F-thresholds, tight closure, integral closure, and multiplicity bounds

Shunsuke Takagi (Kyushu University)

This is a joint work with Craig Huneke, Mircea Mustaţă and Kei-ichi Watanabe.
Let R be a Noetherian ring of prime characteristic p and denote by R° the set of elements of R that are not contained in any minimal prime ideal. The tight closure I^{*} of an ideal $I \subseteq R$ is defined to be the ideal of R consisting of all elements $x \in R$ for which there exists $c \in R^{\circ}$ such that $c x^{q} \in I^{[q]}$ for all large $q=p^{e}$, where $I^{[q]}$ is the ideal generated by the $q^{\text {th }}$ powers of all elements of I. The ring R is called F-rational if $J^{*}=J$ for every ideal $J \subseteq R$ generated by parameters.

Let \mathfrak{a} be a fixed proper ideal of R such that $\mathfrak{a} \cap R^{\circ} \neq \emptyset$. To each ideal J of R such that $\mathfrak{a} \subseteq \sqrt{J}$, we associate an F-threshold as follows. For every $q=p^{e}$, let

$$
\nu_{\mathfrak{a}}^{J}(q):=\max \left\{r \in \mathbb{N} \mid \mathfrak{a}^{r} \nsubseteq J^{[q]}\right\},
$$

where $J^{[q]}$ is the ideal generated by the $q^{\text {th }}$ powers of all elements of J. Since $\mathfrak{a} \subseteq \sqrt{J}$, this is a nonnegative integer (if $\mathfrak{a} \subseteq J^{[q]}$, then we put $\nu_{\mathfrak{a}}^{J}(q)=0$). We put

$$
\mathrm{c}_{+}^{J}(\mathfrak{a})=\limsup _{q \rightarrow \infty} \frac{\nu_{\mathfrak{a}}^{J}(q)}{q}, \quad \mathrm{c}_{-}^{J}(\mathfrak{a})=\liminf _{q \rightarrow \infty} \frac{\nu_{\mathfrak{a}}^{J}(q)}{q} .
$$

When $c_{+}^{J}(\mathfrak{a})=c_{-}^{J}(\mathfrak{a})$, we call this limit the F-threshold of the pair (R, \mathfrak{a}) (or simply of \mathfrak{a}) with respect to J, and we denote it by c $c^{J}(\mathfrak{a})$. The reader is referred to [3] and [4] for basic properties of F-thresholds.

Example 1. Let R be a Noetherian local ring of characteristic $p>0$, and let $J=\left(x_{1}, \ldots, x_{d}\right)$, where x_{1}, \ldots, x_{d} form a full system of parameters in R. It follows from the Monomial Conjecture that $\left(x_{1} \cdots x_{d}\right)^{q-1} \notin J^{[q]}$ for every q. Hence $\nu_{J}^{J}(q) \geq$ $d(q-1)$ for every q, and therefore $c_{-}^{J}(J) \geq d$. On the other hand, it is easy to see that $\mathrm{c}_{+}^{J}(J) \leq d$, and we conclude that $\mathrm{c}^{J}(J)=d$.

We can describe the tight closure and the integral closure of parameter ideals in terms of F-thresholds.

Theorem 2. Let (R, \mathfrak{m}) be ad-dimensional excellent analytically irreducible Noetherian local domain of characteristic $p>0$, and let $J=\left(x_{1}, \ldots, x_{d}\right)$ be an ideal generated by a full system of parameters in R. Given an ideal $I \supseteq J$, we have $I \subseteq J^{*}$ if
and only if $\mathrm{c}_{+}^{I}(J)=d$ (and in this case $c^{I}(J)$ exists). In particular, R is F-rational if and only if $\mathrm{c}_{+}^{I}(J)<d$ for every ideal $I \supsetneq J$.

