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This note is a summary of the paper [9] with E. Hyry (University of

Tampere). In this note we introduce a certain family of graded modules

associated to a given module. These modules provide a natural extension

of the notion of the associated graded ring of an ideal. We will investigate

their properties. In particular, we will try to extend the Rees theorem

on the associated graded ring of an ideal generated by a regular sequence

to this context.

1. Introduction

Let A be a commutative ring and let J be an ideal in A. In 1957, Rees

proved in [19] that the associated graded ring

G(J) = A/J ⊕ J/J2 ⊕ J2/J3 ⊕ · · ·

of J is isomorphic to the polynomial ring over A/J , if the ideal J is gen-

erated by a regular sequence on A. In particular, the module J ℓ/J ℓ+1 is

A/J-free for all ℓ ≥ 0. Rees’s theorem is a key result for the applica-

tions of the associated graded ring in commutative algebra and algebraic

geometry.

Recently many authors have investigated graded structures associated

to modules, especially in connection with the theory of Buchsbaum-Rim

multiplicities. Several results valid in the ideal case have been extended

to the module case (for example, see [2, 12, 13, 15, 17, 18, 20, 21]). How-

ever, a good notion of an associated graded ring of a module satisfying

a suitable version of Rees’s theorem seems to be lacking.

Two possible candidates for the associated graded ring of a module

appear in the article [12] of Katz and Kodiyalam. Let A be a Noetherian

ring and let F be a free A-module of rank r > 0. Let M be a submodule

of F and let R = R(M) be the Rees algebra of M , which is the subalgebra

of the polynomial ring S = SymA(F ) defined as the image of the natural



homomorphism SymA(M) → SymA(F ). Let I(M) be the 0-th Fitting

ideal Fitt0(F/M) of F/M . Katz and Kodiyalam investigated the graded

A/I(M)-algebra

R/I(M)R = A/I(M) ⊕ M/I(M)M ⊕ M2/I(M)M2 ⊕ · · · ,

where M ℓ denotes the homogeneous component Rℓ of degree ℓ in R.

When r = 1, the ring R/I(M)R is exactly the associated graded ring of

the ideal M in A. In order to study the Buchsbaum-Rim polynomial,

they also introduced a graded R/I(M)R-module, namely

RF/R+ = F/M ⊕ MF/M2 ⊕ M2F/M3 ⊕ · · · .

When r = 1, this module coincides with the ordinary associated graded

ring of the ideal M in A. They observe in the proof of [12, Proposition

3.4] that the module M ℓF/M ℓ+1 is a direct sum of
(

ℓ+r
r

)
-copies of F/M ,

if A is a two dimensional regular local ring and M is a parameter module

in F (i.e., the length of F/M is finite and the number of generators of M

is just r+1). This can be viewed as the module version of Rees’ theorem.

The goal of this note is to generalize this observation as follows:

Theorem 1.1. Let A be a Noetherian ring and let F be a free A-module

of rank r > 0. Let M be a submodule of F such that M̃ is a perfect

matrix of size r × (r + 1). Then the natural surjective homomorphism

(F/M)[Y1, . . . , Yr+1] // // RF/R+

of R/I(M)R-modules is an isomorphism. In particular, the A-module

M ℓF/M ℓ+1 is a direct sum of
(

ℓ+r
r

)
-copies of F/M for all ℓ ≥ 0.

Here M̃ denotes the matrix whose columns correspond to the generators

of M with respect to a fixed basis of F . Moreover, we say that the matrix

M̃ perfect if I(M) is a proper ideal having the maximal possible grade.

As a corollary, we have the following.

Corollary 1.2 (cf. [12]). Let (A, m) be a Cohen-Macaulay local ring of

dimension two. Let F = Ar be a free module of rank r > 0 and M a

parameter module in F . Then the map

φ1 : (F/M)[Y1, . . . , Yr+1] // // RF/R+

is an isomorphism and hence the module M ℓF/M ℓ+1 is a direct sum of(
ℓ+r
r

)
-copies of F/M for all ℓ ≥ 0.



This is a direct consequence of Theorem 1.1. Since A is a two-dimensional

Cohen-Macaulay local ring, the matrix M̃ of a parameter module M is

perfect of size r × (r + 1). Thus the assertion follows from Theorem 1.1.

