F-rationality of the ring of modular invariants

Mitsuyasu Hashimoto
Okayama University
Okayama 700-8530, JAPAN
mh@okayama-u.ac.jp
Dedicated to Professor Kei-ichi Watanabe

Abstract

Using the description of the F-limit of modules over (the completion of) the ring of invariants under a linear action of a finite group on a polynomial ring over an algebraically closed field of characteristic $p>0$ developed by Symonds and the author, we give a characterization of the ring of invariants have a positive dual F-signature. Combining the result and Kemper's result on depths of the ring of invariants under an action of a permutation group, we give an example of an F-rational, but non F-regular ring of invariants under the action of a finite group.

1. Introduction

Let k be an algebraically closed field of characteristic $p>0$. Let $V=k^{d}$, and G a finite subgroup of $G L(V)$ without psuedo-reflections. Let $B=\operatorname{Sym} V$, the symmetric algebra of V, and $A=B^{G}$. Broer [Bro] proved that if p divides the order $|G|$ of G, then A is not a direct summand subring of B hence A is not weakly F-regular (as A is not a splinter). In this paper, we study when A is F-rational.

[^0]Sannai [San] defined the dual F-signature $s(M)$ of a finite module M over an F-finite local ring R of characteristic p. He proved that R is F rational if and only if R is Cohen-Macaulay and the dual F-signature $s\left(\omega_{R}\right)$ of the canonical module ω_{R} of R is positive. Utilizing the description of the F-limit of modules over \hat{A} (the completion of A) by Symonds and the author, we give a characterization of V such that $s\left(\omega_{\hat{A}}\right)>0$, see Theorem 4.4. The characterization is purely representation theoretic in the sense that the characterization depends only on the structure of B as a G-module, rather than a G-algebra.

Using the characterization and Kemper's result on the depth of the ring of invariants under the action of certain groups of permutations [Kem, (3.3)], we give an example of F-rational A for $p \geq 5$. We also give an example of Gorenstein and non- F-rational A for $p \geq 3$. We also get an example of A such that the dual F-signature $s_{\omega_{\hat{A}}}$ of the canonical module of the completion \hat{A} is positive, but A (or equivalently, \hat{A}) is not Cohen-Macaulay. See Theorem 5.12.

In section 2, we introduce the invariant $\operatorname{asn}_{N}(M)$ for two finitely generated modules M and $N(N \neq 0)$ over a Noetherian ring R. In section 3, using the definition and some basic results developed in section 2, we prove the formula $s(M)=\operatorname{asn}_{M}(\mathrm{FL}([M]))$, where FL denotes the F-limit defined in [HS]. Thus $s(M)$ depends only on $\mathrm{FL}([M])$. Using this, we give a characterization of a module M to have positive $s(M)$ in terms of FL([M]) (Corollary 3.5).

Using this result and the description of the F-limits of certain modules over \hat{A} proved in [HS], we give a characterization of V such that $s\left(\omega_{\hat{A}}\right)>0$ in section 4.

In section 5, we give the examples.
Acknowledgments. The author is grateful to Professor Anurag Singh and Professor Kei-ichi Watanabe for valuable discussion.

2. Asymptotic surjective number

(2.1) This paper heavily depends on [HS].
(2.2) Let R be a Noetherian commutative ring. Let $\bmod R$ denote the category of finite R-modules.
(2.3) For $M, N \in \bmod R$, we set

$$
\begin{aligned}
& \operatorname{sur}_{N}^{R}(M)=\operatorname{surj}_{N}(M):= \\
& \quad \sup \left\{n \in \mathbb{Z}_{\geq 0} \mid \text { There is a surjective } R \text {-linear map } M \rightarrow N^{\oplus n}\right\}
\end{aligned}
$$

and call $\operatorname{surj}_{N}(M)$ the surjective number of M with respect to N. If $N=0$, this is understood to be ∞.

Lemma 2.4. Let $M, M^{\prime}, N \in \bmod R$. Then we have the following.
1 If R^{\prime} is any Noetherian R-algebra, then

$$
\operatorname{surj}_{N}^{R}(M) \leq \operatorname{surj}_{R^{\prime} \otimes_{R} N}^{R^{\prime}}\left(R^{\prime} \otimes_{R} M\right)
$$

2 If (R, \mathfrak{m}) is local and $N \neq 0$, then $\operatorname{sur}_{N}^{R}(M) \leq \mu_{R}(M) / \mu_{R}(N)$, where $\mu_{R}=\ell_{R}\left(R / \mathfrak{m} \otimes_{R}\right.$?) denotes the number of generators.

3 If $N \neq 0$, then $\operatorname{surj}_{N}(M)<\infty$, and is a non-negative integer.
4 If $N \neq 0$, then $\operatorname{surj}_{N}(M)+\operatorname{surj}_{N}\left(M^{\prime}\right) \leq \operatorname{surj}_{N}\left(M \oplus M^{\prime}\right)$.
5 If $N \neq 0$ and $r \geq 0$, then $r \operatorname{surj}_{N}(M) \leq \operatorname{surj}_{N}\left(M^{\oplus r}\right)$.
Proof. 1 If there is a surjective R-linear map $M \rightarrow N^{\oplus n}$, then there is a surjective R^{\prime}-linear map $R^{\prime} \otimes_{R} M \rightarrow\left(R^{\prime} \otimes_{R} N\right)^{\oplus n}$, and hence $n \leq \operatorname{surj}_{R^{\prime} \otimes_{R} N}^{R^{\prime}}\left(R^{\prime} \otimes_{R}\right.$ $M)$.

2 By 1, $\operatorname{surj}_{N}^{R}(M) \leq \operatorname{surj}_{N / \mathfrak{m} N}^{R / \mathfrak{m}}(M / \mathfrak{m} M) \leq \mu_{R}(M) / \mu_{R}(N)$ by dimension counting.

3 Take $\mathfrak{m} \in \operatorname{supp}_{R} N$. Then

$$
\operatorname{surj}_{N}^{R}(M) \leq \operatorname{surj}_{N_{\mathfrak{m}}}^{R_{\mathfrak{m}}}\left(M_{\mathfrak{m}}\right) \leq \mu_{R_{\mathfrak{m}}}\left(M_{\mathfrak{m}}\right) / \mu_{R_{\mathfrak{m}}}\left(N_{\mathfrak{m}}\right)<\infty
$$

4 Let $n=\operatorname{surj}_{N}(M)$ and $n^{\prime}=\operatorname{surj}_{N}\left(M^{\prime}\right)$. Then there are surjective R linear maps $M \rightarrow N^{\oplus n}$ and $M^{\prime} \rightarrow N^{\oplus n^{\prime}}$. Summing them, we get a surjective map $M \oplus M^{\prime} \rightarrow N^{\oplus\left(n+n^{\prime}\right)}$.

