Stanley–Reinser rings which are complete intersections locally¹

Department of Mathematics Faculty of Culture and Education Saga University 佐賀大学・文化教育学部 寺井 直樹 (Naoki TERAI) terai@cc.saga-u.ac.jp Graduate School of Mathematics Nagoya University 名古屋大学・大学院多元数理科学研究科 吉田 健一 (Ken-ichi YOSHIDA) yoshida@math.nagoya-u.ac.jp

1. INTRODUCTION

By a simplicial complex Δ on the vertex set $V = [n] = \{1, 2, ..., n\}$, we mean that Δ is a family of subsets of V which satisfies the following conditions:

(i) $\{i\} \in \Delta$ for every $i \in V$ (ii) $F \in \Delta, G \subseteq F$ imply $G \in \Delta$.

An element of Δ is called a *face* of Δ . The *dimension* of Δ , denoted by dim Δ , is the maximum of the dimension dim $F = \sharp(F) - 1$, where F runs through all faces of Δ and $\sharp(F)$ denotes the cardinality of a set F. A simplicial complex Δ is called *pure* if all facets (maximal faces with respect to inclusion) of Δ have the same dimension.

For a face F of Δ ,

$$\operatorname{link}_{\Delta}(F) = \{ G \in \Delta : F \cup G \in \Delta, F \cap G = \emptyset \}$$

is called the link of F. For a subset W of V,

$$\Delta_W = \{ F \in \Delta : F \subseteq W \}$$

is called the *restriction* to W of Δ .

Throughout this talk, let K be a field, and let $S = K[X_1, \ldots, X_n]$ be a polynomial ring over K, unless otherwise specified. The ring S can be viewed as a standard graded K-algebra (i.e., $S = \bigoplus_{n \in \mathbb{N}}$ is an \mathbb{N} -graded ring with $S_0 = K$, $S = K[S_1]$) with the unique homogeneous maximal ideal $\mathfrak{m} = (X_1, \ldots, X_n)$. For a simplicial complex Δ , the *Stanley–Reisner ideal* I_{Δ} and the *Stanley–Reisner ring* $K[\Delta]$ are defined by

$$I_{\Delta} = (X_{i_1} \cdots X_{i_p} : 1 \le i_1 < \cdots < i_p \le n, \{i_1, \dots, i_p\} \notin \Delta)S,$$

$$K[\Delta] = S/I_{\Delta}.$$

Note that any squarefree monomial ideal $I \subseteq S$ with indeg $I \geq 2$ can be written as $I = I_{\Delta}$ for some simplicial complex Δ , and that $K[\Delta]$ is a graded reduced K-algebra with dim $K[\Delta] = \dim \Delta + 1$. See [BH, St] about simplicial complexes and Stanley–Reisner rings.

Let R = S/I be an arbitrary standard graded K-algebra. The ring R is said to be *Buchsbaum* (resp. to have (FLC)) if $\operatorname{Ext}^{i}_{S}(S/\mathfrak{m}, R) \to H^{i}_{\mathfrak{m}}(R)$) is

¹In: The 29th symposium on Commutative Ring Theory; Nov.17–21, 2007; at Nagoya. This report is a preliminary version. The final version will be published elsewhere.

surjective (resp. $H^i_{\mathfrak{m}}(R)$ has finite length) for every $i < \dim R$. In particular, any Buchsbaum ring has (FLC).

The Stanley–Reisner ring $K[\Delta]$ has (FLC) if and only if Δ is pure and $K[\operatorname{link}_{\Delta}\{i\}]$ is Cohen–Macaulay for every $i \in V$. When this is the case, $K[\Delta]$ is Buchsbaum; see e.g., [St].

Let Δ be a simplicial complex, and let $G(I_{\Delta}) = \{m_1, \ldots, m_{\mu}\}$ denote the minimal set of monomial generators of I_{Δ} . Then one can easily check the following fact.

Fact 1.1. Let $I_{\Delta} = (m_1, \ldots, m_{\mu})$ be as above. Then I_{Δ} is a complete intersection (i.e., I_{Δ} is generated by a regular sequence) if and only if $gcd(m_i, m_j) = 1$ for every i, j with $i \neq j$.

