ANALYTIC SPREAD OF SQUAREFREE MONOMIAL IDEALS

KYOUKO KIMURA (NAGOYA UNIVERSITY)

Introduction

This is a joint work with Naoki Terai (Saga Univ.) and Ken-ichi Yoshida (Nagoya Univ.).

Let S be a polynomial ring with each variable has degree 1 over an infinite field k, and I a squarefree monomial ideal of S. The arithmetical rank of I is defined by

$$
\operatorname{ara} I:=\min \left\{r: \text { there exist } a_{1}, \ldots, a_{r} \in I \text { such that } \sqrt{\left(a_{1}, \ldots, a_{r}\right)}=\sqrt{I}\right\} .
$$

It is known by Lyubeznik [2] that $\operatorname{pd}_{S} S / I \leq \operatorname{ara} I$, where $\operatorname{pd}_{S} S / I$ denotes the projective dimension of S / I. Let J be a minimal reduction of I. The number of a minimal set of generators of J, which is independent on the choice of J, is called the analytic spread of I. We denote it by $l(I)$. Since $\sqrt{J}=\sqrt{I}$ holds, we have

$$
\operatorname{pd}_{S} S / I \leq \operatorname{ara} I \leq l(I)
$$

Schmitt-Vogel lemma [4, Lemma, pp. 249] is an important and useful tool in the study of the arithmetical rank. Using this lemma, Schmitt-Vogel proved ara $I=\operatorname{pd}_{S} S / I$ for

$$
\begin{equation*}
I=\left(x_{11}, \ldots, x_{1 i_{1}}\right) \cap \cdots \cap\left(x_{q 1}, \ldots, x_{q i_{q}}\right), \tag{*}
\end{equation*}
$$

where $x_{i j}$ are variables in S pairwise distinct. Note that this ideal I is the Alexander dual of a complete intersection ideal.

In this report, we refine Schmitt-Vogel lemma for reductions and prove $l(I)=\operatorname{pd}_{S} S / I$ for the ideal $(*)$ as its application.

1. Main Theorem

In this section, we consider a commutative ring R with unitary. Let I, J be ideals in R with $J \subset I$. We say J is a reduction of I if there exists $s \in \mathbb{N}$ such that $I^{s+1}=J I^{s}$. It is easy to see that if J is a reduction of I, then $\sqrt{J}=\sqrt{I}$. The main theorem of this report is the following:

Theorem 1. Let R be a commutative ring with unitary. Let $P_{0}, P_{1}, \ldots, P_{r} \subset R$ be finite subsets, and we set

$$
\begin{aligned}
P & =\bigcup_{\ell=0}^{r} P_{\ell} \\
g_{\ell} & =\sum_{a \in P_{\ell}} a, \quad \ell=0,1, \ldots, r
\end{aligned}
$$

Assume that
(C1) $\sharp P_{0}=1$.
(C2) For all $\ell>0$ and $a, a^{\prime \prime} \in P_{\ell}\left(a \neq a^{\prime \prime}\right)$, there exist some $\ell^{\prime}\left(0 \leq \ell^{\prime}<\ell\right)$, $a^{\prime} \in P_{\ell^{\prime}}$, and $b \in(P)$ such that $a a^{\prime \prime}=a^{\prime} b$.
Then we have $\left(g_{0}, g_{1}, \ldots, g_{r}\right)$ is a reduction of (P).
The difference between our theorem and Schmitt-Vogel lemma is the assumption of the existence of $b \in(P)$ in (C2). The second condition of SchmittVogel lemma is
$(\mathrm{C} 2)^{\prime}$ For all $\ell>0$ and $a, a^{\prime \prime} \in P_{\ell}\left(a \neq a^{\prime \prime}\right)$, there exist some $\ell^{\prime}\left(0 \leq \ell^{\prime}<\ell\right)$ and $a^{\prime} \in P_{\ell^{\prime}}$ such that $a a^{\prime \prime} \in\left(a^{\prime}\right)$;
and the conclusion is $\sqrt{\left(g_{0}, g_{1}, \ldots, g_{r}\right)}=\sqrt{(P)}$.
Remark 2. Schmitt-Vogel lemma allows us to add some exponent $e(a)$ for each $a \in P_{\ell}$ in the sum g_{ℓ}, i.e., we may put

$$
g_{\ell}=\sum_{a \in P_{\ell}} a^{e(a)}
$$

Thus we can take g_{ℓ} as homogeneous if R is graded. But our theorem is not allowed to add such $e(a)$.