In section 2, inspired by the article of Katz and Kodiyalam, we are

going to introduce a family of graded R/I(M)R-modules {Gt(M)}t≥0,

where

Gt(M) = St/MSt−1 ⊕ MSt/M
2St−1 ⊕ M2St/M

3St−1 ⊕ · · · .

This includes the above two graded modules R/I(M)R = G0(M) and

RF/R+ = G1(M). We can then ask when the natural surjective homo-

morphisms φt : (St/MSt−1)[Y1, . . . , Yn] → Gt(M) are isomorphisms. In

section 3, we will discuss the generic case. It turns out that in the generic

case the maps φt are always isomorphisms (see Proposition 3.1). We can

then show that the general case can be reduced to this case provided

that a certain condition Pt holds in the generic case (see Theorem 3.2).

Finally, in section 4, we will prove in Theorem 4.1 that the condition P1

holds true in the case of a generic r× (r +1) matrix. This will imply our

main Theorem 1.1.

2. The associated graded modules of a module

Let A be a Noetherian ring and let F be a free A-module with a basis

{t1, . . . , tr}. Let M be a submodule of F with generators c1, . . . , cn and

the matrix M̃ = (cij). We put I(M) = Ir(M̃) = Fitt0(F/M). Let

S = A[t1, . . . , tr] be the symmetric algebra of F . Let R = R(M) be the

Rees algebra of M , which is now the A-subalgebra of S generated by

c1, . . . , cn. For each integer ℓ ≥ 0, we denote by M ℓ the homogeneous

component Rℓ of degree ℓ in R. We always understand products and

powers of modules to be taken inside the symmetric algebra S of our

fixed free module F . We put R+ = ⊕ℓ>0M
ℓ.

Let R(MS) be the Rees algebra of the ideal MS in S, which is the S-

subalgebra S[c1T, . . . , cnT ] of the polynomial ring S[T ]. The ring R(MS)

becomes a bi-graded A-algebra by letting deg ti = (0, 1), deg cjT = (1, 0).

That is,

R(MS) ∼=
⊕
p,q≥0

MpSq.



Now consider the bi-graded A/I(M)-algebra

G = G(MS) ⊗A (A/I(M))

where G(MS) = R(MS)/(MS)R(MS) is the associated graded ring of

MS. So

G ∼=
⊕
p,q≥0

MpSq/M
p+1Sq−1.

Here we set MS−1 = I(M).

Definition 2.1. For any non-negative integer t ≥ 0, we set

Gt(M) =
⊕
p≥0

G(p,t) = RSt/R
+St−1,

and call the module Gt(M) as the associated graded module of M of type

t

Let S[Y1, . . . , Yn] be a polynomial ring over S with deg Yj = (1, 0).

Consider the bi-graded homomorphism

ϕ : (S/MS)[Y1, . . . , Yn] // // G ; Yj 7→ cj + (MS)2 .

Taking the degree (∗, t)-part, we obtain the homomorphism

φt : (St/MSt−1)[Y1, . . . , Yn] // // Gt(M),

of graded (A/I(M)) [Y1, . . . , Yn]-modules. With this notation, our prob-

lem is now the following.

Problem 2.2. Let M be a submodule of F . Assume that the matrix M̃

is perfect of size r × n (i.e., I(M) is a proper ideal and grade I(M) =

n − r + 1). Is the map φt then an isomorphism?

We note here that modules with a perfect matrix are called complete

intersection modules in [21]. This problem can be reduced to the generic

case provided that a certain condition Pt holds in the generic case.

3. The reduction to the generic case

In this section we will reduce Problem 2.2 to the generic case. Let

X = (Xij) be a generic matrix of size r × n and let

B = Z[X] = Z[Xij | 1 ≤ i ≤ r, 1 ≤ j ≤ n]



be the corresponding polynomial ring over the ring of integers Z. Let

G = Br be a free module of rank r and let N ⊆ G be a submodule of G

such that Ñ is the generic matrix X. Let V = SymB(G) = B[t1, . . . , tr]

be the polynomial ring over B and let U = R(N) be the Rees algebra of

N . Let

xj = X1jt1 + · · · + Xrjtr ∈ V, (j = 1, . . . , n)

be the generators of N . For a generic matrix of an arbitrary size, one

can check that the sequence x1, . . . , xn form a d-sequence on V and hence

the ideal NV is of linear type ([22]). Furthermore, in the generic case,

we have the following.

