The differential module of the polynomial ring
 with

 the action of the symmetric group

 the action of the symmetric group}

Nagoya, 20, November, 2007
H. Morita, A. Wachi, J. Watanabe

Let $R=K\left[x_{1}, \cdots, x_{k}\right]$ be the polynomial ring over K, a field of characteristic 0 . Let Ω be the module of differentials:

$$
\Omega:=R d x_{1} \oplus \cdots \oplus R d x_{k}
$$

Let $G:=S_{k}$ be the symmetric group in k letters. Let G act on R by permutation of the variables. Extend the action to

$$
\wedge^{j} \Omega
$$

for

$$
j=0,1, \cdots, k .
$$

We consider the following problems:
Problem 1. Decompose $\wedge^{j} \Omega$ into irreducible S_{k}-modules.
Problem 2. Determine the Hilbert series of the isotypic components of

$$
\wedge^{j} \Omega
$$

Recall that the irreducible modules of S_{k} are parametrized by the partitions of k. Thus we write W^{λ} for the irreducible S_{k}-module corresponding to $\lambda \vdash k$.

Let $Y^{\lambda}(-)$ be the functor from the category of S_{k}-modules to itself
"to extract the isotypic component"
belonging to λ. Note that it is an exact functor.
For a graded vector space M,

$$
h(M, q)
$$

denotes the Hilbert series of M. (This is a power series in q with positive integers as coefficients.)

Example 1: The case where $k=2$.

Assume $k=2$. Then $R=K[x, y]$. There are only two partitions: $\lambda=\left\{\begin{array}{l}2, \\ 11 .\end{array}\right.$ We want to determine

$$
h\left(Y^{\lambda}\left(\wedge^{j} \Omega\right), q\right)
$$

for $j=0,1,2$.
For $j=0$, it is easy to determine the Hilbert series since

$$
\left\{\begin{array}{l}
Y^{(2)}\left(\wedge^{0} \Omega\right)=R^{G}=K[x+y, x y] \\
Y^{(11)}\left(\wedge^{0} \Omega\right)=(x-y) R^{G}
\end{array}\right.
$$

and since R is the direct sum:

$$
R=R^{G} \oplus(x-y) R^{G} .
$$

For $j=2$, we have

$$
\wedge^{2} \Omega \cong R(d x \wedge d y)
$$

Thus we have

$$
\left\{\begin{array}{l}
h\left(Y^{(2)}\left(\wedge^{2} \Omega\right), q\right)=h\left(Y^{(11)}(R), q\right), \\
h\left(Y^{(11)}\left(\wedge^{2} \Omega\right), q\right)=h\left(Y^{(2)}(R), q\right) .
\end{array}\right.
$$

For $j=1$, we have to decompose the module

$$
\Omega \cong R d x \oplus R d y
$$

As is easily seen, symmetric 1 -forms are of the form either $s d x+s d y$ with $s \in R^{G}$ or $a d x-a d y$ with $a \in(x-y) R^{G}$, and alternating 1-forms are either $s d x-s d y$ or $a d x+a d y$.

Thus we have obtained the following table for $h\left(Y^{\lambda}\left(\wedge^{j} \Omega\right), q\right)$.

	$j=0$	$j=1$	$j=2$
$\lambda=(2)$	$\frac{1}{(1-q)\left(1-q^{2}\right)}$	$\frac{1}{(1-q)^{2}}$	$\frac{q}{(1-q)\left(1-q^{2}\right)}$
$\lambda=(11)$	$\frac{q}{(1-q)\left(1-q^{2}\right)}$	$\frac{1}{(1-q)^{2}}$	$\frac{1}{(1-q)\left(1-q^{2}\right)}$