2. Proof of Main Theorem

In this section, we prove Theorem 1.
As first, we fix notation. Put $I=(P), J=\left(g_{0}, g_{1}, \ldots, g_{r}\right)$, and

$$
I_{\ell}=\left(\bigcup_{j=0}^{\ell} P_{j}\right), \quad \ell=0,1, \ldots, r
$$

It is enough to show $I_{\ell}^{2^{\ell}} \subset J I^{2^{\ell}-1}$ for $\ell=0,1, \ldots, r$. We show this by induction on ℓ. In fact, we show

$$
I_{\ell}^{2^{\ell}} \subset I_{\ell-1}^{2^{\ell-1}} I^{2^{\ell}-2^{\ell-1}}+J I^{2^{\ell}-1}, \quad \ell=0,1, \ldots, r
$$

If $\ell=0$, then $I_{0}=\left(P_{0}\right)=\left(g_{0}\right) \subset J$ because $\sharp P_{0}=1$. Let us consider the case of $\ell>0$. Take $a_{1}, \ldots, a_{2^{\ell}} \in \bigcup_{j=0}^{\ell} P_{j}$. We may assume $a_{1}, \ldots, a_{m} \in P_{\ell}$ and $a_{m+1}, \ldots, a_{2^{\ell}} \in \bigcup_{j=0}^{\ell-1} P_{j}$.

First, we assume that we can renumbering a_{1}, \ldots, a_{m} such that

$$
\left\{a_{1}, a_{1}^{\prime \prime}\right\}, \ldots,\left\{a_{\lfloor m / 2\rfloor}, a_{\lfloor m / 2\rfloor}^{\prime \prime}\right\}
$$

where $a_{\lambda} \neq a_{\lambda}^{\prime \prime}, a_{\lambda}^{\prime \prime}=a_{\lfloor m / 2\rfloor+\lambda}(\lambda=1, \ldots,\lfloor m / 2\rfloor)$, and $\lfloor\alpha\rfloor$ denotes the maximal integer which does not exceed α. Then we can use the condition (C2), that is, there are $a_{\lambda}^{\prime} \in \bigcup_{j=0}^{\ell-1} P_{j}$ and $b_{\lambda} \in I$ such that $a_{\lambda} a_{\lambda}^{\prime \prime}=a_{\lambda}^{\prime} b_{\lambda}$. Thus

$$
\begin{aligned}
a_{1} \cdots a_{2^{\ell}} & =\left(\prod_{\lambda=1}^{\lfloor m / 2\rfloor} a_{\lambda}^{\prime} b_{\lambda}\right) a_{2\lfloor m / 2\rfloor+1} \cdots a_{2^{\ell}} \\
& =\left(\prod_{\lambda=1}^{\lfloor m / 2\rfloor} a_{\lambda}^{\prime}\right) a_{m+1} \cdots a_{2^{\ell}}\left(\prod_{\lambda=1}^{\lfloor m / 2\rfloor} b_{\lambda}\right) a_{2\lfloor m / 2\rfloor+1} \cdots a_{m} .
\end{aligned}
$$

Note that $m \leq 2^{\ell}$ and $\lfloor m / 2\rfloor \geq(m-1) / 2$. Then it is easy to see that $\lfloor m / 2\rfloor+2^{\ell}-m \geq 2^{\ell-1}-1 / 2$. Since $\lfloor m / 2\rfloor+2^{\ell}-m \in \mathbb{Z}$, we have $\lfloor m / 2\rfloor+2^{\ell}-m \geq$ $2^{\ell-1}$. Therefore

$$
a_{1} \cdots a_{2^{\ell}} \in I_{\ell-1}^{2^{\ell-1}} I^{2^{\ell}-2^{\ell-1}}
$$

Next, we consider the case that we cannot make $\lfloor m / 2\rfloor$ pairs of distinct elements. This case occurs if and only if there exist $a \in P_{\ell}$ (uniquely) such that

$$
a=a_{1}=\cdots=a_{\lfloor(m-1) / 2\rfloor+2},
$$

by renumbering a_{1}, \ldots, a_{m}. Then

$$
\begin{aligned}
a_{1} a_{2} \cdots a_{2^{\ell}} & =a a_{2} \cdots a_{2^{\ell}} \\
& =\left(g_{\ell}-\sum_{a^{\prime \prime} \in P_{\ell}, a^{\prime \prime} \neq a} a^{\prime \prime}\right) a_{2} \cdots a_{2^{\ell}} \\
& =g_{\ell} a_{2} \cdots a_{2^{\ell}}-\sum_{a^{\prime \prime} \in P_{\ell}, a^{\prime \prime} \neq a} a^{\prime \prime} a_{2} \cdots a_{2 \ell} .
\end{aligned}
$$

The first term belongs to $J I^{2^{\ell}-1}$. Thus we consider $a^{\prime \prime} a_{2} \cdots a_{2^{\ell}}$ in the second term only. Since $\max \left\{\sharp\left\{i: a_{i}=a\right\}: a \in P_{\ell}\right\}$ is strictly reduced, the problem can be reduced to the first case.
Q.E.D.

