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Introduction

The notion of a contravariantly finite subcategory (of the category of finitely generated
modules) was first introduced over artin algebras by Auslander and Smalø [5] in connection
with studying the problem of which subcategories admit almost split sequences. The
notion of a resolving subcategory was introduced by Auslander and Bridger [2] in the
study of modules of Gorenstein dimension zero, which are now also called totally reflexive
modules. There is an application of contravariantly finite resolving subcategories to the
study of the finitistic dimension conjecture [4].

This paper deals with contravariantly finite resolving subcategories over commutative
rings. Let R be a commutative noetherian henselian local ring. We denote by modR
the category of finitely generated R-modules, by F(R) the full subcategory of free R-
modules, and by C(R) the full subcategory of maximal Cohen-Macaulay R-modules. The
subcategory F(R) is always contravariantly finite, and so is C(R) provided that R is
Cohen-Macaulay. The latter fact is known as the Cohen-Macaulay approximation theo-
rem, which was shown by Auslander and Buchweitz [3].

In this paper, we shall prove the following theorem; the category of finitely generated
modules over a henselian Gorenstein local ring possesses only three contravariantly finite
resolving subcategories.

Theorem A. If R is Gorenstein, then all the contravariantly finite resolving subcategories
of mod R are F(R), C(R) and mod R.

The main theorem of this paper asserts the following: let X be a resolving subcategory
of mod R such that the residue field of R has a right X -approximation. Assume that
there exists an R-module G ∈ X of infinite projective dimension with Exti

R(G,R) = 0 for
i À 0. Let M be an R-module such that each X ∈ X satisfies Exti

R(X,M) = 0 for i À 0.
Then M has finite injective dimension. From this result, we will prove the following two
theorems. Theorem A will be obtained from Theorem B. The assertion of Theorem C is
a main result of [12], which has been a motivation for this paper. (Our way of obtaining
Theorem C is quite different from the original proof given in [12].)

Theorem B. Let X 6= mod R be a contravariantly finite resolving subcategory of mod R.
Suppose that there is an R-module G ∈ X of infinite projective dimension such that
Exti

R(G,R) = 0 for i À 0. Then R is Cohen-Macaulay and X = C(R).

Theorem C (Christensen-Piepmeyer-Striuli-Takahashi). Suppose that there is a nonfree
R-module in G(R). If G(R) is contravariantly finite in mod R, then R is Gorenstein.



Here, G(R) denotes the full subcategory of totally reflexive R-modules. A totally reflex-
ive module, which is also called a module of Gorenstein dimension (G-dimension) zero,
was defined by Auslander [1] as a common generalization of a free module and a maximal
Cohen-Macaulay module over a Gorenstein local ring. Auslander and Bridger [2] proved
that the full subcategory of totally reflexive modules over a left and right noetherian ring
is resolving. The other details of totally reflexive modules are stated in [2] and [11].

If R is Gorenstein, then G(R) coincides with C(R), and so G(R) is contravariantly finite
by virtue of the Cohen-Macaulay approximation theorem. Thus, Theorem C can be viewed
as the converse of this fact. Theorem C implies the following: let R be a homomorphic
image of a regular local ring. Suppose that there is a nonfree totally reflexive R-module
and are only finitely many nonisomorphic indecomposable totally reflexive R-modules.
Then R is an isolated simple hypersurface singularity. For the details, see [12].

Conventions

In the rest of this paper, we assume that all rings are commutative and noetherian, and
that all modules are finitely generated. Unless otherwise specified, let R be a henselian
local ring. The unique maximal ideal of R and the residue field of R are denoted by m and
k, respectively. We denote by mod R the category of finitely generated R-modules. By a
subcategory of mod R, we always mean a full subcategory of mod R which is closed under
isomorphisms. Namely, in this paper, a subcategory X of mod R means a full subcategory
such that every R-module which is isomorphic to some R-module in X is also in X .

1. Contravariant finiteness of totally reflexive modules

In this section, we will state background materials which motivate the main results of
this paper. We start by recalling the definition of a totally reflexive module.

Definition 1.1. We denote by (−)∗ the R-dual functor HomR(−, R). An R-module M

is called totally reflexive (or of Gorenstein dimension zero) if

(1) the natural homomorphism M → M∗∗ is an isomorphism, and
(2) Exti

R(M,R) = Exti
R(M∗, R) = 0 for any i > 0.

