma. As P is projective, this map splits. As M is indecomposable, $M \cong P$, and this is a contradiction.

3⇒**2**. If *M* is projective, then h_* is obviously surjective. If *M*/rad *M* does not contain *L*, then Hom_Λ(*M*, *L*) = 0, and h_* is obviously surjective. \Box

Theorem 4.4. Let p divide the order |G| of G. Then the following are equivalent.

- **1** $s(\omega_{\hat{A}}) > 0.$
- **2** The canonical map $M_{\nu} \to M_{V_{\nu}} = \omega_A$ is surjective.
- **3** $H^1(G, B \otimes_k \operatorname{rad} P_{\nu}) = 0.$
- **4** For any non-projective finitely generated indecomposable G-summand M of B, M does not contain \det_V^{-1} , the k-dual of \det_V .

If these conditions hold, then $s(\omega_{\hat{A}}) \geq 1/|G|$.

Proof. We prove the equivalence of **2** and **3** first. Let $B = \bigoplus_j N_j$ be a decomposition into finitely generated indecomposable *G*-modules. Such a decomposition exists, since *B* is a direct sum of finitely generated *G*-modules. The map $M_{\nu} \to M_{V_{\nu}}$ in **2** is the map

$$(B \otimes P_{\nu})^G \to (B \otimes \det_V)^G$$

induced by the projective cover $P_{\nu} \to \det_V$. By the isomorphism $\operatorname{Ext}^i_G(N^*_j, ?) \cong H^i(G, N_j \otimes ?)$, this map can be identified with the sum of

$$\operatorname{Hom}_G(N_j^*, P_{\nu}) \to \operatorname{Hom}_G(N_j^*, \det_V)$$

On the other hand, **3** is equivalent to say that $\operatorname{Ext}_{G}^{1}(N_{j}^{*}, \operatorname{rad} P_{\nu}) = 0$ for any j. So the equivalence $2 \Leftrightarrow 3$ follows from Lemma 4.3.

Similarly, **4** is equivalent to say that each N_j^* is injective (or equivalently, projective, as kG is selfinjective) or $N_j^*/\operatorname{rad} N_j^* \cong (\operatorname{soc} N_j)^*$ does not contain \det_V . This is equivalent to say that N_j is either projective, or N_j (or equivalently, $\operatorname{soc} N_j$) does not contain \det^{-1} . So $4 \Leftrightarrow 2$ follows from Lemma 4.3.

We prove $2 \Rightarrow 1$. As there is a surjective map $M_{\nu} \rightarrow \omega_A$ and

$$\operatorname{FL}([\omega_{\hat{A}}]) = \frac{1}{|G|} \sum_{i=0}^{n} (\dim V_i) [\hat{M}_i]$$

by [HS, (5.1)], $s(\omega_{\hat{A}}) > 0$ by Corollary 3.5. Moreover,

$$s(\omega_{\hat{A}}) = \operatorname{asn}_{\omega_{\hat{A}}}(\operatorname{FL}([\omega_{\hat{A}}])) \ge \frac{\dim V_{\nu}}{|G|} \operatorname{asn}_{\omega_{\hat{A}}}(\hat{M}_{\nu}) \ge \frac{1}{|G|} \operatorname{surj}_{\omega_{A}}(M_{\nu}) \ge \frac{1}{|G|},$$

and the last assertion has been proved.

We prove $1 \Rightarrow 2$. By [HS, (4.16)],

$$\operatorname{FL}([\omega_{\hat{A}}]) = \frac{1}{|G|} [\hat{B}].$$

So by Corollary 3.5, there is some r > 0 and a surjective map $h : \hat{B}^r \to \omega_{\hat{A}}$. By the equivalence $\gamma = (\hat{B} \otimes_{\hat{A}}?)^{**} : \operatorname{Ref}(\hat{A}) \to \operatorname{Ref}(G, \hat{B})$ (see [HasN, (2.4)] and [HS, (5.4)]), there corresponds

$$\tilde{h} = \gamma(h) : (\hat{B} \otimes_k kG)^r \to \hat{B} \otimes_k \det$$
.

As $\hat{B} \otimes_k kG$ is a projective object in the category of (G, B)-modules, \tilde{h} factors through the surjection

$$\hat{B} \otimes_k P_{\nu} \to \hat{B} \otimes_k \det$$
.