5 follows from 4.
(2.5) Let $N, M \in \bmod R$. Assume that N is nonzero. We define

$$
\operatorname{nsurj}_{N}(M ; r):=\frac{1}{r} \operatorname{surj}_{N}\left(M^{\oplus r}\right)
$$

for $r \geq 1$.
Lemma 2.6. Let $r \geq 1$, and $M, M^{\prime}, N \in \bmod R$. Assume that $N \neq 0$. Then
$1 \operatorname{nsurj}_{N}(M ; 1)=\operatorname{surj}_{N}(M)$.
$2 \operatorname{nsurj}_{N}(M ; k r) \geq \operatorname{nsurj}_{N}(M ; r)$ for $k \geq 0$.
$3 \operatorname{nsurj}_{N}(M ; r) \geq \operatorname{surj}_{N}(M) \geq 0$.
$4 \operatorname{nsurj}_{N}(M ; r)+\operatorname{nsurj}_{N}\left(M^{\prime} ; r\right) \leq \operatorname{nsurj}_{N}\left(M \oplus M^{\prime} ; r\right)$.
5 If $R \rightarrow R^{\prime}$ is a homomorphism of Noetherian rings, then $\operatorname{nsurj}_{N}(M ; r) \leq$ $\operatorname{nsurj}_{R^{\prime} \otimes_{R} N}\left(R^{\prime} \otimes_{R} M ; r\right)$.

6 If (R, \mathfrak{m}) is local, $\operatorname{nsurj}_{N}(M ; r) \leq \mu_{R}(M) / \mu_{R}(N)$. In general, $\operatorname{nsurj}_{N}(M ; r)$ is bounded.

Proof. 1 is by definition.
2. $k r \operatorname{nsurj}_{N}(M ; k r)=\operatorname{surj}_{N}\left(M^{\oplus k r}\right) \geq k \operatorname{surj}_{N}\left(M^{\oplus r}\right)$ by Lemma 2.4, 5. Dividing by $k r$, we get the desired inequality.
3. This is immediate by 1 and 2 .

4 follows from Lemma 2.4, 4 .
5 follows from Lemma 2.4, 1.
6 The first assertion is by Lemma 2.4, 2. The second assertion follows from the first assertion and 5 applied to $R \rightarrow R^{\prime}=R_{\mathfrak{m}}$, where \mathfrak{m} is any element of $\operatorname{supp}_{R} N$.

Lemma 2.7. Let $M, N \in \bmod R$. Assume that $N \neq 0$. Then the limit

$$
\lim _{r \rightarrow \infty} \operatorname{nsurj}_{N}(M ; r)=\lim _{r \rightarrow \infty} \frac{1}{r} \operatorname{surj}_{N}\left(M^{\oplus r}\right)
$$

exists.
We call the limit the asymptotic surjective number of M with respect to N, and denote it by $\operatorname{asn}_{N}(M)$.

Proof. As $\operatorname{nsurj}_{N}(M ; r)$ is bounded, $S=\limsup \sup _{r \rightarrow \infty} \operatorname{nsurj}_{N}(M ; r)$ and $I=$ $\liminf _{r \rightarrow \infty} \operatorname{nsurj}_{N}(M ; r)$ exist. Assume for contradiction that the limt does not exist. Then $S>I$. Set $\varepsilon=(S-I) / 2>0$.

There exists some $r_{0} \geq 1$ such that $\operatorname{nsurj}_{N}\left(M ; r_{0}\right)>S-\varepsilon / 2$. Take $n_{0} \geq 1$ sufficiently large so that $\operatorname{nsurj}_{N}\left(M ; r_{0}\right) / n_{0}<\varepsilon / 2$. Let $r \geq r_{0} n_{0}$, and set $n:=\left\lfloor r / r_{0}\right\rfloor$. Note that $n r_{0} \leq r<(n+1) r_{0}$ and $n \geq n_{0}$.

Then

$$
\begin{aligned}
\operatorname{nsurj}_{N}(M ; r) & \geq \frac{1}{(n+1) r_{0}} \operatorname{surj}_{N}\left(M^{\oplus n r_{0}}\right)
\end{aligned} \begin{aligned}
(n+1) r_{0} & \operatorname{surj}_{N}\left(M^{\oplus r_{0}}\right) \\
= & \left(1-\frac{1}{n+1}\right) \operatorname{nsurj}_{N}\left(M ; r_{0}\right) \geq \operatorname{nsurj}_{N}\left(M ; r_{0}\right)-\varepsilon / 2>S-\varepsilon
\end{aligned}
$$

Hence

$$
I \geq \inf _{r \geq r_{0} n_{0}} \operatorname{nsurj}_{N}(M ; r) \geq S-\varepsilon>S-2 \varepsilon=I,
$$

and this is a contradiction.
Lemma 2.8. Let $M, M^{\prime}, N \in \bmod R$, and $N \neq 0$. Then
$1 \operatorname{asn}_{N}\left(M^{\oplus r}\right)=r \operatorname{asn}_{N}(M)$.
$20 \leq \operatorname{surj}_{N}(M) \leq \operatorname{nsurj}_{N}(M ; r) \leq \operatorname{asn}_{N}(M)$ for any $r \geq 1$.
$3 \operatorname{asn}_{N}(M)+\operatorname{asn}_{N}\left(M^{\prime}\right) \leq \operatorname{asn}_{N}\left(M \oplus M^{\prime}\right)$.
Proof. 1.

$$
r^{-1} \operatorname{asn}_{N}\left(M^{\oplus r}\right)=\lim _{r^{\prime} \rightarrow \infty} \frac{1}{r r^{\prime}} \operatorname{surj}_{N}\left(M^{\oplus r r^{\prime}}\right)=\operatorname{asn}_{N}(M)
$$

2. $0 \leq \operatorname{surj}_{N}(M) \leq \operatorname{nsurj}_{N}(M ; r)$ is Lemma 2.6, 3. So taking the limit, $\operatorname{surj}_{N}(M) \leq \operatorname{asn}_{N}(M)$. So $\operatorname{surj}_{N}\left(M^{\oplus r}\right) \leq \operatorname{asn}_{N}\left(M^{\oplus r}\right)=r \operatorname{asn}_{N}(M)$. Dividing by $r, \operatorname{nsurj}_{N}(M ; r) \leq \operatorname{asn}_{N}(M)$.

Lemma 2.9. Let k be a field, and V a k-vector space, and $n \geq 0$. Assume that $\operatorname{dim}_{k} V \leq n$. Let Γ be a set of subspaces of V such that $\sum_{U \in \Gamma} U=V$. Then there exist some $U_{1}, \ldots, U_{n^{\prime}} \in \Gamma$ with $n^{\prime} \leq n$ such that $U_{1}+\cdots+U_{n^{\prime}}=$ V.

Proof. Trivial.

