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1. Introduction

This talk aims at a study of quasi-socle ideals in a local ring with the Gorenstein

tangent cone. Our purpose is to answer Question 1.1 below, of when the graded rings

associated to the ideals are Cohen-Macaulay and/or Gorenstein rings, estimating their

reduction numbers with respect to minimal reductions.

Let A be a Noetherian local ring with the maximal ideal m and d = dim A > 0. Let

Q = (x1, x2, · · · , xd) be a parameter ideal in A and let q ≥ 1 be an integer. We put

I = Q : mq and refer to those ideals as quasi-socle ideals in A. Then one can ask the

following questions, which are the main subject of the present research.

Question 1.1.

(1) Find the conditions under which I ⊆ Q, where Q stands for the integral closure of

Q.

(2) When I ⊆ Q, estimate or describe the reduction number rQ(I) = min {0 ≤ n ∈ Z |
In+1 = QIn} of I with respect to Q in terms of some invariants of Q or A.

(3) Clarify what kind of ring-theoretic properties of the graded rings associated to the

ideal I

R(I) =
⊕
n≥0

In, G(I) =
⊕
n≥0

In/In+1, and F(I) =
⊕
n≥0

In/mIn

enjoy.

In this talk we shall focus our attention on a certain special kind of quasi-socle ideals.

We now assume that the tangent cone, that is the associated graded ring G(m) =⊕
n≥0 mn/mn+1 of m, is a Gorenstein ring and that the maximal ideal m contains a

system x1, x2, · · · , xd of elements such that the ideal (x1, x2, · · · , xd) is a reduction of m.

Let a1, a2, · · · , ad, and q be positive integers and we put Q = (xa1
1 , xa2

2 , · · · , xad
d ) and I =

Q : mq. Let A = A/Q, m = m/Q, and I = I/Q. Let ρ = max {n ∈ Z | mn 6= (0)},
that is the index of nilpotency of the ideal m and put ` = ρ + 1− q. We then have the

following, which are the answers to Question 1.1 in our specific setting.
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Theorem 1.2. The following three conditions are equivalent to each other.

(1) I ⊆ Q.

(2) mqI = mqQ.

(3) ` ≥ ai for all 1 ≤ i ≤ d.

When this is the case, the following assertions hold true.

(i) rQ(I) = d q
`
e := min {n ∈ Z | q

`
≤ n}.

(ii) The graded rings G(I) and F(I) are Cohen-Macaulay.

Theorem 1.3. Suppose that ` ≥ ai for all 1 ≤ i ≤ d. Then we have the following.

(i) G(I) is a Gorenstein ring if and only if ` | q.
(ii) R(I) is a Gorenstein ring if and only if q = (d− 2)`.

Our setting naturally contains the case where A is a regular local ring with

x1, x2, · · · , xd a regular system of parameters, the case where A is an abstract hypersur-

face with the infinite residue class field, and the case where A = RM is the localization

of the homogeneous Gorenstein ring R = k[R1] over an infinite field k = R0 at the irrel-

evant maximal ideal M = R+. In Section 3 we will explore a few examples, including

these three cases, in order to see how Theorems 1.2 and 1.3 work for the analysis of

concrete examples. The proofs of Theorems 1.2 and 1.3 themselves shall be given in

Section 2.

2. Proof of Theorems 1.2 and 1.3

The purpose of this section is to prove Theorems 1.2 and 1.3. First of all, let us

restate our setting, which we shall maintain throughout this talk.

Let A be a Noetherian local ring with the maximal ideal m and d = dim A > 0. We

assume that the associated graded ring G(m) =
⊕

n≥0 mn/mn+1 of m is Gorenstein and

that the maximal ideal m contains a system x1, x2, · · · , xd of elements which generates

a reduction of m (the latter condition is satisfied if the filed A/m is infinite). Hence

A is a Gorenstein ring and the initial forms {Xi}1≤i≤d of {xi}1≤i≤d with respect to m

constitute a regular sequence in G(m) and we have a canonical isomorphism

G(m/(x1, x2, · · · , xd)) ∼= G(m)/(X1, X2, · · · , Xd)

of graded A-algebras ([VV]). Let a1, a2, · · · , ad, and q be positive integers and we put

Q = (xa1
1 , xa2

2 , · · · , xad
d ) and I = Q : mq.