We introduce three subcategories of mod R which will often appear throughout this
paper.

We denote by F(R) the subcategory of mod R consisting of all free R-modules, by
G(R) the subcategory of mod R consisting of all totally reflexive R-modules, and by C(R)
the subcategory of mod R consisting of all maximal Cohen-Macaulay R-modules. By
definition, F(R) is contained in G(R). If R is Cohen-Macaulay, then G(R) is contained
in C(R). If R is Gorenstein, then G(R) coincides with C(R).

Next, we recall the notion of a right approximation over a subcategory of modR.

Definition 1.2. Let X be a subcategory of mod R.

(1) Let φ : X → M be a homomorphism of R-modules with X ∈ X . We say that φ
is a right X -approximation (of M) if the induced homomorphism HomR(X ′, φ) :
HomR(X ′, X) → HomR(X ′,M) is surjective for any X ′ ∈ X .



(2) We say that X is contravariantly finite (in mod R) if every R-module has a right
X -approximation.

The following result is well-known.

Theorem 1.3 (Auslander-Buchweitz). Let R be a Cohen-Macaulay local ring. Then C(R)
is contravariantly finite.

Corollary 1.4. If R is Gorenstein, then G(R) is contravariantly finite.

The converse of this corollary essentially holds:

Theorem 1.5. [12] Suppose that there is a nonfree totally reflexive R-module. If G(R) is
contravariantly finite in mod R, then R is Gorenstein.

This theorem yields the following corollary, which is a generalization of [21, Theorem
1.3].

Corollary 1.6. Let R be a non-Gorenstein local ring. If there is a nonfree totally reflexive
R-module, then there are infinitely many nonisomorphic indecomposable totally reflexive
R-modules.

Combining this with [25, Theorems (8.15) and (8.10)] (cf. [14, Satz 1.2] and [10,
Theorem B]), we obtain the following result.

Corollary 1.7. Let R be a homomorphic image of a regular local ring. Suppose that there
is a nonfree totally reflexive R-module but there are only finitely many nonisomorphic
indecomposable totally reflexive R-modules. Then R is a simple hypersurface singularity.

2. Contravariantly finite resolving subcategories

In this section, we will give the main theorem of this paper and several results it yields.
One of them implies Theorem 1.5, which is the motive fact of this paper.

First of all, we recall the definition of the syzygies of a given module. Let M be an
R-module and n a positive integer. Let

F• = (· · · dn+1→ Fn
dn→ Fn−1

dn−1→ · · · d2→ F1
d1→ F0 → 0)

be a minimal free resolution of M . We define the nth syzygy ΩnM of M as the image of
the homomorphism dn. We set Ω0M = M .

We recall the definition of a resolving subcategory.

Definition 2.1. A subcategory X of mod R is called resolving if it satisfies the following
four conditions.

(1) X contains R.
(2) X is closed under direct summands: if M is an R-module in X and N is a direct

summand of M , then N is also in X .
(3) X is closed under extensions: for an exact sequence 0 → L → M → N → 0 of

R-modules, if L and N are in X , then M is also in X .
(4) X is closed under kernels of epimorphisms: for an exact sequence 0 → L → M →

N → 0 of R-modules, if M and N are in X , then L is also in X .



Now we state the main theorem in this paper.

Theorem 2.2. Let X be a resolving subcategory of mod R such that the residue field k
has a right X -approximation. Assume that there exists an R-module G ∈ X of infinite
projective dimension such that Exti

R(G,R) = 0 for i À 0. Let M be an R-module such
that each X ∈ X satisfies Exti

R(X,M) = 0 for i À 0. Then M has finite injective
dimension.

We shall prove Theorem 2.2 in the next section. In the rest of this section, we will state
and prove several results by using Theorem 2.2. We begin with two corollaries which are
immediately obtained.

Corollary 2.3. Let X be a resolving subcategory of mod R which is contained in the
subcategory {M | Exti

R(M,R) = 0 for i À 0 } of mod R. Suppose that in X there is an
R-module of infinite projective dimension. If k has a right X -approximation, then R is
Gorenstein.

