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Abstract

Using the description of the F -limit of modules over (the comple-
tion of) the ring of invariants under a linear action of a finite group
on a polynomial ring over an algebraically closed field of characteris-
tic p > 0 developed by Symonds and the author, we give a charac-
terization of the ring of invariants have a positive dual F -signature.
Combining the result and Kemper’s result on depths of the ring of in-
variants under an action of a permutation group, we give an example
of an F -rational, but non F -regular ring of invariants under the action
of a finite group.

1. Introduction

Let k be an algebraically closed field of characteristic p > 0. Let V = kd, and
G a finite subgroup of GL(V ) without psuedo-reflections. Let B = SymV ,
the symmetric algebra of V , and A = BG. Broer [Bro] proved that if p
divides the order |G| of G, then A is not a direct summand subring of B
hence A is not weakly F -regular (as A is not a splinter). In this paper, we
study when A is F -rational.
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Sannai [San] defined the dual F -signature s(M) of a finite module M
over an F -finite local ring R of characteristic p. He proved that R is F -
rational if and only if R is Cohen–Macaulay and the dual F -signature s(ωR)
of the canonical module ωR of R is positive. Utilizing the description of
the F -limit of modules over Â (the completion of A) by Symonds and the
author, we give a characterization of V such that s(ωÂ) > 0, see Theorem 4.4.
The characterization is purely representation theoretic in the sense that the
characterization depends only on the structure of B as a G-module, rather
than a G-algebra.

Using the characterization and Kemper’s result on the depth of the ring of
invariants under the action of certain groups of permutations [Kem, (3.3)],
we give an example of F -rational A for p ≥ 5. We also give an example
of Gorenstein and non-F -rational A for p ≥ 3. We also get an example
of A such that the dual F -signature sωÂ

of the canonical module of the

completion Â is positive, but A (or equivalently, Â) is not Cohen–Macaulay.
See Theorem 5.12.

In section 2, we introduce the invariant asnN(M) for two finitely generated
modules M and N (N ̸= 0) over a Noetherian ring R. In section 3, using the
definition and some basic results developed in section 2, we prove the formula
s(M) = asnM(FL([M ])), where FL denotes the F -limit defined in [HS]. Thus
s(M) depends only on FL([M ]). Using this, we give a characterization of a
module M to have positive s(M) in terms of FL([M ]) (Corollary 3.5).

Using this result and the description of the F -limits of certain modules
over Â proved in [HS], we give a characterization of V such that s(ωÂ) > 0
in section 4.

In section 5, we give the examples.

Acknowledgments. The author is grateful to Professor Anurag Singh and
Professor Kei-ichi Watanabe for valuable discussion.

2. Asymptotic surjective number

(2.1) This paper heavily depends on [HS].

(2.2) Let R be a Noetherian commutative ring. Let modR denote the
category of finite R-modules.
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(2.3) For M,N ∈ modR, we set

surjRN(M) = surjN(M) :=

sup{n ∈ Z≥0 | There is a surjective R-linear map M → N⊕n},

and call surjN(M) the surjective number of M with respect to N . If N = 0,
this is understood to be ∞.

Lemma 2.4. Let M,M ′, N ∈ modR. Then we have the following.

1 If R′ is any Noetherian R-algebra, then

surjRN(M) ≤ surjR
′

R′⊗RN(R
′ ⊗R M).

2 If (R,m) is local and N ̸= 0, then surjRN(M) ≤ µR(M)/µR(N), where
µR = ℓR(R/m⊗R?) denotes the number of generators.

3 If N ̸= 0, then surjN(M) < ∞, and is a non-negative integer.

4 If N ̸= 0, then surjN(M) + surjN(M
′) ≤ surjN(M ⊕M ′).

5 If N ̸= 0 and r ≥ 0, then r surjN(M) ≤ surjN(M
⊕r).

Proof. 1 If there is a surjective R-linear map M → N⊕n, then there is a sur-
jectiveR′-linear mapR′⊗RM → (R′⊗RN)⊕n, and hence n ≤ surjR

′

R′⊗RN(R
′⊗R

M).

2 By 1, surjRN(M) ≤ surj
R/m
N/mN(M/mM) ≤ µR(M)/µR(N) by dimension

counting.
3 Take m ∈ suppR N . Then

surjRN(M) ≤ surjRm
Nm

(Mm) ≤ µRm(Mm)/µRm(Nm) < ∞.

