## F-thresholds, tight closure, integral closure, and multiplicity bounds

Shunsuke Takagi (Kyushu University)

This is a joint work with Craig Huneke, Mircea Mustață and Kei-ichi Watanabe.

Let R be a Noetherian ring of prime characteristic p and denote by  $R^{\circ}$  the set of elements of R that are not contained in any minimal prime ideal. The *tight closure*  $I^*$  of an ideal  $I \subseteq R$  is defined to be the ideal of R consisting of all elements  $x \in R$ for which there exists  $c \in R^{\circ}$  such that  $cx^q \in I^{[q]}$  for all large  $q = p^e$ , where  $I^{[q]}$ is the ideal generated by the  $q^{\text{th}}$  powers of all elements of I. The ring R is called F-rational if  $J^* = J$  for every ideal  $J \subseteq R$  generated by parameters.

Let  $\mathfrak{a}$  be a fixed proper ideal of R such that  $\mathfrak{a} \cap R^{\circ} \neq \emptyset$ . To each ideal J of R such that  $\mathfrak{a} \subseteq \sqrt{J}$ , we associate an F-threshold as follows. For every  $q = p^{e}$ , let

$$\nu_{\mathfrak{a}}^{J}(q) := \max\{r \in \mathbb{N} | \mathfrak{a}^{r} \not\subseteq J^{[q]}\},\$$

where  $J^{[q]}$  is the ideal generated by the  $q^{\text{th}}$  powers of all elements of J. Since  $\mathfrak{a} \subseteq \sqrt{J}$ , this is a nonnegative integer (if  $\mathfrak{a} \subseteq J^{[q]}$ , then we put  $\nu_{\mathfrak{a}}^{J}(q) = 0$ ). We put

$$c^J_+(\mathfrak{a}) = \limsup_{q \to \infty} \frac{\nu^J_{\mathfrak{a}}(q)}{q}, \quad c^J_-(\mathfrak{a}) = \liminf_{q \to \infty} \frac{\nu^J_{\mathfrak{a}}(q)}{q}.$$

When  $c^J_+(\mathfrak{a}) = c^J_-(\mathfrak{a})$ , we call this limit the *F*-threshold of the pair  $(R, \mathfrak{a})$  (or simply of  $\mathfrak{a}$ ) with respect to J, and we denote it by  $c^J(\mathfrak{a})$ . The reader is referred to [3] and [4] for basic properties of F-thresholds.

**Example 1.** Let R be a Noetherian local ring of characteristic p > 0, and let  $J = (x_1, \ldots, x_d)$ , where  $x_1, \ldots, x_d$  form a full system of parameters in R. It follows from the Monomial Conjecture that  $(x_1 \cdots x_d)^{q-1} \notin J^{[q]}$  for every q. Hence  $\nu_J^J(q) \ge d(q-1)$  for every q, and therefore  $c_-^J(J) \ge d$ . On the other hand, it is easy to see that  $c_+^J(J) \le d$ , and we conclude that  $c^J(J) = d$ .

We can describe the tight closure and the integral closure of parameter ideals in terms of F-thresholds.

**Theorem 2.** Let  $(R, \mathfrak{m})$  be a d-dimensional excellent analytically irreducible Noetherian local domain of characteristic p > 0, and let  $J = (x_1, \ldots, x_d)$  be an ideal generated by a full system of parameters in R. Given an ideal  $I \supseteq J$ , we have  $I \subseteq J^*$  if and only if  $c_{+}^{I}(J) = d$  (and in this case  $c^{I}(J)$  exists). In particular, R is F-rational if and only if  $c_{+}^{I}(J) < d$  for every ideal  $I \supseteq J$ .

In order to prove Theorem 2, we start with the following lemma.

**Lemma 3.** Let  $(R, \mathfrak{m})$  be an excellent analytically irreducible Noetherian local domain of positive characteristic p. Set  $d = \dim(R)$ , and let  $J = (x_1, \ldots, x_d)$  be an ideal generated by a full system of parameters in R, and let  $I \supseteq J$  be another ideal. Then I is not contained in the tight closure  $J^*$  of J if and only if there exists  $q_0 = p^{e_0}$ such that  $x^{q_0-1} \in I^{[q_0]}$ , where  $x = x_1 x_2 \cdots x_d$ .