Proof. Each module X in X satisfies Exti
R(X,R) = 0 for i À 0. Hence Theorem 2.2

implies that R has finite injective dimension as an R-module. ¤

Corollary 2.4. Let X be one of the following.

(1) G(R).
(2) The subcategory {M | Exti

R(M,R) = 0 for i > n } of mod R, where n is a non-
negative integer.

(3) The subcategory {M | Exti
R(M,R) = 0 for i À 0 } of mod R.

Suppose that in X there is an R-module of infinite projective dimension. If k has a right
X -approximation, then R is Gorenstein.

Proof. The subcategory X of mod R is resolving. Since X is contained in the subcategory
{M | Exti

R(M,R) = 0 for i À 0 }, the assertion follows from Corollary 2.3. ¤

Remark 2.5. Corollary 2.4 implies Theorem 1.5. Indeed, any nonfree totally reflexive
module has infinite projective dimension by [11, (1.2.10)].

For a subcategory X of mod R, let X⊥ (respectively, ⊥X ) denote the subcategory
of mod R consisting of all R-modules M such that Exti

R(X,M) = 0 (respectively,
Exti

R(M,X) = 0) for all X ∈ X and i > 0. Applying Wakamatsu’s lemma to a re-
solving subcategory, we obtain the following lemma.

Lemma 2.6. Let X be a resolving subcategory of mod R. If an R-module M has a right
X -approximation, then there is an exact sequence 0 → Y → X → M → 0 of R-modules
with X ∈ X and Y ∈ X⊥.

By using this lemma and the theorem which was formerly called “Bass’ conjecture”,
we obtain another corollary of Theorem 2.2.

Corollary 2.7. Let X be a resolving subcategory of mod R such that k has a right X -
approximation and that k is not in X . Assume that there is an R-module G ∈ X with
pdR G = ∞ and Exti

R(G,R) = 0 for i À 0. Then R is Cohen-Macaulay and dim R > 0.



Before giving the next corollary of Theorem 2.2, we establish an easy lemma without
proof.

Lemma 2.8. (1) Let X be a contravariantly finite resolving subcategory of mod R.
Then, k ∈ X if and only if X = mod R.

(2) Let X be a resolving subcategory of mod R. Suppose that every R-module in ⊥(X⊥)
admits a right X -approximation. Then X = ⊥(X⊥).

(3) Let M and N be nonzero R-modules. Assume either that M has finite projective
dimension or that N has finite injective dimension. Then one has an equality

sup{ i | Exti
R(M,N) 6= 0 } = depth R − depthR M.

Now we can show the following corollary. There are only two contravariantly finite
resolving subcategories possessing such G as in the corollary.

Corollary 2.9. Let X be a contravariantly finite resolving subcategory of mod R. Assume
that there is an R-module G ∈ X with pdR G = ∞ and Exti

R(G,R) = 0 for i À 0. Then
either of the following holds.

(1) X = mod R,
(2) R is Cohen-Macaulay and X = C(R).

Proof. Suppose that X 6= mod R. Then k is not in X . By Corollary 2.7, R is Cohen-
Macaulay.

First, we show that C(R) is contained in X . For this, let M be a maximal Cohen-
Macaulay R-module. We have only to prove that M is in ⊥(X⊥). Let N be a nonzero
R-module in X⊥. Theorem 2.2 implies that N is of finite injective dimension. Since
M is maximal Cohen-Macaulay, we have sup{ i | Exti

R(M,N) 6= 0 } = 0. Therefore
Exti

R(M,N) = 0 for all N ∈ X⊥ and i > 0. It follows that M is in ⊥(X⊥), as desired.

Next, we show that X is contained in C(R). We have an exact sequence 0 → Y →
X → k → 0 with X ∈ X and Y ∈ X⊥ by Lemma 2.6. Since k is not in X , the module Y

is nonzero. By Theorem 2.2, Y has finite injective dimension. For a nonzero R-module
X ′ in X , we have equalities 0 ≥ sup{ i | Exti

R(X ′, Y ) 6= 0 } = depth R − depthR X ′ =
dim R−depthR X ′. Therefore X ′ is a maximal Cohen-Macaulay R-module, as desired. ¤

Next, we study contravariantly finite resolving subcategories all of whose objects X
satisfy ExtÀ0

R (X,R) = 0. We start by considering special ones among such subcategories.