4 Let n = surjN(M) and n′ = surjN(M
′). Then there are surjective R-

linear maps M → N⊕n and M ′ → N⊕n′
. Summing them, we get a surjective

map M ⊕M ′ → N⊕(n+n′).
5 follows from 4.
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(2.5) Let N,M ∈ modR. Assume that N is nonzero. We define

nsurjN(M ; r) :=
1

r
surjN(M

⊕r)

for r ≥ 1.

Lemma 2.6. Let r ≥ 1, and M,M ′, N ∈ modR. Assume that N ̸= 0. Then

1 nsurjN(M ; 1) = surjN(M).

2 nsurjN(M ; kr) ≥ nsurjN(M ; r) for k ≥ 0.

3 nsurjN(M ; r) ≥ surjN(M) ≥ 0.

4 nsurjN(M ; r) + nsurjN(M
′; r) ≤ nsurjN(M ⊕M ′; r).

5 If R → R′ is a homomorphism of Noetherian rings, then nsurjN(M ; r) ≤
nsurjR′⊗RN(R

′ ⊗R M ; r).

6 If (R,m) is local, nsurjN(M ; r) ≤ µR(M)/µR(N). In general, nsurjN(M ; r)
is bounded.

Proof. 1 is by definition.
2. kr nsurjN(M ; kr) = surjN(M

⊕kr) ≥ k surjN(M
⊕r) by Lemma 2.4, 5.

Dividing by kr, we get the desired inequality.
3. This is immediate by 1 and 2.
4 follows from Lemma 2.4, 4.
5 follows from Lemma 2.4, 1.
6 The first assertion is by Lemma 2.4, 2. The second assertion follows

from the first assertion and 5 applied to R → R′ = Rm, where m is any
element of suppR N .

Lemma 2.7. Let M,N ∈ modR. Assume that N ̸= 0. Then the limit

lim
r→∞

nsurjN(M ; r) = lim
r→∞

1

r
surjN(M

⊕r)

exists.

We call the limit the asymptotic surjective number of M with respect to
N , and denote it by asnN(M).
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Proof. As nsurjN(M ; r) is bounded, S = lim supr→∞ nsurjN(M ; r) and I =
lim infr→∞ nsurjN(M ; r) exist. Assume for contradiction that the limt does
not exist. Then S > I. Set ε = (S − I)/2 > 0.

There exists some r0 ≥ 1 such that nsurjN(M ; r0) > S − ε/2. Take
n0 ≥ 1 sufficiently large so that nsurjN(M ; r0)/n0 < ε/2. Let r ≥ r0n0, and
set n := ⌊r/r0⌋. Note that nr0 ≤ r < (n+ 1)r0 and n ≥ n0.

Then

nsurjN(M ; r) ≥ 1

(n+ 1)r0
surjN(M

⊕nr0) ≥ n

(n+ 1)r0
surjN(M

⊕r0)

= (1− 1

n+ 1
) nsurjN(M ; r0) ≥ nsurjN(M ; r0)− ε/2 > S − ε.

Hence
I ≥ inf

r≥r0n0

nsurjN(M ; r) ≥ S − ε > S − 2ε = I,

and this is a contradiction.

Lemma 2.8. Let M,M ′, N ∈ modR, and N ̸= 0. Then

1 asnN(M
⊕r) = r asnN(M).

2 0 ≤ surjN(M) ≤ nsurjN(M ; r) ≤ asnN(M) for any r ≥ 1.

3 asnN(M) + asnN(M
′) ≤ asnN(M ⊕M ′).

Proof. 1.

r−1 asnN(M
⊕r) = lim

r′→∞

1

rr′
surjN(M

⊕rr′) = asnN(M).

2. 0 ≤ surjN(M) ≤ nsurjN(M ; r) is Lemma 2.6, 3. So taking the limit,
surjN(M) ≤ asnN(M). So surjN(M

⊕r) ≤ asnN(M
⊕r) = r asnN(M). Divid-

ing by r, nsurjN(M ; r) ≤ asnN(M).

Lemma 2.9. Let k be a field, and V a k-vector space, and n ≥ 0. Assume
that dimk V ≤ n. Let Γ be a set of subspaces of V such that

∑
U∈Γ U = V .