Proposition 3.1. For any integer t ≥ 0, the map

φt : (Vt/NVt−1)[Y1, . . . , Yn] // // Gt(N) = UVt/U
+Vt−1

is an isomorphism. In particular, the natural surjective homomorphism

[φt]ℓ : (Vt/NVt−1)
(ℓ+n−1

n−1 ) // // N ℓVt/N
ℓ+1Vt−1

is an isomorphism of B-modules for all ℓ ≥ 0.

We now consider the following condition

Pt: The B-module Vℓ+t/N
ℓVt is perfect of grade n − r + 1 for all ℓ > 0.

We will see in the next Theorem 3.2 that if this condition holds true,

then the general case of our Problem 2.2 can be reduced to the generic

case. For this, we recall here that A is a Noetherian ring, F is a free

A-module of rank r > 0 and S is the polynomial ring A[t1, . . . , tr].

Theorem 3.2. Let M be a submodule of F with a perfect matrix M̃ of

size r × n. Let 0 ≤ t (≤ n − r) be a fixed integer. If condition Pt holds

true, then the map

φt : (St/MSt−1)[Y1, . . . , Yn] // // Gt(M)

is an isomorphism.

Here we give some remarks on condition Pt.

Remark 3.3. We do not know whether condition Pt holds true or not,

except for the following cases.



(1) The free resolution of Vt+1/NVt is given by the generalized Koszul

complex (see [4, 14] and also [8, Appendix A2.6]). So the length

of this resolution is just n − r + 1 when 0 ≤ t ≤ n − r. However,

when t ≥ n− r + 1, the resolution is at least of length n− r + 2.

Hence condition Pt does not hold when t ≥ n − r + 1.

(2) When t = 0, it is known that condition P0 holds true. This

follows from the theorem of Buchsbaum-Eisenbud [5, Corollary

3.2] (see also [13, Proposition 3.3]). Hence φ0 is an isomorphism

if the matrix is perfect (cf. [13, Lemma 3.2]).

(3) When n = r + 1, condition P1 holds true. This will be proved in

the next section (Theorem 4.1).

4. A sketch of proof of Theorem 1.1

In this final section we will give a sketch of proof of Theorem 1.1. Let

X = (Xij) be a generic matrix of size r × n and let

B = K[X] = K[Xij | 1 ≤ i ≤ r, 1 ≤ j ≤ n]

be the corresponding polynomial ring over an arbitrary commutative

Noetherian ring K. Let G = Br be a free module of rank r and let

N ⊆ G be a submodule of G such that Ñ is the generic matrix X.

Identify SymB(G) with the polynomial ring V = B[t1, . . . , tr] and let

U = R(N) be the Rees algebra of N . By Theorem 3.2, it is enough

to show that condition P1 (stated before Theorem 3.2) holds true when

n = r + 1.

Theorem 4.1. Suppose that n = r + 1. Then the module Vℓ+1/N
ℓV1 is

a perfect B-module of grade 2 for all ℓ > 0. In particular, condition P1

(stated before Theorem 3.2) holds true.

Let me give a sketch of proof of Theorem 4.1. We assume in the

following that n = r + 1. We put xj = X1jt1 + · · · + Xrjtr and set I =

(x1, . . . , xr+1)V = NV . Let R = R(I) be the Rees algebra of I, which

is the V -subalgebra V [x1T, . . . , xr+1T ] of the polynomial ring V [T ]. We

regard the ring V [T ] as a bi-graded B-algebra by letting deg ti = (0, 1),

deg T = (1,−1). Then the Rees algebra R becomes a bi-graded B-

subalgebra of V [T ]. Note that the B-module N ℓVt is now isomorphic to

the homogeneous component Rℓ,t of R for all ℓ, t ≥ 0. We thus want to



show the following:

(1) pdB Rp,1 ≤ 1 for all p > 0.