Proposition 2.10. Let X be a contravariantly finite resolving subcategory of mod R.
Suppose that every R-module in X has finite projective dimension. Then either of the
following holds.

(1) X = F(R),
(2) R is regular and X = mod R.

Proof. If X = mod R, then our assumption says that all R-modules have finite projective
dimension. Hence R is regular. Assume that X 6= mod R. Then there is an R-module M

which is not in X . There is an exact sequence 0 → Y → X → M → 0 with X ∈ X and
Y ∈ X⊥ by Lemma 2.6. Note that Y 6= 0 as M /∈ X . Fix a nonzero R-module X ′ ∈ X .
We have Exti

R(X ′, Y ) = 0 for all i > 0, and hence pdR X ′ = sup{ i | Exti
R(X ′, Y ) 6=



0 } = 0 by the Auslander-Buchsbaum formula. Hence X ′ is free. This means that X is
contained in F(R). On the other hand, X contains F(R) since X is resolving. Therefore
X = F(R). ¤

Combining Proposition 2.10 with Corollary 2.9, we can get the following.

Corollary 2.11. Let X be a contravariantly finite resolving subcategory of mod R. Sup-
pose that every module X ∈ X is such that Exti

R(X,R) = 0 for i À 0. Then one of the
following holds.

(1) X = F(R),
(2) R is Gorenstein and X = C(R),
(3) R is Gorenstein and X = mod R.

Proof. The corollary follows from Proposition 2.10 in the case where all R-modules in
X are of finite projective dimension. So suppose that in X there exists an R-module of
infinite projective dimension. Then Corollary 2.9 shows that either of the following holds.

(1) X = mod R,
(2) R is Cohen-Macaulay and X = C(R).

By the assumption that every X ∈ X satisfies Exti
R(X,R) = 0 for i À 0, we have

Exti
R(k,R) = 0 for i À 0 in the case (i). In the case (ii), since Ωdk is in X where

d = dim R, we have Exti+d
R (k,R) ∼= Exti

R(Ωdk,R) = 0 for i À 0. Thus, in both cases, the
ring R is Gorenstein. ¤

Finally, we obtain the following result from Corollary 2.11 and Theorem 1.3. It says
that the category of finitely generated modules over a Gorenstein local ring possesses only
three contravariantly finite resolving subcategories.

Corollary 2.12. Let R be a Gorenstein local ring. Then all the contravariantly finite
resolving subcategories of mod R are F(R), C(R) and mod R.

3. Proof of the main theorem

Let M be an R-module. Take a minimal free resolution F• = (· · · d2→ F1
d1→ F0 → 0)

of M . We define the transpose Tr M of M as the cokernel of the R-dual homomorphism
d∗

1 : F ∗
0 → F ∗

1 of d1. The transpose Tr M has no nonzero free summand.

For an R-module M , let M∗M be the ideal of R generated by the subset

{ f(x) | f ∈ M∗, x ∈ M }

of R. Note that M has a nonzero free summand if and only if M∗M = R.

Proposition 3.1. Let X be a subcategory of mod R and 0 → Y
f→ X → M → 0 an

exact sequence of R-modules with X ∈ X and Y ∈ X⊥. Let G ∈ X , set H = Tr ΩG,

and suppose that (H∗H)M = 0. Let 0 → K
g→ F

h→ H → 0 be an exact sequence of
R-modules with F free. Then the induced sequence

0 −−−→ K ⊗R Y
g⊗RY−−−→ F ⊗R Y

h⊗RY−−−→ H ⊗R Y −−−→ 0

is exact, and the map h ⊗R Y factors through the map F ⊗R f : F ⊗R Y → F ⊗R X.



Proof. We can show that there is a commutative diagram

0 −−−→ H ⊗R Y
δ−−−→ H ⊗R X

ε−−−→ H ⊗R M −−−→ 0

α

y∼= β

y γ

y0

0 −−−→ HomR(H∗, Y )
ζ−−−→ HomR(H∗, X)

η−−−→ HomR(H∗,M) −−−→ 0

with exact rows, and see that δ is a split monomorphism. Thus, the homomorphism
h⊗R Y factors through the homomorphism F ⊗R f . We have isomorphisms TorR

1 (H,Y ) =
TorR

1 (Tr ΩG, Y ) ∼= HomR(ΩG, Y ) = 0, which completes the proof of the proposition. ¤
Now we can prove the following, which will play a key role in the proof of Theorem 2.2.

