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1. Introduction

This is a joint work with S.M. Bhatwadekar and A. K. Dutta. Let R be
a commutative ring. For a prime ideal P of R, we denote by k(P ) the field
RP /PRP . A polynomial ring in n variables over R is denoted by R[n].

Definition 1.1. We shall call an R-algebra A to be a codimension-one
A1-fibration over R if

k(P ) ⊗R A = k(P )[1]

for every P ∈ Spec R with ht P ≤ 1.

Let R be a Noetherian normal domain with field of fractions K. Then
the following results were proved in ([2], 3.4) and ([1], 3.10) respectively.

Theorem 1.2. Let A be a flat R-subalgebra of R[m] such that K⊗RA = K [1]

and k(P ) ⊗R A is an integral domain for every prime ideal P in R of height
one. Then A ∼= R[IX] for an invertible ideal I of R.

Theorem 1.3. Let A be a faithfully flat finitely generated R-algebra such
that K ⊗R A = K [1] and k(P )⊗R A is geometrically integral for every prime
ideal P in R of height one. Then A ∼= R[IX] for an invertible ideal I of R.

Recently the two results were shown to emanate from the following result.

Theorem 1.4. Let A be a faithfully flat R-algebra such that A is an R-
subalgebra of a finitely generated R-algebra B and such that A satisfies the
fibre conditions:



(i) K ⊗R A = K [1].
(ii) For every prime ideal P in R of height one, k(P ) ⊗R A is an integral
domain with tr. degk(P ) k(P ) ⊗R A > 0 and k(P ) is algebraically closed in
k(P ) ⊗R A.

Then A ∼= R[IX] for an invertible ideal I of R.

In this note, we explore the structure of a faithfully flat codimension-one
A1-fibration over a Krull domain; in particular, over a Noetherian normal
domain. As an application we show that all previous results described above
can be deduced from this structure theorem.

2. Structure theorem

We begin by noting the following result.

Lemma 2.1. Let R be a Krull domain and A a flat R-algebra. Then A is
a codimension-one A1-fibration over R if and only if AP = RP

[1] for every
P ∈ Spec R with ht P = 1.

Set-Up

Throughout this section we will assume that

R: Krull domain with field of fractions K.

∆ = {P ∈ Spec R | ht P = 1}.
A: a faithfully flat R-algebra such that AP = RP

[1] for every P ∈ ∆.

x: A fixed element of A such that T−1A = K[x], where T = R \ {0}.
Σ = {Γ | Γ is a finite subset of ∆}.
Γa = {P ∈ ∆ | a ∈ P}, where 0 ̸= a ∈ R.

Definition 2.2. For Γ ∈ Σ, we set

RΓ =
∩
P /∈Γ

RP

and
AΓ = S−1A ∩ RΓ[x],



where S = R \ (
∪

P∈Γ P ). Note that

RΓa = R[1/a]

for 0 ̸= a ∈ R.

The following result holds for the ring AΓ defined above.

Lemma 2.3. For Γ ∈ Σ, we have

AΓ =
⊕
n≥0

(R ∩ dnRΓ)

(
x − c

d

)n

for some elements c, d(̸= 0) ∈ R. In particular, for 0 ̸= a ∈ R,

AΓa =
⊕
n≥0

(R ∩ dnR[1/a])

(
x − c

d

)n

for some c, d( ̸= 0) ∈ R. Furthermore, we have
(1) AΓ ⊆ A.
(2) (AΓ)P = AP for P ∈ Γ.
(3) (AΓ)P = RP [x] for P ∈ ∆ \ Γ.

Lemma 2.4. Let I be an ideal of R and suppose that I is R-flat. Then I is
an invertible ideal of the form

I = R ∩ dR[1/a]

for some d ∈ I, a ∈ R. Moreover we have

In = R ∩ dnR[1/a]

for every positive integer n.