In order to prove Theorem 2, we start with the following lemma.
Lemma 3. Let (R, \mathfrak{m}) be an excellent analytically irreducible Noetherian local domain of positive characteristic p. Set $d=\operatorname{dim}(R)$, and let $J=\left(x_{1}, \ldots, x_{d}\right)$ be an ideal generated by a full system of parameters in R, and let $I \supseteq J$ be another ideal. Then I is not contained in the tight closure J^{*} of J if and only if there exists $q_{0}=p^{e_{0}}$ such that $x^{q_{0}-1} \in I^{\left[q_{0}\right]}$, where $x=x_{1} x_{2} \cdots x_{d}$.

Proof. After passing to completion, we may assume that R is a complete local domain. Suppose first that $x^{q_{0}-1} \in I^{\left[q_{0}\right]}$, and by way of contradiction suppose also that $I \subseteq J^{*}$. Let $c \in R^{\circ}$ be a test element. Then for all $q=p^{e}$, one has $c x^{q\left(q_{0}-1\right)} \in c I^{\left[q q_{0}\right]} \subset J^{\left[q q_{0}\right]}$, so that $c \in J^{\left[q q_{0}\right]}: x^{q\left(q_{0}-1\right)} \subseteq\left(J^{[q]}\right)^{*}$, by colon-capturing [2, Theorem 7.15a]. Therefore c^{2} lies in $\bigcap_{q=p^{e}} J^{[q]}=(0)$, a contradiction.

Conversely, suppose that $I \nsubseteq J^{*}$, and choose an element $f \in I \backslash J^{*}$. We choose a coefficient field k, and let $B=k\left[\left[x_{1}, \ldots, x_{d}, f\right]\right]$ be the complete subring of R generated by x_{1}, \ldots, x_{d}, f. Note that B is a hypersurface singularity, hence Gorenstein. Furthermore, by persistence of tight closure [2, Lemma 4.11a], $f \notin\left(\left(x_{1}, \ldots, x_{d}\right) B\right)^{*}$. If we prove that there exists $q_{0}=p^{e_{0}}$ such that $x^{q_{0}-1} \in\left(\left(x_{1}, \ldots, x_{d}, f\right) B\right)^{\left[q_{0}\right]}$, then clearly $x^{q_{0}-1}$ is also in $I^{\left[q_{0}\right]}$. Hence we can reduce to the case in which R is Gorenstein. Since $I \nsubseteq J^{*}$, it follows from a result of Aberbach [1] that $J^{[q]}: I^{[q]} \subseteq \mathfrak{m}^{n(q)}$, where $n(q)$ is a positive integer with $\lim _{q \rightarrow \infty} n(q)=\infty$. In particular, we can find $q_{0}=p^{e_{0}}$ such that $J^{\left[q_{0}\right]}: I^{\left[q_{0}\right]} \subseteq J$. Therefore $x^{q_{0}-1} \in J^{\left[q_{0}\right]}: J \subseteq J^{\left[q_{0}\right]}:\left(J^{\left[q_{0}\right]}: I^{\left[q_{0}\right]}\right)=I^{\left[q_{0}\right]}$, where the last equality follows from the fact that R is Gorenstein.

Proof of Theorem 2. Note first that for every $I \supseteq J$ we have $c_{+}^{J}(I) \leq d$. Suppose now that $I \subseteq J^{*}$. It follows from Lemma 3 that $J^{d(q-1)} \nsubseteq I^{[q]}$ for every $q=p^{e}$. This gives $\nu_{J}^{I}(q) \geq d(q-1)$ for all q, and therefore $\mathrm{c}_{-}^{I}(J) \geq d$. We conclude that in this case $\mathrm{c}_{+}^{I}(J)=\mathrm{c}_{-}^{I}(J)=d$.