Let A = A/Q, m = m/Q, and I = I/Q. Then

G(m) ∼= G(m)/(X1
a1 , X2

a2 , · · · , Xd
ad),



whence G(m) is a Gorenstein ring. Let ρ = max {n ∈ Z | mn 6= (0)}, that is the index

of nilpotency of the ideal m, and we have ρ = a(G(m)) = a(G(m)) +
∑d

i=1 ai, where

a(∗) denotes the a-invariant of the corresponding graded ring ([GW, (3.1.4)]).

Let ` = ρ + 1− q. By [Wat] (see [O, Theorem 1.6] also) we then have the following.

Proposition 2.1. (0) : mi = mρ+1−i for all i ∈ Z. In particular I = (0) : mq = m`

whence I = Q + m`.

The key for our proof of Theorem 1.2 is the following.

Lemma 2.2. Suppose that ` ≥ ai for all 1 ≤ i ≤ d. Then

Q ∩mn`+m ⊆ mmQIn−1

for all m ≥ 0 and n ≥ 1.

Proof. We have

Q ∩mn`+m =
d∑

i=1

xai
i mn`+m−ai

since x1, x2, · · · , xd is a super regular sequence with respect to m. Because

n` + m− ai = (n− 1)` + m + (`− ai) ≥ (n− 1)` + m

for each 1 ≤ i ≤ d, we get

mn`+m−ai ⊆ m(n−1)`+m = mm·(m`)n−1.

Therefore, since m` ⊆ I by Proposition 2.1, we have

Q ∩mn`+m =
d∑

i=1

xai
i mn`+m−ai

⊆
d∑

i=1

xai
i mm(m`)n−1

⊆ mmQIn−1

as is claimed. ¤

Let us now prove Theorem 1.2.

Proof of Theorem 1.2. (2) ⇒ (1) This is well-known. See [NR].

(3) ⇒ (2) By Proposition 2.1 we get mqI = mqQ + mq+`, whence mq+` ⊆ Q, so that

mq+` = Q ∩ mq+` ⊆ mqQ by Lemma 2.2, because ` ≥ ai for all 1 ≤ i ≤ d. Thus

mqI = mqQ.

(1) ⇒ (3) Let 1 ≤ i ≤ d be an integer. Then x`
i ∈ m` ⊆ I ⊆ Q. Consequently, x`

i is

integral over Q = (xa1
1 , xa2

2 , · · · , xad
d ) so that, thanks to the monomial property of the

regular sequence x = x1, x2, · · · , xd, we get `
ai
≥ 1. Hence ` ≥ ai for all 1 ≤ i ≤ d.



Let us now consider assertions (i) and (ii). Let n ≥ 1 be an integer. Then In =

QIn−1 + mn` since I = Q + m` (Proposition 2.1), so that

Q ∩ In = QIn−1 + [Q ∩mn`] ⊆ QIn−1

because Q ∩ mn` ⊆ QIn−1 by Lemma 2.2. Therefore Q ∩ In = QIn−1 for all n ≥ 1,

whence G(I) is a Cohen-Macaulay ring ([VV, Corollary 2.7]).

We will show that rQ(I) = d q
`
e. Notice that

rQ(I) = min{n ≥ 0 | In+1 ⊆ Q},
because In+1 = QIn if and only if In+1 ⊆ Q. Firstly, suppose that In+1 ⊆ Q. We then

have m(n+1)` = (0) (recall that I = m`), whence (n + 1)` ≥ ρ + 1. Therefore

n + 1 ≥ ρ + 1

`
=

q + `

`
=

q

`
+ 1,

because ` = ρ + 1− q, so that we have n ≥ q
`
.

If n ≥ q
`
, then (n + 1)` ≥ ( q

`
+ 1)` = q + ` = ρ + 1 and so I

n+1
= m(n+1)` = (0),

whence In+1 ⊆ Q. Thus rQ(I) = d q
`
e.