Then there exist some U1, . . . , Un′ ∈ Γ with n′ ≤ n such that U1+ · · ·+Un′ =
V .

Proof. Trivial.
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Lemma 2.10. Let k be a field, V a k-vector space, and Γ a set of subspaces
of V . Let W and W ′ be subspaces of V such that W +W ′ = V . Assume that
W ′ ⊂

∑
U∈Γ U . If dimk W

′ ≤ n, then there exist some U1, . . . , Un′ ∈ Γ with
n′ ≤ n such that W + U1 + · · ·+ Un′ = V .

Proof. Apply Lemma 2.9 to the vector space V/W .

Lemma 2.11. Let (R,m) be a Noetherian local ring. Let M,M ′, N ∈ modR
with N ̸= 0. Then

surjN(M
′) ≤ surjN(M ⊕M ′)− surjN(M) ≤ µR(M

′).

Proof. The first inequality is Lemma 2.4, 4. We prove the second inequality.
Let m = surjN(M ⊕ M ′) and n = µR(M

′). There is a surjective map φ :
M ⊕M ′ → N⊕m. Let Ni = N be the ith summand of N⊕m. Let ?̄ denote
the functor R/m. Set V = N̄⊕m, W = φ̄(M̄), and W ′ = φ̄(M̄ ′). Then by
Lemma 2.10, there exists some index set I ⊂ {1, 2, . . . ,m} such that #I ≤ n
and W +

∑
i∈I N̄i = V . By Nakayama’s lemma, φ(M) +

∑
i∈I Ni = N⊕m.

This shows that

M ↪→ M ⊕M ′ φ−→ N⊕m → N⊕m/
∑
i∈I

Ni
∼= N⊕(m−#I)

is surjective. Hence surjN(M) ≥ m−#I ≥ m−n, and the result follows.

(2.12) Let (R,m) be a Henselian local ring. Let C := modR. As in [HS],
we define

[C] := (
⊕
M∈C

Z ·M)/(M −M1 −M2 | M ∼= M1 ⊕M2),

and [C]R := R ⊗Z [C]. In [HS], [C]R is also written as Θ∧(R) or Θ(R) (con-
sidering that R is trivially graded). In this paper, we write it as Θ(R). For
M ∈ C, we denote by [M ] the class of M in Θ(R). For an isomorphism
class N of modules, [N ] is a well-defined element of Θ(R). Let Ind(R) de-
note the set of isomorphism classes of indecomposable modules in C. The set
[Ind(R)] := {[M ] | M ∈ Ind(R)} is an R-basis of Θ(R) = [C]R. So α ∈ Θ(R)
can be written α =

∑
M∈Ind(R) cM [M ] with cM ∈ R uniquely. We say that

α ≥ 0 if cM ≥ 0 for any M ∈ Ind(R). For α, β ∈ Θ(R), we define α ≥ β if
α− β ≥ 0. This gives an ordering on Θ(R).
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(2.13) For α =
∑

M∈Ind(R) cM [M ] ∈ Θ(R), we define

⟨α⟩ :=
∑

M∈Ind(R)

max(0, ⌊cM⌋)[M ].

So there exists some Mα ∈ C, unique up to isomorphisms, such that ⟨α⟩ =
[Mα]. For N ∈ modR with N ̸= 0, we define surjN α to be surjN Mα.

(2.14) For α =
∑

M∈Ind(R) cMM ∈ Θ(R), we define suppα = {M ∈
Ind(R) | cM > 0}. We define Y (α) =

⊕
W∈suppα W and ν(α) := µR(Y (α)).

Lemma 2.15. Let N ∈ modR, N ̸= 0, and α, β ∈ Θ(R).

1 If α, β ≥ 0, then 0 ≤ surjN α ≤ surjN(α+ β)− surjN β.

2 |surjN α− surjN β| ≤ ∥α− β∥+ ν(inf{α, β}).

Proof. 1. As α, β ≥ 0, we have that ⟨α⟩+ ⟨β⟩ ≤ ⟨α+ β⟩. So by Lemma 2.4,
4, surjN α + surjN β ≤ surjN(⟨α+ β⟩) ≤ surjN(α + β).