Conversely, suppose that $I \nsubseteq J^{*}$. By Lemma 3, we can find $q_{0}=p^{e_{0}}$ such that

$$
\mathfrak{b}:=\left(x_{1}^{q_{0}}, \ldots, x_{d}^{q_{0}},\left(x_{1} \cdots x_{d}\right)^{q_{0}-1}\right) \subseteq I^{\left[q_{0}\right]} .
$$

If $\left(x_{1}, \ldots, x_{d}\right)^{r} \nsubseteq \mathfrak{b}^{[q]}$, then

$$
r \leq\left(q q_{0}-1\right)(d-1)+q\left(q_{0}-1\right)-1=q q_{0} d-q-d
$$

Therefore $\nu_{J}^{\mathfrak{b}}(q) \leq q q_{0} d-q-d$ for every q, which implies $\boldsymbol{c}^{\mathfrak{b}}(J) \leq q_{0} d-1$. Since q_{0} is a fixed power of p, we deduce

$$
\mathrm{c}_{+}^{I}(J)=\frac{1}{q_{0}} \mathrm{c}_{+}^{\left.I q_{0}\right]}(J) \leq \frac{1}{q_{0}} \mathrm{c}^{\mathfrak{b}}(J) \leq d-\frac{1}{q_{0}}<d .
$$

Theorem 4. Let (R, \mathfrak{m}) be a d-dimensional formally equidimensional Noetherian local ring of characteristic $p>0$. If I and J are ideals in R, with J generated by a full system of parameters, then
(1) $\mathrm{c}_{+}^{J}(I) \leq d$ if and only if $I \subseteq \bar{J}$.
(2) If, in addition, $J \subseteq I$, then $I \subseteq \bar{J}$ if and only if $\mathrm{c}_{+}^{J}(I)=d$.

Proof. Note that if $J \subseteq I$, then $c_{-}^{J}(I) \geq c_{-}^{J}(J)=c^{J}(J)=d$, by Example 1. Hence both assertions in (2) follow from the assertion in (1).

One implication in (1) is easy: if $I \subseteq \bar{J}$, then we have $\mathrm{c}_{+}^{J}(I) \leq \mathrm{c}_{+}^{J}(\bar{J})=\mathrm{c}^{J}(J)=d$. Conversely, suppose that $c_{+}^{J}(I) \leq d$. In order to show that $I \subseteq \bar{J}$, we may assume that R is complete and reduced. Indeed, first note that the inverse image of $\overline{J \widehat{R}_{\text {red }}}$ in R is contained in \bar{J}, hence it is enough to show that $I \widehat{R}_{\text {red }} \subseteq \widehat{J}_{\text {red }}$. Since $J \widehat{R}_{\text {red }}$ is again generated by a full system of parameters, and since we trivially have

$$
\mathrm{c}^{J \widehat{R}_{\mathrm{red}}}\left(I \widehat{R}_{\mathrm{red}}\right) \leq \mathrm{c}^{J}(I) \leq d,
$$

we may replace R by $\widehat{R}_{\text {red }}$.
Since R is complete and reduced, we can find a test element c for R.
Claim. Let $\mathfrak{a}, \mathfrak{b}$ be ideals of R such that $\mathfrak{a} \subseteq \sqrt{\mathfrak{b}}$. Then $c_{+}^{\mathfrak{b}}(\mathfrak{a}) \leq \alpha$ if and only if for every power q_{0} of p, we have $\mathfrak{a}^{[\alpha q\rceil+q / q_{0}} \subseteq \mathfrak{b}^{[q]}$ for all $q=p^{e} \gg q_{0}$.