Let S = V [Y1, . . . , Yr+1] be a polynomial ring over V . We regard S as

a bi-graded B-algebra by setting deg Yj = (1, 0) for all j = 1, . . . , r + 1.

We now have the bi-graded presentation ε : S → R ; Yj 7→ xjT of

R. To show the inequality (1), we will first construct a graded S-free

resolution of R. This will be achieved by using the Z-complex, which

was introduced by Herzog-Simis-Vasconcelos in [11]. We refer the reader

to [10, section 3] for a similar approach.

Let K•(x;S) and K•(Y ;S) be the Koszul complexes associated to se-

quences x = x1, . . . , xr+1 and Y = Y1, . . . , Yr+1 in S, respectively. We

denote by dx and dY the corresponding differentials. These complexes

become bi-graded complexes:

K•(x;S) : · · · dx→ Ki+1(0,−i − 1)
dx→ Ki(0,−i)

dx→ · · · ,

K•(Y ;S) : · · · dY→ Ki+1(−i − 1, 0)
dY→ Ki(−i, 0)

dY→ · · · ,

where Ki = ∧iSr+1. Let

Zi = Ker(Ki(0,−i)
dx→ Ki−1(0,−i + 1))

be the i-th module of cycles of K•(x;S), which is a graded submodule

of Ki(0,−i). Since dx ◦ dY + dY ◦ dx = 0, {Z•, dY } is a subcomplex of

K•(Y ;S). This complex is called the Z-complex associated to a sequence

x and denoted by Z•(x) ([11]). Note that the 0-th homology H0(Z•(x)) ∼=
SymV (I). Since x is a d-sequence on V , Z•(x) is acyclic with the 0-th

homology H0(Z•(x)) ∼= R ([11, Theorem 5.4]). Hence we have the graded

exact sequence

0 → Zn−1(−n+1, n−1)
dY→ · · · dY→ Z2(−2, 2)

dY→ Z1(−1, 1)
dY→ S ε→ R → 0.

If we now resolve each of the modules Zi(−i, i) by a certain (graded)

complex P•i and lift the differentials Zi(−i, i)
dY→ Zi−1(−i + 1, i − 1) to

maps P•i → P•i−1 of complexes, then the associated double complex will

give us an S-free resolution of R.

It is well-known that x1, . . . , xr is a regular sequence on V (see [1,

Proposition 1]). Hence we have for all i ≥ 2 the exact sequence

0 → Kr+1(−i, i − r − 1)
dx→ · · · dx→ Ki+1(−i,−1)

dx→ Zi(−i, i) → 0.



This gives us a graded S-free resolution P•i of Zi(−i, i) for i ≥ 2.

In order to find a resolution of Z1(−1, 1), we need to introduce some

more notation. Let K•(t;S) be the Koszul complex of the sequence

t = t1, . . . , tr in S with the differential dt. We interpret it as bi-graded

complex

K•(t;S) : · · · dt→ Li+1(0,−i − 1)
dt→ Li(0,−i)

dt→ · · · ,

where Li = ∧iSr. Since [t1 · · · tr] ◦ X = [x1 · · · xr+1], there is a map

of complexes ∧X : K•(x;S) −→ K•(t;S). Taking the S-duals, this gives

a map ∧tX : K•(t;S) −→ K•(x;S) of complexes, where tX denotes the

transpose of X. Identifying the Koszul complexes with their duals, we

obtain a map of complexes

f• : K•(t;S)(0,−1) → K•(x;S)[1],

where each fi : Li(0,−i−1) → Ki+1(0,−i−1) is a graded homomorphism

of degree zero. More explicitly, setting ∆j = (−1)j−1 det Xj where Xj

is the matrix obtained by deleting j-th column of X, one can check, for

example, that f0 =t [∆1 ∆2 · · · ∆r+1] and fr is the identity map.

We then have the following.

Proposition 4.2. With the notation above, there is the following graded

resolution of Z1(−1, 1) :

0 → Lr−1(−1,−r+1)
dr−1→

Kr(−1,−r + 1)
⊕

Lr−2(−1,−r + 2)

dr−2→ · · · d1→
K2(−1,−1)

⊕
L0(−1, 0)

d0→ Z1(−1, 1) → 0,

where d0 = (dx f0), dr−1 =

(
fr−1

−dt

)
, and di =

(
dx fi

0 −dt

)
for all

1 ≤ i ≤ r − 2.

