The differential module of the polynomial ring with the action of the symmetric group Nagoya, 20, November, 2007 H. Morita, A. Wachi, J. Watanabe

Let $R = K[x_1, \dots, x_k]$ be the polynomial ring over K, a field of characteristic 0. Let Ω be the module of differentials:

$$\Omega := Rdx_1 \oplus \cdots \oplus Rdx_k$$

Let $G := S_k$ be the symmetric group in k letters. Let G act on R by permutation of the variables. Extend the action to

 $\wedge^j\Omega$

for

$$j=0,1,\cdots,k.$$

We consider the following problems:

Problem 1. Decompose $\wedge^{j}\Omega$ into irreducible S_k -modules.

Problem 2. Determine the Hilbert series of the isotypic components of

 $\wedge^{j}\Omega.$

Recall that the irreducible modules of S_k are parametrized by the partitions of k. Thus we write W^{λ} for the irreducible S_k -module corresponding to $\lambda \vdash k$.

Let $Y^{\lambda}(-)$ be the functor from the category of S_k -modules to itself

"to extract the isotypic component"

belonging to λ . Note that it is an exact functor.

For a graded vector space M,

h(M,q)

denotes the Hilbert series of M. (This is a power series in q with positive integers as coefficients.)

Example 1 : The case where k = 2.

Assume k = 2. Then R = K[x, y]. There are only two partitions: $\lambda = \begin{cases} 2, \\ 11. \end{cases}$ We want to determine

 $h(Y^{\lambda}(\wedge^{j}\Omega),q)$

for j = 0, 1, 2.

For j = 0, it is easy to determine the Hilbert series since

$$\begin{cases} Y^{(2)}(\wedge^{0}\Omega) = R^{G} = K[x+y,xy] \\ Y^{(11)}(\wedge^{0}\Omega) = (x-y)R^{G} \end{cases}$$

and since R is the direct sum:

$$R = R^G \oplus (x - y)R^G$$

For j = 2, we have

$$\wedge^2 \Omega \cong R(dx \wedge dy).$$

Thus we have

$$\begin{cases} h(Y^{(2)}(\wedge^2\Omega), q) = h(Y^{(11)}(R), q), \\ h(Y^{(11)}(\wedge^2\Omega), q) = h(Y^{(2)}(R), q). \end{cases}$$

For j = 1, we have to decompose the module

$$\Omega \cong Rdx \oplus Rdy.$$

As is easily seen, symmetric 1-forms are of the form either sdx + sdy with $s \in \mathbb{R}^G$ or adx - ady with $a \in (x - y)R^G$, and alternating 1-forms are either sdx - sdy or adx + ady.

Thus we have obtained the following table for $h(Y^{\lambda}(\wedge^{j}\Omega), q)$.

	j = 0	j = 1	j=2
$\lambda = (2)$	$\frac{1}{(1-q)(1-q^2)}$	$\frac{1}{(1-q)^2}$	$\frac{q}{(1-q)(1-q^2)}$
$\lambda = (11)$	$\frac{q}{(1-q)(1-q^2)}$	$\frac{1}{(1-q)^2}$	$\frac{1}{(1-q)(1-q^2)}$

Fix j = 0. So $\wedge^{j}\Omega = R$. If $\lambda = (k)$, the trivial partition, then $Y^{\lambda}(R)$ is R^{G} , the ring of invariants. So we have

$$h(R^G, q) = \frac{1}{(1-q)(1-q^2)\cdots(1-q^k)}$$

since R^G is generated by the elementary symmetric functions.

Put $\overline{R} := R/(R_+^G)$. Then it is easy to see that

$$\begin{split} h(Y^{\lambda}(R),q) &= h(R^G,q)h(Y^{\lambda}(\overline{R}),q) \\ &= \frac{h(Y^{\lambda}(\overline{R}),q)}{(1-q)(1-q^2)\cdots(1-q^k)} \end{split}$$

By a result of Terasoma-Yamada. the numerator (which is a polynomial)

 $h(Y^{\lambda}(\overline{R}),q)$

is known to be the q-analog of the hook length formula multiplied by the dimension of W^{λ} with a certain shift of degree determined by λ .

Main result: The general case

Write

$$\Omega(-n) = Rdx_1 \oplus \cdots \oplus Rdx_n,$$

when we give dx_i degree n. We have been considering

 $\Omega = \Omega(0).$

Similarly R(-n) denotes the free module of rank 1 generated by a generator of degree n. Thus

$$\wedge^{j} (\Omega(-n)) \cong R^{\binom{\kappa}{j}}(-jn) \\ \cong (\wedge^{j} \Omega) (-jn)$$

....