To see that F(I) is a Cohen-Macaulay ring, it suffices to show that

Q ∩mIn = mQIn−1

for all n ≥ 1. By Lemma 2.2 we have

Q ∩mIn = Q ∩ [mQIn−1 + mn`+1]

= mQIn−1 + [Q ∩mn`+1]

⊆ mQIn−1,

whence Q ∩mIn = mQIn−1. ¤

Assume that ` ≥ ai for all 1 ≤ i ≤ d and let Yi’s be the initial forms of xai
i ’s with

respect to I. Then Y1, Y2, · · · , Yd is a homogeneous system of parameters of G(I), since

Q is a reduction of I (Theorem 1.2). It therefore constitutes a regular sequence in

G(I), because G(I) is a Cohen-Macaulay ring by Theorem 1.2 (ii), so that we have a

canonical isomorphism

G(I) ∼= G(I)/(Y1, Y2, · · · , Yd)

of graded A-algebras ([VV]). Hence a(G(I)) = a(G(I))+d. Let r be the index of nilpo-

tency of I, that is r = a(G(I)). Then since r = rQ(I) (recall that x1
a1 , x2

a2 , · · · , xd
ad is

a super regular sequence with respect to I) and a(G(I)) = a(G(I))− d ([GW, (3.1.6)]),

by Theorem 1.2 (i) we have the following.

Lemma 2.3. Suppose that ` ≥ ai for all 1 ≤ i ≤ d. Then a(G(I)) = d q
`
e − d.

Corollary 2.4. Assume that ` ≥ ai for all 1 ≤ i ≤ d. Then R(I) is a Cohen-Macaulay

ring if and only if d q
`
e < d. When this is the case, d ≥ 2.



Proof. Since G(I) is a Cohen-Macaulay ring by Theorem 1.2 (ii), R(I) is a Cohen-

Macaulay ring if and only if a(G(I)) < 0 ([TI]). By Lemma 2.3 the latter condition is

equivalent to saying that d q
`
e < d (cf. [GSh, Remark (3.10)]). When this is case, d ≥ 2

because 0 < d q
`
e. ¤

We are now in a position to prove Theorem 1.3.

Proof of Theorem 1.3. (i) Notice that G(I) is a Gorenstein ring if and only if so is the

graded ring

G(I) = G(I)/(Y1, Y2, · · · , Yd),

where Yi’s stand for the initial forms of xai
i ’s with respect to I. Let r be the index of

nilpotency of I. Then r = rQ(I) = d q
`
e, and G(I) is a Gorenstein ring if and only if the

equality

(0) : I
i
= I

r+1−i

holds true for all i ∈ Z ([O, Theorem 1.6]). Hence if G(I) is a Gorenstein ring, we have

(0) : I = I
r

= mr`. On the other hand, since I = m` and q = ρ + 1− `, by Proposition

2.1 we get

(0) : I = (0) : m` = mq.

Therefore q = r`, since mr` = mq 6= (0). Thus ` | q and r = q
`
.

Conversely, suppose that ` | q. Hence r = q
`

by Theorem 1.2 (i). Let i ∈ Z. Then

since I = m`, we get I
r+1−i

= m(r+1−i)`, while

(0) : I
i
= (0) : mi` = mρ+1−i`

by Proposition 2.1. We then have (0) : I
i
= I

r+1−i
for all i ∈ Z, since

(r + 1− i)` = q + `− i` = ρ + 1− i`.

Thus G(I) is a Gorenstein ring, whence so is G(I).

(ii) The Rees algebra R(I) of I is a Gorenstein ring if and only if G(I) is a Gorenstein

ring and a(G(I)) = −2, provided d ≥ 2 ([I, Corollary (3.7)]). Suppose that R(I) is a

Gorenstein ring. Then d ≥ 2 by Corollary 2.4. Since a(G(I)) = rQ(I) − d = −2, by

assertion (i) and Theorem 1.2 (i) we have q
`

= rQ(I) = d − 2, whence q = (d − 2)`.

Conversely, suppose that q = (d − 2)`. Then d ≥ 3 since q ≥ 1. By assertion (i) and

Theorem 1.2 (i) G(I) is a Gorenstein ring with rQ(I) = q
`

= d − 2, whence a(G(I)) =

(d− 2)− d = −2, so that R(I) is a Gorenstein ring. ¤

Example 2.5. Suppose that ρ ≥ 5 is an odd integer, say ρ = 2τ + 1 with τ ≥ 2. Let

q = ρ − 1. Then ` = ρ + 1 − q = 2. Hence, choosing ai ≤ 2 for all 1 ≤ i ≤ d, we

have I = Q + m2 ⊆ Q with rQ(I) = τ by Theorem 1.2. Since ` | q, by Theorem 1.3 (i)

the ring G(I) is Gorenstein. The ring R(I) is by Theorem 1.3 (ii) a Gorenstein ring, if

d = τ + 2.