Proposition 3.2. Let X be a subcategory of mod R which is closed under syzygies. Let
0 → Y → X → M → 0 be an exact sequence of R-modules with X ∈ X and Y ∈ X⊥.
Suppose that there is an R-module G ∈ X with pdR G = ∞ and Exti

R(G, R) = 0 for
i À 0. Put Hi = Tr Ω(ΩiG) and assume that ((Hi)

∗Hi)M = 0 for i À 0. Let D =
(Dj)j≥0 : mod R → mod R be a contravariant cohomological δ-functor. If Dj(X) = 0 for
j À 0, then Dj(Y ) = Dj(M) = 0 for j À 0.

Proof. Replacing G with ΩiG for i À 0, we may assume that Exti
R(G,R) = 0 for all

i > 0 and that ((Hi)
∗Hi)M = 0 for all i ≥ 0. Let F• = (· · · di+1→ Fi

di→ Fi−1
di−1→ · · · d2→

F1
d1→ F0 → 0) be a minimal free resolution of G. Dualizing this by R, we easily see that

Hi
∼= (Ωi+3G)∗ and ΩHi

∼= (Ωi+2G)∗ for i ≥ 0. By Proposition 3.1, for each integer i ≥ 0
we have an exact sequence

0 → (Ωi+2G)∗ ⊗R Y → (Fi+2)
∗ ⊗R Y

fi→ (Ωi+3G)∗ ⊗R Y → 0

such that fi factors through (Fi+2)
∗ ⊗R X. The homomorphism Dj(fi) factors through

Dj((Fi+2)
∗ ⊗R X), which vanishes for j À 0. Hence Dj(fi) = 0 for j À 0, and we obtain

an exact sequence

0 → Dj((Fi+2)
∗ ⊗R Y ) → Dj((Ωi+2G)∗ ⊗R Y )

εi,j→ Dj+1((Ωi+3G)∗ ⊗R Y ) → 0

for i ≥ 0 and j À 0. Thus, there is a sequence

Dj((Ωi+2G)∗ ⊗R Y )
εi,j→ Dj+1((Ωi+3G)∗ ⊗R Y )

εi+1,j+1→ Dj+2((Ωi+4G)∗ ⊗R Y )
εi+2,j+2→ · · ·

of surjective homomorphisms of R-modules, and εi,j is an isomorphism. It follows that
Dj((Fi+2)

∗ ⊗R Y ) = 0 for i ≥ 0 and j À 0. Thus we have Dj(Y ) = 0 for j À 0, and
Dj(M) = 0 for j À 0. ¤

Now we can prove our main theorem.

Proof of Theorem 2.2. Since k admits a right X -approximation, there exists an exact
sequence 0 → Y → X → k → 0 of R-modules with X ∈ X and Y ∈ X⊥ by Lemma 2.6.
For an integer i ≥ 0, put Hi = Tr Ω(ΩiG). The module Hi has no nonzero free summand.
We have (Hi)

∗Hi 6= R. Hence ((Hi)
∗Hi)k = 0 for i ≥ 0. Applying Proposition 3.2 to

the contravariant cohomological δ-functor D = (Extj
R( ,M))j≥0, we obtain Dj(k) = 0

for j À 0. Namely, we have Extj
R(k,M) = 0 for j À 0, which implies that M has finite

injective dimension. ¤
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[2] M. Auslander; M. Bridger, Stable module theory. Memoirs of the American Mathematical
Society, No. 94, American Mathematical Society, Providence, R.I., 1969.

[3] M. Auslander; R.-O. Buchweitz, The homological theory of maximal Cohen-Macaulay approxi-
mations. Colloque en l’honneur de Pierre Samuel (Orsay, 1987), Mém. Soc. Math. France (N.S.) No.
38, (1989), 5–37.

[4] M. Auslander; I. Reiten, Applications of contravariantly finite subcategories. Adv. Math. 86
(1991), no. 1, 111–152.