In general, if $I \subseteq S$ is generated by a regular sequence, then S/I^{ℓ} is Cohen-Macaulay for every integer $\ell \geq 1$. When I is generically a complete intersection (i.e., I_P is a complete intersection for all minimal prime ideal P over I), the converse is also true; see [CN]. Hence, for example, I_{Δ} is a complete intersection if and only if S/I_{Δ}^{ℓ} is Cohen-Macaulay for every $\ell \geq 1$.

In [GT], Goto and Takayama introduced the notion of generalized complete intersection complexes and characterized those complexes: a simplicial complex Δ is said to be a *generalized complete intersection* complex if Δ is pure and $K[\text{link}_{\Delta}\{i\}]$ is a complete intersection for any vertex $i \in V$. The following theorem gives a motivation of our study.

Theorem 1.2 (Goto–Takayama (see also [GT])). Let Δ be a simplicial complex on V = [n]. Then the following conditions are equivalent:

- (1) $K[\Delta]$ is a generalized complete intersection in the sense of [GT].
- (2) S/I_{Δ}^{ℓ} has (FLC) for every $\ell \geq 1$.

Clearly, a complete intersection is a generalized complete intersection. In [GT], they gave examples which are not complete intersections but generalized complete intersection complexes. However, their complexes Δ are disconnected or dim $\Delta = 1$. So it is natural to ask the following question:

Question 1.3. Assume that a simplicial complex Δ is connected and dim $\Delta \geq 2$. If Δ is a generalized complete intersection complex, then is it a complete intersection?

The main aim of this talk is to give a complete answer to this question. Before stating our result, let us define the following notion:

Definition 1.4. A simplicial complex $K[\Delta]$ (or Δ) is called a *locally complete intersection* (resp. Gorenstein, Cohen–Macaulay) if $K[\Delta]_P$ is a complete intersection (resp. Gorenstein, Cohen–Macaulay) for every $P \in \operatorname{Proj} K[\Delta]$.

Note that $K[\Delta]$ is a locally complete intersection if and only if $K[\Delta]_{X_i}$ is a complete intersection for every $1 \leq i \leq n$. Moreover, since $k[\Delta]_{X_i} \cong K[\operatorname{link}_{\Delta}\{i\}][X_i, X_i^{-1}]$ we have: **Lemma 1.5.** Let Δ be a simplicial complex on V = [n]. Then the following conditions are equivalent:

- (1) $K[\Delta]$ is a locally complete intersection.
- (2) $K[\Delta]_{X_i}$ is a complete intersection for every $i \in V$.
- (3) $K[\operatorname{link}_{\Delta}\{i\}]$ is a complete intersection for every $i \in V$.

In particular, Δ is a generalized complete intersection if and only if Δ is pure and a locally complete intersection.

Corollary 1.6. Let Δ be a simplicial complex on V. If $K[\Delta]$ is a complete intersection (resp. Gorenstein, Cohen-Macaulay), then so is $K[\operatorname{link}_{\Delta}(F)]$ for any face F of Δ .

Proof. It immediately follows from the fact $\operatorname{link}_{\operatorname{link}_{\Delta}\{i\}}(F \setminus \{i\}) = \operatorname{link}_{\Delta}(F)$ for $i \in F$.

Example 1.7. Let Δ be a simplicial complex corresponding to 5-gon. That is, $K[\Delta] = K[X_1, X_2, X_3, X_4, X_5]/(X_1X_3, X_1X_4, X_2X_4, X_2X_5, X_3X_5)$. Then $K[\Delta]$ is a locally complete intersection but *not* a complete intersection.

Indeed, $K[\operatorname{link}_{\Delta}\{1\}] \cong K[X_2, X_5]/(X_2X_5)$ is a complete intersection. Similarly, $K[\operatorname{link}_{\Delta}\{i\}]$ is also a complete intersection for other $i \in [5]$.

The following theorem is a main result in this talk; see also Section 2.