3. Examples and applications

In this section we shall discuss some applications of Theorems 1.2 and 1.3. Let us

begin with the case where A is a regular local ring.

3.1. The case where A is a regular local ring. Let A be a regular local ring with

x1, x2, · · · , xd a regular system of parameters. Similarly as in the previous sections, let

Q = (xa1
1 , xa2

2 , · · · , xad
d ) and I = Q : mq

with positive integers a1, a2, · · · , ad, and q. Then G(m) = k[X1, X2, · · · , Xd] is the

polynomial ring, where k = A/m and Xi’s are the initial forms of xi’s, so that we have

ρ =
d∑

i=1

ai − d and ` =
d∑

i=1

(ai − 1) + 1− q,

since a(G(m)) = −d. Notice that the condition that

` ≥ max {ai | 1 ≤ i ≤ d}
is equivalent to saying that ∑

j 6=i

aj ≥ q + d− 1

for all 1 ≤ i ≤ d, because `− ai =
∑

j 6=i aj − (q + d− 1). When this is the case, d ≥ 2.

Example 3.1. The following assertions hold true.

(1) Let d = 2. Then I ⊆ Q if and only if min{a1, a2} ≥ q + 1.

(2) Let d = 3. Then I ⊆ Q if and only if min{ai + aj | 1 ≤ i < j ≤ 3} ≥ q + 2.

(3) Choose integers a and q so that 2 ≤ a ≤ d and (d−1)(a−1) < q ≤ d(a−1). Let

ai = a for all 1 ≤ i ≤ d. Then I ( A but I 6⊆ Q. For example, let d = 3, a = 2,

and q = 3. Then

(x2
1, x

2
2, x

2
3) : m3 = m 6⊆ (x2

1, x
2
2, x

2
3).

Example 3.2. The following assertions hold true.

(1) Let d = 2 and assume that I ⊆ Q. Then G(I) is not a Gorenstein ring.

(2) Suppose that d ≥ 3 and let n ≥ d− 1 be an integer. Let a1 = d− 1, ai = n for

all 2 ≤ i ≤ d, and q = (d− 2)n. Then R(I) is a Gorenstein ring.

(3) Suppose that d = 5 and let ai = 4 for all 1 ≤ i ≤ 5. Let q = 8. Then I ⊆ Q and

G(I) is a Gorenstein ring with rQ(I) = 1, but R(I) is not a Gorenstein ring.

Since the base ring A is regular, the Cohen-Macaulayness in Rees algebras R(I)

follows from that of associated graded rings G(I) ([L]). Let us note a brief proof in our

context.



Proposition 3.3. Suppose that ` ≥ ai for all 1 ≤ i ≤ d. Then the Rees algebra R(I)

is a Cohen-Macaulay ring.

Proof. By Corollary 2.4 we have only to show d q
`
e < d. Let ak = max{ai | 1 ≤ i ≤ d}.

Then because ` ≥ ak, we have

q

`
+ 1 =

ρ + 1

`
≤

∑d
j=1(aj − 1) + 1

ak

=
∑

j 6=k

aj − 1

ak

+ 1 < d,

whence d q
`
e < d as is wanted. ¤

Let L = {(α1, α2, · · · , αd) ∈ Zd | αi ≥ 0 for all1 ≤ i ≤ d}. For each α =

(α1, α2, · · · , αd) ∈ L we put xα =
∏d

i=1 xαi
i . Let a be an ideal in A. Then we say that a

is a monomial ideal, if a is generated by monomials in {xi}1≤i≤d, that is a = (xα | α ∈ Λ)

for some Λ ⊆ L. Monomial ideals behave very well as if they were monomial ideals in

the polynomial ring k[x1, x2, · · · , xd] over a field k (see [HS] for details). For instance,

the integral closure Q of our monomial ideal Q is also a monomial ideal and we have

the following.

Proposition 3.4 ([HS]). Let ∆ = {α ∈ L | ∑d
i=1

αi

ai
≥ 1}. Then Q = (xα | α ∈ ∆).