[5] M. Auslander; S. O. Smalø, Preprojective modules over Artin algebras. J. Algebra 66 (1980),
no. 1, 61–122.

[6] M. Auslander; S. O. Smalø, Almost split sequences in subcategories. J. Algebra 69 (1981), no.
2, 426–454.

[7] L. L. Avramov; A. Martsinkovsky, Absolute, relative, and Tate cohomology of modules of finite
Gorenstein dimension. Proc. London Math. Soc. (3) 85 (2002), no. 2, 393–440.

[8] A. Beligiannis, Cohen-Macaulay modules, (co)torsion pairs and virtually Gorenstein algebras. J.
Algebra 288 (2005), no. 1, 137–211.

[9] W. Bruns; J. Herzog, Cohen-Macaulay rings. revised edition. Cambridge Studies in Advanced
Mathematics, 39, Cambridge University Press, Cambridge, 1998.

[10] R.-O. Buchweitz; G.-M. Greuel; F.-O. Schreyer, Cohen-Macaulay modules on hypersurface
singularities. II. Invent. Math. 88 (1987), no. 1, 165–182.

[11] L. W. Christensen, Gorenstein dimensions. Lecture Notes in Mathematics, 1747. Springer-Verlag,
Berlin, 2000.

[12] L. W. Christensen; G. Piepmeyer; J. Striuli; R. Takahashi, Finite Gorenstein representation
type implies simple singularity. Preprint (2007), http://arxiv.org/abs/0704.3421.

[13] E. E. Enochs; O. M. G. Jenda, Relative homological algebra. de Gruyter Expositions in Mathe-
matics, 30. Walter de Gruyter & Co., Berlin, 2000.

[14] J. Herzog, Ringe mit nur endlich vielen Isomorphieklassen von maximalen, unzerlegbaren Cohen-
Macaulay-Moduln. (German) Math. Ann. 233 (1978), no. 1, 21–34.

[15] F. Ischebeck, Eine Dualität zwischen den Funktoren Ext und Tor. (German) J. Algebra 11 (1969),
510–531.

[16] R. Takahashi, On the category of modules of Gorenstein dimension zero. II. J. Algebra 278 (2004),
no. 1, 402–410.

[17] R. Takahashi, Modules of G-dimension zero over local rings of depth two. Illinois J. Math. 48
(2004), no. 3, 945–952.

[18] R. Takahashi, On the category of modules of Gorenstein dimension zero. Math. Z. 251 (2005), no.
2, 249–256.

[19] R. Takahashi, Remarks on modules approximated by G-projective modules. J. Algebra 301 (2006),
no. 2, 748–780.

[20] R. Takahashi, A new approximation theory which unifies spherical and Cohen-Macaulay approxi-
mations. J. Pure Appl. Algebra 208 (2007), no. 2, 617–634.

[21] R. Takahashi, On the number of indecomposable totally reflexive modules. Bull. London Math.
Soc. 39 (2007), no. 3, 487–492.

[22] R. Takahashi, Contravariantly finite resolving subcategories over commutative rings, preprint
(2007).

[23] T. Wakamatsu, Stable equivalence for self-injective algebras and a generalization of tilting modules.
J. Algebra 134 (1990), no. 2, 298–325.

[24] J. Xu, Flat covers of modules. Lecture Notes in Mathematics, 1634, Springer-Verlag, Berlin, 1996.
[25] Y. Yoshino, Cohen-Macaulay modules over Cohen-Macaulay rings. London Mathematical Society

Lecture Note Series, 146, Cambridge University Press, Cambridge, 1990.



[26] Y. Yoshino, Modules of G-dimension zero over local rings with the cube of maximal ideal being
zero. Commutative algebra, singularities and computer algebra (Sinaia, 2002), 255–273, NATO Sci.
Ser. II Math. Phys. Chem., 115, Kluwer Acad. Publ., Dordrecht, 2003.

[27] Y. Yoshino, Approximations by modules of G-dimension zero. Algebraic structures and their rep-
resentations, 119–125, Contemp. Math., 376, Amer. Math. Soc., Providence, RI, 2005.

Department of Mathematical Sciences, Faculty of Science, Shinshu University, 3-1-1
Asahi, Matsumoto, Nagano 390-8621, Japan

E-mail address: takahasi@math.shinshu-u.ac.jp


