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INTRODUCTION

This is a joint work with Naoki Terai (Saga Univ.) and Ken-ichi Yoshida
(Nagoya Univ.).

Let S be a polynomial ring with each variable has degree 1 over an infinite
field k, and I a squarefree monomial ideal of S. The arithmetical rank of I is

defined by

ara ] := min {7“ : there exist aq,...,a, € I such that \/(aq,...,a,) = \/7} )

It is known by Lyubeznik [2] that pdg S/I < ara I, where pdg.S/I denotes the
projective dimension of S/1. Let J be a minimal reduction of /. The number
of a minimal set of generators of .J, which is independent on the choice of J,
is called the analytic spread of I. We denote it by [(I). Since vJ = /T holds,

we have
pdg S/I <aral <I(I).

Schmitt—Vogel lemma [4, Lemma, pp. 249] is an important and useful tool
in the study of the arithmetical rank. Using this lemma, Schmitt—Vogel proved
aral = pdg S/I for

(*) ]:(xn,...,xh-l)ﬂ---ﬂ(qu,...,xqiq),

where z;; are variables in S pairwise distinct. Note that this ideal I is the
Alexander dual of a complete intersection ideal.

In this report, we refine Schmitt—Vogel lemma for reductions and prove
[(I) = pdg S/I for the ideal (x) as its application.

1. MAIN THEOREM

In this section, we consider a commutative ring R with unitary. Let I, J be
ideals in R with J C I. We say J is a reduction of I if there exists s € N such
that I°t! = JI®. Tt is easy to see that if .J is a reduction of I, then v/J = v/T.
The main theorem of this report is the following:



Theorem 1. Let R be a commutative ring with unitary. Let Py, Py,...,P. C R
be finite subsets, and we set

P:O&
£=0

QEZZCL, (=0,1,...,r
aEPZ

Assume that
(Cl) thy = 1.
(C2) For all ¢ >0 and a,a” € Py (a # a"), there exist some ¢! (0 < V' < (),
a' € Py, and b € (P) such that aa” = a'b.

Then we have (go, g1, - - -, gr) s a reduction of (P).

The difference between our theorem and Schmitt—Vogel lemma is the as-
sumption of the existence of b € (P) in (C2). The second condition of Schmitt—
Vogel lemma is

(C2)" For all £ > 0 and a,a” € Py (a # a"), there exist some ¢/ (0 < ¢/ < ?)
and o € Py such that aa” € (a);
and the conclusion is v/(go, g1, - - -, gr) = \/(P).

Remark 2. Schmitt—Vogel lemma allows us to add some exponent e(a) for each
a € P in the sum gy, i.e., we may put

ge = Z at®.

a€P,

Thus we can take g, as homogeneous if R is graded. But our theorem is not
allowed to add such e(a).
2. PROOF OF MAIN THEOREM

In this section, we prove Theorem 1.
As first, we fix notation. Put I = (P), J = (g0, 91,---,9-), and

l
Q:(UFQ, (=0,1,...,r
j=0

It is enough to show 12 € JI?~' for ¢ = 0,1,...,r. We show this by induction
on /. In fact, we show

o P g, =01,
If ¢ =0, then Iy = (F) = (g0) C J because §F, = 1. Let us consider the case

of £ > 0. Take ay,...,ay € U?ZOP]-. We may assume aq,...,a,, € P, and
-1
Ami1y---,Q0¢ c Uj=0 Pj
First, we assume that we can renumbering a, ..., a,, such that

{ar,al}, ... {aimya), o)}



where ay # ay, ay = ajm/2j4r (A =1,...,[m/2]), and |a| denotes the max-
imal integer which does not exceed a. Then we can use the condition (C2),
that is, there are a, € Uﬁ;(l) P; and by € I such that ayaf = a\by. Thus

[m/2]
Qi .-yt = H al,\bA A2\m 2|41 " " Aot
A=1
[m/2] lm/2]
= H a'/\ Am41° - - Aoe H b ag|m/2]+1 " Qm-
A=1 A=1

Note that m < 2 and |m/2| > (m — 1)/2. Then it is easy to see that
|m/2]+2—m > 21—1/2. Since |[m/2|+2°—m € Z, we have [m/2]+2‘—m >
2¢=1. Therefore
ay---age € 12, 1727
Next, we consider the case that we cannot make |m/2] pairs of distinct
elements. This case occurs if and only if there exist a € P, (uniquely) such

that
a=ay = = Qa(m-1)/2]+2,
by renumbering a4, ..., a,,. Then

a1ag -+ - 09t = A9 - -+ Ayt

= (gz — Z a”) ag - - - CLQZ

a'’"€Py, a'#a

= Gyl -+ Qe — g a’as - age.
a’€Py, a'#a

The first term belongs to JI 2'~1 Thus we consider a’as - - - aqe in the second
term only. Since max{#{i : a; = a} : a € P} is strictly reduced, the problem
can be reduced to the first case.

Q.E.D.

3. AN APPLICATION

In this section, we apply Theorem 1 to some ideals and calculate the analytic
spread of them.
Consider the ideal

(*) ]:(:vu,...,xlil)ﬂ---ﬂ(qu,...,xqiq),
where 11, ..., %y, are all distinct variables. Then one can easily see that

q

pdg S/T =Y is—q+1.

s=1

Schmitt—Vogel [4] proved aral = pdg S/I (see also Schenzel-Vogel [3]). They
proved it by applying

Pr={x1 - wq, + b1+ + L =1+q}, (=0,1,...,r



to Schmitt—Vogel lemma, where r = Y ?_ i, — ¢. Since these Py, P, ..., P,

also satisfy the assumption of Theorem 1, we have the following corollary:

Corollary 3. Let I = (z11,...,21;,) NN (g1, - - -, Tgi,)- Then we have
I(I) = pdg S/I.
In particular, (go, g1, - - -, gr) is a minimal reduction of 1.

Although (1) = pdg S/I is also proven by computing the dimension of fiber
cone, we construct a minimal reduction of I explicitly.

By giving an example, we remark that the relation between our theorem
and the reduction number.

Let I = (211, 212) N (291, T22) N (31, x32). This is a special case of the ideal
(%) and pdg S/ =2+ 2+2—3+ 1 = 4. The minimal reduction of I which
derived from Corollary 3 is generated by the following 4 elements:

go = T11221731,
g1 = T12T21T31 + T11T22T31 + T11T21T32,
g2 = T12T22T31 + T12T21T32 + T11T22T32,
g3 = T12X22X32.

Put J = (90,91, 92,93). Then what is the reduction number r;(I) of J 7
From the our proof of Theorem 1, we can only see 7;(I) < 23 —1 = 7. But
I? = JI? holds. In fact, r;(I) = 2. Thus the upper bound of r;(I) derived
from Theorem 1 is very big in general.
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