Lemma 2.10. Let k be a field, V a k-vector space, and Γ a set of subspaces of V. Let W and W^{\prime} be subspaces of V such that $W+W^{\prime}=V$. Assume that $W^{\prime} \subset \sum_{U \in \Gamma} U$. If $\operatorname{dim}_{k} W^{\prime} \leq n$, then there exist some $U_{1}, \ldots, U_{n^{\prime}} \in \Gamma$ with $n^{\prime} \leq n$ such that $W+U_{1}+\cdots+U_{n^{\prime}}=V$.

Proof. Apply Lemma 2.9 to the vector space V / W.
Lemma 2.11. Let (R, \mathfrak{m}) be a Noetherian local ring. Let $M, M^{\prime}, N \in \bmod R$ with $N \neq 0$. Then

$$
\operatorname{surj}_{N}\left(M^{\prime}\right) \leq \operatorname{surj}_{N}\left(M \oplus M^{\prime}\right)-\operatorname{surj}_{N}(M) \leq \mu_{R}\left(M^{\prime}\right)
$$

Proof. The first inequality is Lemma 2.4, 4. We prove the second inequality. Let $m=\operatorname{surj}_{N}\left(M \oplus M^{\prime}\right)$ and $n=\mu_{R}\left(M^{\prime}\right)$. There is a surjective map φ : $M \oplus M^{\prime} \rightarrow N^{\oplus m}$. Let $N_{i}=N$ be the i th summand of $N^{\oplus m}$. Let $\bar{?}$ denote the functor R / \mathfrak{m}. Set $V=\bar{N}^{\oplus m}, W=\bar{\varphi}(\bar{M})$, and $W^{\prime}=\bar{\varphi}\left(\bar{M}^{\prime}\right)$. Then by Lemma 2.10, there exists some index set $I \subset\{1,2, \ldots, m\}$ such that $\# I \leq n$ and $W+\sum_{i \in I} \bar{N}_{i}=V$. By Nakayama's lemma, $\varphi(M)+\sum_{i \in I} N_{i}=N^{\oplus}$. This shows that

$$
M \hookrightarrow M \oplus M^{\prime} \xrightarrow{\varphi} N^{\oplus m} \rightarrow N^{\oplus m} / \sum_{i \in I} N_{i} \cong N^{\oplus(m-\# I)}
$$

is surjective. Hence $\operatorname{surj}_{N}(M) \geq m-\# I \geq m-n$, and the result follows.
(2.12) Let (R, \mathfrak{m}) be a Henselian local ring. Let $\mathcal{C}:=\bmod R$. As in [HS], we define

$$
[\mathcal{C}]:=\left(\bigoplus_{M \in \mathcal{C}} \mathbb{Z} \cdot M\right) /\left(M-M_{1}-M_{2} \mid M \cong M_{1} \oplus M_{2}\right)
$$

and $[\mathcal{C}]_{\mathbb{R}}:=\mathbb{R} \otimes_{\mathbb{Z}}[\mathcal{C}]$. In $[\mathrm{HS}],[\mathcal{C}]_{\mathbb{R}}$ is also written as $\Theta^{\wedge}(R)$ or $\Theta(R)$ (considering that R is trivially graded). In this paper, we write it as $\Theta(R)$. For $M \in \mathcal{C}$, we denote by $[M]$ the class of M in $\Theta(R)$. For an isomorphism class N of modules, $[N]$ is a well-defined element of $\Theta(R)$. Let $\operatorname{Ind}(R)$ denote the set of isomorphism classes of indecomposable modules in \mathcal{C}. The set $[\operatorname{Ind}(R)]:=\{[M] \mid M \in \operatorname{Ind}(R)\}$ is an \mathbb{R}-basis of $\Theta(R)=[\mathcal{C}]_{\mathbb{R}}$. So $\alpha \in \Theta(R)$ can be written $\alpha=\sum_{M \in \operatorname{Ind}(R)} c_{M}[M]$ with $c_{M} \in \mathbb{R}$ uniquely. We say that $\alpha \geq 0$ if $c_{M} \geq 0$ for any $M \in \operatorname{Ind}(R)$. For $\alpha, \beta \in \Theta(R)$, we define $\alpha \geq \beta$ if $\alpha-\beta \geq 0$. This gives an ordering on $\Theta(R)$.
(2.13) For $\alpha=\sum_{M \in \operatorname{Ind}(R)} c_{M}[M] \in \Theta(R)$, we define

$$
\langle\alpha\rangle:=\sum_{M \in \operatorname{Ind}(R)} \max \left(0,\left\lfloor c_{M}\right\rfloor\right)[M] .
$$

So there exists some $M_{\alpha} \in \mathcal{C}$, unique up to isomorphisms, such that $\langle\alpha\rangle=$ $\left[M_{\alpha}\right]$. For $N \in \bmod R$ with $N \neq 0$, we define $\operatorname{surj}_{N} \alpha$ to be $\operatorname{surj}_{N} M_{\alpha}$.
(2.14) For $\alpha=\sum_{M \in \operatorname{Ind}(R)} c_{M} M \in \Theta(R)$, we define $\operatorname{supp} \alpha=\{M \in$ $\left.\operatorname{Ind}(R) \mid c_{M}>0\right\}$. We define $Y(\alpha)=\bigoplus_{W \in \operatorname{supp} \alpha} W$ and $\nu(\alpha):=\mu_{R}(Y(\alpha))$.

Lemma 2.15. Let $N \in \bmod R, N \neq 0$, and $\alpha, \beta \in \Theta(R)$.
1 If $\alpha, \beta \geq 0$, then $0 \leq \operatorname{surj}_{N} \alpha \leq \operatorname{surj}_{N}(\alpha+\beta)-\operatorname{surj}_{N} \beta$.
$2\left|\operatorname{surj}_{N} \alpha-\operatorname{surj}_{N} \beta\right| \leq\|\alpha-\beta\|+\nu(\inf \{\alpha, \beta\})$.
Proof. 1. As $\alpha, \beta \geq 0$, we have that $\langle\alpha\rangle+\langle\beta\rangle \leq\langle\alpha+\beta\rangle$. So by Lemma 2.4, $4, \operatorname{surj}_{N} \alpha+\operatorname{surj}_{N} \beta \leq \operatorname{surj}_{N}(\langle\alpha+\beta\rangle) \leq \operatorname{surj}_{N}(\alpha+\beta)$.
2. Replacing α by $\sup \{\alpha, 0\}$ and β by $\sup \{\beta, 0\}$, we may assume that $\alpha, \beta \geq 0$. Moreover, replacing α by $\sup \{\alpha, \beta\}$ and β by $\inf \{\alpha, \beta\}$, we may assume that $\alpha \geq \beta$. As we have $\langle\alpha\rangle-\langle\beta\rangle \leq \alpha-\beta+[Y(\beta)]$, by Lemma 2.11 we have that

$$
\begin{aligned}
\operatorname{surj}_{N} \alpha-\operatorname{surj}_{N} \beta \leq\|\langle\alpha\rangle-\langle\beta\rangle\| & \leq\|\alpha-\beta+[Y(\beta)]\| \\
& \leq\|\alpha-\beta\|+\|[Y(\beta)]\|=\|\alpha-\beta\|+\nu(\beta) .
\end{aligned}
$$