Proof. After passing to completion, we may assume that R is a complete local domain. Suppose first that  $x^{q_0-1} \in I^{[q_0]}$ , and by way of contradiction suppose also that  $I \subseteq J^*$ . Let  $c \in R^\circ$  be a test element. Then for all  $q = p^e$ , one has  $cx^{q(q_0-1)} \in cI^{[qq_0]} \subset J^{[qq_0]}$ , so that  $c \in J^{[qq_0]} : x^{q(q_0-1)} \subseteq (J^{[q]})^*$ , by colon-capturing [2, Theorem 7.15a]. Therefore  $c^2$  lies in  $\bigcap_{q=p^e} J^{[q]} = (0)$ , a contradiction.

Conversely, suppose that  $I \nsubseteq J^*$ , and choose an element  $f \in I \smallsetminus J^*$ . We choose a coefficient field k, and let  $B = k[[x_1, \ldots, x_d, f]]$  be the complete subring of R generated by  $x_1, \ldots, x_d, f$ . Note that B is a hypersurface singularity, hence Gorenstein. Furthermore, by persistence of tight closure [2, Lemma 4.11a],  $f \notin ((x_1, \ldots, x_d)B)^*$ . If we prove that there exists  $q_0 = p^{e_0}$  such that  $x^{q_0-1} \in ((x_1, \ldots, x_d, f)B)^{[q_0]}$ , then clearly  $x^{q_0-1}$  is also in  $I^{[q_0]}$ . Hence we can reduce to the case in which R is Gorenstein. Since  $I \nsubseteq J^*$ , it follows from a result of Aberbach [1] that  $J^{[q]} \colon I^{[q]} \subseteq \mathfrak{m}^{n(q)}$ , where n(q) is a positive integer with  $\lim_{q\to\infty} n(q) = \infty$ . In particular, we can find  $q_0 = p^{e_0}$ such that  $J^{[q_0]} \colon I^{[q_0]} \subseteq J$ . Therefore  $x^{q_0-1} \in J^{[q_0]} \colon J \subseteq J^{[q_0]} \colon (J^{[q_0]} \colon I^{[q_0]}) = I^{[q_0]}$ , where the last equality follows from the fact that R is Gorenstein.

Proof of Theorem 2. Note first that for every  $I \supseteq J$  we have  $c_+^J(I) \leq d$ . Suppose now that  $I \subseteq J^*$ . It follows from Lemma 3 that  $J^{d(q-1)} \not\subseteq I^{[q]}$  for every  $q = p^e$ . This gives  $\nu_J^I(q) \geq d(q-1)$  for all q, and therefore  $c_-^I(J) \geq d$ . We conclude that in this case  $c_+^I(J) = c_-^I(J) = d$ .

Conversely, suppose that  $I \not\subseteq J^*$ . By Lemma 3, we can find  $q_0 = p^{e_0}$  such that

$$\mathfrak{b} := (x_1^{q_0}, \dots, x_d^{q_0}, (x_1 \cdots x_d)^{q_0 - 1}) \subseteq I^{[q_0]}$$

If  $(x_1, \ldots, x_d)^r \not\subseteq \mathfrak{b}^{[q]}$ , then

$$r \le (qq_0 - 1)(d - 1) + q(q_0 - 1) - 1 = qq_0d - q - d$$

Therefore  $\nu_J^{\mathfrak{b}}(q) \leq qq_0d - q - d$  for every q, which implies  $c^{\mathfrak{b}}(J) \leq q_0d - 1$ . Since  $q_0$  is a fixed power of p, we deduce

$$c^{I}_{+}(J) = \frac{1}{q_{0}} c^{I^{[q_{0}]}}_{+}(J) \le \frac{1}{q_{0}} c^{\mathfrak{b}}(J) \le d - \frac{1}{q_{0}} < d.$$

**Theorem 4.** Let  $(R, \mathfrak{m})$  be a d-dimensional formally equidimensional Noetherian local ring of characteristic p > 0. If I and J are ideals in R, with J generated by a full system of parameters, then

- (1)  $c^J_+(I) \leq d$  if and only if  $I \subseteq \overline{J}$ .
- (2) If, in addition,  $J \subseteq I$ , then  $I \subseteq \overline{J}$  if and only if  $c^J_+(I) = d$ .