2. Replacing α by sup{α, 0} and β by sup{β, 0}, we may assume that
α, β ≥ 0. Moreover, replacing α by sup{α, β} and β by inf{α, β}, we may
assume that α ≥ β. As we have ⟨α⟩ − ⟨β⟩ ≤ α− β + [Y (β)], by Lemma 2.11
we have that

surjN α− surjN β ≤ ∥⟨α⟩ − ⟨β⟩∥ ≤ ∥α− β + [Y (β)]∥
≤ ∥α− β∥+ ∥[Y (β)]∥ = ∥α− β∥+ ν(β).

This is what we wanted to prove.

Lemma 2.16. The limit

lim
t→∞

1

t
surjN(tα)

exists for N ∈ modR, N ̸= 0 and α ∈ Θ(R).

We denote the limit by asnN(α).

Proof. Replacing α by sup{0, α}, we may assume that α ≥ 0. Let ε > 0.
We can take W ∈ modR and an integer n > 0 such that α − n−1[W ] ≥ 0
and ∥α− n−1[W ]∥ < ε/8. As asnN W exists, there exists some r0 ≥ 1
such that for any r ≥ r0, |nsurjN(W ; r)− asnN W | < nε/8. Set R :=
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max{r0n, 16µR(W )/ε, 8n∥α∥/ε}. Let t > R. Let r := ⌊t/n⌋. Then 0 ≤
t− rn < n and r ≥ r0. We have

|t−1 surjN(tα)− n−1 asnN W | ≤ t−1|surjN(tα)− surjN(W
⊕r)|

+ ((rn)−1 − t−1) surjN(W
⊕r) + |(rn)−1 surjN(W

⊕r)− n−1 asnN W |
< t−1∥tα− r[W ]∥+ t−1µR(W ) + (rt)−1µR(W

⊕r) + ε/8

≤ (n/t)∥α∥+ (nr/t)∥α− n−1[W ]∥+ ε/16 + ε/16 + ε/8

< ε/8 + ε/8 + ε/16 + ε/16 + ε/8 = ε/2.

So for t1, t2 > R,

|t−1
1 surjN(t1α)− t−1

2 surjN(t2α)| < ε,

and limt→∞ t−1 surjN(tα) exists, as desired.

Lemma 2.17. Let α, β ∈ Θ(R) and N ∈ modR with N ̸= 0.

1 For k ≥ 0, we have asnN(kα) = k asnN(α).

2 For k ≥ 0, 0 ≤ surjN(kα) ≤ k asnN(α) ≤ k∥α∥/µR(N).

3 If α, β ≥ 0, then asnN(α + β) ≥ asnN(α) + asnN(β).

4 |asnN(α)− asnN(β)| ≤ ∥α− β∥.

5 asnN is continuous.

Proof. 1. If k = 0, then both-hand sides are zero, and the assertion is clear.
So we may assume that k > 0. Then

asnN(kα) = lim
t→∞

1

t
surj(tkα) = k lim

t→∞

1

tk
surj(tkα) = k asnN(α).

2. We may assume that k > 0. By 1, replacing kα by α, we may
assume that k = 1. Replacing α by sup{0, α}, we may assume that α ≥ 0.
For n ≥ 0, n⟨α⟩ ≤ ⟨nα⟩. Hence, n surjN(α) ≤ surjN(n⟨α⟩) ≤ surjN(nα).
So surjN(α) ≤ n−1 surjN(nα). Passing to the limit, surjN(α) ≤ asnN(α).
Similarly,

1

n
surjN(nα) ≤

∥⟨nα⟩∥
nµR(N)

≤ ∥nα∥
nµR(N)

=
∥α∥

µR(N)
.

Passing to the limit, asnN(α) ≤ ∥α∥
µR(N)

, as desired.
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3. By Lemma 2.15, 1, for t > 0,

1

t
surjN(tα) +

1

t
surjN(tβ) ≤

1

t
surjN(t(α + β)).

Passing to the limit, asnN(α) + asnN(β) ≤ asnN(α + β).
4. By Lemma 2.15, 2,

|1
t
surjN(tα)−

1

t
surjN(tβ)| ≤

1

t
(∥t(α− β)∥+ ν(inf{tα, tβ}))

= ∥α− β∥+ ν(inf{α, β})/t.

Passing to the limit, |asnN(α)− asnN(β)| ≤ ∥α− β∥, as desired.
5 is an immediate consequence of 4.

3. Sannai’s dual F -signature

(3.1) In this section, let p be a prime number, and (R,m, k) be an F -
finite local ring of characteristic p of dimension d. Let d = logp[k : kp], and
δ = d+ d.

