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Introduction

This is a joint work with Naoki Terai (Saga Univ.) and Ken-ichi Yoshida
(Nagoya Univ.).

Let S be a polynomial ring with each variable has degree 1 over an infinite
field k, and I a squarefree monomial ideal of S. The arithmetical rank of I is
defined by

ara I := min
{
r : there exist a1, . . . , ar ∈ I such that

√
(a1, . . . , ar) =

√
I
}
.

It is known by Lyubeznik [2] that pdS S/I ≤ ara I, where pdS S/I denotes the
projective dimension of S/I. Let J be a minimal reduction of I. The number
of a minimal set of generators of J , which is independent on the choice of J ,
is called the analytic spread of I. We denote it by l(I). Since

√
J =
√
I holds,

we have

pdS S/I ≤ ara I ≤ l(I).

Schmitt–Vogel lemma [4, Lemma, pp. 249] is an important and useful tool
in the study of the arithmetical rank. Using this lemma, Schmitt–Vogel proved
ara I = pdS S/I for

(∗) I = (x11, . . . , x1i1) ∩ · · · ∩ (xq1, . . . , xqiq),

where xij are variables in S pairwise distinct. Note that this ideal I is the
Alexander dual of a complete intersection ideal.

In this report, we refine Schmitt–Vogel lemma for reductions and prove
l(I) = pdS S/I for the ideal (∗) as its application.

1. Main Theorem

In this section, we consider a commutative ring R with unitary. Let I, J be
ideals in R with J ⊂ I. We say J is a reduction of I if there exists s ∈ N such
that Is+1 = JIs. It is easy to see that if J is a reduction of I, then

√
J =
√
I.

The main theorem of this report is the following:



Theorem 1. Let R be a commutative ring with unitary. Let P0, P1, . . . , Pr ⊂ R
be finite subsets, and we set

P =
r⋃

`=0

P`,

g` =
∑
a∈P`

a, ` = 0, 1, . . . , r.

Assume that

(C1) ]P0 = 1.
(C2) For all ` > 0 and a, a′′ ∈ P` (a 6= a′′), there exist some `′ (0 ≤ `′ < `),

a′ ∈ P`′, and b ∈ (P ) such that aa′′ = a′b.

Then we have (g0, g1, . . . , gr) is a reduction of (P ).

The difference between our theorem and Schmitt–Vogel lemma is the as-
sumption of the existence of b ∈ (P ) in (C2). The second condition of Schmitt–
Vogel lemma is

(C2)’ For all ` > 0 and a, a′′ ∈ P` (a 6= a′′), there exist some `′ (0 ≤ `′ < `)
and a′ ∈ P`′ such that aa′′ ∈ (a′);

and the conclusion is
√

(g0, g1, . . . , gr) =
√

(P ).

Remark 2. Schmitt–Vogel lemma allows us to add some exponent e(a) for each
a ∈ P` in the sum g`, i.e., we may put

g` =
∑
a∈P`

ae(a).

Thus we can take g` as homogeneous if R is graded. But our theorem is not
allowed to add such e(a).

2. Proof of Main Theorem

In this section, we prove Theorem 1.
As first, we fix notation. Put I = (P ), J = (g0, g1, . . . , gr), and

I` =

(⋃̀
j=0

Pj

)
, ` = 0, 1, . . . , r.

It is enough to show I2`

` ⊂ JI2`−1 for ` = 0, 1, . . . , r. We show this by induction
on `. In fact, we show

I2`

` ⊂ I2`−1

`−1 I
2`−2`−1

+ JI2`−1, ` = 0, 1, . . . , r.

If ` = 0, then I0 = (P0) = (g0) ⊂ J because ]P0 = 1. Let us consider the case

of ` > 0. Take a1, . . . , a2` ∈
⋃`
j=0 Pj. We may assume a1, . . . , am ∈ P` and

am+1, . . . , a2` ∈
⋃`−1
j=0 Pj.