Returning to the category Ref \hat{A} , h factors through $\hat{M}_{\nu} = (\hat{B} \otimes_{\hat{A}} P_{\nu})^G \to \omega_{\hat{A}}$. So this map must be surjective, and **2** follows.

Corollary 4.5. Assume that p divides |G|. If $s(\omega_{\hat{A}}) > 0$, then \det_{V}^{-1} is not a direct summand of B.

Proof. Being a one-dimensional representation, \det_V^{-1} is not projective by assumption. Thus the result follows from $1 \Rightarrow 4$ of the theorem. \Box

Lemma 4.6. Let M and N be in Ref(G, B). There is a natural isomorphism

 $\gamma : \operatorname{Hom}_A(M^G, N^G) \to \operatorname{Hom}_B(M, N)^G.$

Proof. This is simply because $\gamma = (B \otimes_A ?)^{**} : \operatorname{Ref}(A) \to \operatorname{Ref}(G, B)$ is an equivalence, and $\operatorname{Hom}_B(M, N)^G = \operatorname{Hom}_{G,B}(M, N)$.

Theorem 4.7. A is F-rational if and only if the following three conditions hold.

- **1** A is Cohen–Macaulay.
- **2** $H^1(G,B) = 0.$
- **3** $(B \otimes_k (I/k))^G$ is a maximal Cohen–Macaulay A-module, where I is the injective hull of k.

Proof. If the order |G| of G is not divisible by p, then A is F-rational, and the three conditions hold. So we may assume that |G| is divisible by p.

Assume that A is F-rational. Then A is Cohen–Macaulay. As $s(\omega_{\hat{A}}) > 0$, we have that $H^1(G, B \otimes_k \operatorname{rad} P_{\nu}) = 0$, and

(1)
$$0 \to (B \otimes \operatorname{rad} P_{\nu})^G \to (B \otimes P_{\nu})^G \to (B \otimes \det_V)^G \to 0$$

is exact. As $M_{\nu} = (B \otimes P_{\nu})^G$ is a direct summand of $B = M_{kG} = (B \otimes kG)^G$, it is a maximal Cohen–Macaulay module. As $(B \otimes \det)^G = \omega_A$, it is also a maximal Cohen–Macaulay module. So the canonical dual of the exact sequence (1) is still exact. As there is an identification

$$\operatorname{Hom}_{A}((B\otimes_{k}?)^{G},\omega_{A}) = \operatorname{Hom}_{B}(B\otimes_{k}?, B\otimes_{k}\operatorname{det}_{V})^{G} = (B\otimes_{k}?^{*}\otimes_{k}\operatorname{det}_{V})^{G},$$

we get the exact sequence of maximal Cohen–Macaulay A-modules

 $(2) \qquad 0 \to A \to (B \otimes_k P_{\nu}^* \otimes_k \det_V)^G \to (B \otimes_k (\operatorname{rad} P_{\nu})^* \otimes_k \det_V)^G \to 0.$

As $(\operatorname{rad} P_{\nu})^* \otimes \operatorname{det}_V \cong I/k$, $(B \otimes (I/k))^G$ is maximal Cohen–Macaulay. As I is an injective G-module, $B \otimes_k I$ is so as a G-module, and hence $H^1(G, B \otimes_k I) = 0$. By the long exact sequence of the G-cohomology, we get $H^1(G, B) = 0$.

The converse is similar. Dualizing (2), we have that (1) is exact. \Box

Corollary 4.8. If A is F-rational, then $H^1(G, k) = 0$.

Proof. k is a direct summand of B, and $H^1(G, B) = 0$.

Example 4.9. If p = 2 and $G = S_2$ or S_3 , the symmetric groups, then $H^1(G, k) \neq 0$. So A is not F-rational, provided G does not have a pseudo-reflection.

5. An example of *F*-rational ring of invariants which are not *F*-regular

(5.1) Let p be an odd prime number, and k an algebraically closed field of characteristic p.