This is what we wanted to prove.
Lemma 2.16. The limit

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \operatorname{surj}_{N}(t \alpha)
$$

exists for $N \in \bmod R, N \neq 0$ and $\alpha \in \Theta(R)$.
We denote the limit by $\operatorname{asn}_{N}(\alpha)$.
Proof. Replacing α by $\sup \{0, \alpha\}$, we may assume that $\alpha \geq 0$. Let $\varepsilon>0$. We can take $W \in \bmod R$ and an integer $n>0$ such that $\alpha-n^{-1}[W] \geq 0$ and $\left\|\alpha-n^{-1}[W]\right\|<\varepsilon / 8$. As $\operatorname{asn}_{N} W$ exists, there exists some $r_{0} \geq 1$ such that for any $r \geq r_{0},\left|\operatorname{nsurj}_{N}(W ; r)-\operatorname{asn}_{N} W\right|<n \varepsilon / 8$. Set $R:=$
$\max \left\{r_{0} n, 16 \mu_{R}(W) / \varepsilon, 8 n\|\alpha\| / \varepsilon\right\}$. Let $t>R$. Let $r:=\lfloor t / n\rfloor$. Then $0 \leq$ $t-r n<n$ and $r \geq r_{0}$. We have

$$
\begin{aligned}
& \left|t^{-1} \operatorname{surj}_{N}(t \alpha)-n^{-1} \operatorname{asn}_{N} W\right| \leq t^{-1}\left|\operatorname{surj}_{N}(t \alpha)-\operatorname{surj}_{N}\left(W^{\oplus r}\right)\right| \\
& \quad+\left((r n)^{-1}-t^{-1}\right) \operatorname{surj}_{N}\left(W^{\oplus r}\right)+\left|(r n)^{-1} \operatorname{surj}_{N}\left(W^{\oplus r}\right)-n^{-1} \operatorname{asn}_{N} W\right| \\
& \quad<t^{-1}\|t \alpha-r[W]\|+t^{-1} \mu_{R}(W)+(r t)^{-1} \mu_{R}\left(W^{\oplus r}\right)+\varepsilon / 8 \\
& \leq(n / t)\|\alpha\|+(n r / t)\left\|\alpha-n^{-1}[W]\right\|+\varepsilon / 16+\varepsilon / 16+\varepsilon / 8 \\
& \quad<\varepsilon / 8+\varepsilon / 8+\varepsilon / 16+\varepsilon / 16+\varepsilon / 8=\varepsilon / 2 .
\end{aligned}
$$

So for $t_{1}, t_{2}>R$,

$$
\left|t_{1}^{-1} \operatorname{surj}_{N}\left(t_{1} \alpha\right)-t_{2}^{-1} \operatorname{surj}_{N}\left(t_{2} \alpha\right)\right|<\varepsilon,
$$

and $\lim _{t \rightarrow \infty} t^{-1} \operatorname{surj}_{N}(t \alpha)$ exists, as desired.
Lemma 2.17. Let $\alpha, \beta \in \Theta(R)$ and $N \in \bmod R$ with $N \neq 0$.
1 For $k \geq 0$, we have $\operatorname{asn}_{N}(k \alpha)=k \operatorname{asn}_{N}(\alpha)$.
2 For $k \geq 0,0 \leq \operatorname{surj}_{N}(k \alpha) \leq k \operatorname{asn}_{N}(\alpha) \leq k\|\alpha\| / \mu_{R}(N)$.
3 If $\alpha, \beta \geq 0$, then $\operatorname{asn}_{N}(\alpha+\beta) \geq \operatorname{asn}_{N}(\alpha)+\operatorname{asn}_{N}(\beta)$.
$4\left|\operatorname{asn}_{N}(\alpha)-\operatorname{asn}_{N}(\beta)\right| \leq\|\alpha-\beta\|$.
$5 \operatorname{asn}_{N}$ is continuous.
Proof. 1. If $k=0$, then both-hand sides are zero, and the assertion is clear. So we may assume that $k>0$. Then

$$
\operatorname{asn}_{N}(k \alpha)=\lim _{t \rightarrow \infty} \frac{1}{t} \operatorname{surj}(t k \alpha)=k \lim _{t \rightarrow \infty} \frac{1}{t k} \operatorname{surj}(t k \alpha)=k \operatorname{asn}_{N}(\alpha) .
$$

2. We may assume that $k>0$. By 1 , replacing $k \alpha$ by α, we may assume that $k=1$. Replacing α by $\sup \{0, \alpha\}$, we may assume that $\alpha \geq 0$. For $n \geq 0, n\langle\alpha\rangle \leq\langle n \alpha\rangle$. Hence, $n \operatorname{surj}_{N}(\alpha) \leq \operatorname{surj}_{N}(n\langle\alpha\rangle) \leq \operatorname{surj}_{N}(n \alpha)$. So $\operatorname{surj}_{N}(\alpha) \leq n^{-1} \operatorname{surj}_{N}(n \alpha)$. Passing to the limit, $\operatorname{surj}_{N}(\alpha) \leq \operatorname{asn}_{N}(\alpha)$. Similarly,

$$
\frac{1}{n} \operatorname{surj}_{N}(n \alpha) \leq \frac{\|\langle n \alpha\rangle\|}{n \mu_{R}(N)} \leq \frac{\|n \alpha\|}{n \mu_{R}(N)}=\frac{\|\alpha\|}{\mu_{R}(N)}
$$

Passing to the limit, $\operatorname{asn}_{N}(\alpha) \leq \frac{\|\alpha\|}{\mu_{R}(N)}$, as desired.
3. By Lemma 2.15, $\mathbf{1}$, for $t>0$,

$$
\frac{1}{t} \operatorname{surj}_{N}(t \alpha)+\frac{1}{t} \operatorname{surj}_{N}(t \beta) \leq \frac{1}{t} \operatorname{surj}_{N}(t(\alpha+\beta))
$$

Passing to the limit, $\operatorname{asn}_{N}(\alpha)+\operatorname{asn}_{N}(\beta) \leq \operatorname{asn}_{N}(\alpha+\beta)$.
4. By Lemma 2.15, 2 ,

$$
\begin{aligned}
\left|\frac{1}{t} \operatorname{surj}_{N}(t \alpha)-\frac{1}{t} \operatorname{surj}_{N}(t \beta)\right| \leq \frac{1}{t}(\|t(\alpha-\beta)\| & +\nu(\inf \{t \alpha, t \beta\})) \\
& =\|\alpha-\beta\|+\nu(\inf \{\alpha, \beta\}) / t
\end{aligned}
$$

Passing to the limit, $\left|\operatorname{asn}_{N}(\alpha)-\operatorname{asn}_{N}(\beta)\right| \leq\|\alpha-\beta\|$, as desired.
5 is an immediate consequence of 4 .