(3.2) In [San], for M ∈ modR, Sannai defined the dual F -signature of M
by

sR(M) = s(M) := lim sup
e→∞

surjM(eM)

pδe
.

s(R) is the (usual) F -signature [HL], which is closely related to the strong
F -regularity of R [AL]. While s(ωR) measures the F -rationality of R, pro-
vided R is Cohen–Macaulay.

Theorem 3.3 ([San, (3.16)]). R is F -rational if and only if R is Cohen–
Macaulay and s(ωR) > 0.

Now we connect the F -limit defined in [HS] with dual F -signature.

Theorem 3.4. Let R be Henselian, and M ∈ modR. Assume that the
F -limit

FL([M ]) = lim
e→∞

1

pδe
[eM ] ∈ Θ(R)

(see [HS]) exists. Then

sR(M) = lim
e→∞

surjM(eM)

pδe
= asnM(FL([M ])).
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Proof. By Lemma 2.15,

p−δe|surjM(pδe FL([M ]))− surjM([eM ])|
≤ ∥FL([M ])− p−δe[eM ]∥+ p−δeν(supp(FL([M ]))).

Taking the limit e → ∞, we get the desired result.

Corollary 3.5. Let the assumption be as in the theorem. Then the following
are equivalent.

1 s(M) > 0.

2 For any N ∈ modR such that supp([N ]) = supp(FL(M)), there exists
some r ≥ 1 and a surjective R-linear map N⊕r → M .

3 There exist some N ∈ modR such that supp([N ]) ⊂ supp(FL(M)) and
a surjective R-linear map N → M .

Proof. 1⇒2. As asnM(FL(M)) > 0, there exists some t > 0 such that
surjM(tFL(M)) > 0. By the choice of N , there exists some r ≥ 1 such that
r[N ] ≥ tFL(M) and so surjM N⊕r ≥ surjM(tFL(M)) > 0.

2⇒3. Let N = W1 ⊕ · · · ⊕ Wr, where {W1, . . . ,Wr} = supp(FL(M)).
Then there exists some r ≥ 1 and a surjective R-linear map N⊕r → M , and
supp[N⊕r] ⊂ supp(FL(M)).

3⇒1. By the choice of N , there exists some k > 0 such that k FL(M) ≥
[N ]. Then s(M) = asnM(FL(M)) ≥ k−1 asnM [N ] ≥ k−1 surjM [N ] > 0.

4. The dual F -signature of the ring of invariants

Utilizing the result in [HS] and the last section, we give a criterion for the
condition s(ωÂ) > 0 for the ring of invariants A, where Â is the completion.

(4.1) Let k be an algebraically closed field, V = kd, G a finite subgroup of
GL(V ). In this section, we assume that G does not have a pseudo-reflection,
where we say that g ∈ GL(V ) is a pseudo-reflection if rank(g − 1V ) = 1.
Let v1, . . . , vd be a fixed k-basis of V . Let B := SymV = k[v1, . . . , vd], and
A = BG. Let m and n be the irrelevant ideals of A and B, respectively. Let
Â and B̂ be the completion of A and B, respectively.

For a G-module W , we define MW := (B ⊗k W )G. Let k = V0, V1, . . . , Vn

be the irreducible representations of G. Let Pi → Vi be the projective cover.
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Set Mi := MPi
= (B ⊗k Pi)

G. For a finite dimensional G-module W , detW
denote the determinant representation

∧dimWW of W . Let Vν = detV be
the determinant representation of V .

Lemma 4.2. The canonical module ωA of A is isomorphic to Mν = MdetV .

Proof. See [Has2, (14.28)] and references therein.

Lemma 4.3. Let Λ be a selfinjective finite dimensional k-algebra, L a simple
(left) Λ-module, and h : P → L its projective cover. Let M be a finitely
generated indecomposable Λ-module. Then the following are equivalent.

1 Ext1Λ(M, radP ) = 0.

2 h∗ : HomΛ(M,P ) → HomΛ(M,L) is surjective.