*Proof.* Note that if  $J \subseteq I$ , then  $c_{-}^{J}(I) \ge c_{-}^{J}(J) = c^{J}(J) = d$ , by Example 1. Hence both assertions in (2) follow from the assertion in (1).

One implication in (1) is easy: if  $I \subseteq \overline{J}$ , then we have  $c^J_+(I) \leq c^J_+(\overline{J}) = c^J(J) = d$ . Conversely, suppose that  $c^J_+(I) \leq d$ . In order to show that  $I \subseteq \overline{J}$ , we may assume that R is complete and reduced. Indeed, first note that the inverse image of  $\overline{JR_{\text{red}}}$ in R is contained in  $\overline{J}$ , hence it is enough to show that  $I\widehat{R}_{\text{red}} \subseteq \overline{J\widehat{R}_{\text{red}}}$ . Since  $J\widehat{R}_{\text{red}}$ is again generated by a full system of parameters, and since we trivially have

$$c^{J\widehat{R}_{red}}(I\widehat{R}_{red}) \le c^{J}(I) \le d,$$

we may replace R by  $\widehat{R}_{red}$ .

Since R is complete and reduced, we can find a test element c for R.

Claim. Let  $\mathfrak{a}, \mathfrak{b}$  be ideals of R such that  $\mathfrak{a} \subseteq \sqrt{\mathfrak{b}}$ . Then  $c^{\mathfrak{b}}_+(\mathfrak{a}) \leq \alpha$  if and only if for every power  $q_0$  of p, we have  $\mathfrak{a}^{\lceil \alpha q \rceil + q/q_0} \subseteq \mathfrak{b}^{[q]}$  for all  $q = p^e \gg q_0$ .

Proof of Claim. First, assume that  $c^{\mathfrak{b}}_{+}(\mathfrak{a}) \leq \alpha$ . By the definition of  $c^{\mathfrak{b}}_{+}(\mathfrak{a})$ , for any power  $q_0$  of p, there exists  $q_1$  such that  $\nu^{\mathfrak{b}}_{\mathfrak{a}}(q)/q < \alpha + 1/q_0$  for all  $q = p^e \geq q_1$ . Thus,  $\nu^{\mathfrak{b}}_{\mathfrak{a}}(q) \leq \lceil \alpha q \rceil + q/q_0$ , that is,  $\mathfrak{a}^{\lceil \alpha q \rceil + q/q_0} \subseteq \mathfrak{b}^{[q]}$  for all  $q = p^e \geq q_1$ . For the converse implication, note that by assumption,  $\nu^{\mathfrak{b}}_{\mathfrak{a}}(q) \leq \lceil \alpha q \rceil + q/q_0 - 1$  for all large  $q = p^e \gg q_0$ . Dividing by q and taking the limit gives  $c^{\mathfrak{b}}_+(\mathfrak{a}) \leq \alpha + 1/q_0$ . Since  $q_0$  is any power of p, we can conclude that  $c^{\mathfrak{b}}_+(\mathfrak{a}) \leq \alpha$ .