Proof of Claim. First, assume that $c_{+}^{\mathfrak{b}}(\mathfrak{a}) \leq \alpha$. By the definition of $c_{+}^{\mathfrak{b}}(\mathfrak{a})$, for any power q_{0} of p, there exists q_{1} such that $\nu_{\mathfrak{a}}^{\mathfrak{b}}(q) / q<\alpha+1 / q_{0}$ for all $q=p^{e} \geq q_{1}$. Thus, $\nu_{\mathfrak{a}}^{\mathfrak{b}}(q) \lesseqgtr\lceil\alpha q\rceil+q / q_{0}$, that is, $\mathfrak{a}^{[\alpha q\rceil+q / q_{0}} \subseteq \mathfrak{b}^{[q]}$ for all $q=p^{e} \geq q_{1}$. For the converse implication, note that by assumption, $\nu_{\mathfrak{a}}^{\mathfrak{b}}(q) \leq\lceil\alpha q\rceil+q / q_{0}-1$ for all large $q=p^{e} \gg q_{0}$. Dividing by q and taking the limit gives $\mathrm{c}_{+}^{\mathfrak{b}}(\mathfrak{a}) \leq \alpha+1 / q_{0}$. Since q_{0} is any power of p, we can conclude that $c_{+}^{\mathfrak{b}}(\mathfrak{a}) \leq \alpha$.

By the above claim, the assumption $c_{+}^{J}(I) \leq d$ implies that for all $q_{0}=p^{e_{0}}$ and for all large $q=p^{e}$, we have

$$
I^{q\left(d+\left(1 / q_{0}\right)\right)} \subseteq J^{[q]}
$$

Hence $I^{q} J^{q\left(d-1+\left(1 / q_{0}\right)\right)} \subseteq J^{[q]}$, and thus

$$
I^{q} \subseteq J^{[q]}: J^{q\left(d-1+\left(1 / q_{0}\right)\right)} \subseteq\left(J^{q-d+1-\left(q / q_{0}\right)}\right)^{*},
$$

where the last containment follows from the colon-capturing property of tight closure [2, Theorem 7.15a]. We get $c I^{q} \subseteq c R \cap J^{q-d+1-\left(q / q_{0}\right)} \subseteq c J^{q-d+1-\left(q / q_{0}\right)-l}$ for some fixed integer l that is independent of q, by the Artin-Rees lemma. Since c is a non-zero divisor in R, it follows that

$$
\begin{equation*}
I^{q} \subseteq J^{q-d+1-\left(q / q_{0}\right)-l} \tag{1}
\end{equation*}
$$

If ν is a discrete valuation with center in \mathfrak{m}, we may apply ν to (1) to deduce $q \nu(I) \geq\left(q-d+1-\frac{q}{q_{0}}-l\right) \nu(J)$. Dividing by q and letting q go to infinity gives $\nu(I) \geq\left(1-\frac{1}{q_{0}}\right) \nu(J)$. We now let q_{0} go to infinity to obtain $\nu(I) \geq \nu(J)$. Since this holds for every ν, we have $I \subseteq \bar{J}$.

Two years ago (at the $27^{\text {th }}$ Symposium on Commutative Algebra in Japan), we proposed the following conjecture, generalizing a result in [5].

Conjecture 5 (cf. [6, Conjecture 3.2]). Let (R, \mathfrak{m}) be a d-dimensional Noetherian local ring of characteristic $p>0$. If $J \subseteq \mathfrak{m}$ is an ideal generated by a full system of parameters, and if $\mathfrak{a} \subseteq \mathfrak{m}$ is an \mathfrak{m}-primary ideal, then

$$
e(\mathfrak{a}) \geq\left(\frac{d}{\mathbf{c}_{-}^{J}(\mathfrak{a})}\right)^{d} e(J)
$$

Example 6. Let $R=k \llbracket X, Y, Z \rrbracket /\left(X^{2}+Y^{3}+Z^{5}\right)$ be a rational double point of type E_{8}, with k a field of characteristic $p>0$. Let $\mathfrak{a}=(x, z)$ and $J=(y, z)$. Then $e(\mathfrak{a})=3$ and $e(J)=2$. It is easy to check that $\mathfrak{c}^{J}(\mathfrak{a})=5 / 3$ and $\mathfrak{c}^{\mathfrak{a}}(J)=5 / 2$. Thus,

$$
\begin{aligned}
& e(\mathfrak{a})=3>\frac{72}{25}=\left(\frac{2}{c^{J}(\mathfrak{a})}\right)^{2} e(J), \\
& e(J)=2>\frac{48}{25}=\left(\frac{2}{c^{\mathfrak{a}}(J)}\right)^{2} e(\mathfrak{a}) .
\end{aligned}
$$