Example 2: The case where $j=0$

Fix $j=0$. So $\wedge^{j} \Omega=R$. If $\lambda=(k)$, the trivial partition, then $Y^{\lambda}(R)$ is R^{G}, the ring of invariants. So we have

$$
h\left(R^{G}, q\right)=\frac{1}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{k}\right)},
$$

since R^{G} is generated by the elementary symmetric functions.
Put $\bar{R}:=R /\left(R_{+}^{G}\right)$. Then it is easy to see that

$$
\begin{aligned}
h\left(Y^{\lambda}(R), q\right) & =h\left(R^{G}, q\right) h\left(Y^{\lambda}(\bar{R}), q\right) \\
& =\frac{h\left(Y^{\lambda}(\bar{R}), q\right)}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{k}\right)} .
\end{aligned}
$$

By a result of Terasoma-Yamada. the numerator (which is a polynomial)

$$
h\left(Y^{\lambda}(\bar{R}), q\right)
$$

is known to be the q-analog of the hook length formula multiplied by the dimension of W^{λ} with a certain shift of degree determined by λ.

> Main result: The general case

Write

$$
\Omega(-n)=R d x_{1} \oplus \cdots \oplus R d x_{n}
$$

when we give $d x_{i}$ degree n. We have been considering

$$
\Omega=\Omega(0)
$$

Similarly $R(-n)$ denotes the free module of rank 1 generated by a generator of degree n. Thus

$$
\begin{aligned}
\wedge^{j}(\Omega(-n)) & \cong R^{(k)}(-j n) \\
& \cong\left(\wedge^{j} \Omega\right)(-j n)
\end{aligned}
$$

Also put

$$
A(n)=R /\left(x_{1}^{n}, \cdots, x_{k}^{n}\right) .
$$

For simplicity put $F=\Omega(-n)$. We would like to construct a minimal free resolution of $A(n)$ as an R-module such that the boundary maps are compatible with the action of S_{k}. For this the usual minimal free resolution suffices:

$$
\begin{equation*}
\rightarrow \wedge^{3} F \rightarrow \wedge^{2} F \rightarrow \wedge^{1} F \rightarrow \wedge^{0} F \rightarrow A(n) \rightarrow 0 \tag{1}
\end{equation*}
$$

We want to know

$$
\xi_{j}:=h\left(Y^{\lambda}\left(\wedge^{j} \Omega\right), q\right)
$$

Assume that we know

$$
h_{n}:=h\left(Y^{\lambda}(A(n)), q\right),
$$

for $n=0,1,2, \cdots$. Fix $\lambda \vdash k$ and apply the functor $Y^{\lambda}(-)$ to the sequence (1) above. Then we have

$$
\rightarrow \quad Y^{\lambda}\left(\wedge^{3} F\right) \rightarrow \quad Y^{\lambda}\left(\wedge^{2} F\right) \rightarrow \quad Y^{\lambda}\left(\wedge^{1} F\right) \rightarrow \quad Y^{\lambda}\left(\wedge^{0} F\right) \rightarrow \quad Y^{\lambda}(A(n)) \rightarrow 0
$$

Since the sequence is exact it gives us:

$$
\begin{equation*}
h_{n}=\sum_{j=0}^{k}(-1)^{j} q^{n j} \xi_{j} \tag{2}
\end{equation*}
$$

This means that we have an infinite set of linear equations relating $\left\{\xi_{i}\right\}$ and $\left\{h_{i}\right\}$. For example if $k=3$, we have

$$
\left(\begin{array}{cccc}
1 & -1 & 1 & -1 \\
1 & -q & q^{2} & -q^{3} \\
1 & -q^{2} & q^{4} & -q^{6} \\
1 & -q^{3} & q^{6} & -q^{9} \\
1 & -q^{4} & q^{8} & -q^{12} \\
\vdots & \vdots & \vdots & \vdots
\end{array}\right) \quad\left(\begin{array}{c}
\xi_{0} \\
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right)=\left(\begin{array}{c}
h_{0} \\
h_{1} \\
h_{2} \\
h_{3} \\
h_{4} \\
\vdots
\end{array}\right)
$$

Note that any maximal minor of the matrix $\left\{\left(-q^{n}\right)^{j}\right\}$ is non-zero. Thus we have proved the following theorem.