By the above claim, the assumption  $c^{J}_{+}(I) \leq d$  implies that for all  $q_0 = p^{e_0}$  and for all large  $q = p^{e}$ , we have

 $I^{q(d+(1/q_0))} \subset J^{[q]}.$ 

Hence  $I^q J^{q(d-1+(1/q_0))} \subseteq J^{[q]}$ , and thus

$$I^q \subseteq J^{[q]} \colon J^{q(d-1+(1/q_0))} \subseteq (J^{q-d+1-(q/q_0)})^*,$$

where the last containment follows from the colon-capturing property of tight closure [2, Theorem 7.15a]. We get  $cI^q \subseteq cR \cap J^{q-d+1-(q/q_0)} \subseteq cJ^{q-d+1-(q/q_0)-l}$  for some fixed integer l that is independent of q, by the Artin-Rees lemma. Since c is a non-zero divisor in R, it follows that

$$I^{q} \subset J^{q-d+1-(q/q_{0})-l}.$$
(1)

If  $\nu$  is a discrete valuation with center in  $\mathfrak{m}$ , we may apply  $\nu$  to (1) to deduce  $q\nu(I) \geq \left(q-d+1-\frac{q}{q_0}-l\right)\nu(J)$ . Dividing by q and letting q go to infinity gives  $\nu(I) \geq \left(1-\frac{1}{q_0}\right)\nu(J)$ . We now let  $q_0$  go to infinity to obtain  $\nu(I) \geq \nu(J)$ . Since this holds for every  $\nu$ , we have  $I \subseteq \overline{J}$ .

Two years ago (at the 27<sup>th</sup> Symposium on Commutative Algebra in Japan), we proposed the following conjecture, generalizing a result in [5].

**Conjecture 5** (cf. [6, Conjecture 3.2]). Let  $(R, \mathfrak{m})$  be a d-dimensional Noetherian local ring of characteristic p > 0. If  $J \subseteq \mathfrak{m}$  is an ideal generated by a full system of parameters, and if  $\mathfrak{a} \subseteq \mathfrak{m}$  is an  $\mathfrak{m}$ -primary ideal, then

$$e(\mathfrak{a}) \ge \left(\frac{d}{\mathbf{c}_{-}^{J}(\mathfrak{a})}\right)^{d} e(J).$$

**Example 6.** Let  $R = k[\![X, Y, Z]\!]/(X^2 + Y^3 + Z^5)$  be a rational double point of type  $E_8$ , with k a field of characteristic p > 0. Let  $\mathfrak{a} = (x, z)$  and J = (y, z). Then  $e(\mathfrak{a}) = 3$  and e(J) = 2. It is easy to check that  $c^J(\mathfrak{a}) = 5/3$  and  $c^{\mathfrak{a}}(J) = 5/2$ . Thus,

$$e(\mathfrak{a}) = 3 > \frac{72}{25} = \left(\frac{2}{c^J(\mathfrak{a})}\right)^2 e(J),$$
$$e(J) = 2 > \frac{48}{25} = \left(\frac{2}{c^\mathfrak{a}(J)}\right)^2 e(\mathfrak{a}).$$

Two years ago, we reported the following result as an evidence of Conjecture 5.

**Theorem 7** ([6, Proposition 3.3]). If  $(R, \mathfrak{m})$  is a regular local ring of characteristic p > 0 and  $J = (x_1^{a_1}, \ldots, x_d^{a_d})$ , with  $x_1, \ldots, x_d$  a full regular system of parameters for R, and with  $a_1, \ldots, a_d$  positive integers, then the inequality given by Conjecture 5 holds.

We will conclude this article with a result related to the graded version of Conjecture 5.

**Theorem 8.** Let  $R = \bigoplus_{d\geq 0} R_d$  be an n-dimensional graded Cohen-Macaulay ring with  $R_0$  a field of characteristic p > 0. If  $\mathfrak{a}$  and J are ideals generated by full homogeneous systems of parameters for R, then

$$e(\mathfrak{a}) \ge \left(\frac{n}{\mathbf{c}_{-}^{J}(\mathfrak{a})}\right)^{n} e(J).$$