3 M is either projective, or M/ radM does not contain L.

Proof. 1⇔2. This is because

HomΛ(M,P )
h∗−→ HomΛ(M,L) → Ext1Λ(M, radP ) → Ext1λ(M,P )

is exact and Ext1Λ(M,P ) = 0 (since P is injective).
2⇒3. Assume the contrary. Then as M/ radM contains L, there is a

surjective map M → L. By assumption, this map lifts to M → P , and this
is surjective by Nakayama’s lemma. As P is projective, this map splits. As
M is indecomposable, M ∼= P , and this is a contradiction.

3⇒2. If M is projective, then h∗ is obviously surjective. If M/ radM
does not contain L, then HomΛ(M,L) = 0, and h∗ is obviously surjective.

Theorem 4.4. Let p divide the order |G| of G. Then the following are
equivalent.

1 s(ωÂ) > 0.

2 The canonical map Mν → MVν = ωA is surjective.

3 H1(G,B ⊗k radPν) = 0.

4 For any non-projective finitely generated indecomposable G-summand
M of B, M does not contain det−1

V , the k-dual of detV .

If these conditions hold, then s(ωÂ) ≥ 1/|G|.
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Proof. We prove the equivalence of 2 and 3 first. Let B =
⊕

j Nj be a
decomposition into finitely generated indecomposable G-modules. Such a
decomposition exists, since B is a direct sum of finitely generated G-modules.
The map Mν → MVν in 2 is the map

(B ⊗ Pν)
G → (B ⊗ detV )

G

induced by the projective cover Pν → detV . By the isomorphism ExtiG(N
∗
j , ?)

∼=
H i(G,Nj⊗?), this map can be identified with the sum of

HomG(N
∗
j , Pν) → HomG(N

∗
j , detV ).

On the other hand, 3 is equivalent to say that Ext1G(N
∗
j , radPν) = 0 for any

j. So the equivalence 2⇔3 follows from Lemma 4.3.
Similarly, 4 is equivalent to say that each N∗

j is injective (or equivalently,
projective, as kG is selfinjective) or N∗

j / radN
∗
j
∼= (socNj)

∗ does not contain
detV . This is equivalent to say that Nj is either projective, or Nj (or equiv-
alently, socNj) does not contain det−1. So 4⇔2 follows from Lemma 4.3.

We prove 2⇒1. As there is a surjective map Mν → ωA and

FL([ωÂ]) =
1

|G|

n∑
i=0

(dimVi)[M̂i]

by [HS, (5.1)], s(ωÂ) > 0 by Corollary 3.5. Moreover,

s(ωÂ) = asnωÂ
(FL([ωÂ])) ≥

dimVν

|G|
asnωÂ

(M̂ν) ≥
1

|G|
surjωA

(Mν) ≥
1

|G|
,

and the last assertion has been proved.
We prove 1⇒2. By [HS, (4.16)],

FL([ωÂ]) =
1

|G|
[B̂].

So by Corollary 3.5, there is some r > 0 and a surjective map h : B̂r → ωÂ.

By the equivalence γ = (B̂⊗Â?)
∗∗ : Ref(Â) → Ref(G, B̂) (see [HasN, (2.4)]

and [HS, (5.4)]), there corresponds

h̃ = γ(h) : (B̂ ⊗k kG)r → B̂ ⊗k det .
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As B̂⊗kkG is a projective object in the category of (G,B)-modules, h̃ factors
through the surjection

B̂ ⊗k Pν → B̂ ⊗k det .

Returning to the category Ref Â, h factors through M̂ν = (B̂⊗ÂPν)
G → ωÂ.

So this map must be surjective, and 2 follows.

Corollary 4.5. Assume that p divides |G|. If s(ωÂ) > 0, then det−1
V is not

a direct summand of B.

Proof. Being a one-dimensional representation, det−1
V is not projective by

assumption. Thus the result follows from 1⇒4 of the theorem.

Lemma 4.6. Let M and N be in Ref(G,B). There is a natural isomorphism

γ : HomA(M
G, NG) → HomB(M,N)G.

Proof. This is simply because γ = (B⊗A?)
∗∗ : Ref(A) → Ref(G,B) is an

equivalence, and HomB(M,N)G = HomG,B(M,N).

Theorem 4.7. A is F -rational if and only if the following three conditions
hold.

1 A is Cohen–Macaulay.

2 H1(G,B) = 0.

3 (B⊗k (I/k))
G is a maximal Cohen–Macaulay A-module, where I is the

injective hull of k.

Proof. If the order |G| of G is not divisible by p, then A is F -rational, and
the three conditions hold. So we may assume that |G| is divisible by p.