Two years ago, we reported the following result as an evidence of Conjecture 5.
Theorem 7 ([6, Proposition 3.3]). If (R, \mathfrak{m}) is a regular local ring of characteristic $p>0$ and $J=\left(x_{1}^{a_{1}}, \ldots, x_{d}^{a_{d}}\right)$, with x_{1}, \ldots, x_{d} a full regular system of parameters for R, and with a_{1}, \ldots, a_{d} positive integers, then the inequality given by Conjecture 5 holds.

We will conclude this article with a result related to the graded version of Conjecture 5 .

Theorem 8. Let $R=\bigoplus_{d \geq 0} R_{d}$ be an n-dimensional graded Cohen-Macaulay ring with R_{0} a field of characteristic $p>0$. If \mathfrak{a} and J are ideals generated by full homogeneous systems of parameters for R, then

$$
e(\mathfrak{a}) \geq\left(\frac{n}{\mathbf{c}_{-}^{J}(\mathfrak{a})}\right)^{n} e(J) .
$$

Proof. Suppose that \mathfrak{a} is generated by a full homogeneous system of parameters x_{1}, \ldots, x_{n} of degrees $a_{1} \leq \cdots \leq a_{n}$ and J is generated by another homogeneous system of parameters f_{1}, \ldots, f_{n} of degrees $d_{1} \leq \cdots \leq d_{n}$. Fix a power $q=p^{e}$ of p,
and define the nonnegative integers $t_{1}^{(e)}, \ldots, t_{n-1}^{(e)}$ inductively as follows: $t_{1}^{(e)}$ is the least integer t such that $x_{1}^{t} \in J^{[q]}$. If $i \geq 2$, then $t_{i}^{(e)}$ is the least integer t such that $x_{1}^{t_{1}^{(e)}-1} \cdots x_{i-1}^{t_{i-1}^{(e)}-1} x_{i}^{t} \in J^{[q]}$. We also define the integer $N^{(e)}$ to be the least integer N such that $I^{N} \subseteq J^{[q]}$. Note that $N^{(e)}$ is greater than $t_{1}^{(e)}+\cdots+t_{n-1}^{(e)}-n+1$. Since the lim sup of the ratios $\left(N^{(e)}+n-1\right) / p^{e}$ is $c_{+}^{J}(\mathfrak{a})$, it suffices to prove that

$$
\left(N^{(e)}+n-1\right)^{n} a_{1} \cdots a_{n} \geq n^{n} q^{n} d_{1} \cdots d_{n} .
$$

First, we will show the following inequality for every $i=1, \ldots, n-1$:

$$
\begin{equation*}
t_{1}^{(e)} a_{1}+\cdots+t_{i}^{(e)} a_{i} \geq q\left(d_{1}+\cdots+d_{i}\right) \tag{2}
\end{equation*}
$$

Let $I_{i}^{(e)}$ be the ideal of R generated by $x_{1}^{t_{1}^{(e)}}, x_{1}^{t_{1}^{(e)}-1} x_{2}^{t_{2}^{(e)}}, \ldots, x_{1}^{t_{1}^{(e)}-1} \cdots x_{i-1}^{t_{i-1}^{(e)}-1} x_{i}^{t_{i}^{(e)}}$. By the definition of $t_{1}^{(e)}, \ldots, t_{i}^{(e)}$, we have that $I_{i}^{(e)} \subseteq J^{[q]}$. The natural surjection of $R / I_{i}^{(e)}$ onto $R / J^{[q]}$ induces a comparison map between the minimal free resolutions. Looking at the $i^{\text {th }}$ free modules, we have the map

$$
R\left(-t_{1}^{(e)} a_{1}-\cdots-t_{i}^{(e)} a_{i}\right) \rightarrow \bigoplus_{1 \leq v_{1} \leq \cdots \leq v_{i} \leq n} R\left(-q d_{v_{1}}-\cdots-q d_{v_{i}}\right) .
$$