*Proof.* Suppose that  $\mathfrak{a}$  is generated by a full homogeneous system of parameters  $x_1, \ldots, x_n$  of degrees  $a_1 \leq \cdots \leq a_n$  and J is generated by another homogeneous system of parameters  $f_1, \ldots, f_n$  of degrees  $d_1 \leq \cdots \leq d_n$ . Fix a power  $q = p^e$  of p,

and define the nonnegative integers  $t_1^{(e)}, \ldots, t_{n-1}^{(e)}$  inductively as follows:  $t_1^{(e)}$  is the least integer t such that  $x_1^t \in J^{[q]}$ . If  $i \ge 2$ , then  $t_i^{(e)}$  is the least integer t such that  $x_1^{t_1^{(e)}-1} \cdots x_{i-1}^{t_{i-1}^{(e)}-1} x_i^t \in J^{[q]}$ . We also define the integer  $N^{(e)}$  to be the least integer N such that  $I^N \subseteq J^{[q]}$ . Note that  $N^{(e)}$  is greater than  $t_1^{(e)} + \cdots + t_{n-1}^{(e)} - n + 1$ . Since the lim sup of the ratios  $(N^{(e)} + n - 1)/p^e$  is  $c_+^J(\mathfrak{a})$ , it suffices to prove that

$$(N^{(e)} + n - 1)^n a_1 \cdots a_n \ge n^n q^n d_1 \cdots d_n.$$

First, we will show the following inequality for every i = 1, ..., n - 1:

$$t_1^{(e)}a_1 + \dots + t_i^{(e)}a_i \ge q(d_1 + \dots + d_i).$$
 (2)

Let  $I_i^{(e)}$  be the ideal of R generated by  $x_1^{t_1^{(e)}}, x_1^{t_1^{(e)}-1}x_2^{t_2^{(e)}}, \ldots, x_1^{t_1^{(e)}-1} \cdots x_{i-1}^{t_{i-1}^{(e)}-1}x_i^{t_i^{(e)}}$ . By the definition of  $t_1^{(e)}, \ldots, t_i^{(e)}$ , we have that  $I_i^{(e)} \subseteq J^{[q]}$ . The natural surjection of  $R/I_i^{(e)}$  onto  $R/J^{[q]}$  induces a comparison map between the minimal free resolutions. Looking at the *i*<sup>th</sup> free modules, we have the map

$$R(-t_1^{(e)}a_1-\cdots-t_i^{(e)}a_i)\to\bigoplus_{1\leq v_1\leq\cdots\leq v_i\leq n}R(-qd_{v_1}-\cdots-qd_{v_i}).$$

In particular, unless this map is zero,  $t_1^{(e)}a_1 + \cdots + t_i^{(e)}a_i$  must be at least as large as the minimum of the twists, which is  $q(d_1 + \cdots + d_i)$ . So it remains to see the reason why this map cannot be zero. Assume it is zero: then the map

$$\operatorname{Tor}_{i}^{R}(R/I_{i}^{(e)}, R/\mathfrak{b}_{i}) \to \operatorname{Tor}_{i}^{R}(R/J^{[q]}, R/\mathfrak{b}_{i})$$

will be zero, where  $\mathfrak{b}_i$  is the ideal generated by  $x_1, \ldots, x_i$ . On the other hand, using the Koszul complex on  $x_1, \ldots, x_i$ , we see that this map can be identified with the natural map

$$(I_i^{(e)}:\mathfrak{b}_i)/I_i^{(e)} \to (J^{[q]}:\mathfrak{b}_i)/J^{[q]}.$$

Since the ideal  $I_i^{(e)}$ :  $\mathbf{b}_i$  is generated by  $x_1^{t_1^{(e)}-1} \cdots x_i^{t_i^{(e)}-1}$  modulo  $I_i^{(e)}$ , the map is zero if and only if  $x_1^{t_1^{(e)}-1} \cdots x_i^{t_i^{(e)}-1}$  is in  $J^{[q]}$ . However, this contradicts the definition of  $t_i^{(e)}$ .