Assume that A is F -rational. Then A is Cohen–Macaulay. As s(ωÂ) > 0,
we have that H1(G,B ⊗k radPν) = 0, and

(1) 0 → (B ⊗ radPν)
G → (B ⊗ Pν)

G → (B ⊗ detV )
G → 0

is exact. As Mν = (B⊗Pν)
G is a direct summand of B = MkG = (B⊗kG)G,

it is a maximal Cohen–Macaulay module. As (B ⊗ det)G = ωA, it is also
a maximal Cohen–Macaulay module. So the canonical dual of the exact
sequence (1) is still exact. As there is an identification

HomA((B⊗k?)
G, ωA) = HomB(B⊗k?, B ⊗k detV )

G = (B⊗k?
∗ ⊗k detV )

G,
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we get the exact sequence of maximal Cohen–Macaulay A-modules

(2) 0 → A → (B ⊗k P
∗
ν ⊗k detV )

G → (B ⊗k (radPν)
∗ ⊗k detV )

G → 0.

As (radPν)
∗⊗detV ∼= I/k, (B⊗(I/k))G is maximal Cohen–Macaulay. As I is

an injective G-module, B⊗kI is so as a G-module, and henceH1(G,B⊗kI) =
0. By the long exact sequence of the G-cohomology, we get H1(G,B) = 0.

The converse is similar. Dualizing (2), we have that (1) is exact.

Corollary 4.8. If A is F -rational, then H1(G, k) = 0.

Proof. k is a direct summand of B, and H1(G,B) = 0.

Example 4.9. If p = 2 and G = S2 or S3, the symmetric groups, then
H1(G, k) ̸= 0. So A is not F -rational, provided G does not have a pseudo-
reflection.

5. An example of F -rational ring of invariants which are not F -
regular

(5.1) Let p be an odd prime number, and k an algebraically closed field of
characteristic p.

(5.2) Let us identify Map(Fp,Fp)
× with the symmetric group Sp. We write

Fp = {0, 1, . . . , p− 1}. Define
G := {ϕ ∈ Sp | ∃a ∈ F×

p ∃b ∈ Fp ∀x ∈ Fp ϕ(x) = ax+ b} ⊂ Sp;

Q := {ϕ ∈ Q | ∃b ∈ Fp ∀x ∈ Fp ϕ(x) = x+ b} ⊂ G;

Γ := {ϕ ∈ Sp | ∃a ∈ F×
p ∀x ∈ Fp ϕ(x) = ax} ⊂ G.

G is a subgroup of Sp, Q is a normal subgroup of G, and Γ is a subgroup of
G such that G = Q⋊Γ. Note that Q is cyclic of order p. Γ is cyclic of order
p− 1. So G is of order p(p− 1).

(5.3) Let α be a primitive element of Fp (that is, a generator of the cyclic
group F×

p ), and let τ ∈ Γ be the element given by τ(x) = αx. The only

involution of Γ is τ (p−1)/2, the multiplication by −1. As a permutation, it is

(1 (p− 1))(2 (p− 2)) · · · ((p− 1)/2 (p+ 1)/2),

which is a transposition if and only if p = 3. As Γ contains a Sylow 2-
subgroup, a transposition of G, if any, is conjugate to an element of Γ, and
it must be a transposition again. It follows that G has a transposition if and
only if p = 3.
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(5.4) Now let G ⊂ Sp act on P = kp = ⟨w0, w1, . . . , wp−1⟩ by the permu-
tation action, that is, ϕwi = wϕ(i) for ϕ ∈ G and i ∈ Fp. g ∈ G ⊂ GL(P )
is a pseudo-reflection if and only if it is a transposition. So G has a pseudo-
reflection if and only if p = 3.

Let r ≥ 1, and set V = P⊕r. G ⊂ GL(V ) has a pseudo-reflection if and
only if p = 3 and r = 1.

(5.5) Let S = SymP .

Lemma 5.6. Let M be any finitely generated non-projective indecomposable
G-summand of S. Then M ∼= k.

Proof. Let Ω = {wλ = wλ0
0 · · ·wλp−1

p−1 | λ = (λ0, . . . , λp−1) ∈ Zp
≥0} be the set

of monomials of S. G acts on the set Ω. Let Θ be the set of orbits of this
action of G on Ω. Let Gwλ ∈ Θ.