Theorem 1.8. Let Δ be a simplicial complex on V = [n] with dim $\Delta \geq 2$. Assume that Δ is a locally complete intersection. Then it is a disjoint union of finitely many simplicial complexes whose Stanley–Reisner rings are complete intersections.

In the case dim $\Delta = 1$, we can also characterize locally complete intersection complexes. See Section 3.

2. Proof of the main theorem

In this section, we will prove the main theorem. First of all, we remark the following lemma.

Lemma 2.1. Assume that $V = V_1 \cup V_2$ such that $V_1 \cap V_2 = \emptyset$. Let Δ_i be a locally complete intersection complex on V_i for i = 1, 2. Then a disjoint union $\Delta_1 \cup \Delta_2$ is also a locally complete intersection complex on V.

Proof. Put $V_1 = [m]$ and $V_2 = [n]$. If we write

$$K[\Delta_1] = K[X_1, \dots, X_m] / I_{\Delta_1}$$
 and $K[\Delta_2] = K[Y_1, \dots, Y_n] / I_{\Delta_2}$,

then

$$K[\Delta] \cong K[X_1, \dots, X_m, Y_1, \dots, Y_n] / (I_{\Delta_1}, I_{\Delta_2}, \{X_i Y_j\}_{1 \le i \le m, 1 \le j \le n}).$$

Hence

 $K[\Delta]_{X_i} \cong K[\Delta]_{X_i}$ and $K[\Delta]_{Y_j} \cong K[\Delta_2]_{Y_j}$.

are complete intersection rings. Thus Δ is also a locally complete intersection.

Remark 2.2. In the above lemma, we suppose that both Δ_1 and Δ_2 are generalized complete intersections. Then $\Delta_1 \cup \Delta_2$ is a generalized complete intersection if and only if dim $\Delta_1 = \dim \Delta_2$.

Example 2.3. Let Δ be the disjoint union of the standard (m-1)-simplex and the standard (n-1)-simplex. Then Δ is a locally complete intersection complex by Lemma 2.1. Moreover, $K[\Delta]$ is isomorphic to

$$K[X_1, \dots, X_m, Y_1, \dots, Y_n]/(X_i Y_j : 1 \le i \le m, 1 \le j \le n)$$

and it is a generalized complete intersection if and only if m = n.

By virtue of Lemma 2.1, it suffices to show the following theorem.

Theorem 2.4. Let Δ be a simplicial complex on V = [n]. Assume that Δ is connected and dim $\Delta \geq 2$. Then the following conditions are equivalent:

- (1) $K[\Delta]$ is a complete intersection.
- (2) $K[\Delta]$ is a locally complete intersection.
- (2)' $K[\Delta]$ is a generalized complete intersection.

From now on, assume that Δ is a locally complete intersection, connected complex which is not a complete intersection. Suppose that dim $\Delta \geq 1$. Note that Δ is pure since Δ is connected and locally complete intersection and hence Δ satisfies Serre condition (S_2) . Let $G(I_{\Delta}) = \{m_1, \ldots, m_{\mu}\}$ denote the minimal set of monomial generators of I_{Δ} . Then $\mu \geq 2$ and deg $m_i \geq 2$ for every $i = 1, 2, \ldots, \mu$, and that there exists i, j $(1 \leq i < j \leq n)$ such that $gcd(m_i, m_j) \neq 1$.

In order to prove Theorem 2.4, it is enough to show that dim $\Delta = 1$. In what follows, X_i, Y_j, \ldots denote corresponding variables to vertices x_i, y_j, \ldots

Lemma 2.5. We may assume that deg $m_i = \text{deg } m_i = 2$.

Proof. Take m_j , m_k $(j \neq k)$ such that $gcd(m_j, m_k) \neq 1$. If $deg m_j = deg m_k = 2$, then there is nothing to prove.