Next, we will prove the following estimate:

$$t_1^{(e)}a_1 + \dots + t_{n-1}^{(e)}a_{n-1} + (N^{(e)} - t_1^{(e)} - \dots - t_{n-1}^{(e)} + n - 1)a_n \ge q(d_1 + \dots + d_n).$$
(3)

Since 
$$\mathfrak{a}^{N^{(e)}} \subseteq J^{[q]}$$
, we have that

$$(x_1^{N^{(e)}}, \dots, x_n^{N^{(e)}}) : J^{[q]} \subseteq (x_1^{N^{(e)}}, \dots, x_n^{N^{(e)}}) : \mathfrak{a}^{N^{(e)}} = (x_1^{N^{(e)}}, \dots, x_n^{N^{(e)}}) + \mathfrak{a}^{(n-1)(N^{(e)}-1)}.$$

The ideal  $(x_1^{N^{(e)}}, \ldots, x_n^{N^{(e)}}) : J^{[q]}$  is of the form  $(x_1^{N^{(e)}}, \ldots, x_n^{N^{(e)}}, y^{(e)})$ , where the extra generator  $y^{(e)}$  has degree  $N^{(e)}(a_1 + \cdots + a_n) - q(d_1 + \cdots + d_n)$ . We write

$$y^{(e)} = \sum_{m_1 + \dots + m_n = (n-1)(N^{(e)} - 1)} r_{m_1 \dots m_n} x_1^{m_1} \dots x_n^{m_n}$$

modulo  $(x_1^{N^{(e)}}, \ldots, x_n^{N^{(e)}})$ . Since  $x_1^{t_1^{(e)}-1} \cdots x_{n-1}^{t_{n-1}^{(e)}-1}$  is not in  $J^{[q]}$ , we see that  $y^{(e)}$  is not in  $(x_1^{N^{(e)}-t_1^{(e)}+1}, \ldots, x_{n-1}^{N^{(e)}-t_{n-1}^{(e)}+1}, x_n^{N^{(e)}})$ . To check this, suppose that  $y^{(e)}$  is in  $(x_1^{N^{(e)}-t_1^{(e)}+1}, \ldots, x_{n-1}^{N^{(e)}-t_{n-1}^{(e)}+1}, x_n^{N^{(e)}})$ . Then  $J^{[q]} = (x_1^{N^{(e)}}, \ldots, x_n^{N^{(e)}}) : y^{(e)}$  will contain  $(x_1^{N^{(e)}}, \ldots, x_n^{N^{(e)}}) : (x_1^{N^{(e)}-t_1^{(e)}+1}, \ldots, x_{n-1}^{N^{(e)}-t_{n-1}^{(e)}+1}, x_n^{N^{(e)}}) \ni x_1^{t_1^{(e)}-1} \cdots x_{n-1}^{t_{n-1}^{(e)}-1}$ . Thus, some  $r_{m_1\dots m_n}$  must be nonzero, where  $m_i \leq N^{(e)} - t_i^{(e)}$  for  $1 \leq i \leq n-1$  and  $m_n \leq N^{(e)} - 1$ . Since the degree of D is greater than or equal to the minimal degree of monomials  $x_1^{m_1} \dots x_n^{m_n}$  with  $r_{m_1\dots m_n}$  nonzero, we can conclude that

$$\deg D = N^{(e)}(a_1 + \dots + a_n) - q(d_1 + \dots + d_n)$$
  

$$\geq (N^{(e)} - t_1^{(e)})a_1 + \dots + (N^{(e)} - t_{n-1}^{(e)})a_{n-1} + (t_1^{(e)} + \dots + t_{n-1}^{(e)} - n + 1)a_n,$$

which implies the desired estimate.

To finish the proof, we will use the following claim.

Claim. Let  $\alpha_1, \ldots, \alpha_n$  and  $\beta_1, \ldots, \beta_n$  be two *n*-tuple of real numbers, and let  $1 = \gamma_1 \leq \gamma_2 \leq \cdots \leq \gamma_n$  be another one. Assume that  $\gamma_1 \alpha_1 + \cdots + \gamma_i \alpha_i \geq \gamma_1 \beta_1 + \cdots + \gamma_i \beta_i$  for all  $i = 1, \ldots, n$ . Then  $\alpha_1 + \cdots + \alpha_n \geq \beta_1 + \cdots + \beta_n$ .