(5.2) Let us identify $\operatorname{Map}(\mathbb{F}_p, \mathbb{F}_p)^{\times}$ with the symmetric group S_p . We write $\mathbb{F}_p = \{0, 1, \dots, p-1\}$. Define

$$\begin{array}{lll} G & := & \{\phi \in S_p \mid \exists a \in \mathbb{F}_p^{\times} \exists b \in \mathbb{F}_p \; \forall x \in \mathbb{F}_p \; \phi(x) = ax + b\} \subset S_p; \\ Q & := & \{\phi \in Q \mid \exists b \in \mathbb{F}_p \; \forall x \in \mathbb{F}_p \; \phi(x) = x + b\} \subset G; \\ \Gamma & := & \{\phi \in S_p \mid \exists a \in \mathbb{F}_p^{\times} \; \forall x \in \mathbb{F}_p \; \phi(x) = ax\} \subset G. \end{array}$$

G is a subgroup of S_p , *Q* is a normal subgroup of *G*, and Γ is a subgroup of *G* such that $G = Q \rtimes \Gamma$. Note that *Q* is cyclic of order *p*. Γ is cyclic of order p-1. So *G* is of order p(p-1).

(5.3) Let α be a primitive element of \mathbb{F}_p (that is, a generator of the cyclic group \mathbb{F}_p^{\times}), and let $\tau \in \Gamma$ be the element given by $\tau(x) = \alpha x$. The only involution of Γ is $\tau^{(p-1)/2}$, the multiplication by -1. As a permutation, it is

$$(1 (p-1))(2 (p-2)) \cdots ((p-1)/2 (p+1)/2),$$

which is a transposition if and only if p = 3. As Γ contains a Sylow 2subgroup, a transposition of G, if any, is conjugate to an element of Γ , and it must be a transposition again. It follows that G has a transposition if and only if p = 3. (5.4) Now let $G \subset S_p$ act on $P = k^p = \langle w_0, w_1, \ldots, w_{p-1} \rangle$ by the permutation action, that is, $\phi w_i = w_{\phi(i)}$ for $\phi \in G$ and $i \in \mathbb{F}_p$. $g \in G \subset GL(P)$ is a pseudo-reflection if and only if it is a transposition. So G has a pseudo-reflection if and only if p = 3.

Let $r \ge 1$, and set $V = P^{\oplus r}$. $G \subset GL(V)$ has a pseudo-reflection if and only if p = 3 and r = 1.

(5.5) Let S = Sym P.

Lemma 5.6. Let M be any finitely generated non-projective indecomposable G-summand of S. Then $M \cong k$.

Proof. Let $\Omega = \{w^{\lambda} = w_0^{\lambda_0} \cdots w_{p-1}^{\lambda_{p-1}} \mid \lambda = (\lambda_0, \dots, \lambda_{p-1}) \in \mathbb{Z}_{\geq 0}^p\}$ be the set of monomials of S. G acts on the set Ω . Let Θ be the set of orbits of this action of G on Ω . Let $Gw^{\lambda} \in \Theta$.

If $\lambda = (r, r, ..., r)$ for some $r \ge 0$, then $Gw^{\lambda} = \{w^{\lambda}\}$, and hence $(kG)w^{\lambda} \cong k$.

Otherwise, Q does not have a fixed point on the action on Gw^{λ} . As the order of Q is p, Q acts freely on Gw^{λ} . Hence $(kG)w^{\lambda}$ is kQ-free.

Since the order of $G/Q \cong \Gamma$ is p-1, the Lyndon–Hochschild–Serre spectral sequence collapses, and we have $H^i(G, M) \cong H^i(Q, M)^{\Gamma}$ for any *G*-module *M*. So a *Q*-injective (or equivalently, *Q*-projective) *G*-module is *G*-injective (or equivalently, *G*-projective).

As we have $S = \bigoplus_{\theta \in \Theta} k\theta$ as a *G*-module, *S* is a direct sum of *G*-projective modules and copies of *k*. Using Krull-Schmidt theorem, it is easy to see that $M \cong k$.

Lemma 5.7. Let U and W be G-modules.

- 1 $kG \otimes_k W \cong kG \otimes_k W'$, where W' is the k-vector space W with the trivial G-action.
- **2** If U is G-projective, then $U \otimes_k W$ is G-projective.
- *Proof.* 1. $g \otimes w \mapsto g \otimes g^{-1}w$ gives such an isomorphism. 2 follows from 1.

(5.8) Let $B := \operatorname{Sym} V = \operatorname{Sym} P^{\oplus r} \cong S^{\otimes r}$.

Lemma 5.9. Let M be any finitely generated non-projective indecomposable G-summand of B. Then $M \cong k$.

Proof. Follows immediately from Lemma 5.6 and Lemma 5.7.

Lemma 5.10. Let k_{-} denote the sign representation. Then $\det_{V} \cong k_{-}$ if r is odd, and $\det_{V} \cong k$ if r is even. k_{-} is not isomorphic to k.