In particular, unless this map is zero, $t_{1}^{(e)} a_{1}+\cdots+t_{i}^{(e)} a_{i}$ must be at least as large as the minimum of the twists, which is $q\left(d_{1}+\cdots+d_{i}\right)$. So it remains to see the reason why this map cannot be zero. Assume it is zero: then the map

$$
\operatorname{Tor}_{i}^{R}\left(R / I_{i}^{(e)}, R / \mathfrak{b}_{i}\right) \rightarrow \operatorname{Tor}_{i}^{R}\left(R / J^{[q]}, R / \mathfrak{b}_{i}\right)
$$

will be zero, where \mathfrak{b}_{i} is the ideal generated by x_{1}, \ldots, x_{i}. On the other hand, using the Koszul complex on x_{1}, \ldots, x_{i}, we see that this map can be identified with the natural map

$$
\left(I_{i}^{(e)}: \mathfrak{b}_{i}\right) / I_{i}^{(e)} \rightarrow\left(J^{[q]}: \mathfrak{b}_{i}\right) / J^{[q]} .
$$

Since the ideal $I_{i}^{(e)}: \mathfrak{b}_{i}$ is generated by $x_{1}^{t_{1}^{(e)}-1} \cdots x_{i}^{t_{i}^{(e)}-1}$ modulo $I_{i}^{(e)}$, the map is zero if and only if $x_{1}^{t_{1}^{(e)}-1} \cdots x_{i}^{t_{i}^{(e)}-1}$ is in $J^{[q]}$. However, this contradicts the definition of $t_{i}^{(e)}$.

Next, we will prove the following estimate:

$$
\begin{equation*}
t_{1}^{(e)} a_{1}+\cdots+t_{n-1}^{(e)} a_{n-1}+\left(N^{(e)}-t_{1}^{(e)}-\cdots-t_{n-1}^{(e)}+n-1\right) a_{n} \geq q\left(d_{1}+\cdots+d_{n}\right) \tag{3}
\end{equation*}
$$

Since $\mathfrak{a}^{N^{(e)}} \subseteq J^{[q]}$, we have that
$\left(x_{1}^{N^{(e)}}, \ldots, x_{n}^{N^{(e)}}\right): J^{[q]} \subseteq\left(x_{1}^{N^{(e)}}, \ldots, x_{n}^{N^{(e)}}\right): \mathfrak{a}^{N^{(e)}}=\left(x_{1}^{N^{(e)}}, \ldots, x_{n}^{N^{(e)}}\right)+\mathfrak{a}^{(n-1)\left(N^{(e)}-1\right)}$.
The ideal $\left(x_{1}^{N^{(e)}}, \ldots, x_{n}^{N^{(e)}}\right): J^{[q]}$ is of the form $\left(x_{1}^{N^{(e)}}, \ldots, x_{n}^{N^{(e)}}, y^{(e)}\right)$, where the extra generator $y^{(e)}$ has degree $N^{(e)}\left(a_{1}+\cdots+a_{n}\right)-q\left(d_{1}+\cdots+d_{n}\right)$. We write

$$
y^{(e)}=\sum_{m_{1}+\cdots+m_{n}=(n-1)\left(N^{(e)}-1\right)} r_{m_{1} \ldots m_{n}} x_{1}^{m_{1}} \ldots x_{n}^{m_{n}}
$$