Proof of Claim. Let  $\lambda_i = \alpha_i - \beta_i$  for  $1 \le i \le n$ . Then  $\gamma_1 \lambda_1 + \dots + \gamma_i \lambda_i \ge 0$  for all  $i = 1, \dots, n$ . We will prove that  $\lambda_1 + \dots + \lambda_n \ge 0$  by induction on n. We may assume that n is greater than one. The assertion is obvious if every  $\lambda_i \ge 0$ . Suppose that  $\lambda_i < 0$  for some i. Clearly  $i \ge 2$ . Since  $\gamma_i \ge \gamma_{i-1}$ , it follows from that  $\gamma_i \lambda_i \le \gamma_{i-1} \lambda_i$ . We then define  $\gamma'_j = \gamma_j$  for  $1 \le j \le i - 1$  and  $\gamma'_j = \gamma_{j+1}$  for  $i \le j \le n - 1$ . Define also  $\lambda'_j = \lambda_j$  for  $1 \le j \le i - 2$ ,  $\lambda'_{i-1} = \lambda_{i-1} + \lambda_i$  and  $\lambda'_j = \lambda_{j+1}$  for  $i \le j \le n - 1$ . Since  $\gamma'_1 \lambda'_1 + \dots + \gamma'_j \lambda'_j \ge 0$  for all  $j = 1, \dots, n - 1$ , the induction hypothesis implies that  $\lambda_1 + \dots + \lambda_n = \lambda'_1 + \dots + \lambda'_{n-1} \ge 0$ .

Set  $\alpha_i = t_i^{(e)}$  for  $1 \leq i \leq n-1$  and  $\alpha_n = N^{(e)} - t_1^{(e)} - \cdots - t_{n-1}^{(e)} + n-1$ . Set  $\beta_i = qd_i/a_i$  and  $\gamma_i = a_i/a_1$  for  $1 \leq i \leq n$ . Then  $\gamma_1 \leq \cdots \leq \gamma_n$ , because  $a_1 \leq \cdots \leq a_n$ . The inequalities  $\gamma_1 \alpha_1 + \cdots + \gamma_i \alpha_i \geq \gamma_1 \beta_1 + \cdots + \gamma_i \beta_i$  for  $1 \leq i \leq n$  follow from the estimates (1) and (2). Using the above claim, we can conclude that

$$N^{(e)} + n - 1 = \alpha_1 + \dots + \alpha_n \ge \beta_1 + \dots + \beta_n = q\left(\frac{d_1}{a_1} + \dots + \frac{d_n}{a_n}\right).$$

Comparing the arithmetic and geometric means of  $\{qd_i/a_i\}_i$ , we see that

$$(N^{(e)} + n - 1)^n a_1 \dots a_n \ge n^n q^n d_1 \dots d_n.$$

Remark 9. Theorem 8 does not imply the graded (Cohen-Macaulay) version of Conjecture 5, because a minimal reduction of an  $R_+$ -primary homogeneous ideal is not necessarily homogeneous.

## References

- I. M. Aberbach, Extensions of weakly and strongly F-regular rings by flat maps, J. Algebra 241 (2001), 799–807.
- [2] M. Hochster and C. Huneke, Tight closure, invariant theory and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), 31–116.
- [3] C. Huneke, M. Mustaţă, S. Takagi and K.-i. Watanabe, F-thresholds, tight closure, integral closure, and multiplicity bounds, arXiv:0708.2394, to appear in Michigan Math. J.
- [4] M. Mustață, S. Takagi and K.-i. Watanabe, F-thresholds and Bernstein-Sato polynomials. European congress of mathematics, 341–364, Eur. Math. Soc., Zürich, 2005.
- [5] S. Takagi and K.-i. Watanabe, On F-pure thresholds, J. Algebra 282 (2004), 278–297.
- [6] S. Takagi and K.-i. Watanabe, F-thresholds and multiplicities, Proceedings of "the 27th Symposium on Commutative Algebra in Japan," Toyama, 2005, 54– 60 (Japanese).

Department of Mathematics, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan

*E-mail address:* stakagi@math.kyushu-u.ac.jp