Now suppose that deg $m_k \geq 3$. By [GT, Lemmas 3.4, 3.5], we may assume that deg $m_j = 2$ and gcd $(m_j, m_k) = X_p$. Write $m_k = X_p X_{i_1} \cdots X_{i_r}$ and $m_j = X_p X_q$. Then [GT, Lemma 3.6] implies that $X_{i_1} X_q \in G(I_\Delta)$. Set $m_i = X_{i_1} X_q \in I_\Delta$. Then deg $m_i = \deg m_j = 2$ and gcd $(m_i, m_j) = X_q \neq 1$, as required.

The following lemma is simple but important.

Lemma 2.6. Let x_1, x_2, y be distinct vertices such that $X_1Y, X_2Y \in I_{\Delta}$. For any $z \in V \setminus \{x_1, x_2, y\}$, at lease one of monomials X_1Z, X_2Z and YZ belongs to I_{Δ} .

Proof. It immediately follows from the fact that $K[link_{\Delta}\{z\}]$ is a complete intersection.

Lemma 2.7. There exist some integers $k, \ell \geq 2$ such that

- (1) $V = \{x_1, \ldots, x_k, y_1, \ldots, y_\ell\}.$
- (2) $X_1Y_1,\ldots,X_kY_1 \in I_{\Delta}$.

(3) $\sharp\{i : 1 \leq i \leq k, X_i Y_j \notin I_\Delta\} \leq 1$ holds for each $j = 2, \ldots, \ell$.

Proof. By Lemma 2.5, there exists vertices $x_1, x_2, y_1 \in V$ such that X_1Y_1 , $X_2Y_1 \in I_{\Delta}$. Thus one can write $V = \{x_1, \ldots, x_k, y_1, \ldots, y_\ell\}$ such that

If $\ell = 1$, then $\Delta = \Delta_{\{y_1\}} \cup \Delta_{\{x_1,\dots,x_k\}}$ is a disjoint union since $\{y_1, x_i\} \notin \Delta$ for all *i*. This contradicts the connectedness of Δ . Hence $\ell \geq 2$. Thus it is enough to show (3) in this notation.

Now suppose that there exists an integer j with $2 \le j \le \ell$ such that

$$\sharp\{i : 1 \le i \le k, X_i Y_j \notin I_\Delta\} \ge 2.$$

When k = 2, we have X_1Y_j , $X_2Y_j \notin I_\Delta$. On the other hand, as X_1Y_1 , $X_2Y_1 \in I_\Delta$ and $Y_j \neq X_1, X_2, Y_1$, we obtain that at least one of X_1Y_j , X_2Y_j , Y_1Y_j belongs to I_Δ . It is impossible. So we may assume that $k \geq 3$ and $X_{k-1}Y_j$, $X_kY_j \notin I_\Delta$. Then $\{x_{k-1}\}, \{x_k\}$ and $\{y_1\}$ belong to $\lim_{\Delta} \{y_j\}$, and $X_{k-1}Y_1, X_kY_1$ form part of a minimal system of generators of $I_{\lim_{\Delta} \{y_j\}}$. This contradicts the assumption that $K[\lim_{\Delta} \{y_j\}]$ is a complete intersection.

In what follows, we fix the notation as in Lemma 2.7. First, we suppose that there exists i_0 with $1 \le i_0 \le k$ such that

$$#\{j : 1 \le j \le \ell, X_{i_0} Y_j \notin I_{\Delta}\} = 1.$$

In this case, we may assume that $X_1Y_2 \notin I_\Delta$ and $X_1Y_j \in I_\Delta$ for all $3 \leq j \leq \ell$ without loss of generality. Note that $X_2Y_2, \ldots, X_kY_2 \in I_\Delta$ by Lemma 2.7. We claim that $\{x_1, y_2\}$ is a facet of Δ . As $X_iY_2 \in I_\Delta$ for each $i = 2, \ldots, k$, we have that $\{x_1, y_2, x_i\} \notin \Delta$. Similarly, $\{x_1, y_2, y_j\} \notin \Delta$ since $X_1Y_j \in I_\Delta$ for j = 1 or $3 \leq j \leq \ell$. Hence $\{x_1, y_2\}$ is a facet of Δ , and dim $\Delta = 1$ because Δ is pure.

