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Let R = K[x1, · · · , xk] be the polynomial ring over K, a field of characteristic 0. Let
Ω be the module of differentials:

Ω := Rdx1 ⊕ · · · ⊕ Rdxk

Let G := Sk be the symmetric group in k letters. Let G act on R by permutation of the
variables. Extend the action to

∧jΩ

for
j = 0, 1, · · · , k.

We consider the following problems:

Problem 1. Decompose ∧jΩ into irreducible Sk-modules.

Problem 2. Determine the Hilbert series of the isotypic components of

∧jΩ.

Recall that the irreducible modules of Sk are parametrized by the partitions of k. Thus
we write W λ for the irreducible Sk-module corresponding to λ ` k.

Let Y λ(−) be the functor from the category of Sk-modules to itself

“to extract the isotypic component”

belonging to λ. Note that it is an exact functor.

For a graded vector space M ,
h(M, q)

denotes the Hilbert series of M . (This is a power series in q with positive integers as
coefficients.)



Example 1 : The case where k = 2.

Assume k = 2. Then R = K[x, y]. There are only two partitions: λ =

{
2,
11.

We

want to determine
h(Y λ(∧jΩ), q)

for j = 0, 1, 2.
For j = 0, it is easy to determine the Hilbert series since{

Y (2)(∧0Ω) = RG = K[x + y, xy]
Y (11)(∧0Ω) = (x − y)RG

and since R is the direct sum:

R = RG ⊕ (x − y)RG.

For j = 2, we have
∧2Ω ∼= R(dx ∧ dy).

Thus we have {
h(Y (2)(∧2Ω), q) = h(Y (11)(R), q),
h(Y (11)(∧2Ω), q) = h(Y (2)(R), q).

For j = 1, we have to decompose the module

Ω ∼= Rdx ⊕ Rdy.

As is easily seen, symmetric 1-forms are of the form either sdx + sdy with s ∈ RG or
adx− ady with a ∈ (x− y)RG, and alternating 1-forms are either sdx− sdy or adx+ady.

Thus we have obtained the following table for h(Y λ(∧jΩ), q).

j = 0 j = 1 j = 2

λ = (2)
1

(1 − q)(1 − q2)

1

(1 − q)2

q

(1 − q)(1 − q2)

λ = (11)
q

(1 − q)(1 − q2)

1

(1 − q)2

1

(1 − q)(1 − q2)



Example 2: The case where j = 0

Fix j = 0. So ∧jΩ = R. If λ = (k), the trivial partition, then Y λ(R) is RG, the ring
of invariants. So we have

h(RG, q) =
1

(1 − q)(1 − q2) · · · (1 − qk)
,

since RG is generated by the elementary symmetric functions.
Put R := R/(RG

+). Then it is easy to see that

h(Y λ(R), q) = h(RG, q)h(Y λ(R), q)

=
h(Y λ(R), q)

(1 − q)(1 − q2) · · · (1 − qk)
.

By a result of Terasoma-Yamada. the numerator (which is a polynomial)

h(Y λ(R), q)

is known to be the q-analog of the hook length formula multiplied by the dimension of
W λ with a certain shift of degree determined by λ.

Main result: The general case

Write
Ω(−n) = Rdx1 ⊕ · · · ⊕ Rdxn,

when we give dxi degree n. We have been considering

Ω = Ω(0).

Similarly R(−n) denotes the free module of rank 1 generated by a generator of degree n.
Thus

∧j (Ω(−n)) ∼= R(k
j)(−jn)

∼=
(
∧jΩ

)
(−jn)

Also put
A(n) = R/(xn

1 , · · · , xn
k).

For simplicity put F = Ω(−n). We would like to construct a minimal free resolution of

A(n) as an R-module such that the boundary maps are compatible with the action of Sk.
For this the usual minimal free resolution suffices:

→ ∧3F → ∧2F → ∧1F → ∧0F → A(n) → 0 (1)



We want to know
ξj := h(Y λ(∧jΩ), q).

Assume that we know
hn := h(Y λ(A(n)), q),

for n = 0, 1, 2, · · · . Fix λ ` k and apply the functor Y λ(−) to the sequence (1) above.
Then we have

→ Y λ(∧3F ) → Y λ(∧2F ) → Y λ(∧1F ) → Y λ(∧0F ) → Y λ(A(n)) → 0.

Since the sequence is exact it gives us:

hn =
k∑

j=0

(−1)jqnjξj (2)

This means that we have an infinite set of linear equations relating {ξi} and {hi}. For
example if k = 3, we have

1 −1 1 −1
1 −q q2 −q3

1 −q2 q4 −q6

1 −q3 q6 −q9

1 −q4 q8 −q12

...
...

...
...




ξ0

ξ1

ξ2

ξ3

 =



h0

h1

h2

h3

h4
...


Note that any maximal minor of the matrix {(−qn)j} is non-zero. Thus we have

proved the following theorem.

Theorem With λ ` k fixed, the set of Hilbert series

ξ0, ξ1, ξ2, · · · , ξk.

in consideration are determined by any (k + 1) terms of

h0, h1, h2, · · · .

Consequenctly the infinite sequece

h0, h1, h2, · · · .

is determined by any k + 1 terms.

Actually h0 and h1 are known for all λ ` k. (This is trivial.) Hence the above theorem
is rephrased as follows:



Theorem′ With λ ` k fixed, any k − 1 terms in the infinite series

h2, h3, · · ·

determine
ξ0, ξ1, ξ2, · · · , ξk

and they determine all
h2, h3, · · ·

As is easily conceived we have the duality

Y λ(∧jΩ) ∼= Y λ(∧k−jΩ)

Thus we have the following

Theorem′′ Any [(k + 1)/2] terms in the infinite series

h0, h1, h2, · · ·

for all λ ` k determine
ξ0, ξ1, ξ2, · · · , ξk.

A result of Morita-Wachi-Watanabe says that

hn

is the q-analog of the Weyl dimension formula. It means that we have determined

h(Y λ(∧jΩ), q)

for all

{
λ ` k,
j = 0, 1, · · · , k.

q-analog of the hook length formula

For λ ` k let W λ be the irreducibe Sk-module corresponding to λ. Then dim W λ is given
by

dim W λ =
k!∏
hij

(3)

where hij is the hook length at the (i, j)-th position. The following is an example which
shows the matrix {hij} for the Young diagram λ = (5, 3, 1).



7 5 4 2 1
4 2 1
1

In (3) replace integer a by the polynomial

[a] : =
1 − qa

1 − q

= 1 + q + · · · + qa−1

It is the “q-analog of the hook length formula.”
Since there are same number of integers in the denominator and enumerator of (3), it

is the same if we replace a by
1 − qa.

q-analog of the Weyl dimension formula

Let λ ` k. Let n > 0 be any integer. Let V λ be the irreducible GL(n)-module. Then
dim V λ is given by

dim V λ =
µ1!µ2! · · ·µn!

(n − 1)!(n − 2)! · · · 2!1!
∏

hij

where
λ = (λ1, λ2, · · · , λn)

and
µ := (µ1, µ2, · · · , µn)

is defined by
µ = λ + (n − 1, n − 2, · · · , 1, 0).

If λ has more than n parts, we let dim V λ = 0.
The Hilbert series hn of the module

Y λ(A(n))

is given by the q-analog of the Weyl dimension formula multiplied by dim W λ with a
certain shift of degrees.