From Lemmas 2.3 and 2.4, we have the following

Corollary 2.5. Suppose that AΓa is flat over R. Then AΓa
∼= R[IX] for an

invertible ideal I of R.

Lemma 2.6. Let Γ1 and Γ2 be finite subsets of ∆. If Γ1 ⊆ Γ2, then
AΓ1 ⊆ AΓ2 .



Lemma 2.6 shows that the rings AΓ, together with inclusion maps, form
a direct system

{AΓ | Γ ∈ Σ}

indexed by Σ. We now prove the structure theorem:

Theorem 2.7. A = lim−→AΓ

(
=

∪
Γ

AΓ

)
.

Proof. Set C = lim−→AΓ. Then C =
∪

Γ AΓ, and hence C ⊂ A. For the
converse inclusion A ⊂ C, let w be an arbitrary non-zero element of A.
Since A ⊂ K[x], we can write

w = ξ0x
n + ξ1x

n−1 + · · · + ξn

for some n ≥ 0 and ξ0, . . . , ξn ∈ K. Note that ∆ξ := {P ∈ ∆ | vP (ξ) < 0}
is a finite set for 0 ̸= ξ ∈ K, because writing ξ = b/c with b, c(̸= 0) ∈ R,
we have vP (c) > vP (b) ≥ 0 for P ∈ ∆ξ, so that ∆ξ ⊂ AssR(R/cR). Set
Γ =

∪n
i=0 ∆ξi

. Then Γ is a finite subset set of ∆, and w ∈ RP [x] for any
P /∈ Γ. Therefore

w ∈

( ∩
P∈Γ

AP

)
∩

( ∩
P /∈Γ

RP [x]

)
,

which implies w ∈ AΓ ⊂ C. This completes the proof. ¤

Lemma 2.8. For P ∈ ∆, writing PRP = pRP with p ∈ R, we have

AP = RP

[
x − c

pe

]
for some c ∈ R and e ≥ 0. Furthermore, the integer e is uniquely determined
for P .

For P ∈ ∆, we denote by eP the integer e given in Lemma 2.8 above.
Note that

eP > 0 ⇐⇒ AP ̸= RP [x].

From Theorem 2.7, we shall now deduce that finite generation of A is equiv-
alent to the finiteness of the set

∆0 = {P ∈ ∆ | eP > 0}.



Lemma 2.9. Let Γ1, Γ2 be elements of Σ such that Γ1 ⊆ Γ2. Then AΓ1 $ AΓ2

if and only if there exists P ∈ Γ2 \ Γ1 such that P ∈ ∆0.

We say that R is a retract of A if there exists an R-algebra map φ : A → R
such that φ|R = idR.

Theorem 2.10. The following conditions are equivalent:
(1) A is finitely generated over R.
(2) ∆0 is a finite set.
(3) R is a retract of A and A is a Krull ring.
(4) A ∼= R[IX] for an invertible ideal I of R.

Proof. We shall give a proof only for (1)⇒(2) and (2)⇒(4).
(1)⇒(2): Recall that, by Theorem 2.7, we have

A = lim−→AΓ =
∪
Γ

AΓ. (1)

Let A = R[f1, . . . , fn]. By (1), for each i there exists Γi ∈ Σ such that
fi ∈ AΓi

. Then, setting Γ = Γ1 ∪ · · · ∪ Γn, we have fi ∈ AΓ for each i, which
implies A = AΓ. Now suppose that ∆0 is an infinite set. Then there exists
P ∈ ∆0 \ Γ, because Γ is a finite set. Let Γ′ = Γ ∪ {P}. Then Γ ⊆ Γ′ and
P ∈ Γ′ \ Γ. Thus AΓ ̸= AΓ′ by Lemma 2.9. On the other hand, by Lemma
2.6, we have

A = AΓ ⊆ AΓ′ ⊆ A,

so that AΓ = AΓ′ , a contradiction.
(2)⇒(4): Let ∆0 = {P1, . . . , Pm} and let a be a non-zero element of

P1 ∩ · · · ∩ Pm. Then ∆0 ⊂ Γa, and hence, by Lemma 2.9, we have AΓa = AΓ

for every Γ ∈ Σ such that Γa ⊆ Γ. It thus follows from Theorem 2.7 that

A = AΓa =
⊕
n≥0

(R ∩ dnR[1/a])

(
x − c

d

)n

.