3. An application

In this section, we apply Theorem 1 to some ideals and calculate the analytic spread of them.

Consider the ideal

$$
\begin{equation*}
I=\left(x_{11}, \ldots, x_{1 i_{1}}\right) \cap \cdots \cap\left(x_{q 1}, \ldots, x_{q i_{q}}\right), \tag{*}
\end{equation*}
$$

where $x_{11}, \ldots, x_{q i_{q}}$ are all distinct variables. Then one can easily see that

$$
\operatorname{pd}_{S} S / I=\sum_{s=1}^{q} i_{s}-q+1
$$

Schmitt-Vogel [4] proved ara $I=\operatorname{pd}_{S} S / I$ (see also Schenzel-Vogel [3]). They proved it by applying

$$
P_{\ell}=\left\{x_{1 \ell_{1}} \cdots x_{q \ell_{q}}: \ell_{1}+\cdots+\ell_{q}=\ell+q\right\}, \quad \ell=0,1, \ldots, r
$$

to Schmitt-Vogel lemma, where $r=\sum_{s=1}^{q} i_{s}-q$. Since these $P_{0}, P_{1}, \ldots, P_{r}$ also satisfy the assumption of Theorem 1 , we have the following corollary:

Corollary 3. Let $I=\left(x_{11}, \ldots, x_{1 i_{1}}\right) \cap \cdots \cap\left(x_{q 1}, \ldots, x_{q i_{q}}\right)$. Then we have

$$
l(I)=\operatorname{pd}_{S} S / I
$$

In particular, $\left(g_{0}, g_{1}, \ldots, g_{r}\right)$ is a minimal reduction of I.
Although $l(I)=\operatorname{pd}_{S} S / I$ is also proven by computing the dimension of fiber cone, we construct a minimal reduction of I explicitly.

By giving an example, we remark that the relation between our theorem and the reduction number.

Let $I=\left(x_{11}, x_{12}\right) \cap\left(x_{21}, x_{22}\right) \cap\left(x_{31}, x_{32}\right)$. This is a special case of the ideal (*) and $\operatorname{pd}_{S} S / I=2+2+2-3+1=4$. The minimal reduction of I which derived from Corollary 3 is generated by the following 4 elements:

$$
\begin{aligned}
g_{0} & =x_{11} x_{21} x_{31} \\
g_{1} & =x_{12} x_{21} x_{31}+x_{11} x_{22} x_{31}+x_{11} x_{21} x_{32} \\
g_{2} & =x_{12} x_{22} x_{31}+x_{12} x_{21} x_{32}+x_{11} x_{22} x_{32} \\
g_{3} & =x_{12} x_{22} x_{32}
\end{aligned}
$$

Put $J=\left(g_{0}, g_{1}, g_{2}, g_{3}\right)$. Then what is the reduction number $r_{J}(I)$ of J ? From the our proof of Theorem 1, we can only see $r_{J}(I) \leq 2^{3}-1=7$. But $I^{3}=J I^{2}$ holds. In fact, $r_{J}(I)=2$. Thus the upper bound of $r_{J}(I)$ derived from Theorem 1 is very big in general.

References

[1] K. Kimura, N. Terai, and K. Yoshida, Schmitt-Vogel type lemma for reductions, in preparation.
[2] G. Lyubeznik, On the local cohomology modules $H_{\mathfrak{a}}^{i}(R)$ for ideals \mathfrak{a} generated by monomials in an R-sequence, in Complete Intersections, Acireale, 1983 (S. Greco and R. Strano eds., Lecture Notes in Mathematics No. 1092, Springer-Verlag, 1984 pp. $214-$ 220.
[3] P. Schenzel and W. Vogel, On set-theoretic intersections, J. Algebra 48 (1977), 401-408.
[4] T. Schmitt and W. Vogel, Note on set-theoretic intersections of subvarieties of projective space, Math. Ann. 245 (1979), 247-253.

Graduate School of Mathematics, Nagoya University, Nagoya 464-8602, JAPAN

E-mail address: m04012w@math.nagoya-u.ac.jp