modulo $\left(x_{1}^{N^{(e)}}, \ldots, x_{n}^{N^{(e)}}\right)$. Since $x_{1}^{t_{1}^{(e)}-1} \cdots x_{n-1}^{t_{n-1}^{(e)}-1}$ is not in $J^{[q]}$, we see that $y^{(e)}$ is not in $\left(x_{1}^{N^{(e)}-t_{1}^{(e)}+1}, \ldots, x_{n-1}^{N^{(e)}-t_{n-1}^{(e)}+1}, x_{n}^{N^{(e)}}\right)$. To check this, suppose that $y^{(e)}$ is in $\left(x_{1}^{N^{(e)}-t_{1}^{(e)}+1}, \ldots, x_{n-1}^{N^{(e)}-t_{n-1}^{(e)}+1}, x_{n}^{N^{(e)}}\right)$. Then $J^{[q]}=\left(x_{1}^{N^{(e)}}, \ldots, x_{n}^{N^{(e)}}\right): y^{(e)}$ will contain $\left(x_{1}^{N^{(e)}}, \ldots, x_{n}^{N^{(e)}}\right):\left(x_{1}^{N^{(e)}-t_{1}^{(e)}+1}, \ldots, x_{n-1}^{N^{(e)}-t_{n-1}^{(e)}+1}, x_{n}^{N^{(e)}}\right) \ni x_{1}^{t_{1}^{(e)}-1} \cdots x_{n-1}^{t_{n-1}^{(e)}-1}$. Thus, some $r_{m_{1} \ldots m_{n}}$ must be nonzero, where $m_{i} \leq N^{(e)}-t_{i}^{(e)}$ for $1 \leq i \leq n-1$ and $m_{n} \leq N^{(e)}-1$. Since the degree of D is greater than or equal to the minimal degree of monomials $x_{1}^{m_{1}} \ldots x_{n}^{m_{n}}$ with $r_{m_{1} \ldots m_{n}}$ nonzero, we can conclude that

$$
\begin{aligned}
\operatorname{deg} D & =N^{(e)}\left(a_{1}+\cdots+a_{n}\right)-q\left(d_{1}+\cdots+d_{n}\right) \\
& \geq\left(N^{(e)}-t_{1}^{(e)}\right) a_{1}+\cdots+\left(N^{(e)}-t_{n-1}^{(e)}\right) a_{n-1}+\left(t_{1}^{(e)}+\cdots+t_{n-1}^{(e)}-n+1\right) a_{n}
\end{aligned}
$$

which implies the desired estimate.
To finish the proof, we will use the following claim.
Claim. Let $\alpha_{1}, \ldots, \alpha_{n}$ and $\beta_{1}, \ldots, \beta_{n}$ be two n-tuple of real numbers, and let $1=$ $\gamma_{1} \leq \gamma_{2} \leq \cdots \leq \gamma_{n}$ be another one. Assume that $\gamma_{1} \alpha_{1}+\cdots+\gamma_{i} \alpha_{i} \geq \gamma_{1} \beta_{1}+\cdots+\gamma_{i} \beta_{i}$ for all $i=1, \ldots, n$. Then $\alpha_{1}+\cdots+\alpha_{n} \geq \beta_{1}+\cdots+\beta_{n}$.