If λ = (r, r, . . . , r) for some r ≥ 0, thenGwλ = {wλ}, and hence (kG)wλ ∼=
k.

Otherwise, Q does not have a fixed point on the action on Gwλ. As the
order of Q is p, Q acts freely on Gwλ. Hence (kG)wλ is kQ-free.

Since the order ofG/Q ∼= Γ is p−1, the Lyndon–Hochschild–Serre spectral
sequence collapses, and we have H i(G,M) ∼= H i(Q,M)Γ for any G-module
M . So a Q-injective (or equivalently, Q-projective) G-module is G-injective
(or equivalently, G-projective).

As we have S =
⊕

θ∈Θ kθ as a G-module, S is a direct sum of G-projective
modules and copies of k. Using Krull-Schmidt theorem, it is easy to see that
M ∼= k.

Lemma 5.7. Let U and W be G-modules.

1 kG ⊗k W ∼= kG ⊗k W ′, where W ′ is the k-vector space W with the
trivial G-action.

2 If U is G-projective, then U ⊗k W is G-projective.

Proof. 1. g ⊗ w 7→ g ⊗ g−1w gives such an isomorphism.
2 follows from 1.

(5.8) Let B := SymV = SymP⊕r ∼= S⊗r.

Lemma 5.9. Let M be any finitely generated non-projective indecomposable
G-summand of B. Then M ∼= k.
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Proof. Follows immediately from Lemma 5.6 and Lemma 5.7.

Lemma 5.10. Let k− denote the sign representation. Then detV ∼= k− if r
is odd, and detV ∼= k if r is even. k− is not isomorphic to k.

Proof. As the determinant of a sign matrix is the signature of the permuta-
tion, detP ∼= k−. Hence detV ∼= (detP )

⊗r ∼= (k−)
⊗r, and we get the desired

result. The last assertion is clear, since τ = (x 7→ αx) ∈ Γ is a cyclic
permutation of order p− 1, and is an odd permutation.

Theorem 5.11. We have

depthA = min{rp, 2(p− 1) + r}.

Hence A is Cohen–Macaulay if and only if r ≤ 2.

Proof. This is an immediate consequence of [Kem, (3.3)].

Theorem 5.12. Let p, r, G, P , V = P⊕r, B = SymV be as above, and
A := BG. Then

1 G is a finite subgroup of GL(V ) of order p(p− 1).

2 G ⊂ GL(V ) has a pseudo-reflection if and only if p = 3 and r =
1. If so, G = S3 is the symmetric group acting regularly on B =
k[w0, w1, w2] by permutations on w0, w1, w2. The ring of invariants A
is the polynomial ring. Otherwise, A is not weakly F -regular.

3 If p ≥ 5 and r = 1, then A is F -rational, but not weakly F -regular.

4 If r = 2, then A is Gorenstein, but not F -rational.

5 If r ≥ 3 and r is odd, then s(ωÂ) > 0 but A is not Cohen–Macaulay.

6 If r ≥ 4 and even, then A is quasi-Gorenstein, but not Cohen–Macaulay.

Proof. We have already seen 1 and the first statement of 2. If p = 3 and
r = 1, then G ⊂ S3 has order 6, and G = S3. So A is the polynomial ring
generated by the symmetric polynomials. Otherwise, as G does not have a
pseudo-reflection and the order |G| of G is divisible by p, A is not weakly
F -regular, see [Bro], [Yas], and [HS, (5.8)].
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The only non-projective finitely generated indecomposable G-summand
of B is k by Lemma 5.9, and det−1

V ⊂ k if and only if r is even by Lemma 5.10.
Hence we have that s(ωÂ) > 0 if and only if r is odd by Theorem 4.4.

3. A is not weakly F -regular by 2. As r = 1 is odd, s(ωÂ) > 0. On the
other hand, A is Cohen–Macaulay by Theorem 5.11. Hence A is F -rational
by Theorem 3.3.

4. By Theorem 5.11, A is Cohen–Macaulay. On the other hand, by
Lemma 5.10, detV ∼= k, and hence ωA

∼= (B ⊗k detV )
G ∼= BG ∼= A by

Lemma 4.2. So A is Gorenstein. As A is Gorenstein but not weakly F -
regular, it is not F -rational by [HH2, (4.7)].

5 and 6 are easy.
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