Since A is flat over R, we have A ∼= R[IX] by Corollary 2.5. ¤

3. Applications

We now give a few applications of our results.



Theorem 3.1. Let R be a Krull domain with field of fractions K and A a
faithfully flat R-algebra such that A is an R-subalgebra of a finitely generated
R-algebra B and such that A satisfies the fibre conditions:

(i) K ⊗R A = K [1].
(ii) For every prime ideal P in R of height one, k(P ) ⊗R A is an integral
domain with tr. degk(P ) k(P ) ⊗R A > 0 and k(P ) is algebraically closed in
k(P ) ⊗R A.

Then A ∼= R[IX] for an invertible ideal I of R.

Proof. Let T = A\{0} and let T−1Q be a maximal ideal in T−1B, where Q is
a prime ideal in B. Then Q∩A = 0 and T−1B/T−1Q is algebraic over T−1A.
Thus, replacing B by B/Q, we may assume that B is an integral domain
algebraic over A. Since B is finitely generated over R, there exist elements
f, g1, . . . , gm in A such that B[1/f ] is integral over R[g1, . . . , gm, 1/f ]. Let d
be a non-zero element in R such that df ∈ R[x] and dgi ∈ R[x] for 1 ≤ i ≤ m;
such d exists because A ⊂ K[x]. Then we have

R[1/d][g1, . . . , gm, 1/f ] ⊂ R[1/d][x, 1/f ] ⊂ A[1/d, 1/f ] ⊂ B[1/d, 1/f ],

and hence A[1/d, 1/f ] is integral over R[1/d][x, 1/f ]. Note that R[1/d][x, 1/f ]
is a Krull domain because so is R. Thus R[1/d][x, 1/f ] is integrally closed.
Note also that both R[1/d][x, 1/f ] and A[1/d, 1/f ] have the same quotient
field K(x). Therefore we have

R[1/d][x, 1/f ] = A[1/d, 1/f ].

Let ξ be the coefficient of the highest degree term of f as a polynomial in
K[x], and let b = dξ. We will show that eP = 0 for P ∈ ∆ with db /∈ P .
Indeed, suppose on the contrary that e := eP > 0 for some P with db /∈ P .
Since d /∈ P , we have R[1/d] ⊂ RP , so that

AP [1/f ] = RP [x, 1/f ].

Hence, writing AP = RP [(x−c)/pe] with c ∈ R, we have fn(x−c)/pe ∈ RP [x]
for a sufficiently large integer n. From this it follows that bn ∈ peRP , and
hence b ∈ PRP ∩ R = P , a contradiction. Therefore eP = 0 for P with
db /∈ P , which implies ∆0 ⊂ Γdb. Thus ∆0 is a finite set, and hence, by
Theorem 2.10, A ∼= R[IX] for an invertible ideal I of R. ¤



Lemma 3.2. Let R be an integral domain and A an R-domain having a
retract φ : A → R. Set J = ker φ. Then the following assertions hold.
(1) If A is flat over R, then A is faithfully flat over R.
(2) If f is a non-zero element of J , then f is transcendental over R. In
particular R is algebraically closed in A.
(3) Suppose that tr. degR A > 0 and J is finitely generated. Let P be a prime
ideal in R such that PA remains prime in A. Then tr. degR/P A/PA > 0.

Theorem 3.3. Let R be a Krull domain and A a flat R-algebra with a
retract φ : A → R. Suppose that A satisfies the following conditions:

(i) K ⊗R A = K [1].
(ii) For every prime ideal P in R of height one, k(P ) ⊗R A is an integral
domain.