Proof of Claim. Let $\lambda_{i}=\alpha_{i}-\beta_{i}$ for $1 \leq i \leq n$. Then $\gamma_{1} \lambda_{1}+\cdots+\gamma_{i} \lambda_{i} \geq 0$ for all $i=1, \ldots, n$. We will prove that $\lambda_{1}+\cdots+\lambda_{n} \geq 0$ by induction on n. We may assume that n is greater than one. The assertion is obvious if every $\lambda_{i} \geq 0$. Suppose that $\lambda_{i}<0$ for some i. Clearly $i \geq 2$. Since $\gamma_{i} \geq \gamma_{i-1}$, it follows from that $\gamma_{i} \lambda_{i} \leq \gamma_{i-1} \lambda_{i}$. We then define $\gamma_{j}^{\prime}=\gamma_{j}$ for $1 \leq j \leq i-1$ and $\gamma_{j}^{\prime}=\gamma_{j+1}$ for $i \leq j \leq n-1$. Define also $\lambda_{j}^{\prime}=\lambda_{j}$ for $1 \leq j \leq i-2, \lambda_{i-1}^{\prime}=\lambda_{i-1}+\lambda_{i}$ and $\lambda_{j}^{\prime}=\lambda_{j+1}$ for $i \leq j \leq n-1$. Since $\gamma_{1}^{\prime} \lambda_{1}^{\prime}+\cdots+\gamma_{j}^{\prime} \lambda_{j}^{\prime} \geq 0$ for all $j=1, \ldots, n-1$, the induction hypothesis implies that $\lambda_{1}+\cdots+\lambda_{n}=\lambda_{1}^{\prime}+\cdots+\lambda_{n-1}^{\prime} \geq 0$.

Set $\alpha_{i}=t_{i}^{(e)}$ for $1 \leq i \leq n-1$ and $\alpha_{n}=N^{(e)}-t_{1}^{(e)}-\cdots-t_{n-1}^{(e)}+n-1$. Set $\beta_{i}=q d_{i} / a_{i}$ and $\gamma_{i}=a_{i} / a_{1}$ for $1 \leq i \leq n$. Then $\gamma_{1} \leq \cdots \leq \gamma_{n}$, because $a_{1} \leq \cdots \leq a_{n}$. The inequalities $\gamma_{1} \alpha_{1}+\cdots+\gamma_{i} \alpha_{i} \geq \gamma_{1} \beta_{1}+\cdots+\gamma_{i} \beta_{i}$ for $1 \leq i \leq n$ follow from the estimates (1) and (2). Using the above claim, we can conclude that

$$
N^{(e)}+n-1=\alpha_{1}+\cdots+\alpha_{n} \geq \beta_{1}+\ldots \beta_{n}=q\left(\frac{d_{1}}{a_{1}}+\cdots+\frac{d_{n}}{a_{n}}\right) .
$$

Comparing the arithmetic and geometric means of $\left\{q d_{i} / a_{i}\right\}_{i}$, we see that

$$
\left(N^{(e)}+n-1\right)^{n} a_{1} \ldots a_{n} \geq n^{n} q^{n} d_{1} \ldots d_{n} .
$$

Remark 9. Theorem 8 does not imply the graded (Cohen-Macaulay) version of Conjecture 5 , because a minimal reduction of an R_{+}-primary homogeneous ideal is not necessarily homogeneous.

References

[1] I. M. Aberbach, Extensions of weakly and strongly F-regular rings by flat maps, J. Algebra 241 (2001), 799-807.
[2] M. Hochster and C. Huneke, Tight closure, invariant theory and the BriançonSkoda theorem, J. Amer. Math. Soc. 3 (1990), 31-116.
[3] C. Huneke, M. Mustaţă, S. Takagi and K.-i. Watanabe, F-thresholds, tight closure, integral closure, and multiplicity bounds, arXiv:0708.2394, to appear in Michigan Math. J.
[4] M. Mustaţă, S. Takagi and K.-i. Watanabe, F-thresholds and Bernstein-Sato polynomials. European congress of mathematics, 341-364, Eur. Math. Soc., Zürich, 2005.
[5] S. Takagi and K.-i. Watanabe, On F-pure thresholds, J. Algebra 282 (2004), 278-297.
[6] S. Takagi and K.-i. Watanabe, F-thresholds and multiplicities, Proceedings of "the 27th Symposium on Commutative Algebra in Japan," Toyama, 2005, 5460 (Japanese).

Department of Mathematics, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
E-mail address: stakagi@math.kyushu-u.ac.jp