3. Sannai's dual F-signature

(3.1) In this section, let p be a prime number, and (R, \mathfrak{m}, k) be an F finite local ring of characteristic p of dimension d. Let $\mathfrak{d}=\log _{p}\left[k: k^{p}\right]$, and $\delta=d+\mathfrak{d}$.
(3.2) In [San], for $M \in \bmod R$, Sannai defined the dual F-signature of M by

$$
s_{R}(M)=s(M):=\limsup _{e \rightarrow \infty} \frac{\operatorname{surj}_{M}\left({ }^{e} M\right)}{p^{\delta e}}
$$

$s(R)$ is the (usual) F-signature [HL], which is closely related to the strong F-regularity of R [AL]. While $s\left(\omega_{R}\right)$ measures the F-rationality of R, provided R is Cohen-Macaulay.
Theorem 3.3 ([San, (3.16)]). R is F-rational if and only if R is CohenMacaulay and $s\left(\omega_{R}\right)>0$.

Now we connect the F-limit defined in $[\mathrm{HS}]$ with dual F-signature.
Theorem 3.4. Let R be Henselian, and $M \in \bmod R$. Assume that the F-limit

$$
\left.\mathrm{FL}([M])=\lim _{e \rightarrow \infty} \frac{1}{p^{\delta e}}{ }^{e} M\right] \in \Theta(R)
$$

(see [HS]) exists. Then

$$
s_{R}(M)=\lim _{e \rightarrow \infty} \frac{\operatorname{surj}_{M}\left({ }^{e} M\right)}{p^{\delta e}}=\operatorname{asn}_{M}(\mathrm{FL}([M]))
$$

Proof. By Lemma 2.15,

$$
\begin{aligned}
p^{-\delta e} \mid \operatorname{surj}_{M}\left(p^{\delta e} \operatorname{FL}([M])\right) & -\operatorname{surj}_{M}\left(\left[{ }^{e} M\right]\right) \mid \\
& \leq\left\|\operatorname{FL}([M])-p^{-\delta e}\left[{ }^{e} M\right]\right\|+p^{-\delta e} \nu(\operatorname{supp}(\mathrm{FL}([M]))) .
\end{aligned}
$$

Taking the limit $e \rightarrow \infty$, we get the desired result.
Corollary 3.5. Let the assumption be as in the theorem. Then the following are equivalent.
$1 s(M)>0$.
2 For any $N \in \bmod R$ such that $\operatorname{supp}([N])=\operatorname{supp}(\operatorname{FL}(M))$, there exists some $r \geq 1$ and a surjective R-linear map $N^{\oplus r} \rightarrow M$.

3 There exist some $N \in \bmod R$ such that $\operatorname{supp}([N]) \subset \operatorname{supp}(\mathrm{FL}(M))$ and a surjective R-linear map $N \rightarrow M$.

Proof. $\mathbf{1} \Rightarrow \mathbf{2}$. As $\operatorname{asn}_{M}(\mathrm{FL}(M))>0$, there exists some $t>0$ such that $\operatorname{surj}_{M}(t \mathrm{FL}(M))>0$. By the choice of N, there exists some $r \geq 1$ such that $r[N] \geq t \mathrm{FL}(M)$ and so $\operatorname{surj}_{M} N^{\oplus r} \geq \operatorname{surj}_{M}(t \mathrm{FL}(M))>0$.
$\mathbf{2} \Rightarrow \mathbf{3}$. Let $N=W_{1} \oplus \cdots \oplus W_{r}$, where $\left\{W_{1}, \ldots, W_{r}\right\}=\operatorname{supp}(\mathrm{FL}(M))$. Then there exists some $r \geq 1$ and a surjective R-linear map $N^{\oplus r} \rightarrow M$, and $\operatorname{supp}\left[N^{\oplus r}\right] \subset \operatorname{supp}(\mathrm{FL}(M))$.
$\mathbf{3} \Rightarrow \mathbf{1}$. By the choice of N, there exists some $k>0$ such that $k \mathrm{FL}(M) \geq$ $[N]$. Then $s(M)=\operatorname{asn}_{M}(\operatorname{FL}(M)) \geq k^{-1} \operatorname{asn}_{M}[N] \geq k^{-1} \operatorname{surj}_{M}[N]>0$.

4. The dual F-signature of the ring of invariants

Utilizing the result in [HS] and the last section, we give a criterion for the condition $s\left(\omega_{\hat{A}}\right)>0$ for the ring of invariants A, where \hat{A} is the completion.
(4.1) Let k be an algebraically closed field, $V=k^{d}, G$ a finite subgroup of $G L(V)$. In this section, we assume that G does not have a pseudo-reflection, where we say that $g \in G L(V)$ is a pseudo-reflection if $\operatorname{rank}\left(g-1_{V}\right)=1$. Let v_{1}, \ldots, v_{d} be a fixed k-basis of V. Let $B:=\operatorname{Sym} V=k\left[v_{1}, \ldots, v_{d}\right]$, and $A=B^{G}$. Let \mathfrak{m} and \mathfrak{n} be the irrelevant ideals of A and B, respectively. Let \hat{A} and \hat{B} be the completion of A and B, respectively.

For a G-module W, we define $M_{W}:=\left(B \otimes_{k} W\right)^{G}$. Let $k=V_{0}, V_{1}, \ldots, V_{n}$ be the irreducible representations of G. Let $P_{i} \rightarrow V_{i}$ be the projective cover.

Set $M_{i}:=M_{P_{i}}=\left(B \otimes_{k} P_{i}\right)^{G}$. For a finite dimensional G-module W, det_{W} denote the determinant representation $\bigwedge^{\operatorname{dim} W} W$ of W. Let $V_{\nu}=\operatorname{det}_{V}$ be the determinant representation of V.