If J := ker φ is a finitely generated ideal of A, then A ∼= R[IX] for an
invertible ideal I in R.

Proof. Let P be a prime ideal in R of height one. Then A/PA ⊂ AP /PAP

because of flatness of A over R, which implies that PA is a prime ideal in
A. Thus, by Theorem 2.10 and Lemma 3.2, it suffices to show that ∆0 is a
finite set. Let g1, . . . , gm be generators of J and let d be a non-zero element
of R satisfying dgi ∈ R[x] for each i = 0, . . . , m. Let P be an element in
∆ \ Γd. We will show that e := eP = 0; if this is the case, then ∆0 ⊂ Γd,
and hence ∆0 is a finite set. Suppose on the contrary that e > 0, and write
AP = RP [(x − c)/pe] with c ∈ R. For simplicity we set z = (x − c)/pe.
Let φP : AP → RP be the retract induced by φ, and let φP (z) = c1. Since
AP = RP [z], it then follows that kerφP = (z − c1)RP [z]. Replacing z by
z − c1, we may assume that ker φP = zRP [z]. Furthermore replacing x by
x− c, we may assume that z = x/pe. Note that kerφP = JP . Note also that
gi ∈ RP [x] for each i, because dgi ∈ R[x] and d /∈ P . Hence, for each i, we
have gi ∈ RP [x]∩zRP [z] = xRP [x], so that gi = xhi(x) where hi(x) ∈ RP [x].
Now, since z ∈ JP and JP = (g1, . . . , gm)RP [z], we can write

x

pe
= xh1(x)u1(z) + · · · + xhm(x)um(z)

for some u1(z), . . . , um(z) ∈ RP [z]. Dividing both sides of the above equation
by x, and substituting x = 0, we have 1/pe = h1(0)u1(0)+· · ·+hm(0)um(0) ∈
RP . This is a contradiction, as desired. ¤



Remark 3.4. The condition “J is finitely generated” is necessary. Consider
R = Z and A = Z[X

p
| p prime ].

Theorem 3.5. Let R be a locally factorial Krull domain and A a flat
codimension-one A1-fibration over R. Then at each prime ideal Q ∈ Spec R,
either k(Q) ⊗R A = k(Q)[1] or k(Q) ⊗R A = k(Q). Suppose in addition that
R is a local ring with maximal ideal m and residue field k(= R/m). Then
the following conditions are equivalent:

(1) A is finitely generated over R.
(2) tr. degk A/mA > 0.
(3) dim A/mA > 0.
(4) A = R[1].

4. Examples

We give below some examples to illustrate the hypotheses in Theorem
3.1.

Example 4.1. The hypothesis on flatness is needed even when A is a finitely
generated subalgebra of R[1]. For instance, consider R = k[[t1, t2]] and

A = R[t1X, t2X] ∼= R[U, V ]/(t2U − t1V ).

Example 4.2. The hypothesis on faithful flatness is also necessary. Consider
R = k[[t1, t2]] and A = R[U, V ]/(t1U + t2V − 1).

Example 4.3. The condition “k(P ) is algebraically closed in k(P )⊗R A” is
necessary. Let R = R[[t]] and

A = R[U, V ]/(tU + V 2 + 1).

Then A is a finitely generated flat R-algebra, K⊗RA = R[1] and A/tA = C[1].
But A ̸= R[1].

Example 4.4. Let k be an infinite field and R = k[[t1, t2]]. Let

A = R[{X/q | q a square-free non-unit in R}].



Then
AP = RP [X/p] = RP

[1]

for every P ∈ Spec R with ht P = 1, where P = pR. However A/(t1, t2)A =
k. Note that since

A =
∪
q

R[X/q],

A is flat over R and hence faithfully flat over R. A is not finitely generated.
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