By the observation as above, we may assume that for every *i* with $1 \le i \le k$,

$$\sharp\{j : 1 \le j \le \ell, X_i Y_j \notin I_\Delta\} \ge 2$$

or $X_i Y_j \in I_\Delta$ holds for all $j = 1, \ldots, \ell$.

Now suppose that there exists j_1, j_2 with $1 \leq j_1 < j_2 \leq \ell$ such that $X_i Y_{j_1}$, $X_i Y_{j_2} \notin I_{\Delta}$. Then $X_r Y_{j_1}, X_r Y_{j_2} \in I_{\Delta}$ for all $r \neq i$ by Lemma 2.7. It follows that $X_r X_i \in I_{\Delta}$ from Lemma 2.6. Then we can relabel x_i (say $y_{\ell+1}$). Repeating this procedure, we can get one of the following cases:

Case 1: $V = \{x_1, \ldots, x_r, y_1, \ldots, y_s\}$ such that $X_i Y_j \in I_\Delta$ for all i, j with $1 \le i \le r, 1 \le j \le s$.

Case 2: $V = \{x_1, x_2, y_1, \dots, y_m, z_1, \dots, z_p, w_1, \dots, w_q\}$ such that

$$\begin{cases} X_1 Y_j \in I_{\Delta}, & X_2 Y_j \in I_{\Delta} \quad (j = 1, \dots, m) \\ X_1 Z_j \notin I_{\Delta}, & X_2 Z_j \in I_{\Delta} \quad (j = 1, \dots, p) \\ X_1 W_j \in I_{\Delta}, & X_2 W_j \notin I_{\Delta} \quad (j = 1, \dots, q) \end{cases}$$

holds for some $m \ge 1$, $p, q \ge 2$.

If Case 1 occurs, then $\Delta = \Delta_{\{x_1,\dots,x_r\}} \cup \Delta_{\{y_1,\dots,y_s\}}$ is a disjoint union. This contradicts the assumption. Thus Case 2 must occur. If $\{x_1, x_2\} \in \Delta$, then it is a facet and so dim $\Delta = 1$. Hence we may assume that $\{x_1, x_2\} \notin \Delta$. However, since Δ is connected, there exists a path between x_1 and x_2 .

Cases (2-a): the case where $\{z_1, w_k\} \in \Delta$ for some k with $1 \le k \le q$.

We may assume that $\{z_1, w_1\} \in \Delta$. Now suppose that dim $\Delta \geq 2$. Then since $\{z_1, w_1\}$ is not a facet, there exists $u \in V \setminus \{x_1, x_2\}$ such that $\{z_1, w_1, u\} \in$ Δ . If $u = z_j$ $(2 \leq j \leq p)$ (resp. $u = y_i$ $(1 \leq i \leq m)$), then $G(I_{\text{link}_{\Delta}\{w_1\}})$ contains X_2Z_1 and X_2Z_j (resp. X_2Y_i); see figure below. It is impossible since link_{Δ} $\{w_1\}$ is a complete intersection. When $u = w_k$, we can obtain a contradiction by a similar argument as above. Therefore dim $\Delta = 1$.

Figure: the case $\{z_1, z_j, w_1\} \in \Delta$ in Case (2-a)

Cases (2-b): the case where $\{z_j, w_k\} \notin \Delta$ for all j, k.

Then we may assume that (i) $\{z_1, y_1\} \in \Delta$ and (ii) $\{y_1, y_2\} \in \Delta$ or $\{y_1, w_1\} \in \Delta$. Now suppose that dim $\Delta \geq 2$. Then since $\{z_1, y_1\}$ is *not* a facet, we have

$$\{z_1, y_1, y_i\} \in \Delta, \ \{z_1, y_1, w_k\} \in \Delta \text{ or } \{z_1, y_1, z_j\} \in \Delta.$$

When $\{z_1, y_1, y_i\} \in \Delta$, we obtain that $\{X_1Y_1, X_1Y_i\} \in G(I_{\text{link}_{\Delta}\{z_1\}})$. This is a contradiction. When $\{z_1, y_1, w_k\} \in \Delta$, we can obtain a contradiction by a similar argument as in Case (2-a). Thus it is enough to consider the case $\{z_1, y_1, z_j\} \in \Delta$.