Lemma 4.2. The canonical module ω_{A} of A is isomorphic to $M_{\nu}=M_{\operatorname{det}_{V}}$.
Proof. See [Has2, (14.28)] and references therein.
Lemma 4.3. Let Λ be a selfinjective finite dimensional k-algebra, L a simple (left) Λ-module, and $h: P \rightarrow L$ its projective cover. Let M be a finitely generated indecomposable Λ-module. Then the following are equivalent.
$1 \operatorname{Ext}_{\Lambda}^{1}(M, \operatorname{rad} P)=0$.
$2 h_{*}: \operatorname{Hom}_{\Lambda}(M, P) \rightarrow \operatorname{Hom}_{\Lambda}(M, L)$ is surjective.
$3 M$ is either projective, or $M / \operatorname{rad} M$ does not contain L.
Proof. $\mathbf{1} \Leftrightarrow \mathbf{2}$. This is because

$$
\operatorname{Hom}_{\Lambda}(M, P) \xrightarrow{h_{*}} \operatorname{Hom}_{\Lambda}(M, L) \rightarrow \operatorname{Ext}_{\Lambda}^{1}(M, \operatorname{rad} P) \rightarrow \operatorname{Ext}_{\lambda}^{1}(M, P)
$$

is exact and $\operatorname{Ext}_{\Lambda}^{1}(M, P)=0$ (since P is injective).
$\mathbf{2} \Rightarrow \mathbf{3}$. Assume the contrary. Then as $M / \mathrm{rad} M$ contains L, there is a surjective map $M \rightarrow L$. By assumption, this map lifts to $M \rightarrow P$, and this is surjective by Nakayama's lemma. As P is projective, this map splits. As M is indecomposable, $M \cong P$, and this is a contradiction.
$\mathbf{3} \Rightarrow \mathbf{2}$. If M is projective, then h_{*} is obviously surjective. If $M / \mathrm{rad} M$ does not contain L, then $\operatorname{Hom}_{\Lambda}(M, L)=0$, and h_{*} is obviously surjective.

Theorem 4.4. Let p divide the order $|G|$ of G. Then the following are equivalent.
$1 s\left(\omega_{\hat{A}}\right)>0$.
2 The canonical map $M_{\nu} \rightarrow M_{V_{\nu}}=\omega_{A}$ is surjective.
$3 H^{1}\left(G, B \otimes_{k} \operatorname{rad} P_{\nu}\right)=0$.
4 For any non-projective finitely generated indecomposable G-summand M of B, M does not contain $\operatorname{det}_{V}^{-1}$, the k-dual of det_{V}.

If these conditions hold, then $s\left(\omega_{\hat{A}}\right) \geq 1 /|G|$.

Proof. We prove the equivalence of $\mathbf{2}$ and $\mathbf{3}$ first. Let $B=\bigoplus_{j} N_{j}$ be a decomposition into finitely generated indecomposable G-modules. Such a decomposition exists, since B is a direct sum of finitely generated G-modules. The map $M_{\nu} \rightarrow M_{V_{\nu}}$ in 2 is the map

$$
\left(B \otimes P_{\nu}\right)^{G} \rightarrow\left(B \otimes \operatorname{det}_{V}\right)^{G}
$$

induced by the projective cover $P_{\nu} \rightarrow \operatorname{det}_{V}$. By the isomorphism $\operatorname{Ext}_{G}^{i}\left(N_{j}^{*}, ?\right) \cong$ $H^{i}\left(G, N_{j} \otimes\right.$?), this map can be identified with the sum of

$$
\operatorname{Hom}_{G}\left(N_{j}^{*}, P_{\nu}\right) \rightarrow \operatorname{Hom}_{G}\left(N_{j}^{*}, \operatorname{det}_{V}\right)
$$

On the other hand, $\mathbf{3}$ is equivalent to say that $\operatorname{Ext}_{G}^{1}\left(N_{j}^{*}, \operatorname{rad} P_{\nu}\right)=0$ for any j. So the equivalence $\mathbf{2} \Leftrightarrow \mathbf{3}$ follows from Lemma 4.3.

Similarly, $\mathbf{4}$ is equivalent to say that each N_{j}^{*} is injective (or equivalently, projective, as $k G$ is selfinjective) or $N_{j}^{*} / \operatorname{rad} N_{j}^{*} \cong\left(\operatorname{soc} N_{j}\right)^{*}$ does not contain det_{V}. This is equivalent to say that N_{j} is either projective, or N_{j} (or equivalently, soc N_{j}) does not contain det^{-1}. So $\mathbf{4} \Leftrightarrow \mathbf{2}$ follows from Lemma 4.3.

We prove $\mathbf{2} \Rightarrow \mathbf{1}$. As there is a surjective map $M_{\nu} \rightarrow \omega_{A}$ and

$$
\mathrm{FL}\left(\left[\omega_{\hat{A}}\right]\right)=\frac{1}{|G|} \sum_{i=0}^{n}\left(\operatorname{dim} V_{i}\right)\left[\hat{M}_{i}\right]
$$

by [HS, (5.1)], $s\left(\omega_{\hat{A}}\right)>0$ by Corollary 3.5. Moreover,

$$
s\left(\omega_{\hat{A}}\right)=\operatorname{asn}_{\omega_{\hat{A}}}\left(\operatorname{FL}\left(\left[\omega_{\hat{A}}\right]\right)\right) \geq \frac{\operatorname{dim} V_{\nu}}{|G|} \operatorname{asn}_{\omega_{\hat{A}}}\left(\hat{M}_{\nu}\right) \geq \frac{1}{|G|} \operatorname{surj}_{\omega_{A}}\left(M_{\nu}\right) \geq \frac{1}{|G|},
$$

and the last assertion has been proved.
We prove $\mathbf{1} \Rightarrow \mathbf{2}$. By [HS, (4.16)],

$$
\mathrm{FL}\left(\left[\omega_{\hat{A}}\right]\right)=\frac{1}{|G|}[\hat{B}] .
$$

So by Corollary 3.5, there is some $r>0$ and a surjective map $h: \hat{B}^{r} \rightarrow \omega_{\hat{A}}$. By the equivalence $\gamma=\left(\hat{B} \otimes_{\hat{A}} ?\right)^{* *}: \operatorname{Ref}(\hat{A}) \rightarrow \operatorname{Ref}(G, \hat{B})$ (see [HasN, (2.4)] and $[\mathrm{HS},(5.4)]$), there corresponds

$$
\tilde{h}=\gamma(h):\left(\hat{B} \otimes_{k} k G\right)^{r} \rightarrow \hat{B} \otimes_{k} \operatorname{det} .
$$

As $\hat{B} \otimes_{k} k G$ is a projective object in the category of (G, B)-modules, \tilde{h} factors through the surjection

$$
\hat{B} \otimes_{k} P_{\nu} \rightarrow \hat{B} \otimes_{k} \operatorname{det} .
$$

Returning to the category Ref \hat{A}, h factors through $\hat{M}_{\nu}=\left(\hat{B} \otimes_{\hat{A}} P_{\nu}\right)^{G} \rightarrow \omega_{\hat{A}}$. So this map must be surjective, and 2 follows.
Corollary 4.5. Assume that p divides $|G|$. If $s\left(\omega_{\hat{A}}\right)>0$, then $\operatorname{det}_{V}^{-1}$ is not a direct summand of B.

Proof. Being a one-dimensional representation, $\operatorname{det}_{V}^{-1}$ is not projective by assumption. Thus the result follows from $1 \Rightarrow 4$ of the theorem.