Let P•1 be the above graded resolution of Z1(−1, 1). Look at the

following commutative diagram.

0 0 0
↑ ↑ ↑

· · · dY→ Z3(−3, 3) dY→ Z2(−2, 2) dY→ Z1(−1, 1) dY→ S → 0.
↑ ↑ ↑

· · · ±dY→ P•3
±dY→ P•2

„

±dY

0

«

−→ P•1



Let Tot(P••) be the total complex of the resulting double complex P••.

Now consider the corresponding spectral sequence. Since Z•(x) is acyclic

with H0(Z•(x)) ∼= R, standard arguments yield the following graded S-

free resolution of R:

Tot(P••) → S → R → 0.

Note that this resolution gives us the defining equations of R :

K = I2

(
x1 x2 · · · xr+1

Y1 Y2 · · · Yr+1

)
+ Ir+1


Y1 · · · Yr+1

X

 .

Hence, by [3, Theorem (3.3)], it suffices to prove the inequality (1) in the

case K = Z/pZ where p is a prime. In other words we can assume that

B = K[X] where K is a field.

When r = 1, the assertion is immediate from the above resolution. In

the following we therefore assume that r ≥ 2. Using the above resolution

of R, we can compute TorB
i (K,R) for i ≥ 2 as follows:

TorB
i (K,R) ∼= Hi−1(Tot(P ••)) ∼=

{
Bi(i,−i) (2 ≤ i ≤ r − 1)
Lr(−1,−r) (i = r).

where ∗ = ∗⊗BK and Bi = Im(Ki+1(−i−1, 0)
dY→ Ki(−i, 0)) ⊆ Ki(−i, 0)

is the i-th module of boundaries of the complex K•(Y ;S). Hence we have

TorB
i (K,Rp,1) = (0) for all i ≥ 2, because{

[Bi]p+i,q−i = (0) if q < i[
Lr

]
p−1,q−r

= (0) if q < r.

Consequently, we have pdB Rp,1 ≤ 1. This completes the proof of Theo-

rem 4.1 and hence we have Theorem 1.1. ¤

References

[1] L. L. Avramov, Complete intersections and symmetric algebras, J. Algebra 73
(1981), no. 1, 248–263

[2] J. Brennan, B. Ulrich and W. V. Vasconcelos, The Buchsbaum-Rim polynomial
of a module, J. Algebra 241 (2001), 379–392

[3] W. Bruns and U. Vetter, Determinantal Rings, Lecture Notes in Math. 1327,
Springer-Verlag Berlin Heidelberg, 1988.



[4] D. Buchsbaum and D. Eisenbud, Remarks on ideals and resolutions, Symposia
Mathematica, Vol. XI (Convegno di Algebra Commutativa, INDAM, Rome,
1971), Academic Press, London (1973), 193–204

[5] D. A. Buchsbaum and D. Eisenbud, Generic free resolutions and a family of
generically perfect ideals, Adv. in Math. 18 (1975), 245–301

[6] D. A. Buchsbaum and D. S. Rim, A generalized Koszul complex, Bull. Amer.
Math. Soc. 69 (1963), 382–385

[7] D. A. Buchsbaum and D. S. Rim, A generalized Koszul complex. II. Depth and
multiplicity, Trans. Amer. Math. Soc. 111 (1964), 197–224

[8] D. Eisenbud, Commutative algebra. With a view toward algebraic geometry,
Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995

[9] F. Hayasaka and E. Hyry, A family of graded modules associated to a module,
to appear in Communications in Algebra

[10] J. Herzog and Y. Kamoi, Taylor complexes for Koszul boundaries, Manuscripta
Math. 96 (1998), no. 2, 133–147

[11] J. Herzog, A. Simis and W. V. Vasconcelos, Approximation complexes of blowing-
up rings, J. Algebra 74 (1982), no. 2, 466–493

[12] D. Katz and V. Kodiyalam, Symmetric powers of complete modules over a two-
dimensional regular local ring, Trans. Amer. Math. Soc. 349 (1997), 747–762
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