Proof. As the determinant of a sign matrix is the signature of the permutation, $\det_P \cong k_-$. Hence $\det_V \cong (\det_P)^{\otimes r} \cong (k_-)^{\otimes r}$, and we get the desired result. The last assertion is clear, since $\tau = (x \mapsto \alpha x) \in \Gamma$ is a cyclic permutation of order p-1, and is an odd permutation.

Theorem 5.11. We have

$$\operatorname{depth}_A = \min\{rp, 2(p-1) + r\}.$$

Hence A is Cohen–Macaulay if and only if $r \leq 2$.

Proof. This is an immediate consequence of [Kem, (3.3)].

Theorem 5.12. Let $p, r, G, P, V = P^{\oplus r}, B = \text{Sym } V$ be as above, and $A := B^G$. Then

- **1** G is a finite subgroup of GL(V) of order p(p-1).
- **2** $G \subset GL(V)$ has a pseudo-reflection if and only if p = 3 and r = 1. If so, $G = S_3$ is the symmetric group acting regularly on $B = k[w_0, w_1, w_2]$ by permutations on w_0, w_1, w_2 . The ring of invariants A is the polynomial ring. Otherwise, A is not weakly F-regular.
- **3** If $p \geq 5$ and r = 1, then A is F-rational, but not weakly F-regular.
- **4** If r = 2, then A is Gorenstein, but not F-rational.
- 5 If $r \geq 3$ and r is odd, then $s(\omega_{\hat{A}}) > 0$ but A is not Cohen-Macaulay.
- **6** If $r \geq 4$ and even, then A is quasi-Gorenstein, but not Cohen-Macaulay.

Proof. We have already seen **1** and the first statement of **2**. If p = 3 and r = 1, then $G \subset S_3$ has order 6, and $G = S_3$. So A is the polynomial ring generated by the symmetric polynomials. Otherwise, as G does not have a pseudo-reflection and the order |G| of G is divisible by p, A is not weakly F-regular, see [Bro], [Yas], and [HS, (5.8)].

The only non-projective finitely generated indecomposable *G*-summand of *B* is *k* by Lemma 5.9, and $\det_V^{-1} \subset k$ if and only if *r* is even by Lemma 5.10. Hence we have that $s(\omega_{\hat{A}}) > 0$ if and only if *r* is odd by Theorem 4.4.

3. A is not weakly *F*-regular by **2**. As r = 1 is odd, $s(\omega_{\hat{A}}) > 0$. On the other hand, A is Cohen–Macaulay by Theorem 5.11. Hence A is *F*-rational by Theorem 3.3.

4. By Theorem 5.11, A is Cohen-Macaulay. On the other hand, by Lemma 5.10, $\det_V \cong k$, and hence $\omega_A \cong (B \otimes_k \det_V)^G \cong B^G \cong A$ by Lemma 4.2. So A is Gorenstein. As A is Gorenstein but not weakly Fregular, it is not F-rational by [HH2, (4.7)].

5 and 6 are easy.

References

- [AL] I. Aberbach and G. Leuschke, The *F*-signature and strong *F*-regularity, *Math. Res. Lett.* **10** (2003), 51–56.
- [Bro] A. Broer, The direct summand property in modular invariant theory, *Transform. Groups* **10** (2005), 5–27.
- [Has2] M. Hashimoto, Equivariant class group. III. Almost principal fiber bundles, arXiv:1503.02133v1
- [HasN] M. Hashimoto and Y. Nakajima, Generalized F-signature of invariant subrings, J. Algebra 443 (2015), 142–152.
- [HS] M. Hashimoto and P. Symonds, The asymptotic behavior of Frobenius direct images of rings of invariants, arXiv:1509.02592v1
- [HH2] M. Hochster and C. Huneke, *F*-regularity, test elements, and smooth base change, *Trans. Amer. Math. Soc.* **346** (1994), 1–62.
- [HL] C. Huneke and G. Leuschke, Two theorems about maximal Cohen-Macaulay modules, *Math. Ann.* **324** (2002), 391–404.
- [Kem] G. Kemper, The depth of invariant rings and cohomology, J. Algebra 245 (2001), 463–531.
- [San] A. Sannai, Dual F-signature, Internat. Math. Res. Notices 162 (2013), 197–211.

[Yas] Pure subrings of regular local rings, endomorphism rings and Frobenius morphisms, *J. Algebra* **370** (2012), 15–31.