Lemma 4.6. Let M and N be in $\operatorname{Ref}(G, B)$. There is a natural isomorphism

$$
\gamma: \operatorname{Hom}_{A}\left(M^{G}, N^{G}\right) \rightarrow \operatorname{Hom}_{B}(M, N)^{G} .
$$

Proof. This is simply because $\gamma=\left(B \otimes_{A} \text { ? }\right)^{* *}: \operatorname{Ref}(A) \rightarrow \operatorname{Ref}(G, B)$ is an equivalence, and $\operatorname{Hom}_{B}(M, N)^{G}=\operatorname{Hom}_{G, B}(M, N)$.

Theorem 4.7. A is F-rational if and only if the following three conditions hold.
$1 A$ is Cohen-Macaulay.
$2 H^{1}(G, B)=0$.
$\mathbf{3}\left(B \otimes_{k}(I / k)\right)^{G}$ is a maximal Cohen-Macaulay A-module, where I is the injective hull of k.

Proof. If the order $|G|$ of G is not divisible by p, then A is F-rational, and the three conditions hold. So we may assume that $|G|$ is divisible by p.

Assume that A is F-rational. Then A is Cohen-Macaulay. As $s\left(\omega_{\hat{A}}\right)>0$, we have that $H^{1}\left(G, B \otimes_{k} \operatorname{rad} P_{\nu}\right)=0$, and

$$
\begin{equation*}
0 \rightarrow\left(B \otimes \operatorname{rad} P_{\nu}\right)^{G} \rightarrow\left(B \otimes P_{\nu}\right)^{G} \rightarrow\left(B \otimes \operatorname{det}_{V}\right)^{G} \rightarrow 0 \tag{1}
\end{equation*}
$$

is exact. As $M_{\nu}=\left(B \otimes P_{\nu}\right)^{G}$ is a direct summand of $B=M_{k G}=(B \otimes k G)^{G}$, it is a maximal Cohen-Macaulay module. As $(B \otimes \operatorname{det})^{G}=\omega_{A}$, it is also a maximal Cohen-Macaulay module. So the canonical dual of the exact sequence (1) is still exact. As there is an identification

$$
\operatorname{Hom}_{A}\left(\left(B \otimes_{k} ?\right)^{G}, \omega_{A}\right)=\operatorname{Hom}_{B}\left(B \otimes_{k} ?, B \otimes_{k} \operatorname{det}_{V}\right)^{G}=\left(B \otimes_{k} ?^{*} \otimes_{k} \operatorname{det}_{V}\right)^{G}
$$

we get the exact sequence of maximal Cohen-Macaulay A-modules

$$
\begin{equation*}
0 \rightarrow A \rightarrow\left(B \otimes_{k} P_{\nu}^{*} \otimes_{k} \operatorname{det}_{V}\right)^{G} \rightarrow\left(B \otimes_{k}\left(\operatorname{rad} P_{\nu}\right)^{*} \otimes_{k} \operatorname{det}_{V}\right)^{G} \rightarrow 0 \tag{2}
\end{equation*}
$$

As $\left(\operatorname{rad} P_{\nu}\right)^{*} \otimes \operatorname{det}_{V} \cong I / k,(B \otimes(I / k))^{G}$ is maximal Cohen-Macaulay. As I is an injective G-module, $B \otimes_{k} I$ is so as a G-module, and hence $H^{1}\left(G, B \otimes_{k} I\right)=$ 0 . By the long exact sequence of the G-cohomology, we get $H^{1}(G, B)=0$. The converse is similar. Dualizing (2), we have that (1) is exact.
Corollary 4.8. If A is F-rational, then $H^{1}(G, k)=0$.
Proof. k is a direct summand of B, and $H^{1}(G, B)=0$.
Example 4.9. If $p=2$ and $G=S_{2}$ or S_{3}, the symmetric groups, then $H^{1}(G, k) \neq 0$. So A is not F-rational, provided G does not have a pseudoreflection.

5. An example of F-rational ring of invariants which are not F regular

(5.1) Let p be an odd prime number, and k an algebraically closed field of characteristic p.
(5.2) Let us identify $\operatorname{Map}\left(\mathbb{F}_{p}, \mathbb{F}_{p}\right)^{\times}$with the symmetric group S_{p}. We write $\mathbb{F}_{p}=\{0,1, \ldots, p-1\}$. Define

$$
\begin{aligned}
G & :=\left\{\phi \in S_{p} \mid \exists a \in \mathbb{F}_{p}^{\times} \exists b \in \mathbb{F}_{p} \forall x \in \mathbb{F}_{p} \phi(x)=a x+b\right\} \subset S_{p} ; \\
Q & :=\left\{\phi \in Q \mid \exists b \in \mathbb{F}_{p} \forall x \in \mathbb{F}_{p} \phi(x)=x+b\right\} \subset G ; \\
\Gamma & :=\left\{\phi \in S_{p} \mid \exists a \in \mathbb{F}_{p}^{\times} \forall x \in \mathbb{F}_{p} \phi(x)=a x\right\} \subset G .
\end{aligned}
$$

G is a subgroup of S_{p}, Q is a normal subgroup of G, and Γ is a subgroup of G such that $G=Q \rtimes \Gamma$. Note that Q is cyclic of order p. Γ is cyclic of order $p-1$. So G is of order $p(p-1)$.
(5.3) Let α be a primitive element of \mathbb{F}_{p} (that is, a generator of the cyclic group \mathbb{F}_{p}^{\times}), and let $\tau \in \Gamma$ be the element given by $\tau(x)=\alpha x$. The only involution of Γ is $\tau^{(p-1) / 2}$, the multiplication by -1 . As a permutation, it is

$$
(1(p-1))(2(p-2)) \cdots((p-1) / 2(p+1) / 2),
$$

which is a transposition if and only if $p=3$. As Γ contains a Sylow 2subgroup, a transposition of G, if any, is conjugate to an element of Γ, and it must be a transposition again. It follows that G has a transposition if and only if $p=3$.
(5.4) Now let $G \subset S_{p}$ act on $P=k^{p}=\left\langle w_{0}, w_{1}, \ldots, w_{p-1}\right\rangle$ by the permutation action, that is, $\phi w_{i}=w_{\phi(i)}$ for $\phi \in G$ and $i \in \mathbb{F}_{p} . g \in G \subset G L(P)$ is a pseudo-reflection if and only if it is a transposition. So G has a pseudoreflection if and only if $p=3$.

Let $r \geq 1$, and set $V=P^{\oplus r} . G \subset G L(V)$ has a pseudo-reflection if and only if $p=3$ and $r=1$.
(5.5) Let $S=\operatorname{Sym} P$.

Lemma 5.6. Let M be any finitely generated non-projective indecomposable G-summand of S. Then $M \cong k$.

Proof. Let $\Omega=\left\{w^{\lambda}=w_{0}^{\lambda_{0}} \cdots w_{p-1}^{\lambda_{p-1}} \mid \lambda=\left(\lambda_{0}, \ldots, \lambda_{p-1}\right) \in \mathbb{Z}_{\geq 0}^{p}\right\}$ be the set of monomials of S. G acts on the set Ω. Let Θ be the set of orbits of this action of G on Ω. Let $G w^{\lambda} \in \Theta$.