First, we assume that we can renumbering a1, . . . , am such that

{a1, a
′′
1}, . . . , {abm/2c, a′′bm/2c},



where aλ 6= a′′λ, a
′′
λ = abm/2c+λ (λ = 1, . . . , bm/2c), and bαc denotes the max-

imal integer which does not exceed α. Then we can use the condition (C2),

that is, there are a′λ ∈
⋃`−1
j=0 Pj and bλ ∈ I such that aλa

′′
λ = a′λbλ. Thus

a1 · · · a2` =



bm/2c∏

λ=1

a′λbλ


 a2bm/2c+1 · · · a2`

=



bm/2c∏

λ=1

a′λ


 am+1 · · · a2`



bm/2c∏

λ=1

bλ


 a2bm/2c+1 · · · am.

Note that m ≤ 2` and bm/2c ≥ (m − 1)/2. Then it is easy to see that
bm/2c+2`−m ≥ 2`−1−1/2. Since bm/2c+2`−m ∈ Z, we have bm/2c+2`−m ≥
2`−1. Therefore

a1 · · · a2` ∈ I2`−1

`−1 I
2`−2`−1

.

Next, we consider the case that we cannot make bm/2c pairs of distinct
elements. This case occurs if and only if there exist a ∈ P` (uniquely) such
that

a = a1 = · · · = ab(m−1)/2c+2,

by renumbering a1, . . . , am. Then

a1a2 · · · a2` = aa2 · · · a2`

=

(
g` −

∑

a′′∈P`, a′′ 6=a
a′′
)
a2 · · · a2`

= g`a2 · · · a2` −
∑

a′′∈P`, a′′ 6=a
a′′a2 · · · a2` .

The first term belongs to JI2`−1. Thus we consider a′′a2 · · · a2` in the second
term only. Since max{]{i : ai = a} : a ∈ P`} is strictly reduced, the problem
can be reduced to the first case.

Q.E.D.

3. An application

In this section, we apply Theorem 1 to some ideals and calculate the analytic
spread of them.

Consider the ideal

(∗) I = (x11, . . . , x1i1) ∩ · · · ∩ (xq1, . . . , xqiq),

where x11, . . . , xqiq are all distinct variables. Then one can easily see that

pdS S/I =

q∑
s=1

is − q + 1.

Schmitt–Vogel [4] proved ara I = pdS S/I (see also Schenzel–Vogel [3]). They
proved it by applying

P` = {x1`1 · · ·xq`q : `1 + · · ·+ `q = `+ q}, ` = 0, 1, . . . , r



to Schmitt–Vogel lemma, where r =
∑q

s=1 is − q. Since these P0, P1, . . . , Pr
also satisfy the assumption of Theorem 1, we have the following corollary:

Corollary 3. Let I = (x11, . . . , x1i1) ∩ · · · ∩ (xq1, . . . , xqiq). Then we have

l(I) = pdS S/I.

In particular, (g0, g1, . . . , gr) is a minimal reduction of I.

Although l(I) = pdS S/I is also proven by computing the dimension of fiber
cone, we construct a minimal reduction of I explicitly.

By giving an example, we remark that the relation between our theorem
and the reduction number.

Let I = (x11, x12) ∩ (x21, x22) ∩ (x31, x32). This is a special case of the ideal
(∗) and pdS S/I = 2 + 2 + 2 − 3 + 1 = 4. The minimal reduction of I which
derived from Corollary 3 is generated by the following 4 elements:

g0 = x11x21x31,

g1 = x12x21x31 + x11x22x31 + x11x21x32,

g2 = x12x22x31 + x12x21x32 + x11x22x32,

g3 = x12x22x32.

Put J = (g0, g1, g2, g3). Then what is the reduction number rJ(I) of J ?
From the our proof of Theorem 1, we can only see rJ(I) ≤ 23 − 1 = 7. But
I3 = JI2 holds. In fact, rJ(I) = 2. Thus the upper bound of rJ(I) derived
from Theorem 1 is very big in general.
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