First we suppose that $\{y_1, y_2\} \in \Delta$.

Figure: the case $\{z_1, y_1, z_j\}, \{y_1, y_2\} \in \Delta$ in Case (2-b)

Then $\operatorname{link}_{\Delta}\{y_1\}$ contains an egde $\{z_1, z_j\}$ and $\{y_2\}$. Since $\operatorname{link}_{\Delta}\{y_1\}$ is also connected, we can find vertices z_{α} , y_{β} such that $\{z_{\alpha}, y_{\beta}\} \in \operatorname{link}_{\Delta}\{y_1\}$. In particular, $\{z_{\alpha}, y_{\beta}, y_1\} \in \Delta$. This yields a contradiction because X_1Y_1, X_1Y_{β} is contained in $G(I_{\operatorname{link}_{\Delta}\{z_{\alpha}\}})$.

Next suppose that $\{y_1, w_1\} \in \Delta$.

Figure: the case $\{z_1, y_1, z_j\}, \{y_1, w_1\} \in \Delta$ in Case (2-b)

Then $\lim_{\Delta} \{y_1\}$ contains an egde $\{z_1, z_j\}$ and $\{w_1\}$. Since $\lim_{\Delta} \{y_1\}$ is also connected, we can also find vertices z_{α} , y_{β} such that $\{z_{\alpha}, y_{\beta}\} \in \lim_{\Delta} \{y_1\}$ (notice that $\{z_j, w_k\} \notin \Delta$). Hence we have dim $\Delta = 1$. We complete the proof of Theorem 2.4.

Let Δ be a simplicial complex with dim $\Delta \geq 2$. The Stanley–Reisner ring $K[\Delta]$ satisfies the Serre condition (S_2) , that is, depth $K[\Delta]_P \geq \min\{2, \text{height } P\}$, if and only if Δ is pure and $\text{link}_{\Delta}(F)$ is connected for every face F with dim $\text{link}_{\Delta}(F) \geq 1$.

Corollary 2.8. Let Δ be a simplicial complex with dim $\Delta \geq 2$. Assume that $K[\Delta]$ satisfies (S_2) . Then the following conditions are equivalent:

- (1) $K[\Delta]$ is a complete intersection.
- (2) For any face F with dim link_{Δ} F = 1, link_{Δ} F is a complete intersection.
- (3) There exists $W \subseteq V$ such that $\dim \Delta_{V \setminus W} \leq \dim \Delta 3$ which satisfies the following condition:
 - " $link_{\Delta}{x}$ is a complete intersection for all $x \in W$."

Proof. Note that Δ is pure. Put $d = \dim \Delta + 1$.

 $(1) \Longrightarrow (3)$: It is enough to put W = V.

 $(3) \Longrightarrow (2)$: Let W be a subset of V satisfying the condition (3). Let F be a face with dim link_{Δ}(F) = 1. Since Δ is pure, $\sharp(F) = d - 1 - \dim \lim_{\Delta} (F) = d - 2$. As dim $\Delta_{V\setminus W} \leq d - 4$, F is not contained in $V \setminus W$. Thus there exists $i \in F$ such that $i \in W$. Then since $\lim_{\Delta} \{i\}$ is a complete intersection by the assumption, $\lim_{\Delta} (F)$ is also a complete intersection, as required.

 $(2) \Longrightarrow (1)$: We use an induction on $d \ge 3$. First suppose that d = 3. Then for each $i \in V$, we have that dim $link_{\Delta}\{i\} = 1$. Hence $link_{\Delta}\{i\}$ is a complete intersection by the assumption (3). Hence by Theorem 2.4, $K[\Delta]$ is a complete intersection.