If $\lambda=(r, r, \ldots, r)$ for some $r \geq 0$, then $G w^{\lambda}=\left\{w^{\lambda}\right\}$, and hence $(k G) w^{\lambda} \cong$ k.

Otherwise, Q does not have a fixed point on the action on $G w^{\lambda}$. As the order of Q is p, Q acts freely on $G w^{\lambda}$. Hence $(k G) w^{\lambda}$ is $k Q$-free.

Since the order of $G / Q \cong \Gamma$ is $p-1$, the Lyndon-Hochschild-Serre spectral sequence collapses, and we have $H^{i}(G, M) \cong H^{i}(Q, M)^{\Gamma}$ for any G-module M. So a Q-injective (or equivalently, Q-projective) G-module is G-injective (or equivalently, G-projective).

As we have $S=\bigoplus_{\theta \in \Theta} k \theta$ as a G-module, S is a direct sum of G-projective modules and copies of k. Using Krull-Schmidt theorem, it is easy to see that $M \cong k$.

Lemma 5.7. Let U and W be G-modules.
$1 k G \otimes_{k} W \cong k G \otimes_{k} W^{\prime}$, where W^{\prime} is the k-vector space W with the trivial G-action.

2 If U is G-projective, then $U \otimes_{k} W$ is G-projective.
Proof. 1. $g \otimes w \mapsto g \otimes g^{-1} w$ gives such an isomorphism.
2 follows from 1.
(5.8) Let $B:=\operatorname{Sym} V=\operatorname{Sym} P^{\oplus r} \cong S^{\otimes r}$.

Lemma 5.9. Let M be any finitely generated non-projective indecomposable G-summand of B. Then $M \cong k$.

Proof. Follows immediately from Lemma 5.6 and Lemma 5.7.
Lemma 5.10. Let k_{-}denote the sign representation. Then $\operatorname{det}_{V} \cong k_{-}$if r is odd, and $\operatorname{det}_{V} \cong k$ if r is even. k_{-}is not isomorphic to k.

Proof. As the determinant of a sign matrix is the signature of the permutation, $\operatorname{det}_{P} \cong k_{-}$. Hence $\operatorname{det}_{V} \cong\left(\operatorname{det}_{P}\right)^{\otimes r} \cong\left(k_{-}\right)^{\otimes r}$, and we get the desired result. The last assertion is clear, since $\tau=(x \mapsto \alpha x) \in \Gamma$ is a cyclic permutation of order $p-1$, and is an odd permutation.

Theorem 5.11. We have

$$
\operatorname{depth}_{A}=\min \{r p, 2(p-1)+r\} .
$$

Hence A is Cohen-Macaulay if and only if $r \leq 2$.
Proof. This is an immediate consequence of [Kem, (3.3)].
Theorem 5.12. Let $p, r, G, P, V=P^{\oplus r}, B=\operatorname{Sym} V$ be as above, and $A:=B^{G}$. Then
$1 G$ is a finite subgroup of $G L(V)$ of order $p(p-1)$.
$2 G \subset G L(V)$ has a pseudo-reflection if and only if $p=3$ and $r=$ 1. If so, $G=S_{3}$ is the symmetric group acting regularly on $B=$ $k\left[w_{0}, w_{1}, w_{2}\right]$ by permutations on w_{0}, w_{1}, w_{2}. The ring of invariants A is the polynomial ring. Otherwise, A is not weakly F-regular.

3 If $p \geq 5$ and $r=1$, then A is F-rational, but not weakly F-regular.
4 If $r=2$, then A is Gorenstein, but not F-rational.
5 If $r \geq 3$ and r is odd, then $s\left(\omega_{\hat{A}}\right)>0$ but A is not Cohen-Macaulay.
6 If $r \geq 4$ and even, then A is quasi-Gorenstein, but not Cohen-Macaulay.
Proof. We have already seen 1 and the first statement of $\mathbf{2}$. If $p=3$ and $r=1$, then $G \subset S_{3}$ has order 6 , and $G=S_{3}$. So A is the polynomial ring generated by the symmetric polynomials. Otherwise, as G does not have a pseudo-reflection and the order $|G|$ of G is divisible by p, A is not weakly F-regular, see [Bro], [Yas], and [HS, (5.8)].

The only non-projective finitely generated indecomposable G-summand of B is k by Lemma 5.9, and $\operatorname{det}_{V}^{-1} \subset k$ if and only if r is even by Lemma 5.10. Hence we have that $s\left(\omega_{\hat{A}}\right)>0$ if and only if r is odd by Theorem 4.4.
3. A is not weakly F-regular by 2 . As $r=1$ is odd, $s\left(\omega_{\hat{A}}\right)>0$. On the other hand, A is Cohen-Macaulay by Theorem 5.11. Hence A is F-rational by Theorem 3.3.
4. By Theorem 5.11, A is Cohen-Macaulay. On the other hand, by Lemma 5.10, $\operatorname{det}_{V} \cong k$, and hence $\omega_{A} \cong\left(B \otimes_{k} \operatorname{det}_{V}\right)^{G} \cong B^{G} \cong A$ by Lemma 4.2. So A is Gorenstein. As A is Gorenstein but not weakly F regular, it is not F-rational by [HH2, (4.7)].

5 and 6 are easy.

References

[AL] I. Aberbach and G. Leuschke, The F-signature and strong F regularity, Math. Res. Lett. 10 (2003), 51-56.
[Bro] A. Broer, The direct summand property in modular invariant theory, Transform. Groups 10 (2005), 5-27.
[Has2] M. Hashimoto, Equivariant class group. III. Almost principal fiber bundles, arXiv:1503.02133v1
[HasN] M. Hashimoto and Y. Nakajima, Generalized F-signature of invariant subrings, J. Algebra 443 (2015), 142-152.
[HS] M. Hashimoto and P. Symonds, The asymptotic behavior of Frobenius direct images of rings of invariants, arXiv:1509.02592v1
[HH2] M. Hochster and C. Huneke, F-regularity, test elements, and smooth base change, Trans. Amer. Math. Soc. 346 (1994), 1-62.
[HL] C. Huneke and G. Leuschke, Two theorems about maximal CohenMacaulay modules, Math. Ann. 324 (2002), 391-404.
[Kem] G. Kemper, The depth of invariant rings and cohomology, J. Algebra 245 (2001), 463-531.
[San] A. Sannai, Dual F-signature, Internat. Math. Res. Notices 162 (2013), 197-211.
[Yas] Pure subrings of regular local rings, endomorphism rings and Frobenius morphisms, J. Algebra 370 (2012), 15-31.

[^0]: 2010 Mathematics Subject Classification. Primary 13A50, 13A35. Key Words and Phrases. F-rational, F-regular, dual F-signature, F-limit.