Corollary 3.5. Suppose that d ≥ 2 and let n ≥ 2 be an integer. We put q =

(xn−1
1 , xn

2 , · · · , xn
d). Then q = q + mn = (xn−1

1 ) + mn and all the powers qm (m ≥ 1) are

integrally closed.

Proof. Let J = q + mn and a = (xn
1 , x

n
2 , · · · , xn

d). Then a ⊆ q and mn ⊆ a, so that

J ⊆ q. Let m ≥ 1 be an integer and put K = (x
m(n−1)
1 , xmn

2 , · · · , xmn
d ). We will show

that K ⊆ Jm. Let α ∈ L and assume that α1

m(n−1)
+

∑d
i=2

αi

mn
≥ 1. We want to show

that xα ∈ Jm. We may assume that α1 < m(n− 1). Let α1 = (n− 1)i + j with i, j ∈ Z
such that 0 ≤ j < (n− 1). Then 0 ≤ i < m. Since α1

m(n−1)
+

∑d
i=2

αi

mn
≥ 1, we get

nα1 + (n− 1)·
d∑

i=2

αi ≥ mn(n− 1),

so that

(n− 1)·
d∑

i=2

αi ≥ mn(n− 1)− nα1 = n[(n− 1)(m− i)− j],

whence
d∑

i=2

αi ≥ n(m− i)− nj

n− 1
.

Because nj
n−1

= j + j
n−1

and 0 ≤ j < n− 1, we have nj
n−1

= j + j
n−1

< j + 1 and so

d∑
i=2

αi ≥ n(m− i)− j.



Thus

xα = x
(n−1)i
1 ·xj

1x
α2
2 · · · xαd

d ∈ x
(n−1)i
1 mn(m−i) ⊆ Jm,

whence K ⊆ Jm by Proposition 3.4.

Because Jm ⊆ qm and qm ⊆ K, we have Jm ⊆ qm ⊆ qm ⊆ K, whence Jm = qm =

qm = K. Letting m = 1, we get J = q. This completes the proof of Corollary 3.5. ¤

Thanks to Corollary 3.5, we get the following characterization for quasi-socle ideals

I = Q : mq to be integrally closed.

Theorem 3.6. Suppose that d ≥ 2 and ai ≥ 2 for all 1 ≤ i ≤ d. Then the following

two conditions are equivalent to each other.

(1) I = Q.

(2) Either (a) ai = ` for all 1 ≤ i ≤ d, or (b) there exists 1 ≤ j ≤ d such that ai = `

if i 6= j and aj = `− 1.

When this is the case, In = In for all n ≥ 1, whence R(I) is a Cohen-Macaulay normal

domain.

Proof. (1) ⇒ (2) Since I = Q, we get q ≤ ρ and I = Q + m` (Proposition 2.1). Notice

that

Q ⊆ I = Q : mq ( (Q : mq) : m = Q : mq+1,

because I ( A. Hence Q : mq+1 6⊆ Q. Consequently ` − 1 = ρ + 1 − (q + 1) < ai for

some 1 ≤ i ≤ d by Theorem 1.2, so that, thanks to Theorem 1.2 again, we have

` = ai ≥ aj

for all 1 ≤ j ≤ d. Let ∆ = {1 ≤ j ≤ d | aj < `}. We then have the following.

Claim. (1) aj = `− 1, if j ∈ ∆.

(2) ]∆ ≤ 1.

Proof. Let j ∈ ∆. Then aj < ` = ai whence j 6= i and ` ≥ 3. Let α = (aj − 1)ej +(ai−
aj)ei. Then α ∈ L but, thanks to the monomial property of ideals, xα /∈ Q+m` = I = Q,

because
∑d

k=1 αk = ai − 1 = ` − 1 and xα /∈ Q. Consequently,
∑d

k=1
αk

ak
< 1 by

Proposition 3.4, so that 1 < 1
aj

+
aj

ai
, because

aj − 1

aj

+
ai − aj

ai

< 1.

Let n = ai− aj. Then aj(ai− aj) < ai as 1 < 1
aj

+
aj

ai
, whence ajn < ai = aj +n so that

0 ≤ (aj − 1)(n− 1) < 1. Hence n = 1 (recall that aj ≥ 2) and aj = ai − 1 = `− 1.