Also put

$$A(n) = R/(x_1^n, \cdots, x_k^n).$$

For simplicity put $F = \Omega(-n)$. We would like to construct a minimal free resolution of A(n) as an *R*-module such that the boundary maps are compatible with the action of S_k . For this the usual minimal free resolution suffices:

$$\rightarrow \wedge^3 F \rightarrow \wedge^2 F \rightarrow \wedge^1 F \rightarrow \wedge^0 F \rightarrow A(n) \rightarrow 0$$
 (1)

We want to know

$$\xi_j := h(Y^{\lambda}(\wedge^j \Omega), q).$$

Assume that we know

$$h_n := h(Y^{\lambda}(A(n)), q),$$

for $n = 0, 1, 2, \cdots$. Fix $\lambda \vdash k$ and apply the functor $Y^{\lambda}(-)$ to the sequence (1) above. Then we have

$$\rightarrow Y^{\lambda}(\wedge^{3}F) \rightarrow Y^{\lambda}(\wedge^{2}F) \rightarrow Y^{\lambda}(\wedge^{1}F) \rightarrow Y^{\lambda}(\wedge^{0}F) \rightarrow Y^{\lambda}(A(n)) \rightarrow 0$$

Since the sequence is exact it gives us:

$$h_n = \sum_{j=0}^k (-1)^j q^{nj} \xi_j \tag{2}$$

This means that we have an infinite set of linear equations relating $\{\xi_i\}$ and $\{h_i\}$. For example if k = 3, we have

$$\begin{pmatrix} 1 & -1 & 1 & -1 \\ 1 & -q & q^2 & -q^3 \\ 1 & -q^2 & q^4 & -q^6 \\ 1 & -q^3 & q^6 & -q^9 \\ 1 & -q^4 & q^8 & -q^{12} \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix} \begin{pmatrix} \xi_0 \\ \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} h_0 \\ h_1 \\ h_2 \\ h_3 \\ h_4 \\ \vdots \end{pmatrix}$$

Note that any maximal minor of the matrix $\{(-q^n)^j\}$ is non-zero. Thus we have proved the following theorem.

Theorem With $\lambda \vdash k$ fixed, the set of Hilbert series $\xi_0, \xi_1, \xi_2, \cdots, \xi_k$.

in consideration are determined by any (k+1) terms of

 h_0, h_1, h_2, \cdots .

Consequenctly the infinite sequece

 h_0, h_1, h_2, \cdots .

is determined by any k + 1 terms.

Actually h_0 and h_1 are known for all $\lambda \vdash k$. (This is trivial.) Hence the above theorem is rephrased as follows:

Theorem' With $\lambda \vdash k$ fixed, any k - 1 terms in the infinite series h_2, h_3, \cdots determine $\xi_0, \xi_1, \xi_2, \cdots, \xi_k$ and they determine all h_2, h_3, \cdots

As is easily conceived we have the duality

$$Y^{\lambda}(\wedge^{j}\Omega) \cong Y^{\overline{\lambda}}(\wedge^{k-j}\Omega)$$

Thus we have the following

Theorem ["] Any $[(k+1)/2]$	terms in the infinite series
	h_0, h_1, h_2, \cdots
for all $\lambda \vdash k$ determine	
	$\xi_0,\xi_1,\xi_2,\cdots,\xi_k.$

A result of Morita-Wachi-Watanabe says that

 h_n

is the q-analog of the Weyl dimension formula. It means that we have determined

 $h(Y^{\lambda}(\wedge^{j}\Omega),q)$

for all $\begin{cases} \lambda \vdash k, \\ j = 0, 1, \cdots, k. \end{cases}$

q-analog of the hook length formula

For $\lambda \vdash k$ let W^{λ} be the irreducibe S_k -module corresponding to λ . Then dim W^{λ} is given by

$$\dim W^{\lambda} = \frac{k!}{\prod h_{ij}} \tag{3}$$

where h_{ij} is the hook length at the (i, j)-th position. The following is an example which shows the matrix $\{h_{ij}\}$ for the Young diagram $\lambda = (5, 3, 1)$.

In (3) replace integer a by the polynomial

$$[a]: = \frac{1-q^{a}}{1-q} \\ = 1+q+\dots+q^{a-1}$$

It is the "q-analog of the hook length formula."

Since there are same number of integers in the denominator and enumerator of (3), it is the same if we replace a by

$$1 - q^{a}$$
.

q-analog of the Weyl dimension formula

Let $\lambda \vdash k$. Let n > 0 be any integer. Let V^{λ} be the irreducible GL(n)-module. Then dim V^{λ} is given by

dim
$$V^{\lambda} = \frac{\mu_1! \mu_2! \cdots \mu_n!}{(n-1)!(n-2)! \cdots 2! 1! \prod h_{ij}}$$

where

$$\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_n)$$

and

$$\mu := (\mu_1, \mu_2, \cdots, \mu_n)$$

is defined by

$$\mu = \lambda + (n - 1, n - 2, \cdots, 1, 0).$$

If λ has more than *n* parts, we let dim $V^{\lambda} = 0$.

The Hilbert series h_n of the module

$$Y^{\lambda}(A(n))$$

is given by the q-analog of the Weyl dimension formula multiplied by $\dim W^\lambda$ with a certain shift of degrees.