Next suppose that $d \ge 4$. Let $i \in V$. Since $K[\Delta]$ satisfies (S_2) , we have that $\Gamma = \lim_{\Delta} \{i\}$ is connected and $\dim \Gamma = (d-1) - 1 = d - 2 \ge 2$. Moreover, for any face G in Γ with $\dim \lim_{\Gamma} (G) = 1$, $\lim_{\Gamma} (G) = \lim_{\Delta} (G \cup \{i\})$ is a complete intersection by assumption. Hence, by the induction hypothesis, $K[\lim_{\Delta} \{i\}]$ is a complete intersection. Therefore $K[\Delta]$ is a complete intersection by Theorem 2.4 again. \Box

Combining Theorem 2.4 with Cowsik–Nori's theorem and Goto–Takayama's theorem, we get:

Corollary 2.9. Let Δ be a simplicial complex with dim $\Delta \geq 2$. Assume that Δ is pure and connected. Then the following conditions are equivalent:

- (1) S/I^{ℓ}_{Δ} is Cohen–Macaulay for every $\ell \geq 1$.
- (2) S/I^{ℓ}_{Δ} is Buchsbaum for every $\ell \geq 1$.
- (3) S/I_{Δ}^{ℓ} has (FLC) for every $\ell \geq 1$.

If S/I_{Δ}^{ℓ} is (FLC) (resp. Cohen–Macaulay) for some positive integer ℓ , then S/I_{Δ} is Buchsbaum (resp. Cohen–Macaulay). In particular, Δ is pure. See [HTT, Theorem 2.6].

If Δ is *not* connected, then (2) and (3) are not necessarily equivalent. See below.

Example 2.10. Let $n \ge 2$ be a positive integer. Let

 $I = I_{\Delta} = (x_1, \dots, x_n)(y_1, \dots, y_n) \subseteq S = K[x_1, \dots, x_n, y_1, \dots, y_n].$

Then Δ is the disjoint union of the standard (n-1)-simplices. Moreover, S/I^{ℓ} has (FLC) for every $\ell \geq 1$ by Theorem 1.2. And one can see that S/I^{ℓ} is not Buchsbaum for every $\ell \geq 2$.

3. The case dim $\Delta = 1$

Proposition 3.1. Let Δ be a connected simplicial complex of dim $\Delta = 1$. Then the following conditions are equivalent:

- (1) $K[\Delta]$ is a locally complete intersection.
- (2) $K[\Delta]$ is a locally Gorenstein.
- (3) Δ is either one of the following complexes:
 - (a) *n*-gon for some $n \ge 3$;
 - (b) *n*-pointed path for some $n \ge 2$.

Proof. Suppose that dim $link_{\Delta}\{i\} = 0$. Then $link_{\Delta}\{i\}$ consists of finite points. Hence if it is Gorenstein, then it is either one point or two points. Such a link is also a complete intersection.

In the case dim $\Delta = 1$, (1) and (3) in Corollary 2.9 is *not* equivalent in general. But we get the following result.

Proposition 3.2. Let Δ be a simplicial complex with dim $\Delta = 1$. Assume that Δ is pure and connected. Then the following conditions are equivalent:

- (1) S/I^{ℓ}_{Δ} is Cohen–Macaulay for every $\ell \geq 1$.
- (2) $S/I_{\Delta}^{\overline{\ell}}$ is Buchsbaum for every $\ell \geq 1$.

References

- [BH] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, Cambridge/New York/Sydney, 1993.
- [CN] R. C. Cowsik and M. V. Nori, On the fibers of blowing up, J. Indian Math. Soc. (N.S.) 40 (1976), 217–222.
- [GT] S. Goto and Y. Takayama, Stanley-Reisner ideals whose powers have finite length cohomologies, Proc. Amer. Math. Soc. 135 (2007), 2355–2364.
- [HH] J. Herzog and T. Hibi, The depth of powers of an ideal, J. Algebra 291 (2005), 534–550.

- [HTT] J. Herzog, Y. Takayama and N. Terai, On the radical of a monomial ideal, Arch der Math. 85 (2005), 397–408.
- [St] R. P. Stanley, Combinatorics and Commutative Algebra, Second Edition, Birkhaeuser, Boston/Basel/Stuttgart, 1996.
- [TeYo] N. Terai and K. Yoshida, A locally complete intersection Stanley–Reisner rings, in preparation.