Assume ]∆ ≥ 2 and choose j, k ∈ ∆ so that j 6= k. We put y = xjx
`−2
k . We then have

y`−1 = (x`−1
j )(x`−1

k )`−2 = (x
aj

j )(xak
k )`−2 ∈ Q`−1, because aj = ak = ` − 1 by assertion

(1). Hence y ∈ Q = Q + m`, which is impossible because y /∈ Q (recall that ` ≥ 3) and

y /∈ m`, thanks to the monomial property of ideals. Hence ]∆ ≤ 1. ¤



If ∆ = ∅, we then have ` = aj for all 1 ≤ j ≤ d. If ∆ 6= ∅, letting ∆ = {j}, we get

ai = ` if i 6= j and aj = `− 1. This proves the implication (1) ⇒ (2).

(2) ⇒ (1) Suppose condition (b) is satisfied. Then I = Q + m` = (x`−1
j ) + m` = Q

by Proposition 2.1 and Corollary 3.5. Suppose condition (a) is satisfied. Then I ⊆ Q

by Theorem 1.2 and I = Q + m` = m` by Proposition 2.1, whence I = Q. In each case

all the powers of I are integrally closed (see Corollary 3.5 for case (b)), whence the last

assertion follows from Proposition 3.3. ¤

Example 3.7. Suppose that d ≥ 3 and let n ≥ d − 1 be an integer. We look at the

ideal

Q = (xd−1
1 , xn

2 , x
n
3 , · · · , xn

d)

and let q = n(d−2). Then ` = n, as ρ = nd− (n+1), whence I ⊆ Q and I = Q+mn =

(xd−1
1 )+mn. The ring R(I) is by Theorem 1.3 (ii) a Gorenstein ring, since q = (d−2)`.

If n = d, then I = (xd−1
1 ) + md and Im = Im for all m ≥ 1 by Corollary 3.5, so that

R(I) is a Gorenstein normal ring.

3.2. The case where A = RM . Our setting naturally contains the case where A = RM

is the localization of the homogeneous Gorenstein ring R = k[R1] over an infinite field

k = R0 at the irrelevant maximal ideal M = R+. Let us note one example.

Example 3.8. Let S = k[X, Y, Z] be the polynomial ring over an infinite field k and

let R = S/fS, where 0 6= f ∈ S is a form with degree n ≥ 2. Then R is a homogeneous

Gorenstein ring with dim R = 2. Let x1, x2 be a linear system of parameters in R and

let M = R+. We look at the local ring A = RM . Let a1 = 2, a2 = n, and q = n. Let

Q = (x2
1, x

n
2 )A and I = Q : mq, where m = MA. Then

ρ = a(R) + (a1 + a2) = 2n− 1.

Hence ` = q = n, so that I ⊆ Q, I = Q + mn = (x2
1) + mn, and G(I) is a Gorenstein

ring with rQ(I) = 1 (Theorems 1.2 and 1.3). We have Q 6⊆ mq, if n ≥ 3.

3.3. The case where A = k[[ta, tb]]. Let 1 < a < b be integers with GCD(a, b) = 1.

We look at the ring A = k[[ta, tb]] ⊆ k[[t]], where k[[t]] denotes the formal powers series

ring over a field k. We put x = ta and y = tb. Then A is a one-dimensional Gorenstein

local ring and m = (x, y). Because A ∼= k[[X, Y ]]/(Xb − Y a) where k[[X,Y ]] denotes

the formal powers series ring over the field k, we get

G(m) ∼= k[X, Y ]/(Y a).

Let n, q ≥ 1 be integers, and put Q = (xn) and I = Q : mq. Then because a(G(m)) =

a − 2, we have ρ = a + n − 2 and ` = (a + n) − (q + 1). Consequently I ⊆ Q if and

only if q < a (Theorem 1.2), whence the condition that I ⊆ Q is independent of the



choice of the integer n ≥ 1. When this is the case, by Theorems 1.2 and 1.3 we have

the following.

Theorem 3.9. The following assertions hold true.

(1) rQ(I) = d q
(a+n)−(q+1)

e.
(2) The graded rings G(I) and F(I) are Cohen-Macaulay rings.

(3) The ring G(I) is a Gorenstein ring if and only if (a + n)− (q + 1) divides q.

Hence, if q = a− 1, we then have, for each integer n ≥ 1 such that n | q, that G(I) is a

Gorenstein ring.
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