Theorem With $\lambda \vdash k$ fixed, the set of Hilbert series

$$
\xi_{0}, \xi_{1}, \xi_{2}, \cdots, \xi_{k}
$$

in consideration are determined by any $(k+1)$ terms of

$$
h_{0}, h_{1}, h_{2}, \cdots
$$

Consequenctly the infinite sequece

$$
h_{0}, h_{1}, h_{2}, \cdots
$$

is determined by any $k+1$ terms.
Actually h_{0} and h_{1} are known for all $\lambda \vdash k$. (This is trivial.) Hence the above theorem is rephrased as follows:

Theorem ${ }^{1}$ With $\lambda \vdash k$ fixed, any $k-1$ terms in the infinite series

$$
h_{2}, h_{3}, \cdots
$$

determine

$$
\xi_{0}, \xi_{1}, \xi_{2}, \cdots, \xi_{k}
$$

and they determine all

$$
h_{2}, h_{3}, \cdots
$$

As is easily conceived we have the duality

$$
Y^{\lambda}\left(\wedge^{j} \Omega\right) \cong Y^{\bar{\lambda}}\left(\wedge^{k-j} \Omega\right)
$$

Thus we have the following

$$
\text { Theorem }{ }^{\prime \prime} \text { Any }[(k+1) / 2] \text { terms in the infinite series }
$$

$$
h_{0}, h_{1}, h_{2}, \cdots
$$

for all $\lambda \vdash k$ determine

$$
\xi_{0}, \xi_{1}, \xi_{2}, \cdots, \xi_{k}
$$

A result of Morita-Wachi-Watanabe says that

$$
h_{n}
$$

is the q-analog of the Weyl dimension formula. It means that we have determined

$$
h\left(Y^{\lambda}\left(\wedge^{j} \Omega\right), q\right)
$$

for all $\left\{\begin{array}{l}\lambda \vdash k, \\ j=0,1, \cdots, k .\end{array}\right.$

$$
q \text {-analog of the hook length formula }
$$

For $\lambda \vdash k$ let W^{λ} be the irreducibe S_{k}-module corresponding to λ. Then $\operatorname{dim} W^{\lambda}$ is given by

$$
\begin{equation*}
\operatorname{dim} W^{\lambda}=\frac{k!}{\prod h_{i j}} \tag{3}
\end{equation*}
$$

where $h_{i j}$ is the hook length at the (i, j)-th position. The following is an example which shows the matrix $\left\{h_{i j}\right\}$ for the Young diagram $\lambda=(5,3,1)$.

7	5	4			1
4	2	1			
1					

In (3) replace integer a by the polynomial

$$
\begin{aligned}
{[a]: } & =\frac{1-q^{a}}{1-q} \\
& =1+q+\cdots+q^{a-1}
\end{aligned}
$$

It is the " q-analog of the hook length formula."
Since there are same number of integers in the denominator and enumerator of (3), it is the same if we replace a by

$$
1-q^{a} .
$$

$$
q \text {-analog of the Weyl dimension formula }
$$

Let $\lambda \vdash k$. Let $n>0$ be any integer. Let V^{λ} be the irreducible $G L(n)$-module. Then $\operatorname{dim} V^{\lambda}$ is given by

$$
\operatorname{dim} V^{\lambda}=\frac{\mu_{1}!\mu_{2}!\cdots \mu_{n}!}{(n-1)!(n-2)!\cdots 2!1!\prod h_{i j}}
$$

where

$$
\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right)
$$

and

$$
\mu:=\left(\mu_{1}, \mu_{2}, \cdots, \mu_{n}\right)
$$

is defined by

$$
\mu=\lambda+(n-1, n-2, \cdots, 1,0) .
$$

If λ has more than n parts, we let $\operatorname{dim} V^{\lambda}=0$.
The Hilbert series h_{n} of the module

$$
Y^{\lambda}(A(n))
$$

is given by the q-analog of the Weyl dimension formula multiplied by $\operatorname{dim} W^{\lambda}$ with a certain shift of degrees.

